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Hydrophobic interactions have long been established as essential for stabilizing struc-
tured proteins as well as drivers of aggregation, but the impact of hydrophobicity on the
functional significance of sequence variants has rarely been considered in a genome-
wide context. Here we test the role of hydrophobicity on functional impact across
70,000 disease- and non–disease-associated single-nucleotide polymorphisms (SNPs),
using enrichment of disease association as an indicator of functionality. We find that
functional impact is uncorrelated with hydrophobicity of the SNP itself and only weakly
correlated with the average local hydrophobicity, but is strongly correlated with both
the size and minimum hydrophobicity of the contiguously hydrophobic sequence (or
“blob”) that contains the SNP. Disease association is found to vary by more than sixfold
as a function of contiguous hydrophobicity parameters, suggesting utility as a prior for
identifying causal variation. We further find signatures of differential selective constraint
on hydrophobic blobs and that SNPs splitting a long hydrophobic blob or joining
two short hydrophobic blobs are particularly likely to be disease associated. Trends are
preserved for both aggregating and nonaggregating proteins, indicating that the role of
contiguous hydrophobicity extends well beyond aggregation risk.

sequence–function relationship | protein hydrophobicity | single-nucleotide polymorphism |
population genetics | computational methods

Protein structure is commonly understood to mediate the effects of sequence on function,
but single-nucleotide polymorphisms (SNPs) can alter function while leaving the protein
structure essentially unchanged. For example, intrinsically disordered proteins (IDPs)
lack unique structure yet are both essential for many critical biological pathways (1–5)
and sensitive to sequence (6–11). A missing framework for sequence modularity and
organization presents a conceptual and technical barrier to understanding the underlying
mechanisms of sequence dependence, as well as the genetic basis for heritable traits
and disease risks. Structured proteins are clearly modular, but identifying the module
boundaries has required explicit knowledge or prediction of secondary structure. There
has been no generic approach for detecting organization when structure is unknown and
unpredictable or nonexistent. Here, we propose a general role for contiguous stretches of
hydrophobic residues in organizing sequences and determining sequence sensitivity.

We showed in a previous study that a long intrinsically disordered protein can
retain modularity of tertiary interactions, despite the absence of tertiary structure. Fully
atomistic, explicit-solvent molecular dynamics simulations of the 91-residue disordered
prodomain of Brain Derived Neurotrophic Factor (BDNF) revealed a soft network of
tertiary contacts between contiguous stretches of hydrophobic residues (12). To distin-
guish these stretches of hydrophobic residues from any other more traditional segment
or domain definition, we follow terminology common to polymer physics and call these
stretches “blobs.” Blobs may contain secondary structure elements, but are not required to
do so. These results suggested a more generic framework for interaction-based functional
modularity, which could be determined directly from sequence. However, the usefulness
of this approach had not been tested beyond the single protein in which it was developed.

Many variant-to-function prediction methods rely on some form of residue character-
ization of the variant and its local sequence. In addition to physicochemical properties
(13–17) these may include evolutionary conservation (13, 14, 16, 18–21) and structural
propensities (17, 22–27). Such methods may also rely on known protein structures to
incorporate properties such as local secondary structure and solvent accessibility (27).
Fewer than 35% of human protein-coding genes have structures deposited in the protein
data bank (28), and complete structures have been experimentally solved for a tiny fraction
of known proteins (29, 30).

In the absence of structural information, physicochemical properties like hydrophobic-
ity can still be determined from sequence, but the properties of individual residues are not
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predictive. Most attempts at incorporating the local sequence
have used a fixed-width sliding window centered around the SNP,
which neglects the intrinsic modularity of protein sequences and
may contribute to the relative weakness of these approaches. For
example, if the mutated residue is near the module boundary,
the mutation-centered window will partially overlap a module
that does not contain the SNP. We propose here that the blob
surrounding a residue provides a natural and sequence-informed
definition for the local sequence context. Furthermore, due to
the cooperativity of the hydrophobic effect (31) and the tendency
for hydrophobic residues to be buried (32), we hypothesized that
hydrophobic blobs (“h-blobs”) would form interaction-rich and
mutation-sensitive clusters across a generic proteome.

In the present work, we detect h-blobs across the human pro-
teome and characterize their structural properties and functional
impact. We calculate the distribution of secondary structures for
residues inside and outside h-blobs and use solvent-accessibility
calculations to test our hypothesis that h-blobs represent buried
regions of solvated proteins. Our analysis of function uses disease
association as a proxy for functional impact. We test for enrich-
ment of disease-associated SNPs as a function of hydrophobic blob
length, residue hydrophobicity, and average hydrophobicity of a
window centered around the SNP. We complement these results
using population frequencies to test for signatures of selective
constraint in h-blobs. Furthermore, we consider functional im-
pact for multiple special cases, including transmembrane regions,
aggregating proteins, and SNPs that split or merge blobs or change
specific blob properties. In sum, we present several signatures
consistent with the hypothesis that proteins are partly organized
around domains of contiguous hydrophobicity and demonstrate
that we can roughly delineate such regions from sequence alone.

Results

Regions of Contiguous Hydrophobicity Are Enriched for
β-Strands and Buried Residues. The blobulation algorithm,
first presented in ref. 12, is a method for tunable segmentation
or edge detection in protein sequences based on hydrophobicity.
The original “whole-sequence” blobulation algorithm digitizes
the sequence and then clusters it. In the preliminary digitization
step (Fig. 1A), each residue is classified as hydrophobic or
nonhydrophobic, depending on whether the Kyte–Dolittle
hydropathy score (33) is above or below the hydrophobicity
threshold H �. In the main clustering step (Fig. 1B), the algorithm
scans the given amino acid sequence to identify stretches of at least
Lmin sequential residues that were classified as hydrophobic during
digitization. These stretches are called hydrophobic blobs or
h-blobs.

The residues that are not assigned to h-blobs will contain a mix
of nonhydrophobic residues and isolated hydrophobic residues, in
stretches that either link h-blobs or terminate the sequence: Short
stretches that contain fewer than Lmin residues are classified as
separator blobs (“s-blobs”), while long stretches with at least Lmin
residues are classified as polar blobs (“p-blobs”). The blobs can
then be characterized based on any collective property of the blob
sequence; the h, p, and s designations also constitute the primary
blob characterization termed the “hydrophobicity class.” In ref.
12 we also introduced a higher-order classification: Adjacent
h-blobs that were separated only by the short s-blobs were called
“h-groups.” We include this designation in Fig. 1B for com-
pleteness but do not explicitly consider h-groups in this paper.
However, h-groups are captured implicitly by variation of the H �

threshold; the long h-blobs that are detected at low H � would be
classified as h-groups at high H �.

