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SUMMARY
The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://
anvilproject.org) was developed to address a widespread community need for a unified computing environ-
ment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe
its ecosystem and interoperability with other platforms, and highlight how this platform and associated
initiatives contribute to improved genomic data sharing efforts. The AnVIL is a federated cloud platform de-
signed to manage and store genomics and related data, enable population-scale analysis, and facilitate
collaboration through the sharing of data, code, and analysis results. By inverting the traditional model of
data sharing, the AnVIL eliminates the need for datamovement while also adding securitymeasures for active
threat detection and monitoring and provides scalable, shared computing resources for any researcher. We
describe the core datamanagement and analysis components of the AnVIL, which currently consists of Terra,
Gen3, Galaxy, RStudio/Bioconductor, Dockstore, and Jupyter, and describe several flagship genomics data-
sets available within the AnVIL. We continue to extend and innovate the AnVIL ecosystem by implementing
new capabilities, including mechanisms for interoperability and responsible data sharing, while streamlining
access management. The AnVIL opens many new opportunities for analysis, collaboration, and data sharing
that are needed to drive research and to make discoveries through the joint analysis of hundreds of thou-
sands to millions of genomes along with associated clinical and molecular data types.
INTRODUCTION

The last 20 years have seen tremendous growth in human geno-

mics, with millions of human genomes sequenced so far and

many millions more to be sequenced in the near future.1,2 These
C
This is an open access article under the CC BY-N
data, combined with ever-growing amounts of single-cell and

functional genomics data, electronic medical records, and other

biomedical data, have the potential to substantially enhance our

understanding of the basic processes for healthy life as well as to

revolutionize the treatment of disease. This research will be
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accomplished, in part, by aggregating and synthesizing data us-

ing new computational, statistical, and machine-learning

methods, combined with new high-throughput experimental

methods that can systematically evaluate large numbers of

candidate relationships. However, reaching these ambitious

goals requires us to embrace new paradigms for computational

research where cloud computing plays a central role; there is

simply no other way to effectively share and analyze data at

these scales.

In this perspective, we report the development of the NHGRI

Genomic Data Science Analysis, Visualization, and Informatics

Lab-space (AnVIL) to enable large-scale data management,

sharing, and analyses in a cloud-computing environment. We

reflect on the past, present, and future of genomic data sharing

and analysis, providing perspective on how the AnVILmeets cur-

rent challenges and advances these efforts in order to enable

population-scale analyses on federated datasets and facilitate

collaboration. To start, we briefly describe some of the major

ongoing initiatives to promote data sharing in genomics and

highlight some of the major limitations of the traditional data

sharing model where datasets are copied across institutions.

We then present an inverted form of data sharing, where instead

of copying data to multiple institutions, researchers connect to

remote datasets via centralized cloud platforms, and describe

how this can enhance analysis, collaboration, and data sharing.

In the following sections, we describe the AnVIL systemarchitec-

ture and the datatypes and data models used by the AnVIL and

discuss some of the communities that are engaging with the

AnVIL. We then describe some of the key interoperability tech-

nologies available, especially the Global Alliance for Genomics

and Health (GA4GH; https://www.ga4gh.org) standards, which

enable researchers to seamlessly transition across cloud plat-

forms.2 In the final section, we present our outlook on the future

of genomic data sharing and analysis. The AnVIL portal is pub-

licly accessible at https://anvilproject.org.

HISTORY OF GENOMICS DATA SHARING

Genomics has become a central component to the study of

many facets of biology and medicine.3,4 Across ancestry anal-

ysis,5,6 disease and trait associations,7,8 developmental

biology,9,10 and many other fields, large-scale genome and ge-

nomics sequencing has grown tremendously over the past few

decades, driven in large part by the technological improvements

that have substantially decreased the cost and time required for

sequencing.11 For example, the National Institutes of Health

(NIH) National Human Genome Research Institute (NHGRI) Cen-

ters for Common Disease Genomics (CCDG) and Centers for

Mendelian Genomics (CMG) programs seek to identify the ge-

netic components of many major common and rare diseases

through the sequencing of more than one hundred thousand ge-

nomes.4 Internationally, several major genomics projects are in

progress, such as the establishment of the UK Biobank with ge-

netic and clinical data from more than 500,000 volunteers from

across the UK.12 Additional nation-scale initiatives include Ice-

land’s DeCode project, Finland’s FinnGen project, China’s

Genome Sequencing Archive, the Korean Reference Genome

Database, the Saudi Human Genome Program, and the Inte-
2 Cell Genomics 2, 100085, January 12, 2022
grated Biobank of Luxembourg, which together provide hun-

dreds of thousands of human genomes and related data.13–17

Furthermore, GA4GH hosts a catalog of genomic data initiatives

aimed at aggregating global resources for sharing clinical and

genomic data.2

The scale of these projects opens many new opportunities for

discovery that would not otherwise be possible, especially for

detecting weak associations with rare variants that can only be

measured over large cohorts.18 However, this scale of

sequencing also introduces major new technical challenges

that require overhauling how genomics and genomics data sci-

ence are performed. Most urgently, it has become increasingly

impractical to perform genomics research by replicating data-

sets across institutional computing clusters, leading us to recon-

sider how genomics data can be shared and analyzed.19

Because the power of genomics is often only realized through

large-scale data aggregation, genomics has developed a strong

tradition for collaborative research and the open sharing of data.

