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Abstract
In modern sequencing experiments, identifying the sources of the reads is a crucial need. In
metagenomics, where each read comes from one of potentially many members of a community, it can be
important to identify the exact species the read is from. In other settings, it is important to distinguish
which reads are from the targeted sample and which are from potential contaminants. In both cases,
identification of the correct source of a read enables further investigation of relevant reads, while
minimizing wasted work. This task is particularly challenging for long reads, which can have a substantial
error rate that obscures the origins of each read.

Existing tools for the read classification problem are often alignment or index-based, but such methods
can have large time and/or space overheads. In this work, we investigate the effectiveness of several
sampling and sketching-based approaches for read classification. In these approaches, a chosen sampling
or sketching algorithm is used to generate a reduced representation (a “screen”) of potential source
genomes for a query readset before reads are streamed in and compared against this screen. Using a query
read’s similarity to the elements of the screen, the methods predict the source of the read. Such an
approach requires limited pre-processing, stores and works with only a subset of the input data, and is
able to perform classification with a high degree of accuracy.

The sampling and sketching approaches investigated include uniform sampling, methods based on
MinHash and its weighted and order variants, a minimizer-based technique, and a novel clustering-based
sketching approach. We demonstrate the effectiveness of these techniques both in identifying the source
microbial genomes for reads from a metagenomic long read sequencing experiment, and in distinguishing
between long reads from organisms of interest and potential contaminant reads. We then compare these
approaches to existing alignment, index and sketching-based tools for read classification, and demonstrate
how such a method is a viable alternative for determining the source of query reads. Finally, we present a
reference implementation of these approaches at https://github.com/arun96/sketching.
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1. Introduction
Metagenomics has become an increasingly popular area of study over the past two decades, and has
enabled us to better understand the diversity, interactions and evolution of microbial communities in a
plethora of environments [1–3]. Metagenomics has highlighted the problem of being able to quickly and
accurately identify the source of a given DNA sequence from all the genomic material in a given sample.
This is needed to classify and sort reads for further downstream analysis, and to identify and remove
potential contaminants that are present in a sample.

The read classification problem is to identify the source genome of a given input read, usually by
comparing the read to a list of potential source genomes and choosing the one with the highest similarity.
This comparison may be done naively by comparing the entirety of each read to the entirety of each
genome to find the best alignment or through an exhaustive analysis of k-mers present. While these
approaches are highly accurate they can incur high computational overheads, which presents an
opportunity for lower overhead techniques such as sketching or sampling, especially for long read data.

Sketching is the process of generating an approximate, compact summary of the data (a “sketch”),
which retains properties of interest and can be used as a proxy for the original data [4]. Sampling selects a
subset of the data, either systematically or randomly, but does not guarantee the preservation of these
properties. Each has unique advantages: sketching has been shown to bound error better than sampling
[5], while systematic sampling approaches (such as uniform sampling) can provide bounds on the number
of samples from specific sections of the original data included in the generated subset. Both sketching and
sampling provide simple routes to greatly reduce the size of an input set, while retaining the
characteristics and features that identify the set, thus allowing a comparable level of accuracy.

One of the most well-known sketching approaches, and the main one we employ in our work, is
MinHash, which was first presented as a method to estimate document similarity using the similarity
between their hashed sub-parts [6]. It is now widely used in genomics, such as in Mash [7], which
performs fast similarity and distance estimation between two input sequences, and tools such as Mash
Screen [8] which uses MinHash to predict which organisms are contained in a mixture. Other tools
include MashMap [9], which blends minimizers and MinHash for fast, approximate alignment of DNA
sequences, and MHAP [10] to accelerate genome assembly. Beyond MinHash, several other related
approaches have been proposed, such as bloom filters [11], the HyperLogLog sketch [12,13], and other
sketching approaches to estimate similarity, containment or cardinality.

1.1. Approaches to Read Classification
The simplest approach to read classification is to simply align each query read to all potential source
genomes, and use the genome with the best alignment as the predicted source. While the most accurate
approach would be exhaustive sequence-to-sequence alignment with dynamic programming, this is
impractically slow, so aligners typically use some form of seed-and-extend that start with exact matches
and build out longer regions of high similarity. Two such aligners are Minimap2 [14] and Winnowmap
[15], and these can be used to quickly generate accurate alignments over large sequences. However,
alignment still remains computationally expensive, and offers a level of detail not always necessary in
read classification.