The blobulation algorithm can be used in multiple ways, and
we apply it in three slightly different ways within this study. In
the original “whole sequence” version just described, the entire
sequence is unambiguously and completely decomposed into h-,
p-, and s-blobs using two fixed parameters {H �,Lmin} provided
by the user. In this section we continue to use this approach,
because the analysis considers whole proteins. Alternatively, we
can fix one parameter and determine the value of the second
parameter that would assign a fixed residue to an h-blob. In
subsequent sections we use two such variations (“unconstrained
length” and “unconstrained threshold”) for analyzing the blob
properties surrounding specific sets of SNPs. Both approaches are
described further at first use.

We find that nearly half of the residues in the proteome
meet our original (12) relaxed criteria for h-blobs, which include
short, moderately hydrophobic sequences. More specifically, using
Lmin = 4 and H � = 0.4, the residues in the Universal Protein Re-
source (UniProt) database (36) (n = 6,459 proteins) are distributed
as follows: 45% in h-blobs, 52% in p-blobs, and 3% in s-blobs.
Stricter criteria can be used to isolate the long, highly hydrophobic
blobs that cover less than 10% of the proteome: Using H � = 0.5
and Lmin = 8, the distribution is 7% in h-blobs, 93% in p-blobs,
and <1 % in s-blobs. The effect of varying these two parameters
is shown for cytochrome C peroxidase in Fig. 1C ; as the criteria
are made more restrictive, the algorithm isolates one long and very
hydrophobic blob at the core of the protein.

To test the hypothesis that h-blobs would be buried in globular,
structured proteins, we calculated the relative solvent-accessibility
surface area (SASA) for each blob type, determined using struc-
tures in the Protein Data Bank (PDB) (excluding transmembrane
domains). Relaxed criteria (Lmin = 4,H � = 0.4) were used for
this calculation to maximize the amount of available data and
to keep the analysis conservative (Dataset S1). These calculations
(Fig. 1D) confirmed that residues in h-blobs have a substantially
lower SASA (0.21) than p-blobs (0.35) or s-blobs (0.33); SE for all
three quantities is less than 0.001. Together, these results suggest
that h-blobs condense into buried clusters that are rich in intra- or
interprotein interactions. As illustrated in Fig. 1C, we expect this
difference to be even larger for h-blobs that meet stricter criteria.

The overlap between blob hydrophobicity class and secondary
structure was measured by blobulating all unique proteins in the
PDB and tabulating the fraction of residues occurring in helices
(α, 3–10, π), strand (β-bridge or extended β-strand), or coil for
each blob type (Dataset S2). As shown in Fig. 1E, all blob types
contain a comparable fraction of helices, although the fraction
in h-blobs is slightly greater than in non–h-blobs. We do not
expect contiguous hydrophobicity to be particularly correlated
with helical structure (with the exception of transmembrane
helices): Helices frequently have multiple faces with differential
solvent accessibility, and the sequence needs to cycle through
residues that are appropriate for each face. H-blobs, however, are
about twice as likely to contain strands as non–h-blobs (Fig. 1E).
β-strands are secondary structure elements, but they are also indi-
cators of tertiary interactions, since β-strands will have a pairing
β-strand. These results are consistent with our first application of
blobulation to simulated conformations of the long disordered
pro region of BDNF (12), which revealed a network of soft
tertiary interactions mediated through pairing of β-strands in
h-blobs.

As an example, Fig. 1E also shows the blob assignments for
the ubiquitin sequence mapped onto its structure. The N-terminal
β-hairpin is assigned to two h-blobs, separated by an s-blob that
is adjacent to the turn. The C-terminal β-strand is also assigned
to an h-blob, capped by an s-blob at the terminus. Finally, the
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Fig. 1. Whole-sequence blobulation algorithm for segmentation of proteins. (A) First, the sequence is digitized: Residues are classified as hydrophobic or
nonhydrophobic depending on whether they have a Kyte–Dolittle (33) hydropathy falling above or below the user-provided threshold H�, respectively. (B) The
clustering step acts on the digitized sequence, which is illustrated here as a cartoon: Residues above and below the H� threshold are shown as blue ovals
and orange fans, respectively. The clustering step scans the digitized sequence according to the indicated criteria, first detecting h-blobs, then p-blobs, and
finally s-blobs. Lmin is the user-provided minimum blob size. The blobulation outcome for this particular chain would be valid for 2 < Lmin < 6. The software
and a web interface are freely available as described in Materials and Methods. (C) Cytochrome C peroxidase (2CYP) (34) shown for two different digitization
thresholds H� (rows) and three different clustering criteria (columns), including no clustering (Left “unblobulated” column) or two different values of Lmin (Center
and Right columns, respectively). The blue surface of the unblobulated sequence depicts canonical hydrophobic residues; the H� = 0.4 row also includes serine
and threonine, which have Kyte–Dolittle hydropathy scores of 0.41 and 0.42, respectively. H-blobs in Center and Right columns are colored by arbitrarily varying
shades of blue to distinguish individual blobs. (D) Relative SASA for nontransmembrane blobs in the PDB, categorized by blob hydrophobicity class. (E) Left,
distribution of secondary structures for sequences with structures in the PDB, categorized by blob hydrophobicity class. Right, blobulated ubiquitin (PDB ID
5GO7) (35), colored by blob hydrophobicity class, as in B. In both D and E, the blobulation algorithm uses Lmin = 4 and H� = 0.4; error bars are SEs (n > 500, 000
for h- and p-blobs, n > 50, 000 for s-blobs). See Materials and Methods for details.

Pro37-Ala46 β-strand is a p-blob from Pro37 to Arg42 and then
switches to an h-blob as it crosses into the h-blob–rich part of
the protein. That h-blob continues until the chain bends back
toward the other p-blobs. This example suggests that while blob
boundaries can align with secondary structure elements, they
are more fundamentally correlated with the location of the blob
within the three-dimensional protein structure.

