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Geometric network analysis provides prognostic information
in patients with high grade serous carcinoma of the ovary
treated with immune checkpoint inhibitors
Rena Elkin1,6, Jung Hun Oh 1,6, Ying L. Liu2, Pier Selenica3, Britta Weigelt3, Jorge S. Reis-Filho3, Dmitriy Zamarin 2, Joseph O. Deasy1,7,
Larry Norton2,7, Arnold J. Levine4,7 and Allen R. Tannenbaum 5✉

Network analysis methods can potentially quantify cancer aberrations in gene networks without introducing fitted parameters or
variable selection. A new network curvature-based method is introduced to provide an integrated measure of variability within
cancer gene networks. The method is applied to high-grade serous ovarian cancers (HGSOCs) to predict response to immune
checkpoint inhibitors (ICIs) and to rank key genes associated with prognosis. Copy number alterations (CNAs) from targeted and
whole-exome sequencing data were extracted for HGSOC patients (n= 45) treated with ICIs. CNAs at a gene level were represented
on a protein–protein interaction network to define patient-specific networks with a fixed topology. A version of Ollivier–Ricci
curvature was used to identify genes that play a potentially key role in response to immunotherapy and further to stratify patients
at high risk of mortality. Overall survival (OS) was defined as the time from the start of ICI treatment to either death or last follow-up.
Kaplan–Meier analysis with log-rank test was performed to assess OS between the high and low curvature classified groups. The
network curvature analysis stratified patients at high risk of mortality with p= 0.00047 in Kaplan–Meier analysis in HGSOC patients
receiving ICI. Genes with high curvature were in accordance with CNAs relevant to ovarian cancer. Network curvature using CNAs
has the potential to be a novel predictor for OS in HGSOC patients treated with immunotherapy.
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INTRODUCTION
Facilitated by advances in genomic sequencing techniques and
the ongoing development of highly curated protein–protein
interactome (PPI) databases (e.g., Human Reference Protein
Database (HPRD,1,2), The Human Reference Interactome3, Search
Tool for the Retrieval of Interacting Genes/Proteins4), we adopt a
network approach to investigate biological features pertaining to
overall survival (OS) in ovarian cancer (OC) based on copy number
alterations (CNAs) in tumor tissues. The past decade has seen a
large rise in the development of methods for analyzing large,
complex networks, as exhibited by the rapidly growing literature.
We draw on geometric notions to inform about the network
structure, defined by evidence-based interactions provided by the
PPI. Our network analysis methodology is unsupervised without
fitting parameters or feature selection and is not constrained to
the underlying topology alone. Indeed, since cancer has been
demonstrated to exhibit functional robustness in connection to
geometric properties of its network representation5, we utilize
Ollivier’s discrete notion of Ricci curvature on weighted graphs,
referred to as Ollivier–Ricci (OR) curvature6.
The focus of this paper is to introduce a geometric network

method for cancer with the key application to high grade serous
ovarian cancer (HGSOC). Biomarkers of response to immune
checkpoint blockade in HGSOC remain largely unknown. Unlike
non-small cell lung cancers and melanomas that exhibit increased
immunogenicity due to high tumor mutational burden (TMB)7–11,
HGSOCs exhibit low TMB12. In virtually all cases, HGSOCs are a
disorder of loss of function gene mutations (TP53) leading to

CNAs, and subsequently resulting in overexpressed copy number
in multiple genes including oncogenes (e.g., KRAS, MYC, CCNE1,
and AKT1) commonly due to aneuploidy13,14. The impact of these
alterations on response to immunotherapy is unknown; further-
more, it is unlikely that individual pathway alterations would be
strongly predictive. This manuscript develops a mathematical
method that constructs a network of these gene pathways where
each node (gene) is quantitated by CNAs and for each tumor, the
changes in the architecture or connectivity of the network are
measured by a parameter termed curvature of the edges of the
network. Curvature measures the connectivity in the sense of
feedback loops, and the copy number measures the abundance of
each node and its projected impact upon the changes in the
network architecture. (More rigorous details about this will be
given in the Methods Section.) Nodal curvature may exhibit more
variation than the CNAs, reflecting the integration of the gene
copy numbers and the local impact of their alteration on the
network. Thus, curvature has the potential to differentiate
responders from non-responders in patients treated with immune
checkpoint inhibitors (ICIs) that could not be predicted from a
single gene alone. Note that in this paper, gene names will be
italicized in the main text, except in the tables for easier reading.
Curvature is a local measure of how a geometric object (e.g.,

curve, surface, space) deviates from being flat in the Euclidean
sense. While the physical interpretation of curvature in
3-dimensional Euclidean space is a familiar concept, intuition for
curvature as a rigorous mathematical concept is often elusive, as
the mathematical theory is not bound by the same physical
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constraints. This allows for curvature to be generalized to
continuous spaces of higher dimensions (classically, Riemannian
manifolds), and even to discrete spaces (Supplementary Fig. 1).
The mathematical construct, however, is not solely of abstract,
theoretical value. The archetypical example is the curvature of
space-time which was integral to Einstein’s theory of general
relativity. Although perhaps less intuitive, the geometric insight
that curvature provides is applicable to other physical phenom-
ena. In particular, change in OR curvature6 has a strong
mathematical connection to changes in robustness via change
in entropy. Note that we are using change in curvature in the sense
as a difference in curvature Δκ between networks. This is a
remarkable result facilitated by the theory of optimal mass
transport (OMT) attributed to Sturm, Lott, and Villani15,16. The
change in OR curvature has previously been used as an effective
quantitative proxy for the qualitative notion of changes in
robustness in various types of networks5,17. In the present work,
we employ curvature to predict patient survival and investigate
primary components of functional robustness to identify key
genes contributing to functional dysregulation in HGSOC.
Various biomarkers including PD-L1 and the spatial distribution