A more sophisticated approach is index-based analysis, where a pre-computed index is created that
aids in the classification of input reads against a chosen set of genomes. This index contains sequences
that are specific to each genome or group of interest, and for each query read, the presence or absence of
these pre-identified markers determines the classification of the read. The foremost examples of this form
of read classification are the Kraken [16,17] set of tools, as well as tools such as CLARK [18] and
Centrifuge [19]. While the read classification process in index-based approaches can be extremely fast,
there is substantial time and space overhead associated with the construction of the index.

The space, time and computational overhead associated with alignment- and index-based read
classification approaches has motivated the need for even faster, more accurate, and lower overhead
alternatives. Sketching has proven to be an excellent answer to this problem, as the use of sketches instead
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of whole genome comparisons provides the level of accuracy necessary for less exact tasks such as read
classification, while substantially reducing overhead. Examples of this are MashMap [9] and MetaMaps
[20], both of which use approximate similarity instead of exact alignment between regions of two
sequences to perform alignment.

In this work, we present and critically analyze several methods that utilize sketching and sampling to
reduce the computational overhead of read classification. We apply sketching, using MinHash- and
minimizer-based approaches, as well as uniform sampling, to generate compact, approximate
representations of potential source genomes for a given readset. We then classify reads against these
representations, and demonstrate that we are able to classify, with a high degree of accuracy, reads from a
microbial community and detect contaminants in real and simulated sequencing experiments.

2. Methods
In our methods, we utilize several sketching and sampling approaches to generate reduced representations
of the source genomes, a “screen” of the genomes. Query reads are then compared against this screen,
with the read being classified to the element most similar in the screen (Figure 1).

2.1 Determining sketch and sample size
The biggest factor in such an approach is the size of the screen, meaning the fraction of the k-mers from
the genomes that are recorded in the screen. The ideal screen size will minimize the input storage
requirement while being large and detailed enough to capture the specificity of each genome. To do this,
three main factors must be considered: (1) the size of the genomes; (2) the read length and error rate of
the reads we are classifying; and (3) the amount of similarity needed to correctly match a read and its true
source genome. We refer to this amount of similarity as the number “target matches” or “shared hashes”,
which is the number of sketched or sampled k-mers a read and its source genome share. In our work, we
formalize this using the following formula:

[EQ1]𝑆𝑘𝑒𝑡𝑐ℎ/𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 =  (# 𝑇𝑎𝑟𝑔𝑒𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑠) × (𝐺𝑒𝑛𝑜𝑚𝑒 𝑆𝑖𝑧𝑒) 

(𝑅𝑒𝑎𝑑 𝐿𝑒𝑛𝑔𝑡ℎ) × (1 − 𝑅𝑒𝑎𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒)𝑘

This formula allows us to sketch and sample at a rate where we expect to retain the target number of
k-mers per read length of sequence in the original genome, adjusted for error. We adjust for error by
computing the fraction of k-mers we expect to be affected by error at that error rate, and oversampling or
oversketching to compensate for this.

The goal of sketching and sampling approaches is to reduce the space and computation overheads,
while maintaining a comparable level of accuracy. These techniques achieve this goal by storing only a
fraction of the k-mers from the input genomes, and by only comparing read k-mers to this selected set.
As shown in Equation 1, the exact size of the screen depends on the experimental parameters. The
compression factor is equal to the targeted number of k-mer matches per read divided by the read length,
with an oversampling by a factor of 1/(1 - e)k to correct for errors. This makes these approaches best
suited for lower error, longer reads, as these require the fewest number of hashes from each read length,
with shorter or higher error reads requiring larger screens. The number of target matches also determines
screen size, but as we will see in the results section, the required number of target matches for an
acceptable level of accuracy still creates a screen that is much smaller than the original data, especially for
low error rate and longer reads. Since read k-mers are only compared against the stored k-mers in the
screen, and never against the original sequence, these approaches greatly reduce the total number of
comparisons that must be made in order to determine the source genome. These approaches also reduce
the work involved in updating the set of potential source genomes; instead of rebuilding the whole index,
sketches or samples can easily be added or removed from the screen.