Average Local Hydrophobicity Is a Weak Indicator of Disease
Association. To test whether the residue hydrophobicity is

prima facie correlated with functional impact, we calculated the
enrichment of disease-associated missense SNPs (“dSNPs”) as a
function of hydrophobicity of the reference allele. Throughout
this paper, unless otherwise noted, dSNPs are tested for
enrichment relative to the expectation set by missense SNPs
that are not disease-associated (“nSNPs”). For example, the phrase
“dSNPs are enriched in blobs of type X” means that the proportion
of dSNPs found in blobs of type X is larger than the proportion
of nSNPs found in blobs of type X. As shown in Fig. 2B, we
did not detect any significant correlation (Pearson’s r = 0.02,
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Fig. 2. Effect of segmentation approach, length, hydrophobicity threshold, and solvation on calculated enrichment of dSNPs in hydrophobic segments.
(A) Illustration of three measures of SNP hydrophobicity (residue, contiguous, and average local) for the indicated SNP, found within a hypothetical peptide chain
composed of residues classified as hydrophobic (blue ovals) or nonhydrophobic (orange fans) for a given H�, as in Fig. 1B. Unconstrained-length blobulation
determines the local sequence (shaded in gray) by detecting contiguous hydrophobic residues, which together form an h-blob of length L; the moving-window
approach determines the local sequence using a fixed number Lw of residues centered around the SNP. (B) Enrichment of dSNPs relative to nSNPs as a function
of hydrophobicity of the reference allele, with line of best fit. No trend or significant correlation is observed (Pearson’s r = 0.02, P = 0.94, n = 17). (C–F) Enrichment
of dSNPs in hydrophobic segments, as a function of segment length and threshold, for (C) fixed-length hydrophobic windows of length Lw in which the average
hydrophobicity is above H�, and (D–F) h-blobs of length L, calculated with the threshold H� for (D) all SNPs, (E) those outside of transmembrane domains, and
(F) those in transmembrane domains. (G–J) The total number of nSNPs per bin for the corresponding enrichment heatmaps in C–F (e.g., I shows the nSNP counts
for the enrichments in E). Each panel (C–J) is colored according to the scale at Right end of the row, and bins with no data are colored gray.

n = 17) between lone SNP hydrophobicity and dSNP enrichment,
meaning that the hydrophobicity of a residue considered in
isolation does not show this particular signature of functionality.

The effect of average local hydrophobicity on the enrichment
of dSNPs was calculated using moving windows of length Lw
centered around each SNP. While there is no “standard” window
size, most SNP prediction programs use a window size in the range
of 1 to 21 residues (16, 20, 37, 38). The window size is chosen
to balance concerns that small window sizes may not accurately
capture the “local” sequence (39–41) whereas large window sizes
can decrease the signal-to-noise ratio (42). Here we computed
the mean window hydrophobicity H̄i for all SNPs i in our SNP
dataset, while also varying Lw. Fig. 2C shows the enrichment
of dSNPs for which H̄i >H �, for the range of moving-window
widths Lw = 1 to 99. As is evident in Fig. 2C, the enrichment of
dSNPs is relatively insensitive to the window size for the regime
where Lw ≥ 6 and H � ≤ 0.65. The total count of nSNPs in each
bin is shown in Fig. 2G and was similarly insensitive to window
size for larger thresholds. These results suggest that distant residues
introduce noise that averages out in a proteome-wide analysis, but
their inclusion in the window would still reduce precision for any
individual SNP.

Surprisingly, we detect a narrow band of dSNP depletion for
windows with a high average hydrophobicity (the red signal for
H � ≥ 0.65 in Fig. 2C ). This signal is due to only a handful of
SNPs (see the counts in Fig. 2G), but we observe a similar pattern
using the blobulation algorithm, and we discuss its origins in the
next sections.

Contiguous Hydrophobicity Is a Strong Indicator of Disease
Association. The use of a fixed-width window neglects the inher-
ent dispersion in the size of protein modules, which are captured
using blobulation (Fig. 2A). To quantify the blob properties for
each SNP, we used a blobulation variant we call unconstrained-

length blobulation, which fixes the threshold H � and a reference
residue i but imposes no minimum blob length. This approach
first tests whether the hydropathy score for residue i exceeds H �,
and if so, it calculates the exact length L of the h-blob that
contains residue i. Unconstrained-length blobulation is formally
equivalent to whole-sequence blobulation with Lmin = 1, but is
more efficient since we are analyzing only the relevant part of the
sequence.

Specifically, we applied unconstrained-length blobulation to
each SNP in the dataset (using the reference allele) and a given hy-
drophobicity threshold H � and then determined L. We repeated
this calculation for a series of H � values, and for dSNPs and
nSNPs separately (Dataset S3), and then tabulated the proportion
of dSNPs and nSNPs in each (H �,L) bin (Dataset S4). The
resulting enrichment of dSNPs as a function of blob length L and
threshold H � is shown in Fig. 2D, and the total number of nSNPs
per bin is shown in Fig. 2H. We observe a consistent relationship
between hydrophobicity of the local blob and dSNP enrichment.
dSNPs are depleted in weakly hydrophobic blobs, are neutral
for moderately hydrophobic blobs, and become more enriched
as the blob gets longer and/or satisfies a stricter hydrophobicity
threshold. The trend is primarily monotonic, which supports the
hypothesis that hydrophobic blobs constitute functional elements.

We do find an exception to the trend at the plot boundary:
Blobs that satisfied the very strictest criteria were depleted in
dSNPs, consistent with the results using the moving-window
analysis. The depletion signal persisted even when bins with very
few samples were removed. In the next section, we consider two
potential reasons for this depletion: 1) dSNPs in these blobs are so
deleterious that they are selected out of the population or 2) some
subset of nSNPs is functional and under balancing selection or
relaxed constraint. In addition to a consistent trend, the analysis
returns a large spread in enrichment/depletion values: 3.2% of
the bins in Fig. 2D are significantly depleted below 0.5, while
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13% have a significant enrichment of greater than 1.5, and 3.5%
have a significant enrichment greater than 3 (significance based
on binomial test, P < 10−3; Materials and Methods). This range
indicates that hydrophobicity-based sequence segmentation could
be particularly useful for assessing the riskiness of SNPs located in
long or very hydrophobic sequences. The numerical enrichment
values for each bin are provided in Dataset S4.

Transmembrane helices will intrinsically require contiguous
residues that are at least moderately hydrophobic (with the ex-
ception of pore-lining helices) and it seemed possible that our
results were dominated by the distinctive properties of such trans-
membrane domains. We further decomposed the data into con-
tributions from SNPs that are not in transmembrane domains
(Fig. 2E) and those that are (Fig. 2F ). The counts of nSNPs
per bin for each case are shown in Fig. 2 I and J, respectively,
indicating that the overall dataset includes relatively few SNPs
in transmembrane domains. We find that enrichment trends for
solvated dSNPs (Fig. 2E) mimic trends in the combined dataset
(Fig. 2D). Thus, we conclude that enrichment of dSNPs in
h-blobs is a general trend rather than an indication of membrane
exposure.