and composition of the immune microenvironment are being
investigated in the context of response to ICI12, but the present
work focuses on extracting information from gene-level informa-
tion. It is becoming more apparent that the use of genomic data
(e.g., mutations, gene expression, CNAs) with the corresponding
functional network representation can provide more insights into
understanding the underlying biology of cancer. Thus, graph-
based tools may be more powerful for investigating complex
genomic networks than methods that aim to analyze and quantify
the data independently.
Genomic networks have a topology (i.e., a connectivity

structure), but they also have a geometry, i.e., curvature, which
gives a measure of their functional robustness. Graph curvature is
intimately related to the number of invariant triangles, i.e.,
feedback loops at a given vertex, and the curvature between two
vertices describes the degree of overlap between their respective
neighborhoods18. Informally, graphs with positive curvature
characteristically contain many triangles (redundant feedback
loops), contributing to its functional robustness with respect to a
damaged or deleted edge. The more neighbors two given nodes
have in common (i.e., triangles), the easier it is for information to
flow between them. By weighing the ease with which information
can be transferred from one node to another against the ground
distance between them, curvature provides a local measure of
functional connectivity compared to ordinary measures of
connectivity which identify hubs based on degree. We show not
only that the total curvature of a network can be used to predict
overall patient survival in HGSOC, but it is also more effective than
standard clinical parameters such as TMB.
Typically, the curvature is computed on a network using the

standard hop distance (where every edge in a path connecting
two nodes is treated as a hop) with node weights that are
continuous in nature (e.g., gene expression). Here, we use a
weighted hop distance derived from the data as the underlying
graph metric, so the distance between two nodes depends not
only on the topology, but on the likelihood of interaction as well.
Using node weights assigned by (discrete) CNAs, we show that
curvature may also be informative in the discrete data setting.
Furthermore, we show that the network topology without any
additional information may be used as a reference to identify
potential key players responsible for the functional robustness,
even when limited data is available, as demonstrated in this study.
Top identified genes such as TP53, whose known aberrant
functional behavior has been attributed as a leading influence in
the development/progression of ovarian cancer19, serve as
validation for the proposed methodology.

Specifically, we create a shared topology, but with sample-
specific gene interaction networks. The interactions are taken from
the HPRD, where the protein interactions are assumed to serve as
a proxy for the underlying gene interactions. We then supplement
topology (i.e., connectivity) with sample-specific node weights
taken to be the given copy number data. For each network,
curvature is then computed at three scales: on edges, nodes, and
the entire network. Analogous to Ricci curvature defined on
tangent directions at a point on a Riemannian manifold and its
contraction scalar curvature defined on the points of the manifold,
the formulation of OR curvature is computed on all edges in the
network and scalar curvature is computed on all nodes by
contracting the OR (edge) curvature with the invariant distribution
associated with the weighted network6. The total curvature of the
network is then computed by contracting the scalar curvature to a
single scalar. (See Eq. (9) for the precise definition.)

RESULTS
Survival analysis
The prognostic value of the total curvature κG in Eq. (12) and
standard genomic parameters including TMB, the fraction of
genome altered (FGA) and large-scale state transition (LST) scores
(representing homologous recombination deficiency status) were
assessed with respect to the HGSOC cohort (n= 45). For each
parameter (κG, TMB, FGA, LST), the cohort was stratified into two
groups according to the 25th percentile (low vs. high) of individual
values. The cutoff was selected based on the location where the
curve fitted to the sorted total curvature values starts slowly
incrementing and is approximately linear (Supplementary Fig. 6).
An alternative cut point using maximally selected log-rank
statistics20,21 was assessed as well and resulted in a comparable
split (Supplementary Fig. 7). However, a larger cohort is needed for
further validation. The effectiveness of each parameter in terms of
OS was evaluated using the Kaplan–Meier (KM) analysis22.
OS was defined from the start of immunotherapy treatment

until either death or last follow-up12. Survival curves for each
parameter were plotted according to the KM estimator, shown in
Fig. 1 along with the corresponding log-rank p values (total
curvature: p= 0.00047; TMB: p= 0.03153; LST: p= 0.42865; FGA:
p= 0.19568). While both TMB and total curvature κG were found
to be significant factors in predicting patient survival, the p-value
for total curvature was almost 2 orders of magnitude smaller as
compared to TMB, whose p-value was just marginally significant.
The effective prognostic predictive power of the total curvature,
particularly in comparison to the genomic parameters, is one of
the major contributions of this work. See Supplementary Material
for validation (Supplementary Figs. 4 and 5) and survival analysis
on the metastasis subcohort (Supplementary Fig. 9).
In order to assess that the prediction is not independent of

receiving immunotherapy treatment, we repeated the curvature
and survival analysis pipeline on IMPACT data from HGSOC
samples that did not receive ICIs. It is interesting to note that total
curvature was not predictive of survival in this setting (Supple-
mentary Fig. 8), highlighting that our findings may be
immunotherapy-specific. However, it is also important to point
out that OS was defined from the time of diagnosis for the analysis
of this data set, whereas in the analysis of 45 HGSOC patients
treated with ICIs, OS was defined from the start date of
immunotherapy, and all 45 patients had recurrent tumors with a
substantial time gap between the time of first diagnosis and the
start date of immunotherapy. Lastly, no statistically significant
differences were found using progression-free survival (PFS) in this
cohort. This is not novel and a number of studies have increasingly
demonstrated the ability of ICI to impact OS without significant
impact on PFS. We have previously demonstrated that ICI
therapy may positively influence responses to subsequent
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chemotherapy12, suggesting that ICI may positively impact disease
biology without immediate apparent clinical benefit.