2.2 Overview of sketching and sampling approaches
In this work, we consider several existing sketching and sampling techniques, along with a novel
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clustering & comparison technique we describe below. A reference implementation of these approaches
can be found at https://github.com/arun96/sketching.
Uniform. In this approach, k-mers are uniformly extracted across the genome to reach the desired sample
size. The chief benefit of this approach is simplicity, including a guarantee on the distance between
k-mers in our screen, which is generally not guaranteed for alternative approaches. This also guarantees
that each read will have a highly predictable amount of overlap with the sampled version of its source
genome, though error can obscure the detection of this overlap.
MinHash. This is a sketching technique used for quickly estimating the similarity between two input
sequences by computing the Jaccard coefficient of the selected k-mers extracted from one sequence
compared to those selected in a second sequence. There are several widely used methods to generate a
MinHash sketch, such as using multiple hash functions or a partitioning of the space of possible k-mers.
For our analysis, we use a single hash function, and select the n smallest hash values returned as is used in
Mash and related works. This technique reduces the total amount of computation that must be done, and
also allows us to just maintain a simple list of the lowest n values while discarding any higher values. As
hashing is simply a permutation of the input values, this effectively generates a random sampling of n
k-mers to be used as the representation of the original genome.
Weighted MinHash. The basic MinHash algorithm can be extended through the introduction of weights.
The weight of each k-mer is a measure of the k-mer’s “importance”, with more highly weighted k-mers
indicating a greater level of confidence in a match. Weights are typically based on the number of times
that an element occurs, or on a predetermined scoring scheme. When comparing two sketches, these
weights are used to generate the final similarity score; instead of just relying on the number of shared
hashes between the sketches, we also consider the weight of the shared hashes. In our reference
implementation, the weight is a measure of “uniqueness”: a k-mer that occurs in just one of the potential
source genomes, and therefore is a better identifier of the true source of a query sequence, is weighted
more highly. As a baseline version, we compute the weight of a k-mer as the total number of genomes in
our screen minus the number of genomes the k-mer is found in. Consequently, k-mers that are present in
multiple source genomes receive lower weights, and k-mers that are unique to certain genomes, and
therefore crucial in identifying the true source of a read are worth more. This scheme also helps break ties
between very similar sequences: if a read shares the same number of k-mers with two potential source
genomes, but shares a highly weighted k-mer with one of them, our approach will prefer the more likely
source instead of relying on a random tie break. We further evaluate a “multiplier” into weighted
MinHash, where k-mers that only occur in a single genome have their computed weight multiplied by
some multiplier M (M=1 in regular weighted MinHash). This allows unique k-mers to play an even larger
role in determining the similarity between a read and its genome.
Order MinHash. Just as the addition of weight can improve the accuracy of a MinHash based approach,
consideration of the order of the retained minimal hashes can also help us filter out spurious matches and
prioritize more likely sources for a query sequence. First presented as a method to improve estimation of
the edit distance [21], an Order MinHash (OMH) sketch stores the selected n hashes in order sublists of L
hashes, in the same order as they occur in the genome, with n/L lists making up the sketch. When two
sketches are compared using Order MinHash, the algorithm checks which hashes are shared, along with if
the shared hashes are in the correct order relative to each other. This method of comparing two sketches
means that two sequences that contain the same k-mers but are rearranged versions of each other will
have low similarity scores, while non-ordered MinHash would report high similarity. This approach is
also more robust to sequencing errors than selecting a single long k-mer spanning the same distance.
Minimizer. Minimizers were originally proposed as a sequence compression method [22], but have
become popular in genomics due to their ability to succinctly represent large sequences. In the most
widely used form of a windowed-minimizer, the algorithm slides a window of size x over the sequence,
and the k-mer with the smallest hash in that window is retained as the minimizer. This is repeated across
the entire sequence, and the set of unique minimizers is used as the representation of the full sequence.
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Similar to uniform sampling, using windowed-minimizers gives some guarantee on the distance between
the retained k-mer hashes in our screen, as this distance is bounded above by twice the window size.
Relatedly, for our minimizer-based approach, the window size is computed as the size of the genome
divided by the desired number of k-mers per genome, multiplied by a fixed multiplier of two. The
reasoning behind this multiplier is quite simple: since the distance between minimizers is uniformly
distributed between 0 and the window size, we expect two minimizers per window. Consequently, to find
n minimizers for a genome of size g, we simply double the window size. This effectively keeps the
generated sketch and sample sizes relatively even across the approaches.