Most famously, this tenet was codified by the global leaders of

the Human Genome Project in 1996 as the ‘‘Bermuda Princi-

ples,’’ where they agreed that all human genomic sequence

information generated by the project should be made freely

available and entered into the public domain within 24 h after

generation.20 These principles were established to maximize

the benefit of the data to society, especially as private com-

panies during this erawere beginning to apply for patents around

human gene sequences.21 These core principles were later

extended in 2009 by the ‘‘Toronto Agreement,’’ which estab-

lished the rules for sharing data pre-publication,22 and later in

2015 in the United States by the NIH Genomic Data Sharing Pol-

icy, which requires all large-scale sequencing data funded by the

NIH to be openly shared.23 Complementing the efforts by the

funding agencies, many major scientific journals now require

data to be deposited into public databases before papers can

be published, especially journals serving the genomics commu-

nity. Cell Genomics requires that datasets and code be made

publicly available earlier, at manuscript submission.24–26

In response to these requirements for data sharing, several

large repositories have been established for storing and sharing

genomics data. For high-throughput sequencing data, the NIH

National Center for Biotechnology Information (NCBI) Sequence

Read Archive (SRA) along with international partners at the Euro-

pean Molecular Biology Laboratory’s European Bioinformatics

Institute (EMBL-EBI) European Nucleotide Archive and the

DNA Data Bank of Japan (DDBJ) have formed the International

Nucleotide Sequence Database Collaboration (INSDC). This

collaboration has emerged as the largest publicly available re-

pository of sequence data, with over 50 petabases (Pbp) of

data currently available through multiple cloud providers and

institutional servers.27–30 Within the United States, the closely

related NCBI Database of Genotypes and Phenotypes (dbGaP)

was developed to archive and distribute genomics and related

data from studies that have investigated the interaction of geno-

type and phenotype in humans.31 This database currently man-

ages access for 7,582 datasets in 1,232 studies, most of which

are controlled access, where researchers must apply for access

to the datasets to an NIH Data Access Committee (DAC) that

evaluates if the research goals are consistent with patient

https://www.ga4gh.org
https://anvilproject.org


Figure 1. Inverting the model for data

sharing

(Left) In the traditional model, project data (shown

in purple, orange, and green) are copied to multi-

ple sites where they are accessed by users on

institutional computing clusters. Under this model,

each institution must establish its own data center,

and collaboration is achieved primarily through

copying files between data centers. (Right) In the

inverted model, users connect to a cloud-enabled

resource such as the AnVIL to remotely access

and analyze the data without copying. In this

model, users virtually access a unified data center,

allowing for deeper collaboration and sharing of

the results.
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consent forms and any constraints identified by the institutions

that submitted the data.

However, as valuable as these and related databases have

become, they are generally static resources that do not allow

detailed analyses to be performed directly within these systems.

Instead, researchers using these data and researchers involved

in large sequencing efforts most often begin by downloading the

data to an institutional computing cluster for analysis.

INVERTING THE MODEL OF DATA SHARING

The traditional model of genomic analysis has been centered

around institutional computing clusters where researchers install

and maintain their own suite of computational tools to analyze

the datasets that are stored directly within their data center.

This model presents a high level of flexibility and control for an

individual researcher, but the siloed nature of this model intro-

duces several major barriers and inefficiencies. To start, this

model leads to a redundant infrastructure where each institution

establishes its own data center and creates major administrative

inefficiencies wheremany of the same analysis tools must be de-

ployed and maintained within each center. Software manage-

ment tools like bioconda32 or integrated analysis suites such

as Bioconductor33 aim to simplify such installations, but main-

taining software remains a huge burden in aggregate consid-

ering the large number of data centers and users involved.

This model is particularly challenging for collaborative anal-

ysis, as it requires data to be copied from one data center to

another, which becomes more difficult and costly as the data-

sets increase in size. For example, a moderately large project,

such as the 1000 Genomes Project, which contains the CRAM

files for 3,202 genomes in the extended collection,5 is 73 TB

and requires several days to make a single copy over typical

institutional internet connections. Larger studies, such as the

recent TopMed release that included whole-genome sequence

data for 53,831 individuals7 and is approximately 2 PB in size

for the CRAM files, will require several weeks to several months

to download a single copy of the dataset. Equally important,

reproducibility is very challenging in such a paradigm as it be-

comes increasingly difficult to record the provenance of how files

are created across systems. In extreme cases, incompatible or

conflicting versions of a tool or a dataset could be used by

different groups, leading to scientifically invalid results.
A much more scalable model for collaborative research is to

invert the model of data sharing: instead of moving data to

each researcher, researchers virtually move to the data through

the use of cloud-computing resources19,34,35 (Figure 1). This

way, only a single copy of the data needs to be maintained,

which can then be accessed and analyzed by any number of re-

searchers. This model introduces substantial advantages,

including reduced redundancy and lower costs for data storage

and greater flexibility in computing resources. Notably,

computing in the cloud is ‘‘elastic,’’ meaning that additional

computational resources can be dynamically added to match

the needs for the analysis to be performed at a given time.

Crucially, these resources can also be scaled down after an anal-

ysis is complete to limit the costs involved. This model is also

much more efficient to manage, as software only needs to be

installed or updated in one location for all users to benefit. Finally,

centralized services, especially intrusion detection and auditing,

can be far more detailed to ensure data security for protected

datasets.

Such web- and cloud-based resources have a strong and

growing role in genomics, starting with ubiquitous and classic

examples such as the NCBI BLAST server36 or the UCSC

Genome Browser.37 Another rich example is Galaxy,38,39 an

open, web-based computational workbench for performing

accessible, reproducible, and transparent genomic science

with features for executing scientific workflows, data integra-

tion, and data and analysis persistence. Even more recent is

the NCI Cloud Pilots program, which supports three comple-

mentary cloud-based platforms that provide secure on-de-

mand access to cancer datasets, analysis tools, and

computing resources.40 As valuable as these resources have

proved to be, there is a need for wider analysis and data man-

agement capabilities that can integrate data across multiple

cohorts and multiple datatypes while providing very flexible

analysis. Ideally, such a cloud-based system would offer every-

thing possible from an institutional data center along with the

additional benefits for scalability, elasticity, and collaboration

that are afforded by a cloud platform. Furthermore, security is

essential for human genetics research, and cloud systems offer

enhanced capabilities for data encryption, logging, auditing,

and intrusion detection that are not always available within

institutional data centers, especially smaller clusters managed

by individual research groups.
Cell Genomics 2, 100085, January 12, 2022 3
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AnVIL SYSTEM ARCHITECTURE

In response to these needs, the AnVIL team, with the support of

the NHGRI, have developed the Genomic Data Science AnVIL.