Functional biomarkers
Genes that exhibit large changes in scalar curvature are identified
as the genes that potentially play a key role in altering the
network robustness (i.e., functional connectivity). This requires a
reference for comparison, typically using data collected at a
reference time (e.g., after immunotherapy treatment) or data
collected from a reference sample (e.g., normal tissue). Often no
such reference data are available, as was the case here where CNA
data from only one time point were provided. Considering the
distinction in survival curves obtained via curvature, we therefore
used the high and low-risk groups (as previously defined by the
25th percentile of the total curvature and dichotomized into low
and high curvature groups, respectively) for points of comparison.
Genes were ranked by the difference in average scalar curvature
between the low and high-risk groups (Δκrisk). The change in
curvature measures the relative gene implication in the

stabilization (or de-stabilization) of local network robustness
driving changes in feedback connectivity pertaining to survival.
Since both increased and decreased functionality is of interest, the
top 50 ranked genes that exhibited the largest positive (Δκrisk > 0)
and largest negative (Δκrisk < 0) change in curvature, yielding 100
candidate genes associated with risk, are listed in Table 1 (and
listed alphabetically in Supplementary Table 5).
Similarly, we investigated the top genes ranked by the

difference in average scalar curvature between sub-groups based
on available clinical data as an exploratory analysis. Of ancillary
interest were the top-ranked candidate driver genes that
demonstrate functional network response to ICI and their
association to survival as exhibited by disparities in network
robustness measured between those who were alive or deceased
at last follow-up (ΔκOS; Supplementary Table 1) and predominant
changes in functional connectivity due to DNA level dysregulation
that occurs between primary and metastatic tumors (ΔκPM;
Supplementary Table 2). Lastly, we used the network topology
itself as a frame of reference. Treating the fixed network topology

Fig. 1 Survival curves for HGSOC samples (n= 45) stratified low and high groups by the 25th percentile of total curvature and genomic
parameters. P values were derived from the log-rank test.

R. Elkin et al.

3

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2021)    99 



as an unweighted graph (i.e., all node weights are uniformly set to
1), we computed the scalar curvature on this reference topology
network in the same manner as detailed above. This provides a
measure of discordance in functional connectivity between the
HGSOC network and its underlying topological structure (Δκref;

Supplementary Table 3). It is interesting to note that in all of the
comparisons TP53 appeared at the top of all positive changes in
curvature indicating its functional centrality in HGSOC.
Substantial overlap in the top 50 (positive and negative) ranked

genes was noted from all of the comparisons performed, resulting
in 171 unique genes listed in Supplementary Table 4 (Supple-
mentary Figs. 12 and 13). The choice of selecting the top 50 genes
was largely arbitrary with the following rationale. The assertion
that critical genes may be identified as those exhibiting larger
changes in curvature is supported by the theory, but curvature is a
continuous variable with no obvious cutoff. Since there is also an
exploratory component to this analysis, we opted for a cutoff that
would yield a manageable set of genes that reasonably included
the key influential players. Out of 3489 genes in the network, this
resulted in 50 (positive and negative) candidate genes. See
Supplementary Fig. 10 for a further sub-curvature analysis on the
association between the highlighted candidate genes and
survival.

Relationship between total curvature and genomic features
Lastly, we explored the relationship between total curvature and
genomic features (TMB, FGA, LST). Linear regression analysis and
Pearson correlation (r) with p values were used to assess the
correlation between total curvature and each of the clinical
features (TMB: p= 0.9674; FGA: p= 0.0059; LST: p= 0.0867). This
analysis suggests that total curvature is significantly correlated
with FGA. This result is not entirely surprising considering that FGA
is a surrogate measure of CN changes and the curvature measures
dysregulation of the CN-weighted network. However, total
curvature yields high- and low-risk groups with a significant
difference in survival, whereas FGA does not. The difference is that
total curvature accounts for an extra level of information, namely
the connectivity, that is not evident from CNAs alone. We believe
this is compelling evidence that network dysregulation, as
measured by curvature, has the potential to provide critical
insight for analyzing immune response. More samples are needed
to verify this result but it is interesting to note that further
investigation into FGA as a potential biomarker for survival in
HGSOC has been proposed12. Linear regression plots on the
HGSOC cohort (n= 45) are shown in Fig. 2.

DISCUSSION
Mutational profiles of HGSOCs are characterized by abnormal
gene CNAs, which result in protein overexpression or under-
expression13. The majority of these OCs are characterized by
inactivating mutations or loss of TP53, leading to aneuploidy,
resulting from loss of control of centrosome numbers23, and
selection for enhanced copy number and gene expression of
selected genes controlling the cell cycle (Fig. 3). These OCs
commonly overexpress the cyclin E protein due to loss of p53
function, resulting in downregulation of p21 (the inhibitor of
cyclin E-CDK2 activity), as well as amplification of cyclin E13. In
addition, the serous OCs have one or more of the KRAS, MYC, and
AKT1 genes overexpressed in the late G-1 phase of the cell cycle
(see Fig. 3). The KRAS activity signals that the cell is stimulated by
growth factors and should progress through the cell cycle, the
MYC gene regulates the transcription of hundreds of genes for cell
growth and division, and the AKT1 gene promotes TORC2 activity
for entry into S-phase and stimulates AKT kinase to enhance the
MDM2 E3 ubiquitin ligase to increase the destruction of the p53
protein24. All of these driver gene products promote a constant
overexpressed signal for cell cycle progression and division. The
mutational profile of this cancer is copy number changes of genes
and overexpression of selected gene products. For that reason,
the methods developed here employ copy number values as the
measurement for each node containing a gene in the signal

Table 1. Changes in average scalar curvature based on risk (low
vs high).