2.3 Clustering sketches
The approaches above create a screen of reduced representations for potential source genomes, where all
input reads are compared against all elements of this screen. While this reduces the number of
comparisons necessary to classify a read compared to traditional approaches, they still perform a large
number of unnecessary comparisons with genomes with low similarity with the query read. To tackle this,
we may want to adjust our approach to only perform in-depth comparisons against genomes that the read
is likely to come from, and limit the number of comparisons with less-relevant genomes.

To do this, the algorithm first computes a hierarchical clustering on the input genomes, using a small
sketch of each genome as its representation, and evaluating the similarity between these sketches. This
clustering procedure groups together similar genomes, whose selected k-mers (and derivative reads) are
more likely to be similar. The algorithm then uses the generated screen to populate the resulting clustering
tree: each genome’s reduced representation appears in the leaves of the tree, and the reduced
representations are combined within internal nodes of the tree, until the root of the tree contains all the
elements of the original screen. To limit the overhead of this approach to be comparable to those
presented above, the algorithm downsamples the original elements of the screen as the algorithm
constructs the tree. This downsampling can be done as a constant factor or by a factor proportional to the
height of the tree, depending on the desired total size of the sketch tree.

Read classification is then performed by starting at the root, comparing the input read to the stored
representations at each of the children of the root, and then descending into one or more children with
sufficient representation. This process repeats until the algorithm arrives at a leaf, which is the genome
predicted to be the source of the read. This approach quickly prunes genomes with low similarity to the
input read, and focuses on the genomes that are likely to be the source of the read. These genomes are
either from different but similar organisms, or different assemblies of the same genome.

Figure 1. Overview of sketching and sampling methods. (Top) The screen is generated from potential
input genomes, then read k-mers are extracted and compared against the screen, with the element of the
screen most similar to the read being predicted as its source. (Bottom Left) The different sketching and
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sampling approaches used to generate a screen. (Bottom Right) Sketch clustering approach: input
genomes are clustered, and the generated screen is arranged to match this clustering, with reads compared
to the root and then down the tree.

3. Results
3.1 Metagenomics Classification
Our main experimental results are based on the widely used Culturable Genome Reference (CGR)
community of high quality microbial genomes sequenced from the human gut [23]. From this community,
we selected all genomes that were available on RefSeq, giving us 1,310 genomes for our reference
database, totalling 4.9 GBp of sequence. This community contains a range of genomes, including several
clusters of highly similar genomes that make read classification more difficult (Table 1). This difficulty is
especially true for approaches that work with reduced representations of the original genomes since unless
the differences between these similar genomes are specifically captured, there will be no information
available to distinguish between them.

As an example of a simpler community, we also analyze the ZymoBIOMICS Microbial Community
Standards (ZYMO) and MBARC-26 [24] reference communities. When combined, these communities
contain 34 distinct microbial and fungal genomes, totalling approximately 170Mbp of sequence. This
community is much easier to classify within, as the genomes are relatively dissimilar (Table 1), and
provides a baseline from which to interpret our results.

For our classification analysis, by default we use simulated PacBio HiFi-like reads that are 10Kb long
with 1% error rates, with errors uniformly introduced. We simulate 10x coverage of each genome,
yielding 4.8M reads for the CGR dataset, and 165K reads for the ZYMO+MBARC-26 dataset. For the
classification, we use screen sizes that target 100 shared hashes with each of these reads, or on average
one shared hash every 100bp based on EQ1. Results from a range of read lengths, error rates and screen
sizes, as well as other experimental parameters, are reported later in this section, and presented in Figure
2. Reference implementations and analysis scripts, details on data availability, and scripts to benchmark
existing tools can be found at https://github.com/arun96/sketching.