The AnVIL is a federated cloud platform designed to manage

and store genomics and related data, enable population-scale

analysis, and facilitate collaboration through the sharing of data,

code, and analysis results. It includes a variety of graphical user

interfaces alongwithRESTful interfaces andAPIs(application pro-

gramming interfaces) for programmatic access in several popular

programming languages. The compute environment for the AnVIL

is currently built on the Google Cloud Platform (GCP) to enable

massive scalability and capacity for users within a robustly estab-

lished security perimeter authorized for the storage and analysis

of controlled access datasets. Specifically, the AnVIL is a Fe-

dRamp-certified computing environment, and it complies with

all requirements set forth in NIST-800-53. By providing a stan-

dardized method for security and risk assessment, the United

States’ government-wide program known as FedRAMP pro-

motes the adoption of secure cloud services across the United

States federal government.41 This includes robust logging of ac-

cess to data, periodic audits by third-party analysts, and moni-

toring for abnormal use patterns. We are also planning to extend

the AnVIL to other cloud platforms to offer the most flexibility and

capabilities for our users, especially in order to respect govern-

mental guidelines that limit data sharing on certain cloud plat-

forms because of privacy or security considerations.

Within the AnVIL, users have several options for analysis and a

rich data management ecosystem allowing researchers to

search across large collections of data and build new synthetic

cohorts to empower new discoveries out of existing datasets.

Similar to how a laptop or personal computer has multiple appli-

cations (e.g., web browser, email client, word processor,

messaging client, etc.) running within a common operating sys-

tem and file system, the AnVIL offers several analysis compo-

nents that can be independently launched and yet interrelate

to each other through a common file system and APIs (Figure 2).

The analysis components are broadly characterized into 3 major

categories: (1) those supporting data management querying,

especially Gen3, (2) those supporting batch computing, espe-

cially through the use of theWDL on Terra and the closely related

Dockstore42 for sharing and distributing workflows, and (3) inter-

active computing using popular analysis suites such as R/Bio-

conductor, Jupyter Notebooks, andGalaxy. Through these com-

ponents, more than 10,000 analysis tools and workflows are

immediately available for a wide variety of analyses in genomics

and beyond. This includes population-scale variant calling from

genome sequence data with GATK or freebayes43,44 including

with the new Telomere-to-Telomere CHM13 reference

genome,45 gene expression analysis for both bulk and single-

cell datasets,46–48 methylation analysis,49 COVID-19 viral geno-

mics analysis workflows,50,51 and thousands more. Additionally,

these components support reproducibility and reusability as

methods and workflows that are deposited in Dockstore are as-

signed DOIs, cohorts (synthetic or designed) can be referenced

via Terra workspace URLs, and we are developing technologies

for versioning and publishing workspaces with DOIs that can

scale to millions of files and petabytes of information.
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Notes S1–S3 describe three example AnVIL workspaces for

applications on human genome analyses and variant calling,

gene expression, and de novo genome assembly.

Note S1 displays the workspace for germline variant calling

using GATK4. Using this workspace, users are able to input

raw sequencing data for one or more genomes, such as the

standard 303 short-read whole-genome sequencing data

used in many population- and clinical studies, and then the

workflowwill process all of the steps for alignment and variant

calling in less than 1 day and for less than $5.00 worth of

compute per sample. Interestingly, because of the highly

scalable nature of cloud computing, processing additional

samples, even hundreds or thousands of additional samples,

will require approximately the same amount of wall-clock

time, although costs will scale approximately linearly with

the number of samples. In contrast, users performing similar

analyses on their institutional clusters will be limited by the

number of CPUs(central processing units) and RAM(random

access memory) available, which are often limited to a few

dozen or a few hundred at a time.

Note S2 displays the workspace for analyzing differential gene

expression with Bioconductor’s edgeR package. Using the

interactive notebook environment, R/Bioconductor code and

visualizations can easily be interleaved throughout the anal-

ysis, starting with quality control through the identification of

statistically significant differentially expressed genes. This

workspace reanalyzes a recently published gene knockdown

dataset of the oncogene BACH1 to study how it promotes

pancreatic cancer metastasis by repressing epithelial genes

and enhancing the epithelial-mesenchymal transition.52Within

a fewminutes, any user can execute the R/Bioconductor code

displayed in the workspace to identify and visualize the differ-

entially expressed genes in the knockout cell lines.

Note S3 demonstrates how to perform de novo genome as-

sembly and whole-genome alignment within Galaxy. The

input data for the example are simulated short-read

sequencing data in standard fastq format, which are then

assembled using the SPAdes genome assembler within

less than 1 min.53 After the assembly, the assembled contigs

are aligned to the reference genome using DNAdiff from the

MUMmer package54 to identify a novel insertion in the as-

sembly. Finally, the sequence of the novel insertion is de-

coded into amino acids using transeq from the EMBOSS

package55 to reveal a message spelled out as English text.

While these tools can be used for much larger genomes

and much more sophisticated problems, we have found this

to be a very effective classroom exercise because the stu-

dents immediately know if they have followed the directions

correctly if they see an interpretable message in English.

This exercise is also appropriate for novices, as everything

can be executed within the intuitive Galaxy interface without

any command line or programming experience.
AnVIL portal: Entry into the AnVIL ecosystem
Already more than 15,000 users have used the AnVIL, and the

number of users is rapidly growing. The initial entry point for



Workspaces and  
batch workflows

Data models,  
indexing, querying

Live code, equations, 

visualizations and narratives
Analysis and comprehension  

of genomic data in R

Accessible, reproducible, 

and transparent research

Sharing containerized tools  
and workflows

Consortium Datatypes Cohorts Samples Participants Size (TB)

1000 Genomes Project (1KGP) WGS 1 3,202 3,202 72.98

Centers for Common Disease Genomics (CCDG) WGS, WXS, 
Clinical Phenotypes

198 272,306 256,318 2,624.12

Centers for Mendelian Genomics (CMG) WGS, 
Clinical Phenotypes

41 20,706 16,599 97.89

Convergent Neuroscience WGS 2 304 300 5.32

Genotype-Tissue Expression (GTEx v8) WGS, RNAseq 1 17,382 979 182.14

Human Pangenome Reference Consortium (HPRC) Short & long-read WGS 1 57 47 223.47

Population Architecture using Genomics and Epidemiology 
(PAGE)

WGS 4 690 690 16.98

Telomere-to-Telomere (T2T) WGS 1 3,202 3,202 571.64

Whole Genome Sequencing for Schizophrenia and Bipolar 
Disorder (WGSPD1)