We note that distinguishing between solvated and transmem-
brane SNPs also suggests appropriate blobulation parameters for
transmembrane domains. Transmembrane helices are known to
be 24 residues long on average, with about 19 residues forming
the hydrophobic core (43). As expected, none of the transmem-
brane residues are found in h-blobs that are much shorter than
19 residues (Fig. 2J ), except when the threshold is sufficiently
high to exclude those polar residues that are frequently found
in transmembrane helices. More specifically, raising the thresh-
old beyond H � = 0.36 typically excludes all charged and polar
residues but serine and threonine; further raising the thresh-
old beyond H � = 0.42 typically excludes all charged and po-
lar residues. Any transmembrane polar residues that fall below
the H � threshold will divide the transmembrane into multiple
h-blobs, which is consistent with the large number of short
h-blobs at high thresholds. In contrast, when short polar and
charged linkers between transmembrane segments are included
(H � < 0.3), multiple transmembrane segments may be grouped
into the same blob, with a minimum length around 20 residues.
Such a series of transmembrane segments would also be a common
example of the h-group illustrated in Fig. 1B, although we do not
use that hierarchical descriptor in this analysis.

The Genetic Diversity of Disease-Associated Variants Is Lowest
in the Most Hydrophobic Blobs. If hydrophobic blobs capture
functional segments of coding regions, then we may expect to
see signatures of differential selective constraint with varying blob
hydrophobicity. We test this hypothesis by examining whether or
not the genetic diversity of a SNP varies with the surrounding blob
hydrophobicity. Blobulation approaches with a fixed threshold
H ∗ will not distinguish between blobs that barely exceed the
threshold and those that significantly exceed it, so here we use
unconstrained-threshold blobulation. In this blobulation variant,
we fix the minimum length Lmin but do not fix the hydropathy
thresholdH �. Instead, for a given residue i, we calculateHmax : the
maximum possible value of H � that would still assign residue i to
an h-blob that is at least Lmin residues long. Here we use Lmin = 4.

A benchmark measure of genetic diversity is the expected
heterozygosity Θ≡ 2ν(1− ν), where ν is the frequency of the
coded allele. Sequences under more functional constraint, like
exons in essential proteins, experience purifying selection (removal
of almost all new functional alleles), which lowers Θ compared
to regions under little or no constraint (44–48). Conversely,
balancing selection (maintenance of multiple functional alleles)
causes increased genetic diversity over a genomic region (49).
Population substructure can also increase the genetic diversity,
but such effects would occur genome-wide and would not be
correlated with blob hydrophobicity class.

The results of stratifying the genetic diversity of SNPs by
their surrounding maximum blob hydrophobicity are shown in
Fig. 3. The population frequencies are based on non-Finnish
Europeans (50) (Dataset S5), for which the UniProt dSNP and
nSNP functional annotations are expected to be reasonably accu-
rate. The average heterozygosity of nSNPs in low-hydrophbicity
domains (Hmax ≤ 0.25) is 0.125 (Fig. 3A), while that for dSNPs
is 40 times lower, 0.003 (Fig. 3B). For both nSNPs and dSNPs,
the genetic diversity shows a significant departure from the neutral
expectation (outside the 1st to 99th null percentiles) for the largest
Hmax bin, Hmax ≥ 0.75. For nSNPs, the heterozygosity is larger
than expected (>99th null percentile), indicative of balancing
selection. In contrast, for dSNPs the heterozygosity is smaller than
expected (<1st null percentile), indicative of greater purifying
selection in highly hydrophobic blobs. In other words, the disease-
associated alleles in highly hydrophobic blobs appear to be more
deleterious than disease-associated alleles in lower-hydrophobicity
blobs.

A B

99
95

90
75

25
10
5
1

permutation
percentiles

nSNPs dSNPs

Fig. 3. Expected heterozygosity of SNPs in Europeans as a function of blob hydrophobicity. (A and B) The black line shows the average expected heterozygosity
Θ for (A) nSNPs and (B) dSNPs in h-blobs, determined using unconstrained-threshold blobulation (Lmin = 4) and binned by the resulting maximum SNP
hydrophobicity Hmax. Hmax bins have width ΔHmax = 0.25 and error bars represent SEs in the mean for that bin. Only SNPs where at least one of two alleles
are in an annotated h-blob are considered. Frequencies are from the gnomAD cohort of non-Finnish Europeans (50). The horizontal brown line is the average
heterozygosity for the SNPs in each panel. The background null distribution is generated from random permutation of frequency assignment among nSNPs
and among dSNPs, respectively, and is shown as brown shaded regions, with the null percentiles shown in the key at Right.

PNAS 2022 Vol. 119 No. 12 e2116267119 https://doi.org/10.1073/pnas.2116267119 5 of 11

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116267119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116267119/-/DCSupplemental
https://doi.org/10.1073/pnas.2116267119


The results here may explain the nonmonotonic behavior of the
dSNP-to-nSNP enrichment seen in Fig. 2 C and D for both the
moving-window and blobulation calculations. The thin band of
“red” over the bins with the highest hydrophobic threshold that
still contain data indicates a depletion in the number of dSNPs
relative to nSNPs. Before examining the population frequency
data, it was not clear whether the lack of dSNPs relative to nSNPs
is due to increased selection against dSNPs, increased balancing
selection for nSNPs, or a mixture of both. In this section we have
shown that the heterozygosity of dSNPs decreases with higher
blob hydrophobicity while the heterozygosity of nSNPs rises with
blob hydrophobicity. This suggests that the depletion observed
in Fig. 2 C and D in the high-hydrophobicity regions is caused
by both increased selection against disease-associated alleles and
increased selection for the maintenance of polymorphisms in the
non–disease-associated variants.

We tested whether the trends observed in Fig. 3 are specific
to non-Finnish Europeans by performing the same analysis based
on East Asian population frequencies (SI Appendix, Fig. S1 and
Dataset S5). The East Asian frequency dataset contains an order
of magnitude fewer individuals than the non-Finnish European
data, n ∼ 1, 500 vs. n ∼ 32, 000 individuals, which means the
frequency resolution is worse than for the non-Finnish European
data. Consequently, we do not observe the same level of statistical
significance, but we do find the same trends as in the European co-
hort: For nSNPs there is increasing heterozygosity with increasing
Hmax and for dSNPs the heterozygosity decreases with increasing
Hmax. The stratification of genetic diversity with blob properties
appears to be a feature shared across diverse human populations.