Community Total
Sequence

Number of
Organisms

Number of Genomes with >X% Mash similarity to another
genome in the community

X = 5% X = 25% X = 50% X = 70% X = 90%
Human Gut
(CGR)

4.85GBp 1310 1218 1189 990 563 315

ZYMO +
MBARC-26

170MBp 34 2 0 0 0 0

Table 1: Overview of the microbial communities, and similarity within them.

Classification Experiments

In microbial classification experiments reads are drawn from a microbial community, and compared
against a screen generated from a reference database of known genomes. Under idealized conditions the
database will contain reference genomes from all members of the community, although in practice the
community may contain novel species or strains that are not yet characterized leading to poor matches or
no matches at all. For simplicity, our reads are drawn from the reference database collection, and reads are
then classified against the screen of all genomes. Accuracy is then measured as the fraction of reads
correctly classified as being from the true source genome.

For the human gut microbe community, at our default experimental parameters, we see that all our
sketching and sampling approaches achieve approximately 71-75% accuracy (Figure 2).We observe that
around half of the genomes have classification accuracy over 90%, with the overall accuracy lowered by
genomes that have high similarity with other members of the community. Specifically, we find that of the
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genomes with less than 50% classification accuracy, 90% have another member of the community with
which they are at least 70% similar (evaluated using Mash similarity). This implies that for these
genomes, we expect 70% of their reads to be very similar to at least one other genome, greatly increasing
the chances of each read being misclassified.

Just how disruptive highly similar genomes are to classification accuracy is visible when classifying
reads from the simpler ZYMO+MBARC-26. Here, just two of the 34 members have Mash similarity
>1.5% with each other, with those two members having a similarity of just 8% (Table 1). In our
experiments, these two genomes provide the vast majority of misclassified reads, across read lengths and
error rates. Overall, with a simpler community like this, any of these approaches achieve >99%
classification accuracy, even with shorter reads and higher error rates.

Effect of experimental parameters on read classification

Read Length. We see increases in performance as read lengths get longer (Figure 2a), as we have
more opportunities for the screen k-mers to match error-free k-mers in the read. Read length also affects
the size of the screen, as longer reads mean smaller screens are necessary to achieve the desired number
of shared hashes between a read and its source. Conversely, with shorter reads, the screen sizes must be
larger to store the required number of k-mers to maintain the similar levels of accuracy.

Error Rates.We see decreases in accuracy at high error rates (Figure 2a), as fewer k-mers remain
unaffected by error. This is accompanied by sharp increases in screen size, reducing the amount of
compression we are able to achieve. With an error rate of 1% (as found in PacBio HiFi reads), we
estimate that 81% of 21-mers will remain error free, while at an error rate of 5% (as is found in Oxford
Nanopore reads) just 34% of the 21-mers will remain error free. This is even more pronounced at error
rates close to 10% (as is found in CLR PacBio data and older Oxford Nanopore reads), where just 10% of
the 21-mers can be expected to be unaffected by error. As our approach adjusts screen size to compensate
for error rate, this results in extremely large screen sizes to compensate for high error rate.

Target number of shared hashes. The number of target matches determines how densely the
reference genomes are represented, and therefore the size of the screen. Very low numbers of target
matches result in reads being misclassified or unclassified, as there will not be enough similarity with the
source genome. However, there is a plateau in performance as we increase the target number of shared
hashes, as there are some sets of genomes that differ only in a small number of k-mers, and a sketching or
sampling approach must draw from exactly those places in order to distinguish between them. We see
steady increases in performance when increasing the target number of shared hashes up to 3 shared hashes
every 200bp, but we see only minimal increases in performance beyond this (Figure 2b).

K. Based on testing a range of values for K (Figure 2d), we find that for k >20, while increasing k
can result in minimal increases in performance, it also results in a larger increase in screen size. This is
because longer k-mers have a higher chance of being affected by errors, so larger samples/sketches are
necessary to ensure a robust number of error free k-mers remain. This was highly pronounced in our
results, e.g. the step up from k=30 to k=50 came with a 1.3% increase in performance but a 22% larger
screen. As we saw similar performance between 20 ≤ k ≤ 50, we used k = 21 across our other
experiments, as it provided the specificity necessary while keeping screen sizes small.

