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Cortical state dynamics and selective attention
define the spatial pattern of correlated variability in
neocortex
Yan-Liang Shi 1, Nicholas A. Steinmetz 2, Tirin Moore 3,4, Kwabena Boahen5,6 & Tatiana A. Engel 1✉

Correlated activity fluctuations in the neocortex influence sensory responses and behavior.

Neural correlations reflect anatomical connectivity but also change dynamically with cogni-

tive states such as attention. Yet, the network mechanisms defining the population structure

of correlations remain unknown. We measured correlations within columns in the visual

cortex. We show that the magnitude of correlations, their attentional modulation, and

dependence on lateral distance are explained by columnar On-Off dynamics, which are

synchronous activity fluctuations reflecting cortical state. We developed a network model in

which the On-Off dynamics propagate across nearby columns generating spatial correlations

with the extent controlled by attentional inputs. This mechanism, unlike previous proposals,

predicts spatially non-uniform changes in correlations during attention. We confirm this

prediction in our columnar recordings by showing that in superficial layers the largest

changes in correlations occur at intermediate lateral distances. Our results reveal how spa-

tially structured patterns of correlated variability emerge through interactions of cortical state

dynamics, anatomical connectivity, and attention.
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Neocortical circuits spontaneously generate varying pat-
terns of neural activity, which profoundly influence
sensory responses and behavior1–5. These endogenous

activity fluctuations are correlated across neural populations and
are often quantified by correlations between pairs of neurons,
called noise correlations6. Noise correlations are thought to
reflect the anatomical circuit connectivity, but they are also
dynamically influenced by behavioral and cognitive states5,7–9, in
particular, during spatial attention10–14. Implications of noise
correlations for population coding and behavior have been stu-
died extensively15–19. Yet, how anatomical connectivity and
cognitive states interact to define the structure of noise correla-
tions across populations is not well understood.

Spatial selective attention offers a rich experimental domain for
studying the combined influence of anatomical connectivity and
cognitive factors on the population structure of noise correlations.
Changes in noise correlations during attention have been mea-
sured across different anatomical dimensions, yielding hetero-
geneous results. Many studies of noise correlations involved
recordings from neurons in different cortical columns, e.g., using
rectangular Utah arrays which preferentially sample from laterally
separated neurons in more superficial cortical layers10,12 (Fig. 1a).
These studies found that noise correlations substantially decreased
when attention was directed to the receptive fields (RFs) of
recorded neurons10–12. More recent studies used linear multi-
electrode arrays to measure attentional modulation of noise cor-
relations within cortical columns (Fig. 1a) and found effects that
varied with layer and area. In V4, noise correlations decreased
during attention only in input layers during stimulus-evoked but
not spontaneous activity, and no significant changes were
observed in superficial and deep layers13. In V1, noise correlations
decreased only in supragranular layers with no significant changes
in granular and infragranular layers14. In both areas, the magni-
tude of changes in noise correlations within columns appeared an
order of magnitude smaller compared to a sizable reduction of
correlations across columns. These data suggest that attentional
modulation in correlated variability is not uniform across anato-
mical dimensions, but depends on lateral distance and cortical
layer. The network mechanisms underlying these heterogeneous
modulations are unknown.

We hypothesized that heterogeneous changes in noise cor-
relations arise from the modulation of On-Off dynamics pro-
pagating locally across columns. The On-Off dynamics are
spontaneous transitions between phases of vigorous (On) and
faint (Off) spiking that occur synchronously across layers of
neocortex20,21 and are observed in visual cortex of behaving
monkeys22,23 (Fig. 1b). The On and Off phases of population
activity persist on the timescale of ~100 ms with exponentially
distributed durations22,23 and correlate with large fluctuations
in neurons’ membrane potentials24,25, which are signatures of
bistable dynamics26. The On-Off dynamics reflect the global
cortical state associated with arousal and are also modulated
locally within retinotopic maps during selective attention22,23.
We analyzed spiking activity recorded within cortical columns
in V427 and found that the scale of On-Off dynamics predicted
the magnitude of noise correlations and their dependence on
lateral distance.

To explain the spatial patterns of noise correlations, we
developed a network model of interacting columns with spa-
tially structured connectivity. The key mechanism in our model
is On-Off dynamics that propagate across columns to form
spatiotemporal population activity which shapes the structure
of noise correlations. Cortical activity propagates laterally as
waves across different spatial scales, brain states and behavioral
conditions28,29, and wave-like propagation of spontaneous
activity fluctuations is observed in the visual cortex of behaving

primates30. In our model, attentional inputs shift the stability of
local On-Off dynamics, which effectively regulates the efficacy
of lateral interactions among columns and affects the spatial
activity propagation. As a result, attentional inputs reduce the
spatial extent of On-Off dynamics, leading to spatially non-
uniform changes in noise correlations. This mechanism pre-
dicts that, during attention, noise correlations can change
substantially at intermediate lateral distances (across columns)
even when average changes within columns are very small. To
test this prediction, we analyzed how changes in noise corre-
lations depend on lateral distance in columnar recordings in
V4. While average changes were small, when sorted by the
lateral distance, the changes in noise correlations were near
zero at zero distance and gradually increased with distance in
superficial layers, consistent with predictions of our model.

The mechanism based on bistable On-Off dynamics differs
from previous models of cortical variability operating in a
balanced excitatory-inhibitory regime, where population activity
fluctuates around a single global fixed point31,32. Balanced net-
works with a global fixed point do not capture the slow timescale
and bistable characteristics of cortical fluctuations that we
observed in our data. In addition, the previous model predicts
that attentional changes of noise correlations are spatially
uniform31, in opposition to our experimental observations. Our
results indicate that visual cortex operates in a regime of local
bistable dynamics in single columns that interact via structured
anatomical connectivity. Our work provides a unifying frame-
work that explains how heterogeneous patterns of correlated
variability emerge within neocortex through interactions of net-
work dynamics and cognitive state.

Results
On-Off dynamics predict the magnitude of noise correlations.
We measured spiking activity from all layers within columns of
the visual cortical area V427. Spiking activity was recorded with
16-channel linear array microelectrodes (Fig. 1a) arranged so that
receptive fields (RFs) on all channels largely overlapped22,33.
During recordings, monkeys performed a spatial attention task,
which required detecting changes in the orientation of a visual
stimulus in the presence of distractor stimuli (Methods section
and Supplementary Fig. 1). On each trial, an attention cue indi-
cated the stimulus that was most likely to change. In the attention
condition, the cue directed animal’s attention to the RF stimulus.
In the control condition, the cue directed attention to a location
outside the RFs of recorded neurons.

In our columnar recordings, we examined the relationship
between the scale of ongoing On-Off dynamics and the
magnitude of noise correlations. We quantified the On-Off
dynamics by fitting a two-phase Hidden Markov Model (HMM)
to the population spiking activity22,23 (Fig. 1b, Methods section).
The HMM models the dynamics of a latent population state that
switches between two phases, On and Off, to capture synchro-
nized changes in firing rates across neurons. Spikes on recorded
channels were modeled as inhomogeneous Poisson processes with
different mean rates during the On and Off phases. The variance
explained by a two-phase HMM (R2) varied across recording
sessions and this variation was tightly correlated with the average
noise correlation (Fig. 1c). For most recording sessions (31 total,
67%), the two-phase HMM was the most parsimonious model
among HMMs with 1 or up to 8 possible phases22 (Methods
section). For the remaining 15 (33%) sessions, a one-phase HMM
(i.e. constant firing rates without On-Off transitions) was the
most parsimonious model. These one-phase recordings consis-
tently showed lower average noise correlations of multi-unit
(MU) activity (mean 0.13) than two-phase recordings (mean
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0.32), with a pronounced 59% difference on average (Fig. 1c).
Trial-to-trial variability of MU activity, quantified by the Fano
factor (FF, the ratio of the spike-count variance to the mean), was
also lower in one-phase (mean FF= 1.5) compared to two-phase
(mean FF= 2.3) recordings (35% difference). On the other hand,
the mean firing rates of MUs were similar between the one-phase
(108 Hz) and two-phase (114 Hz) recordings (5% difference).
Thus the scale of On-Off dynamics predicted the overall
magnitude of correlated variability in our data, which implicates
On-Off dynamics as a major source of noise correlations in visual
cortex.