For additional context on the proteins containing the blobs in
the Hmax ≥ 0.75 bin, we use gene-ontology and pathway enrich-
ment tests (Materials and Methods and Dataset S6). The nSNPs
found in blobs with Hmax ≥ 0.75 are distributed across a subset of
proteins (n = 635), which we test against the background of all
proteins containing nSNPs (N = 10, 406). For the dSNPs, there

are n = 179 proteins containing the Hmax ≥ 0.75 SNPs and a
total background ofN = 1, 803 proteins containing a dSNP. Both
the Hmax ≥ 0.75 nSNP and dSNP proteins are most enriched for
being located in or on a membrane, as expected for proteins con-
taining highly hydrophobic blobs. In terms of molecular function
and biological process, however, the nSNPs and dSNPs differ in
their enriched ontologies. The Hmax ≥ 0.75 nSNPs are enriched
for olfactory processes, chemical sensing, and signal transduction.
This accords with previous observations that olfactory-related
genes exhibit signs of balancing selection (51) and/or relaxed
purifying selection (52). This analysis has essentially reidentified
this same feature of greater diversity in chemical sensing pathways,
found here because the increased genetic diversity is specifically
present in highly hydrophobic subdomains of those proteins. In
contrast, theHmax ≥ 0.75 dSNPs are enriched for cation and small
molecule transmembrane transport proteins. These SNPs reside
in proteins enriched for critical membrane-bound transporters,
consistent with the signal of higher functional constraint.

dSNP Enrichment Emerges in Shorter and More Weakly
Hydrophobic Blobs for Aggregating Proteins. Side-chain
hydrophobicity plays a well-established role in diseases involving
aggregating proteins (53–55). To test whether the trends
observed in Fig. 2D are amplified in aggregating proteins, we
separated aggregating proteins from the primary dataset. Proteins
involved in the formation of extracellular amyloid deposits
or intracellular inclusions with amyloid-like characteristics are
included in the “aggregating proteins” subset (28 proteins, 124
nSNPs, 330 dSNPs), while all remaining proteins are labeled as
“nonaggregating proteins.”

First, we used whole-sequence blobulation (H � = 0.4,Lmin =
4) to compare the enrichment distributions for aggregating and
nonaggregating proteins using two different approaches for blob
characterization. In addition to the hydrophobicity class, blobs
were also assigned charge class, which is the predicted globular
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Fig. 4. Blob hydrophobicity and charge properties for SNPs in aggregating proteins. (A) Distribution of charge classes [Das–Pappu (56) phase] across the
SNP dataset, for each blob hydrophobicity class. Possible values of the blob charge class are 1 (weak polyampholyte), 2 (Janus or boundary region), 3 (strong
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phase according to Das and Pappu (56). This property is calculated
using the fraction of positive and negative charges in a blob and
is particularly relevant for IDPs. Nearly all structured proteins fall
in the class 1 (weak polyampholyte) part of the Das–Pappu phase
diagram. In contrast to structured proteins, IDPs can be found in
all five Das–Pappu phases, including class 2 (Janus or boundary
region), class 3 (strong polyampholyte), class 4 (negatively charged
strong polyelectrolyte), and class 5 (positively charged strong
polyelectrolyte).

The blob hydrophobicity class and charge class are fundamen-
tally correlated; while blob charge class does not explicitly consider
hydrophobicity, increasing the number of charged residues will
reduce the average hydrophobicity of a blob. The extent of this
correlation is shown in Fig. 4A, which breaks down the fraction of
h- and p-blobs that fall in each Das–Pappu charge class. As
expected, most h-blobs (90%) fall in class 1 (weak polyam-
pholyte), followed by 9% in class 2 (Janus). The p-blobs are more
evenly distributed across classes, with the highest fraction (42%)
classified as strong polyelectrolytes. Fig. 4 B and C shows the
SNP distributions for blobs with different hydrophobicity class
and charge class, respectively. Since there are five charge classes
and only three hydrophobicity classes, we hypothesized that in
nonaggregating proteins, blob charge class would have a stronger
association with disease than blob hydrophobicity class. Instead,
we found that the strongest dSNP enrichment as a function of
charge class (1.09-fold, P < 10−58 for weak polyampholyte blobs)
is comparable to or even slightly less than the strongest enrichment
found for hydrophobicity class (1.15-fold, P < 10−100 for h-
blobs).

Furthermore, the charge-based and hydrophobicity-based clas-
sification schemes yield similar trends with protein aggregation:
Fig. 4B shows that a given dSNP in an aggregating protein is just
as likely to be found in an h-blob as if it were in a nonaggregating
protein, and Fig. 4C shows an analogous result for dSNPs in
various charge classes. However, nSNPs in aggregating proteins are
found slightly less frequently in blobs classified as h-blobs or class
1 (globular, weak-polyampholyte) blobs than nSNPs in nonag-
gregating proteins. As a result, we do observe a small increase in
overall dSNP enrichment for h-blobs/weak-polyampholyte blobs
of aggregating proteins relative to nonaggregating proteins.

We then used the results from unconstrained-length blobu-
lation to further stratify the dSNP enrichment in aggregating
proteins by hydrophobicity threshold H � and blob length.
The enrichment calculations from Fig. 2D were partitioned
between aggregating and nonaggregating proteins and are shown
in Fig. 4D. The highly enriched (blue) band is shifted toward
the origin for aggregating proteins, indicating that sensitivity
to mutation is found in shorter and more weakly hydrophobic
blobs. The differential enrichment values using whole-sequence
blobulation in Fig. 4 B and C arise from collapsing the
distributions in Fig. 4D along a single value of H �. This result
suggests that lower-hydrophobicity thresholds may be appropriate
for predicting disease risk in known-aggregating proteins and
underscores the importance of a multidimensional analysis for
distinguishing between different groups of proteins.

Disease-Associated SNPs Are Enriched for Mutations That
Change Local Blob Characteristics and Overall Protein Blob
Topology. Whole-sequence blobulation yields a series of h-blobs,
connected by p- and s-blobs, which we term the “blobular
topology.” Such a topology is analogous to the classic protein
topology of secondary structure elements, although the location
of edges and number of elements may be distinct. A SNP
can alter the blobular topology by moving a short stretch of

contiguous residues above or below the minimum blob size, either
forming a new small h-blob or dissolving an existing small h-blob,
respectively. A SNP can also split a long h-blob by interrupting
a long contiguous hydrophobic sequence or merge two smaller
h-blobs into one long h-blob by removing such an interruption.

Here we tested whether the dSNPs were more likely to change
the topology determined by whole-sequence blobulation (H � =
0.4,Lmin = 4). Fig. 5A displays the fraction of nSNPs and dSNPs
that cause each type of topological change. In the background
case we expect to see more formation than dissolution, since the
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blob count decreases with length (Fig. 2H ), and there are more
blobs just below the minimum length than just above it. Fig. 5A
confirms this expectation for nSNPs, and the difference between
the fraction of nSNPs and dSNPs that form new h-blobs is not
significant (binomial test, P > 10−3).