Rank Gene Δκrisk > 0 Gene Δκrisk < 0

0 TP53 0.208647 CREBBP −0.064223

1 ATXN1 0.102823 SHC1 −0.031456

2 EP300 0.044184 PTK2 −0.026202

3 SMAD2 0.042756 AR −0.025316

4 PIK3R1 0.037015 MYC −0.022608

5 SRC 0.033112 JUN −0.019546

6 SMAD4 0.032177 LYN −0.011148

7 RB1 0.031043 YWHAQ −0.010984

8 ESR1 0.027914 GSK3B −0.009017

9 PRKCA 0.027253 STAT1 −0.008248

10 CTNNB1 0.025121 CDK5 −0.007480

11 GRB2 0.016848 FN1 −0.006947

12 YWHAE 0.015125 COPS6 −0.006251

13 DLG4 0.014966 SMAD3 −0.006133

14 PRKCD 0.014742 PAK1 −0.006091

15 ACTB 0.013456 MYOC −0.005464

16 EWSR1 0.012300 SMURF1 −0.005438

17 TGFBR1 0.010799 SUMO1 −0.004455

18 RAC1 0.008937 PARP1 −0.004274

19 PLCG1 0.008423 CRMP1 −0.004271

20 CHD3 0.007997 HSF1 −0.004155

21 DVL2 0.007476 HIPK2 −0.004038

22 BCL2 0.007009 CDC42 −0.004017

23 RANBP9 0.006879 POU2F1 −0.003838

24 MAPK1 0.006630 ACVR1 −0.003651

25 POLR2A 0.006468 HTT −0.003537

26 CRK 0.006375 JAK1 −0.003520

27 APP 0.006256 PDPK1 −0.003497

28 PCNA 0.005935 PIK3R2 −0.003423

29 COIL 0.005350 FGFR1 −0.003352

30 MAPK14 0.005097 CDKN1A −0.003205

31 NR3C1 0.004981 MAGEA11 −0.003165

32 AKT1 0.004925 GNAI1 −0.003125

33 EGFR 0.004918 PRKCE −0.003090

34 RHOA 0.004635 XPO1 −0.002919

35 RAF1 0.004159 BTK −0.002855

36 SMAD7 0.004071 MUC1 −0.002814

37 NCOR1 0.004038 EIF2AK2 −0.002807

38 RASA1 0.003998 CASP8 −0.002758

39 FXR2 0.003879 CSNK2A2 −0.002717

40 RPA1 0.003560 MDM2 −0.002710

41 HRAS 0.003525 NTRK1 −0.002636

42 UBB 0.003302 ADAM15 −0.002541

43 BRCA1 0.003292 FASLG −0.002522

44 SUMO4 0.003283 VIM −0.002436

45 ARRB2 0.003248 CD247 −0.002372

46 XRCC6 0.003065 AXIN1 −0.002333

47 HGS 0.003025 SMARCA4 −0.002256

48 HDAC3 0.002965 SNAPIN −0.002246

49 HSP90AA1 0.002924 PPP2R5A −0.002187

Top 50 genes ranked by positive (Δκrisk > 0) and negative (Δκrisk < 0)
difference in average scalar curvature between low risk (n= 33) and high
risk (n= 12) groups.
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transduction pathway and the resultant network that is employed
to measure curvature.
This mutational profile of serous OC results in the loss of control

for duplicating centrosomes, which sets up the polarity in a cell for
the normal segregation of chromosomes. This is driven by the loss
of function of p53 and the overexpression of cyclin E, which co-
localizes with the centrosome, which duplicates abnormally
producing three or more centrosomes25. In the extreme, this
results in chromothripsis, where chromosome fragments and
some of the parts are reassembled in a random order. This can
result in double minute chromosomes without a centromere for
proper segregation and random partition of the double minutes
and distribution of multiple copy numbers. Often the population
of cells forms a distribution of copy numbers of a combination of
genes, which are then selected for optimal fitness.
Biomarkers of response to immunotherapy in OC remain

underdeveloped. Here, we characterized a cohort of HGSOC
patients treated with immunotherapy for whom detailed treat-
ment, genomic, and survival data were available. Our analysis
indicates that employing the copy number of the relevant genes
as a measurement for each node in a network provides the
strongest predictive power for OS, when compared to prior
examined parameters such as TMB, LST, and FGA (Fig. 1). These
results suggest that no one gene or even its alterations can predict
responses to therapy. Rather it is the integration of the copy
numbers of driver genes and the change of resultant networks
formed by these genetic or epigenetic alterations that impacts
immunological responsiveness of the tumor after checkpoint
therapy. Employing the overexpression of the same set of genes
and loss of p53 function in a mouse model of ovarian cancers
treated with immunotherapy resulted in similar heterogeneous
responses to checkpoint therapy and the beginnings of experi-
mental tests of genes and products that could modify the results
of the responses to cancer therapies14. This permits the pairing
and testing of the type of modeling presented here along with

prediction of genes with high curvature with experimental tests in
a mouse model to improve the choice of therapies depending
upon the genotypes of the tumors.
Interestingly, in non-small cell lung cancer a major tumor

antigen, not genetically altered in sequence (not a neo-antigen),
was found to be overexpressed in many different independent
tumors7,8. This suggests that in serous OCs, like non-small cell lung
cancers, the higher concentration of a non-genetically altered
tumor antigen was an important variable in responsiveness to
checkpoint therapy. Similar conclusions were reached by the
mathematical construct employed here, measured by both
abundance and changes in a network architecture and quanti-
tated by curvature of the edges of the network.
For additional validation of our methodology, we tested our