Attentional modulation of noise correlations within columns.
We quantified attention-related changes in noise correlations
within columns, separately in superficial (which included gran-
ular and supragranular) and deep (infragranular) cortical layers.
In each session, data from each of the recording channels were
assigned laminar depth, relative to a common current source

density marker33. We combined the granular and supragranular
layers because they showed similar changes in noise correlations
(Supplementary Fig. 2). We found that noise correlations were
slightly reduced in superficial and enhanced in deep layers in the
attention relative to control conditions (Fig. 1d). To quantify
these changes, we calculated a standard modulation index MIcorr,
which was the difference between noise correlations in the
attention and control conditions divided by the sum. In two-
phase recordings, the mean MIMU

corr for MU was−0.029 in
superficial layers (p < 10−5, Wilcoxon signed-rank test, n= 5088)
and 0.022 in deep layers (p= 0.004, Wilcoxon signed-rank test,
n= 6128) (see Supplementary Tables 1 and 2 and Supplementary
Fig. 3 for a full summary of results). The magnitude and laminar
profile (Supplementary Fig. 2) of these noise-correlation changes
are consistent with other laminar recordings in V413.

These average changes of noise-correlations within columns
were much smaller than the robust and sizable reduction of
noise correlations previously reported for neurons in different
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Fig. 1 On-Off dynamics predict the magnitude of noise correlations within cortical columns. a Different recording techniques sample neurons
along different anatomical dimensions. A rectangular Utah multi-electrode array (top) samples from laterally separated neurons in different columns,
preferentially from superficial cortical layers. A linear multi-electrode array (right) samples from neurons across all layers within cortical columns. b An
example trial showing spontaneous transitions between episodes of vigorous (On) and faint (Off) spiking in multi-unit activity simultaneously recorded
from all layers of a cortical column in V4. Spikes (vertical ticks) on 16 recording channels are segmented into On (yellow) and Off (blue) episodes by the
HMM. c Scatter plot of the variance explained by the two-phase HMM versus average noise correlation of MU across recording sessions for two-phase
(red circles) and one-phase (teal diamonds) recordings (upper panel). Two-phase HMM accounted for a smaller fraction of total variance in one-phase
compared to two-phase recordings, because in one-phase recordings, the firing-rate fluctuations were smaller and most of the total variance was due to
unpredictable Poisson variability. Stacked histogram of average noise correlations for two-phase (red) and one-phase (teal) recordings (lower panel).
d Average noise correlations of MU in two-phase (upper panels) and one-phase (lower panels) recordings, separately for superficial (two-phase: n= 2544
MU pairs for each attention condition; one-phase: n= 920) and deep cortical layers (two-phase: n= 3064 MU pairs for each attention condition; one-
phase: n= 1448), in attention (red) and control (gray) conditions (left panels). Histograms show the corresponding distributions of noise correlations in
each condition (right panels). Noise correlations slightly decrease in superficial and increase in deep layers, but the overall magnitude of changes is very
small. p-values are from two-sided t-test (two-phase: p= 2 × 10−5 in superficial layers, p= 0.003 in deep layers; one-phase: p= 0.13 in superficial layers,
p= 4 × 10−7 in deep layers). Error bars represent SEM. Source data are provided as a Source Data file.
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columns10–12,31. For comparison, a previous study in V4
using rectangular Utah arrays10 found that the mean MIMU

corr
was−0.29, which is an order of magnitude larger than in our
columnar recordings. Despite this striking difference in the
modulation of noise correlations, the attentional modulation of
firing rates and trial-to-trial variability of individual neurons
was similar in our data and the previous study. In two-phase
recordings, the mean MIMU

rate was 0.023 in superficial layers
(p < 10−10, Wilcoxon signed-rank test, n= 1752) and 0.018 in
deep layers (p < 10−10, Wilcoxon signed-rank test, n= 2216),
which is more comparable to the previous study10. Similarly, in
two-phase recordings, the mean modulation index of Fano
factor MIMU

FF was− 0.010 in superficial layers (p < 10−10,
Wilcoxon signed-rank test, n= 1752) and−0.007 in deep
layers (p < 10−10, Wilcoxon signed-rank test, n= 2216),
comparable to the previous study10. The results were similar
in one-phase recordings (Supplementary Tables 1 and 2). These
results suggest that attention-related changes in noise-
correlations depend on the relative positions of neurons in
the cortex, with sizable changes across columns and minute,
layer-dependent changes within columns. Since the striking
difference in the modulation of noise correlations is not
accounted for by differences in the activity of individual
neurons, it likely reflects the spatial structure of population
dynamics across the cortex.

Network model of interacting cortical columns. We hypothe-
sized that heterogeneous modulations of noise-correlations across
layers and columns arise from the On-Off population dynamics
and spatial structure of anatomical connectivity in the cortex. To
test this hypothesis, we developed a network model of interacting
columns with spatially structured connectivity (Fig. 2). The model
consists of units interconnected in two parallel two-dimensional
lattices, corresponding to the superficial and deep cortical layers
(Fig. 2a). Each unit represents a local population of neurons
within one layer—superficial or deep—of a single column. Each
unit is connected to its four neighboring units in the same layer,
mimicking the local structure of horizontal connectivity in the
cortex. Visual stimuli and attention are modeled by external
inputs to local groups of units. Since attentional modulation
differs between superficial and deeper layers, we modeled each
layer as a separate network. Each network receives different
attentional inputs to account for differential changes in noise
correlations in superficial versus deep layers.

The key mechanism generating correlated variability in our
model is the stochastic On-Off dynamics of the population
activity in single columns. In visual cortex of behaving monkeys,
the durations of On and Off episodes are distributed exponen-
tially with a timescale of ~100 ms22,23 (Supplementary Fig. 4),
which indicates that the On and Off phases are metastable with
transitions driven by noise26. Accordingly, we model the
dynamics of each unit in the network by a two-dimensional
dynamical system with two stable fixed points, corresponding to
the On and Off phases (Fig. 2b). This dynamical system is a
phenomenological mean-field description of a population of
excitatory neurons coupled by the vertical recurrent connectivity
within the column. The first dynamical variable r(t) represents
the mean firing rate of the population. It receives a recurrent self-
coupling F(r) and a negative feedback from the second dynamical
variable a(t) representing firing-rate adaptation21,26. The dyna-
mical system is driven by white noise ξ(t), which causes stochastic
transitions between the On and Off fixed points. Each unit also
receives external currents IstimðtÞ and Iatt(t), which model the
bottom-up inputs from visual stimuli and top-down inputs
during attention, respectively.

The dynamics of individual units reproduce the On-Off
transitions in single columns and their modulation during
attention. As in the data from visual cortex22,23 (Supplementary
Fig. 4), the duration of On and Off episodes in the model are
irregular and exponentially distributed (Fig. 2c). In this regime,
the dynamics of each unit can be reduced to a two-state Markov
process switching between the On and Off phases (Supplemen-
tary Note 2.1). The Off-to-On (α1) and On-to-Off (α2) transition
rates of the Markov process set the average duration of the On
and Off episodes: τon= 1/α2 and τoff= 1/α1. Consistent with this
description, a two-state HMM provides the most parsimonious fit
of the On-Off dynamics in our two-phase recordings. Further,
our model captures the increase of On-episode durations during
attention as observed in the data22,23 (Supplementary Fig. 5).
During attention, a local group of units representing the attended
RFs receives a small excitatory input Iatt. This attentional input
slightly shifts the r-nullcline (Fig. 2b) elevating the threshold for
transitioning from the On to Off fixed point, which reduces the
On-to-Off transition rate of the Markov process and results in
longer average On-episode durations (Fig. 2c).

The horizontal connectivity in the network correlates the On-
Off dynamics across units in the lateral dimension. Each unit’s
firing-rate variable r(t) receives a recurrent excitatory input Irec
from its four neighbors on the lattice. As a result, the On-Off
dynamics of each unit are influenced by the activity of its
neighbors. The more neighbors in the On phase, the larger is the
excitatory input Irec, which elevates the threshold for On-to-Off
and lowers the threshold for Off-to-On transitions. In the
description of a two-state Markov process, this is equivalent to a
dependence of the Off-to-On and On-to-Off transition rates on
the On/Off phases of the neighbors: α1+ βS± and α2− βS±
(Supplementary Note 2.3). Here, the variable S± indicates the
number of neighbors in the On phase at each time, and β is the
effective coupling strength that depends on the parameters of the
dynamical system as well as on external inputs (Supplementary
Note 2.3). The reduced network of coupled binary On-Off units
follows Glauber dynamics34 (Supplementary Note 2.4), allowing
us to calculate noise correlations analytically in our model. In
simulations, both the dynamical-system and binary-unit versions
of the network exhibit similar spatiotemporal dynamics, where
the On and Off phases form local spatial clusters (Fig. 2d), which
propagate across columns in a pattern of local irregular waves29

(Supplementary Movie 1).
We model two sources of spiking variability: the On-Off

fluctuations of the population activity and stochasticity of spike
generation in individual neurons21,35. We simulate spikes of
individual neurons as inhomogeneous Poisson processes with
different mean rates during the On and Off phases generated by
the network (Fig. 2e). This doubly stochastic description
coincides with the assumptions of the HMM used to fit the
experimental data. We match the model parameters to the
experimental data by fitting the data with the HMM, which
provides us with the estimates of the On-Off transition rates (α1
and α2) and the On and Off firing rates (ron and roff) for all MUs
and single units (SUs) in each recording session and task
condition (Fig. 2f). We then use these parameters to predict noise
correlations and compare these predictions with the values
measured for the same neuron pairs in the data.