Other topological changes, however, are strongly enriched
in dSNPs. As shown in Fig. 5A, dSNPs are significantly more
likely to dissolve h-blobs (binomial test, P < 10−21), split h-
blobs (binomial test, P < 10−80), and merge h-blobs (binomial
test, P < 10−36). The magnitude of enrichment (2.1-fold) is
greatest for SNPs that split longer h-blobs into two shorter ones
and is only moderately weaker for the reverse merging of two h-
blobs (1.7-fold). These results are consistent with the functional
sensitivity of long blobs shown in Fig. 2D. Regardless of overall
topological changes, SNPs may change the characteristics of their
local blob. Such changes may affect blob topology (as in Fig. 5A)
or simply shift blob boundaries, causing a transition in blob
class at the site of the SNP. The latter case is included in the
data in Fig. 5B. We observe that about 17% of the nSNPs and
22% of dSNPs introduce a blob-hydrophobicity class change at
the site of the SNP, yielding a 1.3-fold enrichment (binomial
test, P < 10−10; Fig. 5B). Fig. 5C compares the rates of specific
blob hydrophobicity class transitions. Mutations involving h- →
p-blob transitions yield the maximum enrichment (1.5-fold,
P < 10−10, binomial test) among dSNPs. In contrast, dSNPs are
only 1.1-fold enriched (binomial test, P < 10−3) in the reverse
p- → h-blob transition, and SNPs that remain in p-blobs for both
the reference and alternative allele are depleted among disease-
associated SNPs.

Similarly, the frequency of SNP-induced changes in blob
charge class is shown in Fig. 5C, for transitions between blobs
in class 1 (weak polyampholyte), class 2 (Janus), or class 3 (strong
polyampholyte). Transitions involving class 4 or class 5 (positively
or negatively charged strong polyelectrolytes) represented fewer
than 1.5% of the total transitions. Disease-associated SNPs are
enriched for all mutations that change blob charge class and
are either unenriched or weakly depleted for mutations that
do not change the local blob charge class. Collectively, these
results are consistent with the increased mutational sensitivity of
hydrophobic (and typically buried) blobs that is shown in Fig. 2D,
while also emphasizing that mutations that change charge class
are particularly likely to be causal. For instance, charge reversal of
a charged residue could have particularly strong functional effects.
While these effects might be amplified if the charged residue was
in a weak h-blob and thus interacting with other protein residues,
the charge reversal itself would not affect the blob hydrophobicity
class.

Discussion

In the present work, we have presented the “blobulation” scheme
for identifying interaction-rich protein regions from peptide se-
quence and tested its use in detecting functional modules across
the proteome. We show that hydrophobic h-blobs in solvated
proteins are more likely to be buried: The h-blob SASA is 60%
that of non–h-blobs. H-blobs are also nearly twice as likely
to contain β-strands, supporting their proposed role as tertiary
interaction sites. We find that enrichment of disease-associated
mutations in hydrophobic blobs increases with the strictness of the
hydrophobic blob criteria, with greater than fourfold enrichment
for disease association in the longest, most hydrophobic blobs.
This result persists when SNPs in transmembrane domains are
removed from the analysis. The range and resolution of varying
enrichment are strongly damped in the status quo fixed-length

moving-window approach. Stratifying SNPs by their surrounding
blob properties reveals genome-wide differences in blob genetic
diversity, demonstrating pervasive differential selection that is tied
to blob hydrophobicity. Combined, these observations support
our hypothesis that blobulation provides a more meaningful and
less noisy approach to protein segmentation than use of a fixed-
length moving window.

We also find that disease-associated mutations are significantly
more likely than non–disease-associated mutations to change the
blob topology of the sequence. This suggests that blobulation
provides a meaningful topology that can be used as a frame-
work for sequence analysis and requires only the protein amino
acid sequence and two parameters (minimum blob length and
hydrophobicity threshold). Once blobs are identified, they can
be characterized using any property of interest. As an example,
in the present work, we find that disease-associated mutations
are moderately enriched for mutations that cause transitions in
blob hydrophobicity class (up to 1.5-fold) and strongly enriched
for mutations that cause certain transitions in blob charge class
(1.7-fold).

While we are not aware of a similar approach applied to generic
proteins, hydrophobic blobs are analogous to the aggregation
“hot spots” identified by tools such as AGGRESCAN (53), ProA
(54), and Zyggregator (55). We do find that functional sensi-
tivity in aggregating proteins follows similar trends to those in
nonaggregating proteins, but emerges in shorter blobs satisfying
weaker hydrophobicity criteria. The difference between aggregat-
ing and generic proteins is thus quantitative, not qualitative, and
demonstrates that hydrophobic interactions occur on a useful
continuum.

We demonstrated straightforward use of blobulation in com-
bination with another residue characterization method like the
Das–Pappu charge class. In this usage, blobulation serves only
as the underlying segmentation approach for defining the local
sequence. In principle, secondary structure prediction could be
used for defining the local sequence instead. As demonstrated by
the example of ubiquitin (Fig. 1E), however, secondary struc-
ture elements can cross between different faces of the protein,
so secondary structure boundaries may not capture functional
boundaries. Many secondary structure prediction methods require
alignment to a homologous sequence with known structure (57–
60), which may not be available. Yet this information is essential
for secondary structure predictors to achieve their primary goal:
determining which secondary structure the segment will adopt.
Predicting segmentation, however, requires only determining the
segment boundaries. Sequence-informed segmentation is a more
feasible and straightforward task than structure prediction and yet
has been largely unexplored in existing sequence analysis methods.

Improved information about the local context of a SNP, partic-
ularly those in hydrophobic blobs, could aid the identification of
functional mutations. In the context of interpreting genome-wide
association study results (61), the blob characteristics surrounding
an associated variant provide metrics for fine mapping and ranking
putative causal variants. Such blob metrics could also be used as in-
put features for predicting variant function with machine-learning
algorithms, which derive their decision rules based on training
datasets of annotated mutations. To this end, we provide a two-
dimensional table (Dataset S4) of disease-association enrichment
as a function of blob properties.