Weight. The addition of weight to traditional MinHash results in a slight increase in performance
across read lengths and error rates. This is expected, as the discriminative k-mers now contribute more to
the score and help break ties. Including a multiplier has a similar effect and more heavily weighting
unique k-mers results in correctly breaking even more ties, resulting in another slight increase in
performance. The addition of weight saw a 0.5% increase in classification accuracy, with the inclusion of
a multiplier of 5 or 10 seeing a further 0.1% increase in performance (Figure 2e).

Order. Including order in a MinHash approach has a minimal impact on classification accuracy
(Figure 2e). Order MinHash is initially proposed as a metric for estimating edit distance, and therefore is
most beneficial when determining the similarity between rearranged strings that cannot be distinguished
by an unordered MinHash. With read classification from this large set of microbial genomes, such
rearrangements are not common, and thus order helps in only a few cases.
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Cluster Downsampling Rate. Using MinHash screens, we compared the accuracy across three
approaches to clustering: (1) screens downsampled by a constant factor; (2) screens downsampled based
on their height in the sketch tree; and (3) screens that are not downsampled at all. We find that constant
factor downsampling approaches, with factors 2 and 4, maintain a good degree of accuracy (71% and
70% respectively, compared to the 72.8% accuracy with MinHash), while keeping the number of
comparisons similar to or less than the original MinHash approach. Height-based downsampling approach
results in a sharp drop in accuracy (62%), as the screens near the root of the tree are downsampled to the
point where discriminative k-mers are lost.

Figure 2. Key results across parameters on the gut microbial dataset. (a) Results across a range of
read lengths and error rates, (b) the effect on accuracy of increasing the target number of shared hashes,
(c) The impact read length and error have on sketch size across our approaches, (d) The performance of a
MinHash approach across a range of k values, and (e) the impact of incorporating weights, a range of
weight multipliers and order into MinHash.

3.2 Host Contaminant Detection
The goal of the contaminant detection and classification is to, for a given read set, distinguish between
reads that come from organisms or sequences of interest, and reads that are from potential contaminants.
For our experiments, the organism of interest was a human, with human reads being drawn from GRCh38
[25] and mixed with contaminant reads drawn from a selected microbial community, and classified
against a screen containing both the human and microbial genomes. The sequence reads were simulated
as above using 10kbp reads at 10x coverage with 1% error. Accuracy is measured as the fraction of
human and microbial reads correctly identified as being of interest or as being a contaminant, while also
measuring the fraction of contaminant reads that are correctly classified to their source genome.

When using the human gut microbe community as the source of contaminant reads, we find all the
sketching and sampling approaches to be successful at distinguishing between microbial and human
reads. Across all approaches, more than 99% of all human reads are correctly distinguished from
microbial reads and classified to the chromosome they are drawn from. We also observe that very few
microbial reads are misclassified as human, with over 99% correctly identified as being contaminants.
This is not unexpected; human and microbial genomes are quite dissimilar, and therefore the sketches or
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samples of the sequences will also be dissimilar, making read classification successful in nearly all cases.
However, it is worth highlighting that we are able to distinguish between these sequences while storing
just 2% of the original k-mers.After distinguishing between reads and contaminants, we then attempt to
classify the reads from the contaminant microbes to the exact source genome. The results match what we
present in the classification experiments; of the microbial reads that are recognized as contaminants,
approximately 75% are mapped to the exact genome, with the misclassified reads coming from the
genomes discussed in the previous section. We also classify human reads to the chromosome they are
drawn from, and are able to do this with >95% accuracy.

3.3 Comparison to existing tools
To evaluate the performance of the sketching and sampling approaches, we also tested several widely
used approaches for read classification on the same dataset and experimental settings. As in the previous
experiments, accuracy in classification experiments is measured as the number of reads correctly mapped
back to the microbial genomes they were drawn from, and accuracy in contaminant detection experiments
is measured as the number of human and microbial reads identified.