The model accounts for correlated variability within columns.
We used the two-phase recordings to test how accurately the
model predicts changes of correlated variability in single columns
during attention. In the model, the On-Off dynamics are the
source of correlations between responses of individual neurons.
All neurons in the population represented by a single unit
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(column) follow the same shared sequence of On and Off epi-
sodes. The spiking responses differ across neurons because of the
independent Poisson noises as well as differences in their On and
Off firing rates. We derived analytical formulas for the Fano
factor and noise correlations, measured over an arbitrary time-
window T, as functions of the model parameters: the On-Off
transition rates and the On and Off firing rates of each neuron
(Methods section and Supplementary Note 2.1). The model
analytically predicts the dependence of Fano factor and noise
correlations on the measurement time-window6, indicating that

this dependence is determined by the timescales of On-Off
dynamics (Supplementary Note 2.1). We used these analytical
formulas with the parameter values estimated from the data by
the HMM to predict the FF and noise correlations for, respec-
tively, each neuron and neuron pair in our dataset. We compared
these model predictions with direct measurements from the
experimental data.

Our model makes a specific prediction that the key factor
determining the magnitude of FF and noise correlations within
columns is the On-Off firing-rate difference Δr= ron− roff.

Fig. 2 A network model of interacting cortical columns. a The network consists of two parallel two-dimensional lattices corresponding to superficial and
deep cortical layers. Each unit represents a local population of neurons within one layer of a cortical column. The units transition between the On (yellow)
and Off (blue) phases. Bottom-up inputs from visual stimuli (gray shading) and top-down attentional inputs (red shading) target local groups of columns in
the model. Each network layer receives different attentional inputs to account for differences in noise-correlation changes between superficial versus deep
cortical layers. b Dynamical system modeling On-Off dynamics in single columns (left panel). The mean firing-rate variable r(t) receives a recurrent self-
coupling F(r) and a negative feedback from the adaptation variable a(t). The dynamical system is driven by a white noise ξ(t), recurrent inputs from the
neighboring columns Irec(t), and external inputs IstimðtÞ and Iatt(t). On the phase plane (right panel), the r-nulcline (gray) and a-nullcline (black) cross at the
On (yellow) and Off (blue) stable fixed points. The attentional input shifts the r-nulcline (red) modulating the stability of the On and Off fixed points. c In
single columns, the model generates stochastic On-Off transitions (left panel). The durations of On (yellow) and Off (blue) episodes are irregular and
exponentially distributed (right panel). The average duration (dashed lines) of On-episodes is longer in attention (Iatt > 0, lower row, average �τon ¼ 113 ms,
�τoff ¼ 88 ms) relative to the control condition (Iatt= 0, upper row, average �τon ¼ 102 ms, �τoff ¼ 98 ms). d The network generates spatiotemporal On-Off
dynamics, where the On and Off phases form local spatial clusters (a single snapshot of simulated activity in the dynamical-system network is shown).
The spatiotemporal pattern differs between attention (red square) and control (black square) conditions. e Spikes of individual neurons are modeled as
inhomogeneous Poisson processes with different mean rates during the On (yellow) and Off (blue) phases generated by the network. All neurons
represented by a single network unit follow the same shared On-Off sequence. f Model parameters are estimated by fitting the experimental data with the
HMM, which provides the On-Off transition rates (α1 and α2, top) and the On and Off firing rates (ron and roff) for each MU and SU in each recording
session and task condition. Histograms show the On (yellow) and Off (blue) firing rates for MUs for an example HMM fit. Source data are provided as a
Source Data file.
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Specifically, FF is directly proportional to Δr, and the noise
correlation between neurons i and j is proportional to the product
ΔriΔrj (Methods section and Supplementary Note 2.1). This
dependence on Δr is intuitive because the source of correlations
within a column is the shared On-Off switching, hence the
stronger a neuron is modulated by the On-Off dynamics (the
greater is Δr), the stronger it will be correlated with other neurons
in the same column. The dependence of FF and noise correlations
on Δr is evident in an example recording (Fig. 3a, b), where
different MUs exhibit a variety of On-Off firing-rate differences
Δr. The FF ranges broadly across MUs, from ~1 up to ~9, and this
variation is very well predicted by Δr (Fig. 3a). Although a few
units exhibited very high Δr and hence unusually high FF values,
the median FF of MUA was 1.8 similar to previous studies
(Supplementary Fig. 6). Similarly, MU pairs with the largest
product ΔriΔrj also exhibit the largest noise correlations (Fig. 3b).
While both FF and noise correlations also weakly depend on the
On-Off transition rates, the On-Off firing-rate difference is the
main factor defining the broad distributions of these quantities in
single columns (Supplementary Fig. 7).

As a consequence, the model also predicts that the changes in
FF and noise correlations during attention are proportional to the
changes in Δr and ΔriΔrj, respectively. This prediction was clearly
borne out by the data: the measured change in FF had a strong
trend as a function of the change in Δr (y-axis vs. color-axis in
Fig. 3c), and the measured change in noise correlations had a
strong trend as a function of the change in ΔriΔrj (y-axis vs.
color-axis in Fig. 3d). Moreover, changes in the FF and noise
correlations measured from the data were accurately matched by
the model predictions (y- vs. x-axis in Fig. 3c, d). The attention-

related changes in noise correlations range widely across the
population, with noise correlations substantially reduced and
enhanced in many pairs. This entire broad distribution is
accurately matched by the analytical predictions of the On-Off
dynamics model in single columns. Despite substantial changes in
many pairs, the average change in noise correlations within
columns is near zero (Supplementary Fig. 8b), since the changes
of ΔriΔrj are broadly distributed but close to zero on average.
Thus, our model of On-Off dynamics explains the observed
changes in correlated variability during attention within columns.

Decay of noise correlations with lateral distance. Next, we
analyzed the dependence of noise correlations on the lateral
distance in our laminar recordings and in the network model.
Previous studies in the visual cortex found that noise correlations
decrease with the lateral distance31,36,37. These studies used
multi-electrode arrays with lateral spacing between electrodes
ranging from ~0.35 to 4 mm, i.e. sampling distant neuron pairs in
different columns. With the laminar recordings, we tested how
noise correlations depend on the lateral distance over a much
shorter range of distances within single or nearby columns. We
leveraged the fact that laminar recordings generally exhibit slight
horizontal shifts due to variability in the penetration angle
(Fig. 4a). As a surrogate for horizontal displacements between
pairs of channels, we used distances between centers of their RFs.
To estimate the range of physical distances in the cortex spanned
by our laminar recordings, we converted the RF-center distances
to cortical distances using the cortical magnification factor for
each eccentricity38. The range of distances spanned by our

Fig. 3 The model accounts for attentional modulation of correlated variability within columns. a The model predicts that FF is proportional to the On-Off
firing-rate difference Δr= ron− roff. For an example recording, Δr ranges broadly across MUs (gray, left panel), and this variation of Δr tightly corresponds
with the variation of FF (orange, right panel). b The model predicts that noise correlation between neurons i and j is proportional to the product ΔriΔrj. For
the same example recording, the variation in

ffiffiffiffiffiffiffiffiffiffiffiffi
ΔriΔrj

p
corresponds with the variation of noise correlations (left). Noise correlations are positively correlated

with
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔriΔrj

p
, (right, black line - linear regression). c Comparison between attention-related changes (ΔFF= FFatt− FFctl) in FF predicted by the On-Off

dynamics model (x-axis) and measured directly from the data (y-axis) for MUs. All MUs are divided into 10 equally-sized groups based on the change in
their On-Off firing-rate difference between attention and control conditions (Δratt−Δrctl, color axis). d Comparison between attention-related changes
(ΔNC=NCatt−NCctl) in noise correlations (NC) predicted by the On-Off dynamics model (x-axis) and measured directly from the data (y-axis) for MUs.
All MU-pairs are divided in 10 equally sized groups based on the change in the pair’s On-Off firing-rate difference defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δratt;iΔratt;j

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δrctl;iΔrctl;j

p
(color axis). Source data are provided as a Source Data file.
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recordings was ~4−6 dva or ~1.5 mm (Methods section and
Supplementary Fig. 9).