Many of the analyses in this paper use the relaxed criteria for
h-blobs to demonstrate that even conservative stratification yields
meaningful differences. Thus, the potential applications are not
limited to those residues that meet the strict criteria or have the
strongest disease association. We view the parameter sensitivity of

8 of 11 https://doi.org/10.1073/pnas.2116267119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116267119/-/DCSupplemental
https://doi.org/10.1073/pnas.2116267119


blobulation as a methodological strength, because adjusting the
two parameters allows the user to “zoom” in or out by tuning
the number of detected edges. In our parallel development of
a blobulation graphical interface (see Materials and Methods for
access information), we have repeatedly observed that such tuning
can bring previously obscured sequence organization into visual
focus.

Materials and Methods

Blobulation. The algorithm is illustrated in Fig. 1 A and B. As shown in Fig. 1A,
for a given peptide, every amino acid i is assigned a mean hydrophobicity Hi,
defined as the average Kyte–Dolittle (33) hydropathy score with a window size
of three residues, scaled to fit between 0 and 1. The sequence is then digitized
by testing whether Hi > H� for each amino acid; if Hi > H�, then residue i is
classified as hydrophobic, and if not, residue i is classified as nonhydrophobic.
Note that the algorithm classification is solely dependent on the Kyte–Dolittle
score and the threshold H�, rather than the canonical classification of residue
types. For instance, serine and threonine are not canonically hydrophobic, but
typically have a hydropathy score beyond the relaxed threshold H� = 0.4. Even
charged residues can be classified as “hydrophobic” if they are surrounded by
hydrophobic residues (so that Hi > 0) and the threshold H� is sufficiently low.

After the sequence is digitized, the sequence is blobulated, as shown in
Fig. 1B. The algorithm first identifies all contiguous stretches of at least Lmin
hydrophobic residues; these stretches are classified as h-blobs. Of the remaining
subsequences in the given peptide, those that are at least as long as Lmin are
termed p-blobs, while those shorter than Lmin are termed s-blobs. Example effects
of varying H� and Lmin are shown in Fig. 1C. The underlying software engine
and a web interface for sequence analysis with adjustable parameters are freely
available as described in Computational Packages.

In addition to the classic whole-sequence blobulation method just described,
we also use two variants that fix a reference residue i and relax either of the
two parameters. Unconstrained-length blobulation fixes the threshold H� and
calculates the length L of the blob containing residue i, rather than imposing
a minimum length. Similarly, unconstrained-threshold blobulation calculates
Hmax, which is the maximum possible value of H� that would still assign residue
i to an h-blob that meets the fixed Lmin requirement on minimum blob length.

Secondary and Tertiary Structural Analysis. We used the Ensembl BioMart
tool (62) to select human proteins that also had available structures in the PDB.
Only one structure was chosen for each unique sequence; for those sequences
with multiple available structures, we used a structure with maximum residue
coverage. In total, the structural dataset contained 6,459 proteins, each of which
were blobulated with Lmin = 4 and H� = 0.4. The secondary structure for each
residue of a given blob type was calculated using the DSSP algorithm (63, 64).
For the secondary structure calculations shown in Fig. 1C, “helix” consists of alpha-
helix, 3-helix, and 5-helix; “beta” consists of isolated beta bridge and extended
strand; and “coil” consists of all the remaining DSSP secondary structure types,
including turn and bend. Transmembrane domains (identified using UniProt
annotations) (36) were removed from this dataset for the SASA calculations. For
each residue, the raw SASA value was calculated using DSSP and then divided by
the residue-specific maximal accessibility (65) to determine the relative SASA. The
relative SASAs were then averaged for all residues of a given blob type. The SASA
data are provided in Dataset S1 and the secondary structure data in Dataset S2.

SNP Datasets. The SNP data we use is the UniProtKB literature-curated list
of missense variants (https://www.uniprot.org/docs/humsavar, obtained on 17
June 2020) (66). Variants are annotated using the American College of Medical
Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) termi-
nology (67). dSNPs are those annotated as “likely pathogenic or pathogenic”
(N = 30,227), and nSNPs are those annotated as “likely benign or benign”
(N = 39,448). SNPs in transmembrane domains were identified using the
annotations in UniProt (36).

dSNP Enrichment Tests. For a given residue annotation, such as being in an
h-blob, we test whether there are proportionally more dSNPs with that annotation
than expected based on the proportion of nSNPs with this annotation. The

enrichment we report is the ratio of the dSNP proportion over nSNP proportion.
To quantify the statistical significance, we use a binomial test on the dSNP count
assuming the nSNP proportions apply. Specifically, if we observe n dSNPs with a
given annotation out of N total dSNPs, and if the proportion of nSNPs with this
annotation is f, then under a null model the observed dSNPs count is a binomial
experiment of N “tests,” each with independent probability of “success” f. We
compute the probability of observing a count as extreme as n (two-tailed) given
f using the python scipy (68) function scipy.stats.binom test(n,N,f,alternative=
“two-sided”).

Fixed-Length Moving Windows. For each SNP i, we compute the mean hy-
drophobicity 〈H〉i within a window of length Lw centered on i. For a given
threshold H�, SNP i is classified as falling in a “hydrophobic window of length Lw”
only if 〈H〉i ≥ H�. The window lengths Lw were iterated over all odd numbers
between 1 and 99 (or the protein sequence length if the protein was less than 99
residues long), so that equal numbers of residues were included on each side of
the SNP. The enrichment of dSNPs in hydrophobic windows compared to nSNPs
is calculated as described in dSNP Enrichment Tests.

Population Frequency Data. Frequency data are from the gnomAD
v3 genomes dataset of variants for the non-Finnish European cohort:
gnomad.genomes.r3.0.sites.chr*.vcf.bgz, accessed 24 July 2020, using the
“INFO/AF nfe male” and “INFO/AF nfe female” tags. This cohort contains
32,299 individuals, providing allele frequency data as low as ∼1/60,000 ∼
0.002%. Variants with dbSNP identifications (“rsids”) were intersected with
the UniProt SNP data. There are 36,025 SNPs in common (in 10,565 genes),
composed of 29,653 nSNPs (in 10,143 genes) and 6,372 dSNPs (in 1,594 genes).
For comparison we also analyzed the gnomAD v3 East Asian cohort, using the
“INFO/AF eas male” and “INFO/AF eas female” tags. This cohort contains 1,567
individuals.

Expected Heterozygosity of SNPs in H-Blobs. We apply the blobulation
algorithm to every SNP i to find the maximum blob hydrophobicity threshold,
Hmax, for which at least one of the alleles remains in an h-blob with length
≥Lmin = 4. SNPs for which neither allele resides in an h-blob of minimum
length Lmin, regardless of H�, are discarded from further analysis. We blobulate
in increments of ΔH∗ = 0.05 from H� = 0 to H� = 1 to identify Hmax
with a resolution of 0.05. We bin SNPs into four Hmax bins of width ΔHmax =
0.25 and compute the mean SNP expected heterozygosity within each bin.
The null distribution for each bin is computed based on R = 5, 000 random
permutations of the SNP heterozygosity among the input SNP sets. The preceding
procedure is tabulated for nSNPs and dSNPs separately. The frequency data for the
SNPs used in the analysis for Fig. 3 are provided in Dataset S5.