WGS 5 9,588 9,575 177.36

Total 254 327,437 290,912 3,971.91

Figure 2. Overview of the AnVIL ecosystem

(Top) The AnVIL is a federated cloud environment for the analysis of large genomic and related datasets. The AnVIL is built on a set of established components

that bring together widely used platforms. The Terra platform provides a compute environment with secure data and analysis sharing capabilities. Dockstore

provides standards-based sharing of containerized tools and workflows. R/Bioconductor, Jupyter, and Galaxy provide environments for users at different skill

levels to construct and execute analyses. The Gen3 data commons framework provides data and metadata ingest, querying, and organization. (Bottom) The

AnVIL has been used in a number of flagship NHGRI and other genomics projects. Summary of the genomics datasets available within the AnVIL as of December

2021, as shown at https://anvilproject.org/data. WGS, whole-genome sequencing; WXS, whole-exome sequencing.
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AnVIL users is through the AnVIL portal (https://anvilproject.org).

The portal provides unified entry to all of the available applica-

tions and datasets within the system as described below. In

addition, the portal also contains a wide variety of training mate-

rials and announcements as well as a searchable catalog of the

data that are loaded within the AnVIL. Currently, the AnVIL hosts

data from >280,000 human genomes from >240 different co-

horts spanning CCDG, CMG, the Electronic Medical Records

and Genomics (eMERGE) Network, Genotype-Tissue Expres-

sion (GTEx),56 and several othermajor NHGRI projects (Figure 2).

In this view, only summary information is displayed so that any

user can browse all of the datasets present even if they are not

authorized to view the specific data files. This way, a user can

learn what is available (e.g., all studies of a particular disease

or phenotype) and, if necessary, can be directed to apply for

authorization through the appropriate DAC (e.g., dbGaP or the

consortium that maintains the data). The AnVIL also maintains

a few critical open access datasets, most notably the widely

used 1000Genomes Project whole-genome sequencing dataset

from a collection of diverse human samples,5 including both raw

data and harmonized variant calls from 3,202 samples.

Gen3: Management, analysis, harmonization, and
sharing of large datasets
Gen3 (https://gen3.theanvil.io) is an open-source cloud-based

data platform for managing, analyzing, harmonizing, and sharing

large datasets. It is based on a set of standards-based services

with open APIs called ‘‘framework services’’ for the authentica-

tion, authorization, creation, and accession of FAIR data ob-

jects57 and import and export of bulk clinical and phenotype

data. In particular, it supports assigning persistent digital identi-

fiers to data objects, assigning associated metadata, and

accessing the data objects using the GA4GH Data Repository

Service (DRS) standard, a generic interface allowing data access

in a cloud-agnostic manner. Gen3 supports authentication and

authorization management using OpenID tokens and interoper-

ates with the NIH Research and Authorization Service (RAS).

Framework services are also used by other large-scale geno-

mics platforms, including NCI’s Cancer Research Data Com-

mons, NHLBI’s BioData Catalyst, and the Kids First Data

Resource. Framework services provide the basic scaffolding

so that systems such as AnVIL can access data from other

cloud-based platforms for genomic data and, in turn, make their

data available to these platforms, assuming the appropriate pol-

icies supporting this interoperability are in place.

Gen3 also provides services for managing clinical and

phenotype data and metadata using a graph database. Gen3’s

Windmill service is an interactive website built over the graph

database that allows users to explore, submit, and download

data. The Windmill service allows for interactive data explora-

tion, search, and cohort-building based on phenotypic variables

and data types. For example, using Windmill, users can query

across multiple sequencing projects (e.g., CCDG, CMG, and

eMERGE) to create a synthetic cohort of patients fitting a certain

set of inclusion criteria (e.g., based on gender, ethnicity, or dis-

ease status). Selected cohorts can then be exported into a Terra

workspace for further processing (e.g., disease association,

expression analysis, expression quantitative trait locus [eQTL]
6 Cell Genomics 2, 100085, January 12, 2022
analysis, etc.). In this way, researchers can maximize the value

of the data in the AnVIL by enabling search and analysis over

all relevant data to answer a particular research question, even

if those data were originally generated from unrelated

sequencing projects.

Terra: Access data, run analysis tools, and
collaboratation in workspaces
Terra (https://anvil.terra.bio) is a cloud-native platform for

biomedical researchers to access data, run analysis tools, and

collaborate within the AnVIL.Workspaces are the building blocks

of Terra—a dedicated space where collaborators can access

and organize the same data and tools and run analyses together.

Each workspace is associated with a cloud bucket where data

can be stored, such as data generated by a workflow analysis58

or notebook files for interactive computing. Workspaces also

provide data tables for storing and maintaining structured data

similar to a spreadsheet. By including links to the data’s actual

location in the cloud, the data table links large-scale datasets

to workspace tools. Finally, within a workspace, users can

launch batch analysis jobs or one of several interactive

computing environments, especially Galaxy, R/Bioconductor,

and Jupyter Notebooks (as described below).

Batch analysis in Terra primarily uses the Workflow Descrip-

tion Language (WDL; https://openwdl.org). WDL is a specialized

programming language to specify data processing workflows

with a human-readable and -writable syntax. WDL makes it

straightforward to define analysis tasks, chain them together in

workflows, and parallelize their execution without retooling the

application to run in a different computing environment. The lan-

guage makes common patterns (scatter/gather, etc.) simple to

express while also admitting uncommon or complicated

behavior through conditionals and strives to achieve portability

not only across execution platforms but also across different

types of users. WDLs can be stored, shared, and described in

Dockstore and executed in Terra using the Cromwell compute

engine (https://cromwell.readthedocs.io), allowing for a repro-

ducible analysis of even the largest cohorts with tens of thou-

sands of samples.

Dockstore: Registry of tools and workflows
The Dockstore (https://dockstore.org) is another widely used

platform where users can find, share, and use curated tools

and workflows. Workflow content is encapsulated in Docker59

and described using a workflow language. The use of Docker

makes workflows in Dockstore reproducible by making them

easy to run without user installation. Dockstore enables

scientists to share analytical tools in a way that makes them

machine-readable and -runnable in a variety of environments.