We found that noise correlations decreased with lateral
distance in two-phase but not in one-phase recordings. In two-
phase recordings, noise correlations monotonically decreased
with the RF-center distance both in superficial and deep layers
(Fig. 4b, linear regression, one-sided t-test, slope− 0.09 ± 0.01,
p < 10−8 in superficial layers, slope−0.04 ± 0.01, p < 10−3 in
deep layers). With the conversion to cortical distances38, noise
correlations also decreased continuously with the lateral
cortical distance over ≲1 mm range (Supplementary Fig. 9).
Note that most pairs in our data were at very short distances,
with the median estimated cortical distance 0.72 mm. Thus the
decay of noise correlations with lateral distance spans all
distances within nearby and across distant columns. In
contrast, noise correlations did not decrease with the RF-
center distance in the one-phase recordings (Fig. 4c, linear
regression, one-sided t-test, slope−0.010 ± 0.008, p= 0.1 in
superficial layers, slope 0.014 ± 0.004, p= 0.997 in deep layers).
These results suggest that On-Off dynamics give rise to the
lateral distance-dependence of noise correlations.

In our network model, the dependence of noise correlations on
the lateral distance arises from the spatiotemporal On-Off
dynamics. Whereas all neurons represented by a single unit in
the network follow the same shared sequence of On-Off phases,
neurons represented by different units follow their respective On-
Off sequences. Consistent with this assumption, in recording
sessions with large lateral shifts between receptive fields, we can

observe On-Off phases that occur synchronously only on a subset
of adjacent channels and propagate across channels over time
(Supplementary Fig. 10). The On-Off dynamics are correlated
across nearby units in the lateral dimension due to horizontal
connectivity in the network. Since the horizontal connections are
spatially local and relatively weak, the synchrony of On-Off
dynamics is not global across the entire network, but localized to
a finite range of lateral distances. Thus the On-Off phases form
spatial clusters with a characteristic spatial length scale, and
beyond this spatial scale the On-Off phases are uncorrelated. This
network mechanism leads to a continuous decrease of noise
correlations with the lateral distance in the model (Fig. 4d).

Using the binary-unit reduced network model, we derived an
analytical formula for the dependence of noise correlations on the
lateral distance d (Methods section). Our calculations show that
noise correlations decay with the distance exponentially as
A expð�d=LÞ. This formula describes noise correlations both
within and across columns. At zero distance (d= 0), the formula
reduces to the pre-factor A ¼ Aðα1; α2;Δri;ΔrjÞ, which accounts
for the dependence of noise correlations on the On-Off transition
rates and the On-Off firing-rate difference, as described in the
previous section. Across columns (finite d > 0), the formula
accounts for the spatial structure of noise correlations with the
exponential discount factor expð�d=LÞ. The space-constant L of
this exponential decay, termed correlation length, depends on the
On-Off transition rates and on the effective coupling strengths β
between units in the network: L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β=ðα1 þ α2Þ

p
(in dimension-

less units of the lattice constant, see Methods section and

Fig. 4 Dependence of noise correlations on lateral distance. a Laminar recordings generally exhibit slight horizontal displacements which manifest in a
systematic shift of the RFs (circles) across channels (left panel). The shift of the RFs (lines, RF contours; dots, RF centers; dva, degrees of visual angle) for
an example recording (right panel). b In two-phase recordings, noise correlations decrease with the RF-center distance in both superficial (crimson) and
deep (green) layers (dots - data points, lines - linear regression, superficial layers n= 2544 MU pairs; deep layers n= 3064 MU pairs). Orange background
highlights the range of short lateral distances within single or nearby columns. Purple background highlights longer lateral distances between distant
columns, such as distances covered by a Utah array, which are outside the range of our laminar recordings. Error bars represent the standard error of the
mean (SEM). c Same as b for one-phase recordings. Noise correlations do not decrease with the RF-center distance (superficial layers n= 920 MU pairs;
deep layers n= 1448 MU pairs). d Our theory predicts that noise correlations decay with lateral distance exponentially, with the decay constant L called
correlation length. Simulations of the full dynamical-system network (circles) agree with the analytical formula derived using the binary-unit network
approximation (line). The model parameters α1, α2, ron, and roff are sampled from a distribution of parameters in HMMs fitted to the data. Source data are
provided as a Source Data file.
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Supplementary Note 2.3). This analytical result agrees well with
simulations of the full dynamical-system network model (Fig. 4d).

The exponential decay of noise correlations with distance in
our model, characterized by the correlation length L, is consistent
with the decrease in noise correlations observed over a wide range
of cortical distances spanned by our laminar (Fig. 4b) and
previous lateral recordings31,36,37 from the primate visual cortex.
Our model can also reconcile the decay of noise correlations with
distance in lateral recordings31,36,37 with the lack of distance
dependence in the one-phase recordings. With some hetero-
geneity, if a random fraction of units in the model does not
exhibit On-Off transitions (due to a more stable fixed point), the
activity of these one-phase units is not correlated with other units
at all distances. Thus lateral sampling from a mixture of one-
phase and two-phase phase units would uniformly lower the
average of noise correlations without affecting their distance
dependence.

Differential changes in noise correlations arise from atten-
tional modulation of the correlation length. In our network
model, attentional inputs restructure the spatiotemporal On-Off
dynamics, leading to differential changes in noise correlations
within versus across columns. In the network simulations, a local
group of units receives an attentional input Iatt, while other units
without this input (Iatt= 0) are in the unattended control condition
(Fig. 2d). With an excitatory attentional input (Iatt > 0), average
noise correlations between neurons in the same column change
very little relative to control (MIcorr=−0.05), while noise corre-
lations between neurons in different columns are substantially

reduced (MIcorr=−0.21, Fig. 5a). These results replicate the order-
of-magnitude difference of MIcorr observed between laminar versus
lateral recordings from the visual cortex. We repeated simulations
for a range of excitatory (Iatt > 0) and inhibitory (Iatt < 0) atten-
tional inputs. The excitatory inputs reduced noise correlations,
whereas inhibitory inputs increased noise correlations, but in all
cases, the average changes of noise correlations within columns
were smaller compared to sizable changes across columns of the
network (Fig. 5b).

To reveal the mechanism leading to differential changes of
noise-correlations within versus across columns, we examined
how attentional inputs affect the dependence of noise correlations
on the lateral distance in our network. In simulations, excitatory
attentional inputs produce a faster decay of noise correlations
with lateral distance, which corresponds to a shorter correlation
length (Latt < Lctl, Fig. 5c and Supplementary Fig. 11). Due to this
faster spatial decay, noise correlations at intermediate lateral
distances (finite d > 0) are considerably lower in attention relative
to control conditions, even when changes of noise-correlations
within columns (d= 0) are small. Inhibitory attentional inputs,
on the other hand, produce a slower decay of noise correlations
with lateral distance, which corresponds to a longer correlation
length (Latt > Lctl) and results in increase of noise correlations at
intermediate lateral distances. Thus changes of the correlation
length L produce sizable changes of noise correlations at
intermediate lateral distances (across columns) even when noise
correlations within columns do not change.

To understand the network mechanism by which attentional
inputs modulate the correlation length, we leveraged the analytical