Gene Pathway and Ontology Enrichment Tests. The gene-ontology enrich-
ment is performed using the g:Profiler web service (69). We use the g:GOSt func-
tional annotation enrichment tool. Statistical P values are adjusted for multiple-
testing and ontology overlap using the g:Profiler algorithm “g:SCS” on a user sig-
nificance threshold of 0.05. We use custom backgrounds over annotated genes
only. The background used for nSNPs is all proteins containing an nSNP and the
background for dSNPs is all proteins containing a dSNP. The ontology databases
tested for enrichment are the g:Profiler databases as of 2019: GO Molecular
Function (GO MF), GO Biological Process (GO BP), GO Cellular Component (GO
CC), Kyoto Encylopedia of Genes and Genomes pathways (KEGG), Reactome
pathways (REAC), WikiPathways (WP), TRANSFAC (TF), miRTarBase (MIRNA), the
Human Protein Atlas (HPA), the Comprehensive Resource of Mammalian Protein
Complexes (CORUM), and the Human Phenotype Ontology (HPO). The above
results are provided in Dataset S6.

Identification of Aggregating Proteins. There are 28 proteins within the
dataset that are annotated as involved in formation of extracellular amyloid
deposits or intracellular inclusions with amyloid-like characteristics: P02647,
P06727, *P02655, P05067, Q99700, P61769, P01258, *P17927, P07320,
P01034, *P35637, P06396, Q9NX55, P10997, P08069, *P01308, P02788,
*P61626, P10636, Q08431, P01160, P04156, P11686, P37840, P00441,
*Q13148, *Q15582, and P02766. For analyses involving aggregation, the
UniProt dataset was divided into the SNPs within these 28 proteins (aggregating
proteins) and all other proteins (nonaggregating proteins).
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Das–Pappu Charge Class. The blob charge class is a secondary blob property
representing the Das–Pappu phase (56), which is determined using the fraction of
positively and negatively charged residues as originally prescribed. Blobulation
does not rely on charge class, but any blob may be assigned a charge class
following blobulation.

Blob Transitions Induced by a SNP. Whole-sequence blobulation (H� =
0.4, Lmin = 4) is performed on two protein sequences, each containing either
the reference or the alternate allele. The reference allele is used for all residues
except i, even if the protein contains multiple other SNPs. Topological changes are
identified via scanning the two sequences. The hydrophobicity class and charge
class of the SNP-containing blob are also determined for each sequence. The
proportion of dSNPs that induce a specific transition (or no transition) is tested
for enrichment as described in dSNP Enrichment Tests, where the residue-level
annotation is the specific transition caused by the SNP.

Computational Packages. All computations were done in Python 3.6 using
the numpy (70), scipy (68), and pandas (71) packages. All plots are made using
the Python matplotlib (72) package. Molecular images were made using Visual
Molecular Dynamics (VMD) (73).

Data Availability. All data used in this study are available in Datasets S1–S6,
with detailed legends for each given in the SI Appendix. Briefly,
Datasets S1 and S2 cover the structural, SASA, and blobulation data used for

Figure 1. Dataset S3 is the unconstrained-length blobulation data per SNP that
constitutes the base SNP dataset used for the blobulation data in Figures 2,
3, 4, and 5. Dataset S4 contains the enrichment data per bin shown in Figure 2.
Dataset S5 contains the SNP frequency data used in Figure 3. Dataset S6 contains
the gene pathway enrichment results. The public repository for the blobulation
software (including a script for reading output from the webtool into VMD for
visualization) is available (74). At the time of publication, a graphical webtool for
blobulation of user-provided sequences is also available (75).
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15. V. López-Ferrando, A. Gazzo, X. de la Cruz, M. Orozco, J. L. Gelpı́, PMut: A web-based tool for the
annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res. 45 (W1),
W222–W228 (2017).

16. M. Hecht, Y. Bromberg, B. Rost, Better prediction of functional effects for sequence variants. BMC
Genomics 16 (suppl. 8), S1 (2015).

17. P. Popov, I. Bizin, M. Gromiha, K. A, D. Frishman, Prediction of disease-associated mutations in the
transmembrane regions of proteins with known 3D structure. PLoS One 14, e0219452 (2019).

18. P. C. Ng, S. Henikoff, Predicting deleterious amino acid substitutions. Genome Res. 11, 863–874
(2001).

19. P. D. Thomas, A. Kejariwal, Coding single-nucleotide polymorphisms associated with complex vs.
Mendelian disease: Evolutionary evidence for differences in molecular effects. Proc. Natl. Acad. Sci.
U.S.A. 101, 15398–15403 (2004).

20. E. Capriotti, R. Calabrese, R. Casadio, Predicting the insurgence of human genetic diseases associated
to single point protein mutations with support vector machines and evolutionary information.
Bioinformatics 22, 2729–2734 (2006).

21. Y. Choi, G. E. Sims, S. Murphy, J. R. Miller, A. P. Chan, Predicting the functional effect of amino acid
substitutions and indels. PLoS One 7, e46688 (2012).

22. E. Capriotti, P. Fariselli, R. Casadio, A neural-network-based method for predicting protein stability
changes upon single point mutations. Bioinformatics 20 (suppl. 1), i63–i68 (2004).

23. E. Capriotti, P. Fariselli, R. Casadio, I-Mutant2.0: Predicting stability changes upon mutation from the
protein sequence or structure. Nucleic Acids Res. 33, W306–W310 (2005).

24. V. Parthiban, M. M. Gromiha, D. Schomburg, CUPSAT: Prediction of protein stability upon point
mutations. Nucleic Acids Res. 34, W239–W242 (2006).

25. G. Wainreb et al., MuD: An interactive web server for the prediction of non-neutral substitutions using
protein structural data. Nucleic Acids Res. 38, W523–W528 (2010).

26. S. Ittisoponpisan et al., Can predicted protein 3d structures provide reliable insights into whether
missense variants are disease associated? J. Mol. Biol. 431, 2197–2212 (2019).

27. S. Iqbal et al., Comprehensive characterization of amino acid positions in protein structures reveals
molecular effect of missense variants. Proc. Natl. Acad. Sci. U.S.A. 117, 28201–28211 (2020).
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