Dockstore currently supports 4 workflow languages: the

WDL, Common Workflow Language (CWL), Nextflow, and Gal-

axy Workflows (GWs). Dockstore currently contains 745

workflows in WDL that can be launched in Terra within a few

clicks. As such, Dockstore provides one of the most straight-

forward entry points for users to add batch workflows to the

AnVIL as it can work with any tool/workflow that can be

encapsulated into a Docker container and executed on the

command line.

https://anvilproject.org
https://gen3.theanvil.io
https://anvil.terra.bio
https://openwdl.org
https://cromwell.readthedocs.io
https://dockstore.org
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Jupyter Notebooks: Transparent code, visualizations,
and narratives
Jupyter Notebooks (https://jupyter.org) are widely used open-

source web applications that allow users to create and share

documents that contain live code, equations, visualizations,

and narrative text. Uses include data cleaning and transforma-

tion, numerical simulation, statistical modeling, data visualiza-

tion, machine learning, and many other analyses. Jupyter sup-

ports multiple programming languages, including Python, R,

Julia, and Scala. Jupyter Notebooks are an open document

format based on JSON that contain a complete record of the

user’s sessions and include code, narrative text, equations,

and rich output. The familiar programming environment makes

it easy for users to perform custom analysis of AnVIL data in a

secure and collaborative research environment within Terra.

RStudio: Interactive machine learning, statistical
computing, and visualizations
RStudio (https://rstudio.com) is an integrated development envi-

ronment for R, a widely used programming language for statisti-

cal computing and visualization. R and its libraries implement a

wide variety of statistical and graphical techniques, including

linear and nonlinear modeling, classical statistical tests, time-se-

ries analysis, classification, clustering, and others. R is easily

extensible through functions and extensions, and the R commu-

nity actively contributes many new packages. Other strengths of

R include advanced static and interactive graphics and the facile

creation of graphical user interfaces for easy use of highly

specialized packages. R is supported in AnVIL through Jupyter

Notebooks and a web version of RStudio that executes within

Terra. The RStudio interface offers a complete Integrated Devel-

opment Environment (IDE) for developing and executing code,

supporting a windowed interface for displaying code, plots,

data, and a console all at the same time.

Bioconductor: Community-driven interactive genomics
with R and RStudio
Bioconductor (https://bioconductor.org) is a free, open-source

and open-development software project for the analysis and

comprehension of genomic data with a focus on developing

new computational and statistical methods to interpret biological

data. Many of these methods are developed by members of the

Bioconductor community,33 and the Bioconductor project

serves as a software repository for a wide range of statistical

tools developed in the R programming language. Using a rich

array of statistical and graphical features in R, more than 1,900

Bioconductor software packages, 3,200 exemplary experi-

ments, and 50,000 model organism annotation resources have

been curated for use in genomic data analyses. The use of these

packages requires only an understanding of the R language. As a

result, R/Bioconductor packages, which include state-of-the-art

statistical inference tools tailored to problems arising in geno-

mics, are widely used by biologists who benefit significantly

from their ability to explore and analyze both publicly and pri-

vately developed datasets. Many R/Bioconductor applications

can be presented to users in a way that does not require

advanced programming expertise, e.g., as ‘‘Shiny’’ applications

with graphical interfaces. The AnVIL/Bioconductor environment
can be accessed within RStudio or Jupiter Notebooks and con-

tains many important resources for the AnVIL, including a fully

computable version of the online book Orchestrating Single

Cell Analysis with Bioconductor.47 A variety of methods for pro-

grammatically interacting with the AnVIL APIs are also available

within the AnVIL Bioconductor package (https://bioconductor.

org/packages/release/bioc/html/AnVIL.html).

Galaxy: Accessible, reproducible, and transparent
genomic science
Galaxy (http://usegalaxy.org) is an open, web-based computa-

tional workbench for performing accessible, reproducible, and

transparent genomic science that is used daily by thousands of

scientists across the world. There are more than 8,000 analysis

tools available within Galaxy that are now accessible within the

AnVIL including for variant calling and interpretation, chromatin

immunoprecipitation sequencing (ChIP-seq) analysis, RNA-seq

analysis, genome assembly, proteomics, epigenomics, tran-

scriptomics, and a host of other analyses in the life sciences.

To maintain data security, each AnVIL user runs within an inde-

pendent Galaxy instance within Terra where they can import

both unprotected data and the protected human genomics data-

sets they are authorized to access. This is accomplished using a

newly developed capability to programmatically launch and

administer Galaxy using Kubernetes and a new import tool allow-

ing data to be added into a user’s instance. An AnVIL user can

thus use any available Galaxy tool to analyze or visualize data

within the boundaries of a compliant, isolated, and secure envi-

ronment. This marks a major advance, as AnVIL users can now

leverage Galaxy for the analysis of protected human datasets,

which is not possible with other public instances of Galaxy.

Extending the AnVIL capabilities
In addition to the components described above, we are consid-

eringmany ways to extend the AnVIL to include new capabilities.

The most straightforward approaches are to develop a new

Docker-based WDL that can launch novel analysis tools and to

wrap an analysis or visualization tool so that it can be executed

within the Galaxy GUI. More sophisticated integrations are also

possible using a variety of low-level APIs and resources. Recent

efforts have focused on deploying new applications using Ku-

bernetes (https://kubernetes.io), which can be used for manag-

ing very complicated software stacks on scalable infrastructure.

Applications are deployed and managed in the Kubernetes clus-

ter by Helm (https://helm.sh/) in the form of charts. In this design,

a Helm chart translates an application’s software stack into cus-

tomizable Kubernetes manifests. This model, originally devel-

oped by the Galaxy Team to enable Galaxy’s deployment within

the AnVIL, can be replicated and extended to facilitate the inte-

gration of other platforms of varying complexity into the AnVIL.

We also have several major additional components in develop-

ment, including deploying seqr (https://seqr.broadinstitute.org)

and the UCSC Genome Browser37 within the AnVIL.