Fig. 5 Attentional inputs modulate the efficacy of lateral interactions in the network leading to changes of the correlation length. a In simulations of the
dynamical-system network model, noise correlations between neurons in different columns robustly decrease during attention (Iatt > 0, red) relative to
control (Iatt= 0, gray), while noise correlations between neurons within columns change only slightly. The average reduction of noise correlations is large
across columns (MIcorr=−0.21, right), but small within columns (MIcorr=−0.05, left). b In simulations, noise correlations decrease with excitatory
(Iatt > 0) and increase with inhibitory (Iatt < 0) attentional inputs. In all cases, the average changes of noise correlations within columns are small relative to
sizable changes across columns. c Noise correlations decay faster with lateral distance in attention (red, Iatt > 0) relative to control condition (gray,
Iatt= 0), hence the correlation length is reduced Latt < Lctl. Data are shown from simulations of the full dynamical-system network (circles) and analytical
calculations using the binary-network approximation (solid lines). Orange and purple backgrounds highlight the range of distances within and across
columns, respectively. The change of the correlation length during attention is clearly visible in the same data plotted on the linear-logarithmic scale (inset).
d The Off-to-On (α1, blue) and On-to-Off (α2, yellow) transition rates weakly depend on the attentional input in the dynamical-system network. e The
effective coupling strength β steeply decreases with increasing attentional input. Coupling strength β estimated from simulations of the full dynamical-
system network (circles) is compared to analytical calculations using the binary-network approximation (line, Supplementary Note 2.2).
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formula L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β=ðα1 þ α2Þ

p
. In the dynamical-system model, an

excitatory attentional input shifts the r-nullcline, which increases
Off-to-On (α1) and decreases On-to-Off (α2) transition rates
(Fig. 2b, c). Since α1 and α2 change only moderately and in
opposite directions, their sum remains nearly constant (Fig. 5d).
Therefore changes of the correlation length L are mainly driven by
changes in the effective coupling strength β, which decreases
steeply with an increasing attentional input (Fig. 5e). The effective
coupling strength β decreases because an excitatory attentional
input stabilizes the On fixed point, thereby effectively reducing the
efficacy of the lateral recurrent inputs to drive the On-Off
transitions. Vice versa, an inhibitory attentional input makes the
On fixed point less stable, thereby enhancing the relative efficacy of
the lateral recurrent inputs and hence extending the spatial
correlation length in the network (Supplementary Note 3.2). Thus
the attentional input modulates the correlation length by
regulating the relative efficacy of lateral interactions between
columns39, which leads to differential changes in noise correlations
within versus across columns.

The model predicts distance-dependent changes of noise cor-
relations. The major changes in noise correlations in our model
are driven by changes in the correlation length L. The model,
therefore, makes a specific prediction that changes in noise cor-
relations during attention are not uniform across space. Noise
correlations decay exponentially with the lateral distance, with
different decay rates in attention and control conditions. Hence
the spatial profile of noise-correlation changes is defined by the
difference of two exponential decays: expð�d=LattÞ and
expð�d=LctlÞ. At very short lateral distances (within columns),
average changes of noise-correlations are small (Fig. 1d). At very
long lateral distances, the average changes are negligible, because
the overall magnitude of noise correlations vanishes. Sizable
changes in noise correlations are predicted to occur at inter-
mediate lateral distances, where the difference between two
exponential decays dominates. Thus the network mechanism in
our model predicts that the magnitude of noise-correlation
changes depends on lateral distance (Fig. 6a, b). This prediction
contrasts with the alternative balanced network model, where
population activity fluctuates around a single global fixed point,
which instead predicts that attention-related changes of noise
correlations are spatially uniform31 (Fig. 6c and Supplementary
Note 3). Therefore examining the spatial profile of noise-
correlation changes in the data could distinguish between net-
work mechanisms these alternative models postulate.

We analyzed how changes in noise correlations during attention
depend on the lateral distance (estimated by the RF-center
distance) in our laminar recordings. Although average noise-
correlation changes in our columnar recordings were small, when
sorted by the lateral distance, the data revealed spatial patterns with
substantial changes in noise correlations at longer distances. As
predicted by our model, changes of noise correlations in the two-
phase recordings were not uniform across space. In the superficial
layers, changes of noise correlations were smallest at very short
lateral distances and became progressively larger at longer
distances (Fig. 6d). Noise correlations decreased during attention,
with greater reduction at longer distances (linear regression, one-
sided t-test, slope−0.017 ± 0.004, p < 10−3). The extrapolation of
this trend to intermediate lateral distances (1⩽ d⩽ 4 mm) is
consistent with a robust reduction of noise correlations during
attention observed in Utah-array recordings, which also sample
from superficial layers10,12. In the deep layers, the attentional
effects on noise correlations were reversed from that in superficial
layers, showing a moderate increasing trend with a borderline
statistical effect (Fig. 6e, linear regression, one-sided t-test, slope

0.006 ± 0.004, p= 0.06; t-test for slopes superficial versus deep:
p= 0.6 × 10−3). In contrast, changes of noise correlations did not
depend on lateral distance in the one-phase recordings (Fig. 6f,
linear regression, t-test, slope−0.0005 ± 0.0061, p= 0.93 in super-
ficial layers and slope−0.01 ± 0.01, p= 0.35 in deep layers). These
results indicate that On-Off dynamics give rise to distance-
dependence of noise-correlation changes during attention.

The spatial profile of noise-correlation changes in two-phase
recordings is consistent with our network mechanism but
inconsistent with the previously proposed model, which predicts
spatially uniform changes31. The observed spatial profiles of
noise-correlation changes indicate that the correlation length
decreases in superficial but not in deep layers, which suggests that
superficial and deep layers receive different modulatory inputs
during attention40.

Discussion
Our results show that On-Off dynamics are a major source of
correlated variability in the visual cortex. On-Off dynamics in the
awake cortex resemble some features of Up-Down transitions
prominent during slow-wave sleep and anesthesia. Up and Down
states were originally used to describe the bimodal distribution of
membrane potentials, and now are also used to refer to spiking
(Up) and silent (Down) phases of population activity during
slow-wave sleep and anesthesia5. Up-Down transitions are a
major source of noise correlations during anesthesia21,41. Simi-
larly, On-Off dynamics account for a dominant share of noise
correlations in behaving animals.

We found that On-Off dynamics explained the magnitude of
noise correlations, their attentional modulation and dependence
on lateral distance. The average changes of noise correlations
during attention were very small within columns of the visual
area V4. Noise correlations slightly decreased in superficial and
increased in deep layers, but the changes were an order of mag-
nitude smaller than a robust and sizable reduction of noise cor-
relations between neurons in different columns. A reduction of
noise correlations was suggested to be a major contributor to the
improved behavioral performance during spatial attention10. Our
results show, however, that changes of noise correlations are not
uniform: their magnitude and sign depend on the relative ana-
tomical positions of neurons within layers and columns of the
visual cortex. These heterogeneous changes of noise correlations
may reflect unique contributions to behavioral improvements
from different functional groups of neurons defined by their
anatomical positions within the circuit.

To explain differences in attention-related changes of noise
correlations within versus across columns, we developed a net-
work model of interacting cortical columns. The key mechanism
generating correlated variability in the model is On-Off dynamics,
metastable transitions between the high and low firing-rate fixed
points in single columns. On-Off dynamics propagate laterally
across columns via spatially structured network connectivity to
form activity clusters traveling as local irregular waves (Supple-
mentary Movie 1). Our model, therefore, integrates experimental
findings that spontaneous fluctuations of cortical activity follow
bistable On-Off dynamics in single columns22 and propagate
laterally across columns as waves30. Due to the stochasticity of
dynamics, the activity clusters do not propagate coherently across
the entire network but travel only locally until they fade or merge
with other clusters. Local irregular waves differ from global tra-
veling waves, in which a wave can propagate coherently across the
entire network and most neurons equally participate in each
wave29. The spatial scale of activity clusters defines the expo-
nential decay constant of noise correlations with lateral distance,
i.e. the correlation length. Attentional inputs restructure the
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spatiotemporal On-Off dynamics and modulate the correlation
length, which results in distance-dependent changes of noise
correlations. The model qualitatively captures attention-related
changes of noise correlations in our data. Moreover, it makes a
testable prediction that the sizable changes of noise correlations
occur at intermediate lateral distances. Consistent with this pre-
diction, we found that in our laminar recordings, the magnitude
of noise-correlation changes gradually increased with lateral
distance in superficial layers (a moderate trend with borderline
statistical effect in deep layers). These results show that changes
in noise correlations depend on lateral distance.

On-Off dynamics accounted for the dominant share of noise
correlations in the majority of our recordings (two-phase
recordings), while in some recordings (one-phase recordings)
HMM did not detect On-Off transitions. Although noise corre-
lations in one-phase recordings were substantially smaller than in
two-phase recordings, they were nonzero, indicating that other
sources of variability contribute to noise correlations besides On-
Off dynamics. Since in one-phase recordings, noise correlations
did not depend on distance (Fig. 4c), these other variability
sources may be more global and uniform within a cortical area,

such as fluctuations in neural excitability related to arousal2,5,22.
Moreover, Fano factor and noise correlations in one-phase
recordings were modulated during attention, suggesting that the
additional variability sources also interact with attentional
mechanisms, producing spatially uniform changes in correlated
variability (Fig. 6f).