method on a much larger data set from Metabric (breast cancer)
with 1903 samples. The KM plot is shown in Supplementary Fig.
14. To recap, network curvature was used in this study to
investigate survival specifically in those women with recurrent
HGSOC treated with ICI. Unlike other cancers, HGSOC has not been
shown to respond well to ICI and traditional biomarkers, such as
TMB, have not been predictive in HGSOC. In addition, in HGSOC to
date, PD-L1 expression has unfortunately not been found to be
predictive of response to ICI26,27. While the presence of TILs is
prognostic in HGSOC28 and other cancers, their predictive value
for ICI response is questionable. In two published studies that
have evaluated combination of ICI with PARP inhibitors in HGSOC,
the presence of TILs was not predictive of response29,30. Thus,
while these biomarkers have been predictive of response to ICI in
other cancer types, their value in HGSOC is rather limited. The
demonstration of the predictive value of PD-L1 expression and
TILs in the cohort analyzed in the current work would have been
useful for comparison, but unfortunately, sufficient tissue to
conduct such studies was not available.
Identification of novel biomarkers predictive of immunotherapy

response in HGSOC is thus a high priority. The current study

Fig. 2 Linear regression of total curvature onto clinical parameters using HGSOC samples (n= 45). The lower triangle includes the
regression line, Pearson correlation (r), and associated p value.
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capitalizes on the unique biology of HGSOC (i.e., CNAs) and
identifies curvature as a potential biomarker tool that can serve as
a predictor of clinical benefit in patients treated with ICI. Notably,
we feel that this tool is not simply prognostic, as our study
investigated curvature as a predictor of OS in those with HGSOC
not treated with ICI, and it was not significantly associated with
prognosis, suggesting this is a biomarker truly related to ICI rather
than HGSOC.
The marriage of mathematical models with experimental tests is

one of the goals that will speed up the testing of new ideas and
directions. The gene lists in Table 1 and Supplementary Tables 1–3
that compare the values of curvature, topology, geometry,
feedback connectivity, and other properties of the networks
under study, permit a selection of the best ways to measure lists of
genes that impact success of immunotherapy. The conclusion of
the analysis presented in this work is that the stability or instability
of local network robustness driving changes in feedback
connectivity has the largest impact upon prognosis after
immunotherapy. The analysis identifies the mutant TP53 gene
and its loss of functional protein, resulting in the inability to
control cyclin E activity and the resultant abnormalities in copying
centrosome numbers accurately as the driving force for this
cancer23,25.
In conclusion, a network version of the geometric concept of

curvature was introduced to model information variability,
robustness, and dysregulation of cancer gene networks. Total
curvature, thus formulated for HGSOC, was demonstrated to work
better in comparison to other standard metrics for the prediction
of response to immunotherapy. Network curvature, formulated in
this manner as a consistent information passing measure, thus
appears to effectively capture global gene signaling dysregulation,
and furthermore functions to identify key contributors to signaling
dysregulation. Establishing total curvature as a useful clinical
biomarker, possibly in combination with FGA (also proposed as a
potential biomarker in ovarian cancer12), will require larger
datasets in order to further quantify and validate these results.

METHODS
Curvature background
We start with a brief, informal discussion on curvature to build some
intuition before introducing the formal description of curvature as it was
used in this work. See Supplementary Fig. 1 for an illustration of the key
concepts.
Perhaps the most intuitive notion of curvature is that of Gaussian

curvature on a surface31. The curvature proposed by Ollivier6 is the discrete
analog of Gaussian curvature on a surface, and more generally, of Ricci
curvature on higher dimensional objects. Application of this generalized,
abstracted notion of curvature is proposed for studying cancer networks,
as elucidated below. The key point is that the notion of curvature we
employ is intrinsic to the given geometric object. For networks defined by
graphs, one looks at such an intrinsically defined quantity to inform on its
(functional) structure.
In the classical case, the Gaussian curvature of a surface is independent

of how the surface is embedded in 3-dimensional space. Thus rather than
look at the surface as it is embedded in 3-dimensional space from the
perspective of an outsider, the key is to treat the surface as the space itself.
With this approach, we can determine if the space is curved through the
use of geodesics, the curves of (locally) shortest length between two points.
(Geodesics generalize straight lines in Euclidean space.) One way to tell if
the space is curved is to sum up the interior angles of a geodesic triangle.
Geodesic triangles on a surface with positive (resp., negative) Gaussian
curvature are fat (resp., skinny) compared to the triangle in Euclidean
space. Loosely speaking, curvature can be inferred by the local behavior of
geodesics—geodesics converge in regions of positive curvature and
diverge in regions of negative curvature. On Riemannian manifolds, Ricci
curvature is intimately related to the spread of geodesics emanating from
the same point31.
While there are many ways to characterize the local behavior of Ricci

curvature, we focus on Ollivier’s characterization that is relevant for our
purposes: namely that in regions of positive (resp., negative) Ricci
curvature, geodesic balls (on average) are closer (resp., farther) than their
centers31. (A “geodesic ball” of radius ϵ centered at a given point p is
defined as the image under the exponential map of the ball of radius ϵ on
the tangent space at p). This is in contrast to Euclidean space where the
distances between geodesic balls and their centers are the same. Ollivier’s
characterization generalizes this notion of Ricci curvature applicable to
graphs by replacing the geodesic balls with probability measures μj6. In the
Euclidean case, one may think of this as replacing points (delta functions)

Fig. 3 Genes involved in serous ovarian cancer in the G-1 phase of the cell cycle: the G-1 phase of the cell cycle can be divided up into
cyclin D-CDK4/6 early events and cyclin E-CDK2 later events. The inhibitors of these protein kinase activities, p38 and p16 for cyclin D and
p53 and p21 for cyclin E, are shown above the cyclin D and E panels. The activating pathways for cyclin D (TORC1) and cyclin E (TORC2) are
shown below these panels. The mutational loss of TP53 and the amplification of cyclin E results in the loss of control of cyclin E levels and the
hyper-amplification of centrosome numbers destabilizing the copy number control of chromosome numbers (aneuploidy) and gene copy
numbers. Serous ovarian cancers commonly have KRAS, MYC, and AKT1 genes or chromosome amplifications and overexpression. The CDKN1A
gene which codes for p21 is not mutated suggesting that it has additional functions required elsewhere for viability or that additional
functions of p53 must be lost for ovarian cancers. Every gene highlighted in this figure can be found genetically altered in a cancer of other
tissue types.
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by small Gaussian balls (“fuzzified points”). The transportation distance
between measures μj and μk, prescribed by the Wasserstein distance W1, is
used in lieu of the average distance between geodesic balls. The
Wasserstein distance accounts for the geometry of the space and the
distance between distributions associated with two nodes is related to the
overlap of their neighborhoods. The rigorous mathematical details will be
given now.

