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Abstract
Main conclusion  SorghumBase provides a community portal that integrates genetic, genomic, and breeding resources 
for sorghum germplasm improvement.

Abstract  Public research and development in agriculture rely on proper data and resource sharing within stakeholder com-
munities. For plant breeders, agronomists, molecular biologists, geneticists, and bioinformaticians, centralizing desirable 
data into a user-friendly hub for crop systems is essential for successful collaborations and breakthroughs in germplasm 
development. Here, we present the SorghumBase web portal (https://​www.​sorgh​umbase.​org), a resource for the sorghum 
research community. SorghumBase hosts a wide range of sorghum genomic information in a modular framework, built with 
open-source software, to provide a sustainable platform. This initial release of SorghumBase includes: (1) five sorghum 
reference genome assemblies in a pan-genome browser; (2) genetic variant information for natural diversity panels and ethyl 
methanesulfonate (EMS)-induced mutant populations; (3) search interface and integrated views of various data types; (4) 
links supporting interconnectivity with other repositories including genebank, QTL, and gene expression databases; and (5) 
a content management system to support access to community news and training materials. SorghumBase offers sorghum 
investigators improved data collation and access that will facilitate the growth of a robust research community to support 
genomics-assisted breeding.
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Background

Sorghum [Sorghum bicolor (L.) Moench], domesticated 
in Northern Africa ~ 6000 years ago, comprises five major 
botanical races: bicolor, durra, guinea, caudatum, and 
kafir (Wet et al. 1967; Dillon et al. 2007). A C4 grass crop 
with tolerances to drought, heat, low nutrients, and high-
salt conditions (Doumbia et al. 1993, 1998; Leiser et al. 
2014; Hufnagel et al. 2014; Tack et al. 2017; Ochieng et al. 
2021); sorghum is the fifth most important crop worldwide 
relating to acreage and production. Sorghum cultivars are 
grown for grain, silage, biomass, or syrup production. His-
torically, sorghum was predominantly used as feed and fod-
der for livestock, but since the mid-2010s, the amount used 
for the consumer food industry has risen > 250% (https://​
www.​sorgh​umche​ckoff.​com/​resou​rces/​resea​rch). Since the 
1960s, global production of sorghum has increased, even 
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while dedicated land use has decreased (http://​www.​fao.​org/​
faost​at/​en/#​data).

Sorghum is a useful model for crop research due to its 
compact genome; the first completely sequenced refer-
ence genome, BTx623, is ~ 730 Mb (Paterson et al. 2009; 
McCormick et al. 2018; Cooper et al. 2019). Sorghum shares 
functional genomic capabilities of agricultural plant systems 
such as maize, but compared to maize, most domesticated 
sorghum lines have fewer deleterious mutations relative to 
wild landraces (Lozano et al. 2021), likely due to a her-
maphroditic inflorescence and the higher incidence of self-
ing (> 80%) (Djè et al. 2004; Barnaud et al. 2008) during 
germplasm selection, conversion, and improvement (Lai 
et al. 2018).

As climate change progresses and arable land becomes 
limited (Intergovernmental Panel on Climate Change 2014), 
sorghum serves as an essential crop for addressing the chal-
lenge of feeding an ever-increasing world population. Global 
germplasm repositories such as the International Crops 
Research Institute for the Semi-Arid Tropics (ICRISAT; 
http://​geneb​ank.​icris​at.​org/) and the Germplasm Resource 
Information Network (GRIN; https://​npgsw​eb.​ars-​grin.​gov/​
gring​lobal) house tens of thousands of domesticated sor-
ghum cultivars and wild landraces comprising vast genetic 
potential for use in yield improvement in diverse farming 
operations. Core germplasm collections such as the Sorghum 
Association Panel (Casa et al. 2008), Bioenergy Association 
Panel (Brenton et al. 2016), and Nested Association Map-
ping population (Bouchet et al. 2017; Boatwright et al. 2021; 
Perumal et al. 2021) were created to enable breeders and 
geneticists to dissect the molecular underpinnings of traits 
including grain yield, nutrient use efficiency (Shakoor et al. 
2016), and disease resistance (Cuevas et al. 2019). Comple-
menting these resources, the genomes of many important 
lines have been sequenced (BTx623, Rio, Tx2783, RTx436, 
and RTx430), with dozens more on the way, constitut-
ing a sorghum pan-genome dataset with myriad potential 
applications.