Noise correlations can limit stimulus information encoded in
the population, meaning that information saturates with
increasing population size15,16,18,19. Information saturation is
caused by a specific pattern of correlations, known as differential
correlations, which are proportional to the product of the deri-
vatives of the tuning curves17,42. In our model, assuming that
stimulus does not change the statistics of On-Off dynamics and
that changes in the On-Off dynamics do not affect stimulus
tuning, we found that the On-Off dynamics influence the strength
of differential correlations and thus affect the saturation level of
information (Supplementary Note 4). Specifically, the linear
Fisher information is monotonically decreasing with the corre-
lation length. Hence, a reduction of the correlation length leads to
an increase in stimulus information, as we observed in superficial
cortical layers during attention. However, the On-Off dynamics

Fig. 6 Attentional changes in noise correlations depend on lateral distance. a Our model predicts that changes in noise correlations at intermediate
lateral distances are driven by changes of the correlation length L. When the correlation length decreases (Latt < Lctl), the model predicts a robust reduction
of noise correlations at intermediate distances (across columns, purple background) when changes at zero distance are vanishing (crimson line). Over
short distances (within the column, orange background), noise correlations progressively decrease with distance. b When the correlation length increases
(Latt > Lctl), our model predicts an increase of noise correlations at intermediate distances when changes at zero distance are vanishing (green line). In both
cases (a, b), the spatial profile of noise-correlation changes is not uniform, and sizable changes are predicted to occur at intermediate lateral distances.
c The balanced network model with fluctuations around a single global fixed point predicts uniform changes in noise correlations at all distances (black
line)31. d In two-phase recordings, changes in noise correlations during attention depend on the RF-center distance. The magnitude of noise-correlation
changes is vanishingly small at zero distance and progressively increases at longer distances. With increasing RF-center distance, noise correlations
decrease in superficial layers (crimson). Data for single columns (crimson dots - data, line - linear regression, n= 2544 MU pairs) are shown along with an
approximate value of changes in noise correlation between neurons in different columns recorded with a Utah array (black dot). Error bars represent SEM.
e Same as d for deep layers in two-phase recordings (n= 3064 MU pairs). With increasing RF-center distance, noise correlations show a moderate
increasing trend with borderline statistical effect. f Same as d, e for one-phase recordings. Changes in noise correlations during attention do not depend on
the RF-center distance in superficial (crimson) and deep (green) layers (superficial layers n= 920 MU pairs; deep layers n= 1448 MU pairs). Source data
are provided as a Source Data file.
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and stimulus tuning are likely interdependent in the cortical
circuitry, where both arise from the same structured connectivity.
Deeper understanding of how On-Off fluctuations impact sensory
coding will be possible using models with connectivity that sup-
ports stimulus tuning in addition to spatial receptive fields43 in
future work.

Several mechanisms were proposed to explain how correlated
fluctuations arise in cortical networks. There are two general
classes of models: one relies on external shared variability and
another generates shared variability via intrinsic network
dynamics. In models with external shared variability, the source
of correlated fluctuations is assumed to be outside the network,
and the network merely filters the correlated input noise32,44,45.
In most of these models, the mechanism is based on a spatial
connectivity structure that locally breaks the excitation-
inhibition balance. The classical balanced network model with
random connectivity46,47 operates in an asynchronous regime,
where the tight excitation-inhibition balance cancels any input
correlations resulting in zero average noise correlations48. The
spatial connectivity structure, where recurrent inhibition is
broader than feedforward excitation, breaks the balance locally,
hence the input correlations cannot be canceled resulting in
positive average noise correlations44,45. However, to match the
experimentally observed temporal and spatial scales of correla-
tions, all of these models have to assume ad hoc spatiotemporal
structure of the input noise32,44,45.

The second class of models can generate shared variability
internally. One mechanism is based on breaking stability in some
spatial Fourier modes in a spatially organized balanced network.
For example, in a two-dimensional balanced network with slow
inhibitory kinetics, shared fluctuations arise from instability at
some spatial frequency that generates rate chaos31. Similarly, in a
one-dimensional balanced ring model, strong correlations arise
from a feed-forward structure in some Fourier modes of
connectivity49. In these models, correlations arise from fluctua-
tions around a global fixed point with a timescale defined by the
mismatch between excitatory and inhibitory synaptic time-con-
stants, i.e. just a few milliseconds. This fast timescale is incon-
sistent with experimental data as fluctuations of cortical activity
occur on a timescale of about a hundred milliseconds50 and
exhibit signatures of metastable dynamics22–24.

An alternative mechanism that can account for the slow
timescale of cortical fluctuations is based on multi-stability. In
this case, slow correlated fluctuations arise from stochastic tran-
sitions between multiple fixed points in the network. Multi-
stability can result from clustered excitatory connectivity, where
each cluster corresponds to a fixed-point attractor51. Further,
bistability between high and low firing-rate attractors can arise in
unstructured networks with strong recurrent excitation and
slower negative feedback such as firing-rate adaptation21,26,52,53

or short-term synaptic depression54. Our model of On-Off
dynamics is based on bistability, which is consistent with expo-
nential distributions of On and Off episode durations in behaving
monkeys22. Similar models with slow negative feedback were used
to reproduce Up-Down dynamics26,55. This mechanism can
generate slow alternations between high and low firing rates via
several dynamical regimes. In particular, Up-Down dynamics
were found to be bistable during anesthesia26 and excitable
during slow-wave sleep55 (a single stable fixed point from which
suprathreshold fluctuations induce large transient events). The
models with multi-stability capture the slow timescale of cortical
fluctuations and produce realistic noise correlations21,26,53.
However, the multi-stable networks studied previously were not
endowed with a spatial connectivity layout akin to organization of
cortical networks, hence they do not produce any spatial structure
of noise correlations.

To account for both the slow timescale and spatial structure of
noise correlations in the visual cortex, our network model com-
bines local bistable On-Off dynamics with spatially organized
connectivity. In our model, correlated variability arises from
metastable transitions between the On and Off fixed points, and
not from fluctuations around a single global attractor32. Our
results suggest that a theory of noise correlations in the visual
cortex should incorporate both the anatomical connectivity
structure of visual areas as well as the local bistability of popu-
lation dynamics in single columns.

Recurrent network models were previously developed to sug-
gest possible circuit mechanisms that produce a reduction of
noise correlations during attention31,32,56. These models are
based on a dynamical mechanism, where the network operates
around a global fixed point and attentional inputs increase the
stability of this fixed point leading to suppression of correlated
fluctuations. Specifically, in the network with intrinsically gen-
erated shared variability, the stability of the operating point can
be increased by up-regulating activities of inhibitory neurons31.
However, elevated inhibition reduces firing rates of excitatory
neurons, which contradicts attentional enhancement of firing
rates in experiments. In the network filtering external noise, the
stability of the global fixed point can be increased by excitatory
inputs when the network operates in inhibition dominated
regime32. In this scenario, an excitatory input increases effective
lateral connectivity, which suppresses the transmission of the
correlated input noise (Supplementary Note 3.4).

The mechanism we propose differs from these previous mod-
els. First, we show that a reduction of noise correlations during
attention is not universal. Therefore, a network mechanism
should account for heterogeneous changes of noise correlations
across different anatomical dimensions. Second, the mechanism
in our model is based on the local bistability of On-Off dynamics
in single columns. Attentional inputs change the stability of the
On and Off fixed points, which effectively modulates the efficacy
of lateral interactions across the network leading to changes of the
correlation length. This mechanism is fundamentally distance-
dependent, as the major changes of noise correlations in our
model are driven by changes of the correlation length (Supple-
mentary Note 2.3, 3.2). As a consequence, we find that in Fourier
space the lower spatial frequency modes contribute most to noise-
correlation changes (Supplementary Note 3.2). This result par-
tially agrees with the previous model31, where the dominant part
of noise-correlation changes arises from zero spatial frequency
mode, which, however, predicts a spatially uniform modulation of
noise correlations. In contrast, contributions from higher spatial
frequency modes are not negligible in our model. A combination
of all spatial frequency modes generates a non-monotonic profile
of noise-correlation changes in lateral dimension, a prediction
that was confirmed in our data.

Several biophysical substrates could mediate the network
mechanism of attentional modulation in our model. Top-down
projections from frontal cortical areas, especially Frontal Eye
Fields (FEF)57,58 can provide temporally and spatially precise
inputs to drive fast and local modulation of On-Off dynamics in
the visual cortex. Most FEF projections to V4 target pyramidal
neurons40, in agreement with our model where reduction of noise
correlations in superficial layers is driven by external excitatory
inputs, and unlike models where reduction of noise correlations is
mediated by inputs to inhibitory neurons31. Neuromodulatory
inputs can also mediate effects of attention59 and can influence
On-Off dynamics by modulating neural excitability and firing-
rate adaptation60. The level of Acetylcholine (ACh) can modify
the efficacy of synaptic interactions during attention in a selective
manner61. An increase in ACh strengthens the thalamocortical
synaptic efficacy by affecting nicotinic receptors and reduces the
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efficacy of horizontal recurrent interactions by affecting mus-
carinic receptors. A decrease in the efficacy of horizontal inter-
actions leads to a reduction of correlation length in our model.
Further, laminar distribution of top-down inputs40 and of neu-
romodulation, combined with layer-specific horizontal con-
nectivity could account for the differential modulation of noise
correlations in superficial and deep layers that we observed.
Identifying precise mechanisms by which these multiple bio-
physical components interact within a columnar microcircuit is
an important direction for future work.