Wasserstein distance
The Wasserstein distance is a particular instance of the OMT problem. It is a
natural candidate for comparing probability measures because it accounts
for both the shape of the distributions (i.e., weighted values) and the
distance on the underlying space. The OMT problem, originated by
Gaspard Monge32, seeks the optimal way to redistribute mass with minimal
transportation cost. Leonid Kantorovich reformulated and relaxed the
problem in the context of resource allocation33; for more details, see34–36.
We consider the following discrete formulation. Since we will be applying
the theory to weighted graphs, this will be sufficient.
Accordingly, let X denote a metric measure space equipped with

distance d(⋅,⋅). Given two (discrete) probability measures μ0 and μ1 on X ,
the Wasserstein distance W1 between μ0 and μ1 is defined as

W1ðμ0; μ1Þ :¼ inf
π2Πðμ0 ;μ1Þ

X

x;y

πxydðx; yÞ; (1)

where Π(μ0, μ1) is the set of joint probabilities on X ´X with marginals μ0
and μ1. Here, πxy may be interpreted as the amount of mass moved from x
to y and the cost of transporting a unit of mass is taken to be the distance
traveled (i.e., d). Thus, the Wasserstein distance (1) gives the minimal net
cost of transporting mass distributed by μ0 to match the distribution of μ1.
The OMT problem therefore seeks the optimal transference plan π∈ Π(μ0,
μ1) found to be the infimal argument for which the Wasserstein distance is
realized.
As is well-known, the computation of W1 may be reduced to one of

linear programming34. One can consider a dual version of the problem
based on work Beckmann37, which reduces the computation to one of
optimizing over a certain set of fluxes, upon which we based our code.
Details may be found in38.

Curvature
The interplay between OR curvature, network entropy, and functional
robustness is linked by OMT and is rich in theory. We outline this now,
beginning with the OR curvature6.
Based on the work of von Renesse and Sturm16, Ollivier extended the

notion of Ricci curvature, defined on a Riemannian manifold, to discrete
metric measure spaces6. Specifically, let X be a metric measure space
equipped with a distance d such that for each x 2 X , one is given a
probability measure μx. The probability measure μx can be thought of as
fuzzifying or blurring the point x. For two points x; y 2 X , OR curvature is
defined as

κORðx; yÞ :¼ 1�W1ðμx ; μyÞ
dðx; yÞ ; (2)

where W1 is the Wasserstein distance.

Curvature on graphs
For our purposes, the metric measure space is taken to be a weighted
graph G= (V, E) with nodes (vertices) V and edges E. G is assumed to be a
simple, connected and undirected graph. Instead of points x in a metric
space, we now consider nodes xj∈ V, denoted simply by its subscript j. In
this work, the graph is constructed as follows. Each node j∈ V represents a
gene; hereafter node and gene are used interchangeably. Edges e= (j, k)∈
E define known interactions between genes (nodes) at the protein level
(here given by HPRD) and j ~ k denotes that k is a neighbor of j. We then
incorporate copy number (CN) values as nodal weights, denoted wj. Note
that for j∈ V, we take wj= (CN)j+ 1; the affine translation is used to ensure
all weights are positive.
We treat the weighted graph as a Markov chain. In this context, the

probability measure μj attached to node j ∈ V can be thought of as the
probability of a 1-step random walk starting from node j. The 1-step
transition probability pjk of going from j to k is expressed by the principle of
mass action39. According to this principle, if there is a known connection
between gene j and gene k (i.e., (j, k)∈ E), then the probability that they

interact is proportional to the product of their CN values:

pjk / wjwk : (3)

Normalizing the mass action over all possible edges to ensure that pjk is a
probability, i.e., ∑j~kpjk= 1, we define the transition probabilities pjk of the
stochastic matrix P= [pij] associated with the Markov chain as follows:

pjk ¼
wkP
j�l
wl
; if j � k

0; otherwise:

(
(4)

Accordingly, for each gene j, we associate a probability measure μj defined
on the node set V with n associated nodes

μj ¼ ½pj1; pj2; :::; pjn�; j ¼ 1; :::; n: (5)

Alternatively, μj can be thought of as fuzzifying the node j over its 1-step
neighborhood.

Graph distance. We have now specified the points (x) and measures (μx)
needed to compute OR curvature in Eq. (2) on a graph. All that remains is
the distance d(x, y). In lieu of the commonly used hop distance, i.e., the
distance between two nodes j, k ∈ V that is defined as the shortest path
length over all paths connecting j and k, we take the corresponding graph
distance djk to be the weighted hop distance (whop).
More precisely, for fixed nodes j and k, let Pjk denote a path connecting

them. Let fwjk
1 ; ¼ ;wjk

n g be the set of all the associated edge weights. Then
we set

ℓðPjkÞ :¼
Xn

i¼1

1

wjk
i

: (6)

Denoting by P :¼ fPjk1 ; ¼ ; Pjkmg; the set of all possible paths connecting j
and k, we define the weighted hop distance (whop) between j and k to be:

djk :¼ min
1�u�m

ℓðPjku Þ: (7)

Note that the edge weights wuv for all edges e= (u, v) ∈ E are constructed
as

wuv :¼ puv þ pvu
2

: (8)

This formulation was chosen so the distance between two nodes is
inversely related to the probability of their interaction. Thus, the higher
(resp., lower) the probability of two nodes interacting, the smaller (resp.,
larger) the distance between them should be. The average is taken merely
so the distance is symmetric, i.e., djk= dkj. See Supplementary Figs. 2 and 3
for an explicit example of the weighted hop distance on a simple network.