Here, we describe SorghumBase (https://​www.​sorgh​
umbase.​org), a web-based community resource designed as 
an access point for the sorghum genomic/molecular research 
and breeding community.

Introduction to SorghumBase portal

SorghumBase is a genomic resource for the sorghum com-
munity, stably funded by the United States Department of 
Agriculture (USDA) just like MaizeGDB (Woodhouse et al. 
2021), GrainGenes (Blake et al. 2019), and Soybase (Grant 
et al. 2010). This resource was developed to support steward-
ship and sharing of emergent sorghum genomic and genetic 
data, with the goal of accelerating knowledge accumulation 

associated with high-value traits by harnessing genomic, 
genetic, and functional information generated by the sor-
ghum research community. SorghumBase follows findabil-
ity, accessibility, interoperability, and reusability (FAIR) 
guidelines (Wilkinson et  al. 2016). The foundations of 
SorghumBase focus on improving management of genomic 
related data sets, while promoting standards, open access to 
data, and information sharing with the broader community. 
The top priority for SorghumBase is stewardship of sorghum 
reference genomes: a cornerstone for accessing and char-
acterizing allelic variation underlying important agronomic 
traits. The portal uses Ensembl and Gramene open-source 
software (Kersey et al. 2018; Tello-Ruiz et al. 2021), repre-
senting more than 23 years of development of data models, 
workflows, robust visualizations, and application interfaces 
(APIs).

Sorghum genomes

The first public release includes five public reference 
assemblies along with the community annotations for 
BTx623 (McCormick et al. 2018), Tx2783 (Wang et al. 
2021), RTx430 (Deschamps et al. 2018), RTx436 (Wang 
et al. 2021), and Rio (Cooper et al. 2019) (Table 1). For 
each genome, information on the assembly method and gene 
structural annotations is available from the home page of 
its individual genome browser. No standard nomenclature 
has yet been established for sorghum genes, transcripts, 
and proteins; instead, each community project uses its own 
naming assignments. SorghumBase stores reference genome 
assemblies, gene structures, and functional annotations of 
the genomes in an Ensembl genome core database. Ensembl 
data models and APIs have specific requirements, in agree-
ment with International Nucleotide Sequence Database Col-
laboration (INSDC) gene annotation standards, for stable 
database identifiers that sometimes conflict with or require 
changes to existing community annotations. For example, 
Phytozome (Goodstein et al. 2012) has historically given 
sorghum genes names like ‘Sobic.004G141800’, which 
conflicts with INSDC standards. SorghumBase and Ensem-
blPlants (Howe et al. 2020) resolve this problem by assign-
ing Phytozome names as synonyms while storing compliant 
names as the gene stable ID in the database. The Phyto-
zome gene ID above is stored as ‘SORBI_3004G141800’, 
where ‘SORBI_3’ represents the species or germplasm name 
(SORBI for Sorghum bicolor) and assembly version. The 
rest of the identifier includes the chromosome on which the 
gene is located (004), followed by the identifier ‘G’ for gene 
and then a locus index based on the sequential order of loci 
on the chromosome (141,800). The project will work with 
the sorghum community to ensure that sorghum genome 
assemblies are in the correct format to support accessioning 
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by one of the archives in the INSDC (http://​www.​insdc.​org), 
e.g., the European Nucleotide Archive (ENA) from EMBL-
EBI or the NCBI databases.

Phylogenetic gene trees

Genome cores provide the foundation for building pro-
tein-based gene trees. In Release 1, we used five sorghum 
genomes as inputs for the protein-based gene trees for 
Ensembl Protein Comparative phylogenetic analysis (ver-
sion-87, https://​doi.​org/​10.​1093/​datab​ase/​bav096) and 
seven outgroups [Arabidopsis thaliana (TAIR10) (Berar-
dini et al. 2015), Oryza sativa (IRGSP-1.0) (Kawahara 
et  al. 2013), Vitis vinifera (IGGP_12x) (Jaillon et  al. 
2007), B73 Zea mays (AGPv4) (Jiao et al. 2017)], Chla-
mydomonas reinhardtii (Chlamydomonas_reinhardtii_
v5.5) (Merchant et al. 2007), Selaginella moellendorffii 
(v1.0) (Banks et al. 2011), and Drosophila melanogaster 
(BDGP6) (dos Santos et al. 2015). The resultant analyses 
had 21,429 protein-coding gene family trees, constructed 
using the peptide encoded by the canonical transcript 
(i.e., a representative transcript for a given gene) of each 