Methods
The research complies with all relevant ethical regulations. Experimental proce-
dures were in accordance with NIH Guide for the Care and Use of Laboratory
Animals, the Society for Neuroscience Guidelines and Policies, and Stanford
University Animal Care and Use Committee.

Behavior and electrophysiology. Two male monkeys (Macaca mulatta, 8−12 kg,
between 6 and 9 years of age) were used in experiments. The monkeys were trained
on a cued change-detection task22,62. The monkey was required to make a difficult
visual discrimination at a peripheral location with a central cue indicating which
location would contain the change. The monkey was rewarded for reporting a
successful detection with a saccade to the diametrically opposite peripheral location
(antisaccade response). On each trial, a small central cue indicated the stimulus
that was most likely to change. The cued stimulus was therefore a target of covert
attention. The monkeys reported stimulus changes with an antisaccade to the
location opposite to the change, which was therefore a target of overt attention due
to anticipation of antisaccadic response22,62 (Supplementary Fig. 1). Modulations
of neural responses in V4 were highly similar during the covert and overt attention,
including changes in firing rates, spiking variability and noise correlations22,62, and
therefore we combined the covert and overt attention conditions in our analyses.
The monkey initiated each trial by fixating a central fixation dot on the screen.
Within several hundred milliseconds, four peripheral stimuli appeared (static
Gabor patches: oriented black and white gratings in a circular Gaussian aperture).
After a short delay, the attention cue appeared: a short line originating at the
fixation dot and extending in the direction of one of the four stimuli, randomly
chosen on each trial with equal probability. The cue indicated with ~90% validity
which of the four stimuli, if any, would change on each trial. After a post-cue
period of 600−2300 ms, all stimuli synchronously disappeared for a brief interval
and then reappeared. On half of the trials, one of the four stimuli reappeared with a
changed orientation (i.e. rotated in place), and the monkey was rewarded for
performing a saccadic eye movement to the location opposite to the changed
stimulus. On the other half of the trials, all stimuli reappeared with the same
orientations as they had before disappearing, and the monkey was rewarded for
maintaining fixation on the central dot.

While monkeys performed the attention task, recordings were made in the
visual area V4 with a 16-channel linear array microelectrodes22,62. The total length
of array is 2.25 mm, and the spacing between electrical contacts is 150 μm.
Recordings were targeted with MRI to be as perpendicular to cortical layers as
possible so as to maximize the overlap of receptive fields (RFs) of recorded
neurons. Each of the recording channels was assigned laminar depth relative to a
common current source density marker as described previously33.

Data analysis. Data were analyzed with a custom code written in Matlab. We
measured Fano factor and noise correlations in our recordings using spike-counts
N of MUA and SUA in 200 ms bins (400–600 ms window after the attention cue
onset). The Fano factor is the ratio of the spike-count variance to its mean across
trials: Var[N]/E[N]. The noise correlation rsc is the Pearson correlation coefficient
between spike-counts Ni and Nj of two neurons:

rsc ¼
E ½NiNj� � E ½Ni�E ½Nj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ½Ni�Var ½Nj�
q : ð1Þ

We estimated parameters of the On-Off dynamics in single columns by fitting
population spiking activity in our recordings with a two-state Hidden Markov
Model (HMM) as described previously22. HMM has a latent variable representing
an unobserved population state that stochastically switches between the On and Off
phases following Markov dynamics. Spikes on 16 simultaneously recorded
channels are assumed to be generated by inhomogeneous Poisson processes, with
different mean rates during the On and Off phases. The latent On-Off state is
shared by the population, but the On and Off firing rates can differ across neurons.
HMM was fitted to MUA spike-counts in 10 ms bins, during a time-window
starting at 400 ms after the attention cue onset and until the end of the post-cue
period. The duration of this time-window ranges between 200 and 1900 ms across
trials. HMM was fitted separately for each of the 32 task conditions (4 attention
conditions × 8 grating orientations). The HMM parameters were optimized with
the Expectation-Maximization algorithm22. The HMM had 34 parameters: firing

rates in the On (ron) and Off (roff) phases for each of 16 channels and transition
probabilities pon and poff for the entire population.

We selected the optimal number of HMM states using the same cross-validation
procedure as in our previous work22. We computed average cross-validation error
for HMMs with n phases (n= 1, . . . 8), normalized by the average cross-validation
error of the HMM with 1 phase. For each recording session, the 4-fold cross-
validation error was computed in 200 ms windows for each condition (4 attention
conditions × 8 stimulus orientations), and then averaged across all channels,
conditions and cross-validation folds. For most recordings, addition of the second
phase greatly reduced cross-validation error compared to the single-phase HMM,
whereas adding more phases resulted in only marginal improvements: the error
curves display an elbow at n= 2, suggesting that 2-phase HMM is the most
parsimonious model for our data. For some recording sessions, HMMs with n > 1
phases did not perform better than the 1-phase HMM and the error curves did not
exhibit a kink for these recordings. We defined these to be one-phase recordings.

We estimated lateral shifts between channels in our laminar recordings by
distances between centers of their RFs. The RF mapping procedure was described
previously22. RFs were measured by recording spiking responses to briefly flashed
stimuli on an evenly spaced 6 × 6 grid covering the lower left visual field. Spikes in
the window 0–200 ms relative to stimulus onset were averaged across all
presentations of each stimulus. The RF center was defined as the center of mass of
the response map. The lateral cortical distance dcortical (mm) was estimated from
the RF-center distance dRF (d.v.a) using the cortical magnification factorM for each
eccentricity E38:

dcortical(mm) ¼ 9�M ´ dRF (d.v.a) ; M ¼ 3:1E�0:9: ð2Þ

Network model of interacting columns. The model describes spatiotemporal
dynamics of neural population activity across the cortical surface. The network
consists of two two-dimensional square lattices of units, representing superficial
and deep cortical layers. Each unit represents a local population of neurons within
one layer of a single column. The dynamical variable r(x, t) represents the mean
firing rate of this population. The two-dimensional lateral coordinates are denoted
as x. The dynamics of the network model are given by

ϵ
d
dt

r ¼ FðrÞ � aþW∇2r þ Istim þ Iattn ;

d
dt

a ¼ gr � aþ f þ
ffiffiffiffiffiffi
2Q

p
ξ :

ð3Þ

Here a(x, t) is the adaptation variable, ξ is a white Gaussian noise of unit intensity,
and we omit the spatial indices of variables r and a for clarity. ϵ≪ 1 is a constant
that separates the timescales of the fast dynamical variable r, and slow adaption
variable a (Supplementary Note 2.2.3 and Supplementary Fig. 12).

The noise term ξ in the adaptation variable drives stochastic transitions between
the On and Off phases in single columns. This phenomenological noise term
models fluctuations in population activity due to internal spiking noise and/or
external stochastic inputs. Spiking noise can arise from finite-size fluctuations63 as
well as from biophysical sources, such as stochasticity of ion channels or synaptic
release. External inputs correlated on the spatial scale of a column could also
probabilistically drive On-Off transitions, for example, inputs related to
microsaccades22. The term ξ(t) models the net effect of various biological noise
sources. Including the noise in the equation for adaptation variable enables
analytical reduction of the dynamical system to the binary-unit model64

(Supplementary Note 2.2.4). Adding the noise term in the firing-rate variable
produces qualitatively similar results (Supplementary Fig. 13).

The function F(r) is given by

FðrÞ ¼
�1� r; r ≤ �1=2

r; �1=2 < r < 1=2

1� r; r ≥ 1=2:

8><
>: ð4Þ

This piecewise linear function approximates the inverted N-shaped r-nullcline,
typically used in rate-models with adaptation21, which allows us to analytically
reduce the dynamical system to a binary-unit model64. The term W∇2 r represents
lateral interactions between neighboring units, where ∇2r ¼ ∂2xr þ ∂2yr implements
a diffusive coupling and W is the interaction strength parameter. The external
currents Istim and Iattn are applied to local groups of units to model stimulus and
attentional inputs, respectively. A constant ϵ≪ 1 separates the timescales of the fast
firing-rate variable r and slow adaptation variable a. The parameters g, f, Q are
chosen so that the system is bi-stable64, where the population rate r stochastically
switches between two stable fixed points, corresponding to the On and Off phases.