Edge curvature. With the choice of graph distance in Eq. (7), the OR
curvature in Eq. (2) can now be computed between any two nodes in the
graph. Due to the large nature of the graphs of interest, we constrain the
curvature computation to edges. Notice, from the curvature definition in
Eq. (2), the ratio

W1ðμj ;μk Þ
djk

relates the transport cost of moving the
distribution (i.e., fuzzy ball) associated with j to k to the ground distance.
Informally, the more the neighborhoods of two nodes overlap, the lower
the transportation cost between them and thus the higher the curvature
associated with the edge. As such, curvature informs on the local
functional relationship between neighborhoods.

Scalar and total curvature on graphs. In order to obtain a node-level
measure of curvature, we consider a contraction of the edge curvatures,
analogous to scalar curvature defined on points of a manifold in
Riemannian geometry31. Motivated by the notion of signaling entropy rate
in information theory40, we define the (nodal) scalar curvature of gene j to
be the weighted sum of the curvatures on all edges incident to j:

κj :¼ πj
X

j�k

κORðj; kÞ; (9)

where the weight πj is the jth component of the stationary distribution π
associated with the Markov chain P:39

π ¼ πP;
X

j

πj ¼ 1: (10)

The stationary distribution in this setting (connected graph) is also the
limiting distribution of the Markov chain, known as the stationary or
equilibrium distribution. Thus, the quantity πj describes the relative
importance of node j with respect to all other nodes. We therefore scale
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the nodal curvature by its component in the stationary distribution in
order to correct for nodal bias. Furthermore, the stationary distribution has
a closed form that may be easily computed as follows:

πj ¼ 1
Z
wj

X

j�k

wk (11)

where Z is the normalization factor. We note that unweighted and
alternative weightings have been proposed38,41.
Lastly, we define the total curvature κG of a network to be the net scalar

curvature, summed over all nodes in the graph

κG :¼
X

j

κj : (12)

Curvature and robustness
One of the main motivations for using curvature to study networks in
general, and biological networks in particular, is its theoretical connection
to network robustness. Given its importance, we outline the argument
here which also gives a justification for using OR curvature6.
We begin by noting that Sturm16, Lott and Villani15 related a lower

bound on the Ricci curvature of a smooth Riemannian manifold to the
entropy of densities along a constant-speed geodesic with the use of the
Wasserstein distance. This laid the groundwork for the connection
between curvature, entropy, and the Wasserstein metric, and led to the
remarkable observation that changes in Ricci curvature ΔκRic are positively
correlated with changes in (Boltzmann) entropy ΔS:

ΔκRic ´ΔS � 0: (13)

The positive correlation between changes in curvature ΔκRic and changes
in robustness ΔR:

ΔκRic ´ΔR (14)

is realized by Eq. (13) and the fluctuation theorem42 from large deviations
theory indicates that changes in entropy are positively correlated with
changes in robustness ΔR:

ΔS ´ΔR: (15)

Here, robustness refers to the ability of a system to recover or maintain its
ability to function after it is perturbed in some way (e.g., stress signal). The
OR curvature on networks is directly derived from the Lott–Sturm–Villani
relationship, and thus was chosen over other possible discrete models43–46.
Curvature’s intimate connection to robustness makes it a particularly

attractive method for analyzing key nodes and interactions in large,
complex PPI networks. This connection is linked by entropy as shown in
Eqs. (13) and (15), bridging this geometric analysis to an interesting
perspective on the relationship between the topological and functional
properties of the weighted network. With this notion of the change in
curvature as a proxy for the more qualitative notion of functional
robustness, we rank genes according to the change in curvature with

respect to the topology and between sub-groups identified; see the
following “Results” section.

Data description and processing
In this section, we outline the data description and processing that we
used in our HGSOC analysis. Further details about the data may be found
in12.
First of all, TMB was calculated by dividing the number of non-

synonymous mutations by the total size of the capture panel in
megabases. Secondly, based on the CNAs by FACETS, FGA was defined
as the cumulative length of segments with log 2 or linear CNA value larger
than 0.2 divided by the cumulative length of all segments measured. LST
scores, defined as a chromosomal breakpoint resulting in allelic imbalance
between adjacent regions of at least 10Mb, were determined, and a cutoff
≥15 was employed for LST-high cases.
Next, regarding the data characteristics, we used DNA gene CNA data

from a subset of 69 women with recurrent OC who received immunother-
apy from a previously published series12. The subtypes of ovarian cancer
are in fact quite different diseases, originating in different cell types and
being caused by distinct mutations with diverse outcomes, and should
therefore be analyzed separately19. Accordingly, we restrict our re-analysis
to a subset of samples (n= 49) with HGSOC, which is the most common
and lethal subtype. Four HGSOC patients had two samples, and the
replicate samples were removed from the analysis. This resulted in a total
of 45 tumor samples, 32 of which were metastases and 13 represented
primary (adnexal) tumors, with 22 and 10 deaths in each group,
respectively, at the time the study group was analyzed. This forms a
homogeneous group of cancers (Fig. 4). Tumor and normal samples from
the 45 patients were profiled utilizing the FDA-cleared Memorial Sloan
Kettering Integrated Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT) sequencing assay, their mean age was 58 years, and mean TMB
was 5.9. Patient selection and clinical characteristics are displayed in Fig. 4
and in Table 2.
CN segments were mapped to individual genes according to GRCh37