Alignment-based

To test the effectiveness of alignment-based approaches to read classification, we test two widely used
aligners, Minimap2 [14] and Winnowmap [26]. Minimap2 uses query minimizers as seeds for the
alignment, while Winnowmap2 adds a preprocessing step to downweight commonly occurring
minimizers to reduce the chance of them being selected. In both approaches, we align our read sets
against the genomes of the selected community, and calculate the predicted source of the read as the
sequence to which it is mapped. For microbial classification, we find that both these tools perform slightly
better than our MinHash and minimizer based approaches. Compared to an accuracy of 77% and 79% in
our MinHash and minimizer approaches with two shared hashes every 100bp, Minimap2 and
WinnowMap both achieve an accuracy of 81% (Table 2). Both alignment approaches achieve low
accuracy on the same genomes that our sketching and sampling approaches struggle on; namely, genomes
with high-similarity relatives in the community. For contaminant detection, both alignment-based tools
are able to correctly distinguish 99.5% of the human and contaminant reads.

Index-based

Kraken2 [17] utilizes a preprocessed index of shared k-mers to determine the source of a query
sequence. Each k-mer in the query sequence is classified to an element in the index, and we determine the
source of the whole sequence as the element in the database to which a plurality of k-mers are assigned.
When using both a pre-built RefSeq database and a custom database built over our test community, we
find that genome level identification is difficult between the highly similar members of our community
(Table 2). We observe large numbers of misclassifications between reads from these similar genomes, as
well as Kraken2 classifying some of these reads only to common ancestors, and not to one of the
genomes. For genomes without similar members in the community, the majority of their reads are
correctly classified to a single genome, giving Kraken2 an overall classification accuracy of 72%. When it
comes to distinguishing between human and microbial reads, Kraken2 is able to correctly identify >99%
of the reads. This is in line with the sampling and sketching results, as the k-mer compositions of human
and microbial genomes are quite different.

Centrifuge [19] uses an index built on the compressed genomes of its target sequences to classify
query sequences. Centrifuge’s read classification is similar to Kraken2 and with genomes that have no
similar members of the community, it is able to accurately classify reads as coming from a single genome.
However, with genomes that have highly similar counterparts in the community, Centrifuge has high rates
of misclassification, or the algorithm will not classify to a single genome, instead leaving the read
unclassified or classifying to a common ancestor. This results in Centrifuge classifying 72% of microbial
reads classified back to the correct genome. Contamination detection is accurate with Centrifuge and
more than 99.5% of human reads and microbial reads are identified.
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CLARK [18] uses a pre-compiled list of discriminative k-mers for the community it is indexing, and
performs classification of query sequences based on similarity to this list. While there are still
misclassifications and unclassified reads at rates comparable to other tools, CLARK’s use of
discriminative k-mers slightly reduces the impact of highly similar genomes in the community, allowing it
to identify the few differences between them, and helping it to achieve a classification accuracy of 73.5%.
For contaminant detection, CLARK is also able to distinguish 99.5% of both human and microbial reads.

Sketching-based

Finally, we test the effectiveness of an existing sketching-based approach to read classification by
benchmarking MashMap [9]. MashMap computes alignments by estimating k-mer based Jaccard
similarity between query sequences with MinHash sketches. Query reads are aligned against a list of
potential source genomes, and accuracy is computed as the fraction of reads that are correctly assigned
back to their source genome.

We find that MashMap performs worse than classic alignment-based approaches, and similarly to our
MinHash approaches, with 74.5% classification accuracy on the gut microbe dataset. Alignment
boundaries in MashMap are determined through the Jaccard similarities of sketches. As a result, just as in
the MinHash approach, it is susceptible to misclassifications between highly similar genomes, which have
high Jaccard similarities with the same reads. For contaminant detection, MashMap is able to distinguish
>99% of the human and microbial reads. This is not unexpected, as human and microbial sketches are
expected to be largely dissimilar, making Jaccard similarity-based assignment easier.