We match the model to experimental data using the fitted HMM parameters.
Specifically, the HMM transition matrix P (p11= poff, p12= 1− poff, p22= pon,
p21= 1− pon) provides an estimate of the On-Off transition rates: α1= (1− poff)/
Δt and α2= (1− pon)/Δt, where Δt= 10ms is the bin size used for HMM fitting.
HMM also estimates the On and Off firing rates ron and roff for each MUA and
SUA, which we use to generate spikes of the model neurons. To this end, for each
network unit we segment the simulated time-series r(t) into the On (S= 1) and Off
(S= 0) phases as S(t)=Θ[r(t)], where Θ is the Heaviside step function. The spike
counts are then generated from inhomogeneous Poisson processes with rates ri(t),

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27724-4

12 NATURE COMMUNICATIONS |           (2022) 13:44 | https://doi.org/10.1038/s41467-021-27724-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


where the firing rate for neuron i is

riðtÞ ¼ roff ;i þ ΔriSiðtÞ ; Δri ¼ ron;i � roff ;i : ð5Þ

Simulations. We simulated the network model Eq. (3) on a 256 × 256 discrete
square lattice with a time step of 0.005 s. The unit activities are initialized ran-
domly. We compute noise correlations from 100 simulated trials for each set of
parameters. On each trial, we simulated the period of spontaneous activity, sti-
mulus period and attention-cue period, as in the experimental data. During sti-
mulus period, external inputs Istim were applied to two local groups of units with
the size 50 × 50. During the attention-cue period, one of these two groups also
received attentional inputs Iatt. To calculate noise correlations, we either assigned
fixed values of ron and roff or sampled them from distributions of ron and roff
extracted from experimental data by HMM.

Reduction to a binary-unit network. When the dynamical-system network
operates in the bistable regime, the activity of each unit i can be approximated by a
binary variable Si64, where Si= 1 refers to On phase, and Si= 0 to Off phase.
We derived a reduced network model, where the dynamical equations describe the
state transition probabilities of binary units. Using the mean-field approximation,
we derived an approximate form for transition rates of binary units (Supplemen-
tary Note 2.3). In the leading approximation order, we have

wðSi ¼ 0 ! 1Þ � α1 þ β1Si ± 1 ; wðSi ¼ 1 ! 0Þ � α2 � β2Si± 1 : ð6Þ
Here Si±1 are the sum of activities of neighboring units that are connected to a
given unit Si. α1, α2, and β1, β2 are functions of parameters in the dynamical-system
model: f, g, Q, Istim, and Iattn. This reduced model allows us to derive analytical
formulas for correlations between units in the network.

The reduced network model of binary units. The binary-unit network operates
on a two-dimensional square lattice. The network consists of N units. Each unit can
be in a discrete On (Si= 1) or Off (Si= 0) state, represented by a binary variable
Si= {0, 1}, (i= 1, . . . ,N). At time t, the probability of the system to be in a certain
configuration {S}= {S1, S2, . . . , SN} is denoted as P({S}, t). The rate of change of
P({S}, t) is described by the master equation:

d
dt

PðfSg; tÞ ¼ �PðfSg; tÞ∑
i
wðSiÞ þ∑

i
PðfSgi�; tÞwð1� SiÞ : ð7Þ

Here {S}i*= {S1, S2, . . . , 1− Si, . . . , SN}, and w(Si) is the transition rate. When
Si= 0, the transition rate of Si from 0 to 1 is

wðSi ¼ 0Þ ¼ α1 þ β1ðSi± 1Þ : ð8Þ
When Si= 1, the transition rate of Si from 1 to 0 is

wðSi ¼ 1Þ ¼ α2 � β2ðSi± 1Þ : ð9Þ
Here α1 and α2 represent the baseline transition rates of each unit without inter-
actions with other units, and β1,2 describe how the transition rates are influenced by
nearby units Si±1. The diffusive coupling between units is described by the discrete
Laplacian:

Si± 1 ¼ Siþ1 � Si þ Si�1 � Si : ð10Þ
For simplicity, we use a single index i to represent indices in arbitrary dimension.
For example, in two dimensions i= (x, y), and we have

Si ± 1 ¼ Sxþ1;y � Sx;y þ Sx�1;y � Sx;y þ Sx;yþ1 � Sx;y þ Sx;y�1 � Sx;y : ð11Þ
The dynamics of the binary-unit network resemble Glauber dynamics of the 2-D
Ising model. However, in general, the detailed balance condition does not hold in
the binary-unit model, so its dynamics are different from the 2-D Ising model
(Supplementary Note 2.4).

Based on the master equation, the dynamics of the first and second moments
are given by

d
dt

hSiiðtÞ ¼ α1 � ðα1 þ α2ÞhSii þ β1hSi± 1i ;
d
dt

hSiSjiðtÞ ¼ α1ðhSii þ hSjiÞ � 2ðα1 þ α2ÞhSiSji þ β1ðhSi ± 1Sji þ hSj± 1SiiÞ :
ð12Þ

We studied the dynamics of the binary-unit network analytically and in
simulations. In simulations, the states of all units were updated based on their
transition rates in 10 ms time bins.

Theoretical prediction of noise correlations. Assuming the network evolved to
the equilibrium state, we derived in the continuum limit the steady-state solution
for the averaged first moment S(∞) and quadratic moments G(d;∞):

Sð1Þ ¼ α1
α1 þ α2

; ð13Þ

Gðd;1Þ ¼ ½Sð1Þ�2 þ Sð1Þð1� Sð1ÞÞ exp � d
L

� �
: ð14Þ

Here the dimensionless correlation length L is given by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β1
α1 þ α2

s
; ð15Þ

and d is the dimensionless lateral distance measured in units of the lattice
constant Δd.

Using these expressions for the first moment S(∞) and quadratic moments
G(d;∞), we derived an analytical formula for the noise correlations. Consider a
pair of neurons (x, i) and (y, j) that are indexed by the lateral positions x, y of units
to which they belong, and by their indices i, j within these units. Spike-counts
N(x, i) and N(y, j) of these two neurons are measured in a time-window of
duration T. The theoretical prediction of noise correlation rsc[N(x, i),N(y, j)] is
given by

rsc½Nðx; iÞ;Nðy; jÞ� ¼ Aðα1; α2Þ exp � jx � yj
L

� �
: ð16Þ

This equation shows that noise correlations decay exponentially with the lateral
distance d= ∣x− y∣, with the decay-rate characterized by the correlation length L.
The amplitude Aðα1; α2Þ depends on the On-Off transition rates α1, α2, and on the
On/Off firing rates roff(x, i), roff(y, j), Δr(x, i), Δr(y, j). Specifically,

Aðα1; α2Þ ¼
Vðα1; α2ÞΔrðx; iÞΔrðy; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ½Nðx; iÞ�Var ½Nðy; jÞ�p ; ð17Þ

Var ½Nðx; iÞ� ¼ ðΔrðx; iÞÞ2Vðα1; α2Þ þ roff ðx; iÞT þ α1
α1 þ α2

TΔrðx; iÞ ;

Var ½Nðy; jÞ� ¼ ðΔrðy; jÞÞ2Vðα1; α2Þ þ roff ðy; jÞT þ α1
α1 þ α2

TΔrðy; jÞ ;
ð18Þ

where

Vðα1; α2Þ ¼
2ðα1α2Þ

ðα1 þ α2Þ3
T � 1

α1 þ α2
1� exp �ðα1 þ α2ÞT

� �� �� �
: ð19Þ

The amplitude Aðα1; α2Þ is the theoretical prediction for noise correlations within
single columns (in the limit where d= ∣x− y∣→ 0) used in Fig. 3. In Figs. 4d and
5c, we compute the noise correlation at d= 0 (i.e. Aðα1; α2Þ) with realistic On and
Off firing rates. We sampled 1,000,000 pairs of On and Off firing rates from the
distributions estimated by HMM in the V4 data and averaged the noise correlation
over all sampled pairs. At distance d= 0, the difference between simulations and
analytical prediction due to sampling was less than 1%. At distances d > 0, we
calculate the analytical prediction of noise correlations as the product between the
analytical noise correlation at d= 0 and the exponential spatial decay factor.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All behavioral and electrophysiological data used in this study are available as
downloadable files at https://doi.org/10.6084/m9.figshare.16934326.v3. Source data are
provided with this paper.

Code availability
The source code written in Matlab to reproduce results of this study is freely available on
GitHub (https://github.com/engellab/Network-models-of-spatiotemporal-On-Off-
dynamics).
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