and for each sample, each gene was assigned the maximum CN value of all
segments that mapped to it. After removing all genes with missing data
and all genes not in the HPRD network, we extracted the set of genes
comprising the largest connected network (Supplementary Fig. 11). This
resulted in a CNA data matrix of size 3489 (genes) × 45 (samples).
The network topology was constructed as follows. Edges between genes

were defined by the PPI obtained from HPRD1,2. The network topology was
then taken to be the largest connected component in the HPRD network
restricted to the set of genes in our data set. This resulted in a network
with 9710 edges and 3489 nodes with an average degree of 5.57. The
rationale is that the established interactions between gene products serve
as a viable proxy for the functional connectivity at the gene level.
Subject-specific networks were created by assigning nodal weights wj

prescribed by the CN value. Specifically, the CN data took on discrete
integer values in the range [0, 38]. In order to ensure all weights were
positive, we used the translation wj= xj+ 1 where xj is the CN value for

Fig. 4 Patient selection and clinical characteristics. a Patient selection. b Clinical characteristics of patients with recurrent HGSOC
administered ICI therapy.
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Table 2. HGSOC patient characteristics.

All patients Low curvature High curvature

Characteristic (n= 45) (n= 12) (n= 33) p

Age at diagnosis (years) 0.062

Mean ± SD 58.0 ± 9.3 62.3 ± 7.5 56.4 ± 9.4

Range 27.0–75.0 49.0–75.0 27.0–75.0

Median (IQR) 58.0 (52.0–64.0) 64.0 (58.8–65.5) 55.0 (51.0–61.0)

Age at start of ICI (years) 0.023

Mean ± SD 62.1 ± 8.7 67.1 ± 6.9 60.3 ± 8.7

Range 37.0–78.0 55.0–78.0 37.0–77.0

Median (IQR) 62.0 (56.0–69.0) 67.0 (63.3–70.3) 59.0 (55.0–66.0)

Stage at diagnosis 0.502

III 25 8 17

IV 20 4 16

Time from diagnosis to start of ICI (months) 0.581

Mean ± SD 50.9 ± 35.9 58.8 ± 43.1 48.1 ± 33.2

Range 5.3–166.0 17.4–166.0 5.3–123.1

Median (IQR) 49.4 (23.3–61.7) 44.5 (33.4–61.8) 49.4 (18.5–61.7)

Duration of ICI (weeks) 0.807

Mean ± SD 20.2 ± 23.6 14.3 ± 8.6 22.3 ± 27.0

Range 0.1–143.0 0.7–28.3 0.1–143.0

Median (IQR) 12.3 (7.7–23.1) 13.6 (7.8–20.3) 12.1 (7.7–23.1)

Overall survival (months) 0.007

Mean ± SD 16.7 ± 11.7 8.8 ± 7.2 19.6 ± 11.7

Range 0.4–44.8 0.4–27.4 0.4–44.8

Median (IQR) 15.3 (6.5–24.6) 7.4 (4.9–10.9) 20.3 (11.1–26.0)

Sample type 0.010

Metastasis 32.0 12 20

Primary 13.0 0 13

Status at last follow-up 0.134

Alive 13 1 12

Dead 32 11 21

TMB 0.959

Mean ± SD 3.7 ± 2.3 3.5 ± 1.9 3.8 ± 2.5

Range 1.0–9.7 1.1–6.7 1.0–9.7

Median (IQR) 3.3 (2.0–4.4) 2.6 (2.0–5.3) 3.3 (2.0–4.4)

FGA 0.005

Mean ± SD 0.4 ± 0.2 0.3 ± 0.2 0.5 ± 0.2

Range 0.005–0.871 0.005–0.629 0.092–0.871

Median (IQR) 0.4 (0.3–0.6) 0.2 (0.1–0.4) 0.5 (0.4–0.6)

LST 0.024

Mean ± SD 25.0 ± 10.3 19.3 ± 9.1 27.1 ± 10.0

Range 2.0–51.0 2.0–32.0 2.0–51.0

Median (IQR) 25.0 (20.0–29.0) 22.0 (13.5–25.8) 27.0 (22.0–34.0)

Platinum status at ICI 1.000

Platinum Sensitive 6 1 5

Platinum Resistant 39 11 28

BRCA1/2 Status 1.000

Wild-type 35 9 26

Mutation 10 3 7

ICI target 0.909

PD-1/PD-L1 25 6 19

PD-1/PD-L1 + CTLA-4 15 5 10

PD-1/PD-L1 + other 4 1 3

CTLA-4 1 0 1

P values were obtained using two-sided Wilcoxon–Rank Sum test for continuous variables and Fisher-exact test for categorical variables.
SD standard deviation, IQR interquartile range.
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gene j. For each subject, Markov chains were computed as defined in Eq.
(4) followed by the associated stationary distribution in Eq. (11). Next, OR
curvature using Eq. (2) was computed on each edge in the fixed network,
scalar curvature defined in Eq. (9) was subsequently computed for each
node and lastly, total curvature using Eq. (12) was computed for the
network. A critical aspect of the curvature analysis is that it provides a
relative quantity and it is the change in curvature that is of interest,
indicative of changes in the network’s capacity for communication. Thus,
we would expect that patients whose samples have a lower total curvature
(i.e., a relative net decrease in capacity) would be associated with a poorer
prognosis than those with higher total curvature values.

Ethics statement
All data were approved for analysis (MSK IRB protocol #15-200), including
an institutional tissue banking protocol (#06-107) and molecular profiling
protocol (#12-245), with all study participants providing written informed
consent to participate.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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