DATA ACCESS AND DATA USE

A key priority of the AnVIL is ensuring responsible data manage-

ment, which includes secure access to the data in its cloud
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storage and compute environments. The AnVIL Data Access

Working Group (DAWG) defines the methods used to securely

control and grant access to controlled-access datasets

hosted within the AnVIL and is testing improved processes

for handling data access requests (DARs). The DAWG evaluates

the data coming into AnVIL and considers downstream data

access needs. For example, the DAWG generated the Con-

sortium Guidelines for AnVIL Data Access (https://anvilproject.

org/learn/data-submitters/resources/consortium-data-access-

guidelines) to clarify expectations for the various consortia using

the AnVIL to facilitate inter-consortium data sharing and access

controls.

Importantly, the DAWG is leading a pilot of the Data Use Over-

sight System (DUOS; https://duos.broadinstitute.org/), a plat-

form developed by the Broad Institute that aims to expedite

data access for researchers by facilitating and enhancing

DAC’s workflows.60 The pilot currently includes multiple NIH

DACs who are testing the system and providing feedback to

further develop the DUOS software, most notably DUOS’s

DAR decision-support algorithm. This algorithm leverages the

GA4GH Data Use Ontology (DUO; https://github.com/

EBISPOT/DUO) to code both datasets’ data use terms and re-

searchers’ proposed research contained within the DARs.61

With both of these inputs in terms from the same ontology, the

algorithm can assess if the proposed research is within the

bounds of the data use terms and provide a recommended de-

cision to the DAC. In the long term, the pilot will also provide

powerful empirical and conceptual evidence of the feasibility of

semi-automated approaches to data use oversight.

The DAWG is also refining the Library Card concept by which

an institution can pre-authorize trusted researchers to make

controlled DARs. This concept will leverage the GA4GH Pass-

port Visa specification (https://github.com/ga4gh-duri/ga4gh-

duri.github.io).62 If implemented, the Library Card concept would

reduce the steps required for researchers to submit a DAR while

ensuring the researcher has the appropriate permissions to do

so.

If successful, we believe DUOS and the Library Card concept

will standardize and streamline the DAR process. As the number

of requests for data increases in magnitude over the years,

DUOS could ensure DAC members’ time is reserved for fine-

grained judgment of complex requests, and the Library Card

could streamline the authorization of researchers. We hope

that by pioneering implementations of the GA4GH DUO and

Passports standards, the AnVIL will drive interoperable, ethical,

and accelerated genomics research.

AnVIL COMMUNITY

The AnVIL is designed to support a broad range of user commu-

nities, from multi-institution consortia to individual research labs

to computational tool developers and researchers at institutions

without access to high-performance computing. Some needs of

these communities are common—the ability to upload, manage,

and share controlled-access protected data, the ability to do

high-performance computation in either workflow or interactive

environments, and the ability to develop training materials and

share results with the broader community. However, the diver-
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sity of the AnVIL user base also requires satisfying specific needs

of the constituent communities.

d Consortia and data generators: the primary needs of these

groups include data ingestion, quality control, manage-

ment, and sharing among consortium members and col-

laborators. We have developed a process for data inges-

tion and management on the AnVIL platform that

supports consortia in sharing their data while ensuring

user management and access via access groups following

a consortium’s data sharing and access guidelines. As of

August 2021, the AnVIL contained over 200 datasets

from NHGRI-sponsored projects, including the widely ac-

cessed GTEx version 8 data, which are also optionally

available for direct download free of egress charges.

d Research groups and investigators: the primary needs of

these groups include access to data, interactive and batch

workflow computing environments, and the ability to

manage their data science projects. We have developed

a user management system leveraging the Terra workflow

and the workspace access management system. We have

also partnered with STRIDES (https://datascience.nih.gov/

strides) to support several pilot user education events with

an eye toward scaling support to the broader research

community. As of August 2021, the AnVIL has supported

computation from more than 1,950 users running more

than 775 workflows and launching more than 240 work-

spaces.

d Computational tool developers: tool developers need an

environment where they can reproducibly test their

genomic data science tools, integrate them intoworkflows,

and share them with the broader community. The AnVIL

supports several major avenues of deployment, including

Docker containers to execute as WDL workflows, conda

packages that can execute within Galaxy, and new Bio-

conductor packages. Notably, by leveraging existing

data science tool developer communities, thousands of

Bioconductor software packages and GWs are already in-

tegrated in the AnVIL environment.

d Under-resourced genomic data science communities: one

of the biggest advantages of a fully cloud-based computa-

tional environment like the AnVIL is the ability to do high-

performance computing from anywhere. Genomic data

science with the AnVIL is accessible to anyone with a

web browser and an internet connection, extending ac-

cess to high-performance computing to communities

that do not have local resources to support this kind of sci-

ence. We have begun a collaboration called the Genomic

Data Science Community Network (http://gdscn.org) with

community colleges, historically black colleges and univer-

sities, and tribal colleges to support data-intensive

genomic research and teaching using the AnVIL.
INTEROPERABILITY WITH OTHER CLOUD PLATFORMS

Freed from the constraint of needing to download data to local

compute infrastructure, cloud-based research environments

are becoming more widely used to streamline data access and

https://anvilproject.org/learn/data-submitters/resources/consortium-data-access-guidelines
https://anvilproject.org/learn/data-submitters/resources/consortium-data-access-guidelines
https://anvilproject.org/learn/data-submitters/resources/consortium-data-access-guidelines
https://duos.broadinstitute.org/
https://github.com/EBISPOT/DUO
https://github.com/EBISPOT/DUO
https://github.com/ga4gh-duri/ga4gh-duri.github.io
https://github.com/ga4gh-duri/ga4gh-duri.github.io
https://datascience.nih.gov/strides
https://datascience.nih.gov/strides
http://gdscn.org


Perspective
ll

OPEN ACCESS
focus on the analysis to be done. Across the AnVIL and peer pro-

jects including NHLBI’s BioData Catalyst (BDCat; https://

biodatacatalyst.nhlbi.nih.gov), Common Fund’s Gabriella Miller

Kids First Pediatric Research Program (GMFK; https://

kidsfirstdrc.org), and NCI Cancer Research Data Commons

(CRDC; https://datacommons.cancer.gov), for example, almost

8 PB of genomic and related data are currently accessible to re-

searchers in cloud-based analysis platforms, and the scale of

these datasets are growing quickly. Several commonalities exist

across these platforms, aimed at streamlining usage by offering

several widely used analysis systems such as R, RStudio, and

Jupyter Notebooks. Furthermore, the Terra, Gen3, and Dock-

store components of the AnVIL directly support multiple cloud

platforms. One key distinguishing attribute of the AnVIL is its ac-

cess to unique datasets: as the central cloud-computing plat-

form for NHGRI, several major datasets are only available on

the AnVIL. Additionally, the AnVIL platform offers a rich

ecosystem of analysis tools for NHGRI-related research,

including Galaxy, Bioconductor, seqr, and low-level APIs.