317,845 individual genes (350,099 input proteins) from 
the 12 genomes. These gene trees provide the framework 
for phylogenomic dating of sorghum genes and establish-
ment of orthologs and paralogs, facilitating movement 
between and within species as well as characterization of 
the species pan-gene set (Fig. 1). The gene trees provide 
the input for building homology views that are available 
from the gene search. The gene trees and position infor-
mation for each gene are used to generate gene neigh-
borhood views. In Fig. 1A, the BTx623 sorghum gene 
SORBI_3006G095600 is central, and the local neigh-
borhood is expanded to ten genes on either side. Genes 
are color-coded based on the trees to which they belong. 
All five sorghum genomes have a candidate allele of the 
SORBI_3006G095600 homolog. The gene neighborhoods 
are similar: Tx2783 and Tx436 have an additional gene, 
indicated by the gray icon. Figure 1B demonstrates the 
genome browser function with various user-customizable 
genomic data tracks, including positions of SNPs from 
ethyl methanesulfonate (EMS) and natural variant popula-
tions. Figure 2A shows the available SNP populations that 
lie around the MSD2 gene model; researchers can select 
mutations with a higher probability of deleterious impact 

Table 1   Current pan-genome 
content and annotations

Genome assembly and annotation descriptions of BTx623, Tx2783, RTx436, Tx430, and Rio. All currently 
available for analysis on SorghumBase
*Note: longest_CDS_transcript_used_for_calculation_of_CDS_and_Protein_length_statistics

BTx623 v3.1 Tx2783 RTx436 TX430 v2 Rio v2.1

Gene count 34,118 29,612 29,265 36,937 35,490
Gene length (ave) 3714 3833 3900 3252 3322
Gene length (median) 2824 2888 2917 2217 2469
Exon count 154,042 147,196 146,857 163,854 163,465
Exon length (ave) 449 357 353 348 353
Exon length (median) 176.5 172 171 174 172
Intron count 119,924 117,584 117,592 126,917 127,975
Intron length (ave) 454 512 514 483 467
Intron length (median) 142 150 150 147 146
CDS count 47,110 35,998 41,713 49,928 41,048
CDS length (ave)* 842 980 838 858 964
CDS length (median)* 981 1005 1002 981 939
Peptide count 47,110 35,998 41,713 49,928 41,048
Peptide length (ave)* 281 327 279 286 321
Peptide length (median)* 327 335 334 327 313
Five_prime_UTR count 25,100 32,455 30,983 22,796 30,096
Five_prime_UTR length (ave) 484 197 196 225 202
Five_prime_UTR length (median) 207 147 143 171 144
Three_prime_UTR count 26,660 29,444 29,109 22,761 30,239
Three_prime_UTR length (ave) 653 371 374 399 396
Three_prime_UTR length (median) 356 318 314 339 339
Exons per transcript (ave) 4.5 5 5 4.4 4.6
Single-exon gene count (pct) 8467 (24.8) 6783 (22.9) 6585 (22.5) 11,854 (32.1) 8128 (22.9)

http://www.insdc.org
https://doi.org/10.1093/database/bav096
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Fig. 1   SorghumBase portal functionality. A Gene search results for 
the sorghum MSD2 gene; result page displays gene tree views and has 
changeable genome features and quick-views of available expression 

and metabolic data. B Ensembl browser view displaying epigenetic 
marks as well as cataloged SNP and structural variants associated 
with the surrounding gene models
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on gene function via SIFT scores. For breeding purposes, 
the high degree of gene order conservation with rice and 
maize can be visualized through syntenic comparisons; 
one of the two orthologous regions of maize exhibits a 
lower level of conservation than the other (Fig.  2B). 
Expansion of the leaves on the trees reveals 12 paralogs 
of MSD2 in the sorghum BTx623 genome, as seen by the 
paralogs tab at the display bottom.

Sorghum genetic variation

SorghumBase contains variant data for SNPs and struc-
tural variants. Although SorghumBase is a pan-genome 
resource, BTx623 serves as the primary reference coor-
dinate for calling genetic variations and pathway projec-
tions. Release 1.0 contains SNPs from natural (Mace et al. 
2013; Morris et al. 2013) and EMS-induced populations 
(Jiao et al. 2016). These combined datasets comprise over 
8.5 million SNPs covering > 85% of the initial reference 
genome and > 95% of gene space, creating a rich resource 
for forward and reverse genetic analysis. The genetic vari-
ation data are stored in an Ensembl variation database. 
The Ensembl variation effect predictor (VEP) (McLaren 
et al. 2016) is used to predict impacts on gene products 
through SIFT scores (Kumar et al. 2009). The impacts of 
the SNPs can be viewed in the genome browser tracks and 

are also listed by SIFT scores and color-coded in table 
format (Figs. 1B, 2A).