Microbial Classification Contaminant Detection
Accuracy (%) % of Human reads

identified
% of microbial reads

identified
Minimap2 81.3 99.5 99.5
WinnowMap 81.3 99.5 99.5
Kraken2 (RefSeq DB) 72.0 99.3 99.2
Kraken2 (Custom DB) 72.2 99.3 99.3
Centrifuge (RefSeq DB) 72.2 99.3 99.2
Centrifuge (Custom DB) 72.4 99.3 99.3
CLARK 73.5 99.5 99.5
MashMap 74.5 99.5 99.4
Table 2: Performance of existing tools. We find that alignment-based approaches are better at
genome-level read classification, with the index- and sketching-based approaches less able to distinguish
between highly similar genomes. All tools perform similarly in contaminant detection.

3.4 Analysis of genuine metagenomics sequencing data
To test the accuracy of our approaches on real sequencing data, we mapped PacBio HiFi reads from the
Human Gut Microbiome Pooled Standards [27] to the CGR community database. For this analysis, we
used 100K reads with length averaging ~10Kb and median quality of ~Q40. We first aligned these reads
using Minimap2, and found Minimap2 aligned 78,137 reads to the CGR community, with 50,640 reads
having an alignment length >5Kb. Without this alignment threshold, almost 26,000 more reads are
mapped to multiple genomes. For these reads, we take the sequence with the longest alignment as the
source of the read.

We then classify these reads using our sketching and sampling approaches against a generated screen
of the CGR community, built for 10KB, 1% error reads and 100 shared matches per read. We consider a
read to be mapped if it has at least 5 shared hashes with the genome it is classified to. With this threshold,
approximately 60,000 reads are classified in each of the sketching and sampling approaches, with
approximately 25% of the classified reads tied between multiple sources (Table 3).
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We benchmark these classification results against the alignments generated with Minimap2. Our
classification results agree with approximately 60% of the reads classified by Minimap2 with no
minimum alignment length, and approximately 80% of the reads classified with a minimum alignment
length of 5Kb (Table 3). This 20% increase in consistency between the classification calls is expected,
since adding a minimum alignment length limits the Minimap2 classification to reads that are aligned
with more certainty, and these are reads that are more likely to share a significant amount of similarity
with the generated screen. Without this threshold, reads with minimal similarity to a source genome can
be classified based just on small regions of alignment. These reads are unlikely to share a significant
number of hashes with any elements in the screen, resulting in the sketching and sampling approaches not
classifying them, or having to randomly break ties between multiple low scoring genomes.

Total number of
reads classified

Number of reads
classified to multiple

genomes

Number of reads with same prediction as
Minimap2

No Threshold >5Kb Alignments
Minimap2 (No
alignment threshold)

78,137 25,955 N/A

Minimap2 (>5Kb
alignments)

50,640 1,228 N/A

MinHash 60,724 15,911 46,506 41,150
Minimizer 59,578 16,616 47,105 41,455
Uniform 63,155 16,310 42,396 39,873
Table 3: Performance on real sequencing data. Comparison of the classification of our sketching and
sampling approaches against Minimap2 classifications, with and without a minimum alignment length.

4. Discussion
Existing approaches for read classification often incur high computational overheads. In this work, we
presented and analyzed a range of sketching and sampling approaches for read classification, designed to
minimize these overheads. The techniques presented here are able to achieve comparable accuracy to
existing read classification methods, with all approaches correctly distinguishing reads from dissimilar
genomes but struggling with the classification of reads from highly similar genomes. Alignment-based
approaches are slightly better suited to handling these, as they do direct comparisons of the reads against
the source genomes, with k-mer indexes and sketching-based methods struggling to narrow down the
exact source between several similar sequences.

Sketching and sampling approaches are able to perform read classification with minimal
preprocessing, and while storing only a subset of the data, indicating that not all the information
traditional read classification utilizes is necessary, and that there will still be edge cases that even
preprocessing the dataset or having access to the full data cannot solve. These methods are best suited for
longer, low-error reads, and incur a higher footprint and decreased performance when classifying shorter,
higher error rate reads. Future work could be into sketching and sampling techniques better suited for high
error rate environments, such as the use of gap k-mers [28] to increase error tolerance, as well as research
into more informed techniques.
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