Yet, despite the enormous opportunity to cross-analyze data

from these resources, researchers are faced with the daunting

task of understanding the various technical interface differences

between systems in order to analyze across them from program-

matic, user interface, and even policy perspectives. As a result,

there is great motivation for these systems to adopt consistent

conventions and standards to enable interoperability that facili-

tates researchers’ ability to ask questions across the individual

platforms.

The AnVIL project has pushed the interoperability envelope by

piloting new technologies and adopting key standards and con-

ventions from known standards bodies such as GA4GH. This

was done to realize the vision of researchers using data and to

compute acrossNIH cloud-based platforms seamlessly. The An-

VIL’s interoperability strategy focuses on 4 distinct areas: (1)

data access, (2) portable analysis, (3) authentication and autho-

rization, and (4) search and handoff between systems. For data

access, the AnVIL has implemented the GA4GH DRS, which

provides a consistent interface to data resources on cloud envi-

ronments (both public and private) that enable data analysts and

researchers to access data in a fashion that is agnostic to cloud

service providers. This is possible because DRS Uniform

Resource Identifiers (URIs), not actual data files, are passed be-

tween platforms. To enable portable analysis, the AnVIL sup-

ports both the WDLs and GWs through Terra and Galaxy,

respectively. Each system allows researchers to write analysis

tools and workflows that leverage Docker images, a popular

containerization technology that facilitates portability. These

workflows are shared through Dockstore, which itself supports

the GA4GH Tool Registry Service (TRS), making it possible to

share workflows among many different systems beyond the

AnVIL. At the time of writing, the AnVIL and other NIH cloud plat-

forms are working toward developing prototype implementa-

tions of additional GA4GH standards such as the recently ratified

Task Execution Service (TES) and Workflow Execution Service

(WES) standards. These technologies will bring exciting new ca-

pabilities where analysis jobs can be remotely launched and

monitored so that users can easily distribute work across multi-

ple cloud platforms. For authentication and authorization, the
AnVIL uses the NIH Research Auth Service (RAS) from NIH’s

Center for Information Technology (CIT) to facilitate access to

both open and controlled datasets and repositories, eliminating

the need to maintain multiple credentials for NIH-supported

cloud platforms. RAS uses the OIDC/OAuth2 standards and le-

verages GA4GH Passports, providing a consistent way to

describe the datasets a researcher is authorized to access.

Furthermore, RASs offer increased protection via automated

logging of data access.62 The AnVIL has explored and is imple-

menting search and data discovery through the Fast Healthcare

Interoperability Resource (FHIR) standard, a data modeling lan-

guagewith an API specification focused on the interoperability of

clinical and research data. Finally, the AnVIL has developed a

search handoff mechanism between the AnVIL data discovery

portal and Terra analysis environment using the Portable Format

for Bioinformatics (PFB) file type.

The interoperability vision and accomplishments of AnVIL

were not done in isolation but as part of a larger collaboration

within the NIH. The NIH Cloud Platform Interoperability (NCPI;

https://anvilproject.org/ncpi) effort was started in late 2019

with the goal of establishing and implementing guidelines and

technical standards to empower end users to analyze data

across participating platforms and to facilitate the realization of

a trans-NIH, federated data and compute ecosystem spanning

the tAnVIL, BDCat, CRDC, and GMFK, along with strong ties

to other NIH services such as dbGaP and the SRA. The NCPI

Systems Interoperation working group has focused on

leveraging the interoperability standards of DRS and TRS, con-

ventions like PFB, and the auth services of RAS to address

real-world scientific use cases. The real-world use cases include

the joint analysis of datasets from Clinical Proteomics Tumor

Analysis Consortium (CPTAC, hosted by CRDC), The Cancer

Genome Atlas (TCGA, hosted by CRDC), and GTEx (hosted by

the AnVIL) to address the causes and implications of expression

variation in somatic tissues. Feasibility studies have also been

conducted in analyzing both open and controlled access data

by bringing 1000 Genomes Project data hosted by the AnVIL

into the GMKF platform for co-analysis with the GMKF-hosted

TARGET Neuroblastoma Project data with the aim of exploring

differential expression across healthy and diseased samples.

Similarly, another use case involving pooled analyses of the Pe-

diatric Cardiac Genetics Consortium (PCGC, hosted by GMKF),

PCGC’s Congenital Heart Disease Biobank (hosted by BDCat),

the Framingham Heart Study (hosted by BDCat), and the Jack-

son Heart Study (hosted by BDCat) on the AnVIL is currently

underway. Finally, additional interoperability work is in develop-

ment to expose the Telomere-to-Telomere CHM13 reference

genome and the associated analysis workflows hosted by the

AnVIL63 to other cloud platforms to improve read mapping and

variant calling.45 The NCPI is using these demonstrations as

the foundation for future work with the goal of expanding the

interoperability between systems to all of the NCPI and beyond.

Beyond technical interoperability is the need for semantic

interoperability. The AnVIL hosts data from a wide diversity of

projects that contain differing levels of annotation, alternate on-

tologies, and even mismatched measurement units, sometimes

even within the same project. These issues make analyzing

phenotypic data in conjunction with the genomic data difficult
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even if the systems utilize the same APIs for data transfer. In

developing a unified data transform for the AnVIL data dash-

board, we encountered known problems with common meta-

data and phenotypic data elements, such as inconsistent or

missing project disease mapping, subject disease affected sta-

tus, consistent keys for specimen, specimen attributes, CRAM/

BAM statistics, and other missing files.