Phenotypes

SorghumBase currently hosts two types of phenotype data: 
quantitative trait loci (QTLs) (Mace et al. 2019) and gene 
expression (Papatheodorou et al. 2020). The QTL data are 
directly imported from the Sorghum QTL Atlas (https://​
ausso​rgm.​org.​au/​sorgh​um-​qtl-​atlas/) in collaboration with 
the University of Queensland and Research Facilities of 
the Department of Agriculture and Fisheries. Intended as 
an applied breeding resource, this platform contains data 
from more than 150 QTL and GWAS studies for > 200 
unique traits classified into seven broad categories: stem 
morphology, stem composition, leaf, panicle, abiotic resist-
ance, biotic resistance, and maturity [modified from Mace 
and Jordan (2011)]. In the SorghumBase first release, the 
QTL data are available as genome browser tracks, allow-
ing the user to identify candidate genes underlying QTLs. 
A dropdown in the genome browser menu contains links 
back to the Sorghum QTL Atlas, providing interoperability 
between sorghum community resources. Gene expression 
data are directly imported from the EBI Gene Expression 
Atlas. These profiles cover 24 different tissues and abiotic 
stress conditions (Supplemental Table 1) (Papatheodorou 
et al. 2020) and can be viewed as transcripts per million 

Fig. 2   SorghumBase data visualizations. A Variant table displaying EMS-induced SNPs for MSD2, colorized for mutation consequence; the 
table can be filtered for SIFT score. B Synteny between Sorghum BTx623 v3 and Zea mays v4 chromosome assemblies

https://aussorgm.org.au/sorghum-qtl-atlas/
https://aussorgm.org.au/sorghum-qtl-atlas/
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(TPM) heatmaps for individually searched genes; individual 
experiments can also be downloaded directly from the linked 
EBI portal. This allows users to simultaneously visualize 
gene expression data for multiple tissues and rapidly win-
now candidate loci.

Public engagement, outreach, and training

We engage the community through webinars, surveys, indi-
vidual exchanges, and in-person meetings. In addition, we 
host virtual office hours and a real-time messaging service 
(e.g., Slack). The SorghumBase content management system 
(CMS) was built using the WordPress platform. Team mem-
bers and authorized contributors are able to use a simplified 
interface to create web pages, add content, and customize 
designs through the CMS dashboard. As of publication, 
there are five blog posts, five news items, and five research 
notes. In addition, the platform has a quick-start guide to 
orient users with existing tools and datasets (https://​sorgh​
umbase.​org/​guides).

Future directions

Although SorghumBase serves as a nexus for valuable data, 
its continued success as a facilitator and launching point for 
research and collaboration ultimately relies upon the engage-
ment of the sorghum community. Of utmost consideration 
are scaling genomes for future pan-genome inclusion and 
creating sufficient browser visualizations to enable ease of 
use. These efforts, in turn, are reliant on proper functional 
genomic annotations and amalgamation of priority genomes 
and trait-based data, such as core and dispensable genomes 
within the pan-genome, disease-resistance loci, QTL and 
GWAS integration, etc. Integration of these emerging data 
sets will accelerate insights into allelic variation and agro-
nomically important traits. Our future plans include working 
closely with the community to establish rigorous standards 
for data cataloging and dissemination and growing the pan-
genome. Prioritizing germplasm for future inclusion for 
the pan-genome will become crucial for researchers and 
stakeholders, and will be prioritized based on agricultural 
potential of the lines and quality of the reference assem-
bly. We plan to establish working groups to improve gene 
annotation, genomic data collection, and engage commu-
nity contributors to author research notes and news on the 
site. In addition to the quick-start guide and our first video 
tutorial on the SorghumBase search interface, including the 
homology views in the search results (e.g., gene neighbor-
hood views), we plan to develop additional training materials 
on the Ensembl browser and BLAST alignment tools. Ulti-
mately, SorghumBase is intended to morph around current 

community needs while accurately pursuing future projects 
that will capitalize on the larger arc of agricultural trends.
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