Extending these data normalization efforts, researchers from

the AnVIL project began mapping common elements to other

NIH projects. One example of NIH investment in these standards

is HL7 FHIR (http://hl7.org/fhir), a standard for representing,

searching, and sharing clinical data. For data commons, FHIR

can be seen as a target data model and staging database for

data interchange efforts. With a common data model, protocol,

and search mechanism for clinical attributes in place, the

gap becomes a difference between metadata values and

ontologies. Recent notices from NHGRI and the NIH at large

have emphasized the importance of projects following standards

for metadata formatting (https://grants.nih.gov/grants/guide/

notice-files/NOT-HG-21-022.html), including the use of FHIR

(https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-

122.html). And while the original primary focus of FHIR devel-

opment was on enabling the exchange of medical data, its

formalization of record versioning, provenance tracking, and

ontology mapping make it a useful platform for cross-project

data interoperability. This technology is now being utilized to

provide more normalized data models that allow for queries

across the AnVIL and other NIH projects, such as the Kid’s

First Data Resource (https://kidsfirstdrc.org/).

OUTLOOK

The AnVIL launched just over 3 years ago. While there has been

remarkable progress since then, there is still significant work

required before the promise of this effort is fully realized. In the

next stages of the AnVIL, we will focus on ensuring robustness

and security for our core components while also working to

develop many new capabilities in key scientific areas across hu-

man genetics and clinical genomics. For example, one major

current focus is to integrate additional tools and workflows for

clinical genomics, especially the calculation and utilization of

polygenic risk scores64 and pharmacogenomics analysis.65

More broadly, we are still in the earliest stages of the cloud

transformation within the life sciences, and many institutions

have already made significant investments into on-premises

computing clusters and data centers that we cannot ignore. Dur-

ing this transition period, it is likely that cloud resources will be

used for the largest analyses and collaborative research pro-

jects, but summarized data and institutionally generated private

data will still be analyzed locally. As such, one of the key require-

ments for the AnVIL is that all of the major analysis components

can be run locally: WDLs are increasingly used on institutional

computing clusters, R/Bioconductor works equally well on a

laptop or in the cloud, and Galaxy can be deployed on a laptop

or within an institutional cluster as needed.

Another major consideration for cloud-based research is the

costs involved. Even if the cost per genome or cost per sample

is only a few dollars, oncemultiplied by tens or hundreds of thou-
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sands of genomes, the total costs for an analysis can quickly

become a major expense. Moving large datasets can also be a

major cost to consider; fortunately, some large datasets such

as SRA are now mirrored in the cloud, reducing transfer times

and associated costs. Additionally, researchers can also import

their own datasets, which can scale to the petabyte level and

beyond. Within the AnVIL, we also provide free egress for one

of the most important datasets, the raw data for the widely stud-

ied GTEx dataset, by mirroring our cloud copy within an aca-

demic computing center so that authorized users can access it

freely over Internet2 (https://anvilproject.org/news/2020/11/20/

nhgri-anvil-now-supports-free-export-of-gtex-data).

While computing costs also play a major role for local

computing, these costs are often amortized or supplemented

through institution- or department-wide initiatives beyond indi-

vidual research labs. Researchers currently have limited infor-

mation for the expected costs of running analysis tools in the

cloud, which challenge budgeting and preventmany researchers

from adopting cloud solutions. In addition, software developers

may not focus on optimizing costs for cloud environments, which

increases the expense even when relatively simple optimizations

are available. We and the entire genomics community must

address this using all options available, including (1) educating

users on the expected costs for different analyses and strategies

for minimizing costs, (2) implementing additional technology

safeguards (quotas or ‘‘bumpers’’) that will prevent users from

uncontrolled spending, and (3) developing optimized tools and

workflows to reduce costs. As cloud costs are primarily a func-

tion of CPU time, RAM required, and storage space, this will

include optimizations for decreasing computing time by

leveraging parallel and vectorized computing instructions (e.g.,

AVX512 vectorization66) or advanced search strategies (e.g.,

learned index structures67,68), decreasing RAM requirements us-

ing more advanced data structures (e.g., Burrows-Wheeler

transform,69 Bloom filters,70 or Sequence Bloom Trees71), and

decreasing storage requirements by using compressed data for-

mats (e.g., CRAM72), using optimized IO routines (e.g., fixed-

length records instead of variable-length records73), and

removing intermediate data. This will also include developing

heuristics and approximation techniques that can often run sub-

stantially faster than more exhaustive approaches.74,75

With these considerations in mind, it is worth pointing out

that providing access to tools, protected data, and computa-

tional resources via the AnVIL is a process of democratization.

Previously, only well-funded institutions with extensive on-pre-

mises computing clusters and supporting information technol-

ogy (IT) staff could afford access to high-powered computing

of genomic data. While the cost of compute cannot be ignored,

all researchers now have an equal opportunity to access elastic

computational resources with minimal upfront costs. To ease

the burden of cost projection, we are actively developing user

guides and budgeting templates and making these resources

available to the public. Additionally, the recently launched

AnVIL Cloud Credits (AC2) program makes cloud-computing

funds available to researchers and educators, including to fac-

ulty belonging to the above-mentioned GDSCN. Both AC2 and

GDSCN are exciting pilot programs that we are keen to expand

in the future.
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Overall, the futures of the AnVIL and of cloud computing in

genomics are very bright. We have several major initiatives un-

derway to enhance our capabilities for basic science and clinical

genomics, such as by integrating the tools and data from the

Telomere-to-Telomere63 and Human Reference Pan Genome

projects to provide more comprehensive and diverse reference

human genomes aswell asmajor efforts with the American Heart

Association (AHA), the eMERGE Network, and the Clinical

Sequencing Evidence-Generating Research (CSER) programs

to increase our capabilities for clinical genomics. We are partic-

ularly excited by how these datasets will allow for analysis of a

broader range of genome variation, especially complex struc-

tural variants, and of additional functional genomics data types,

including at the single-cell level, to develop a better understand-

ing of the molecular basis of health and disease across diverse

patient populations. Internally, we also have several major

technical enhancements planned, such as offering multi-cloud

support and enhanced support for deploying additional complex

applications using kubernetes. In addition, NHGRI is broadening

the support for the AnVIL by promoting it as a primary data

sharing platform and/or a primary data analysis platform for

several funding opportunities. Finally, these efforts are coupled

with major training and outreach efforts to ensure everyone is

aware of the platform and can use it for their research needs

for many years to come.
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