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How many markers are needed
to robustly determine a cell’s type?

Stephan Fischer1 and Jesse Gillis1,2,3,*

SUMMARY

Our understanding of cell types has advanced considerably with the publication
of single-cell atlases. Marker genes play an essential role for experimental
validation and computational analyses such as physiological characterization,
annotation, and deconvolution. However, a framework for quantifying marker
replicability and selecting replicable markers is currently lacking. Here, using
high-quality data from the Brain Initiative Cell Census Network (BICCN), we sys-
tematically investigate marker replicability for 85 neuronal cell types. We show
that, due to dataset-specific noise, we need to combine 5 datasets to obtain
robust differentially expressed (DE) genes, particularly for rare populations and
lowly expressed genes. We estimate that 10 to 200 meta-analytic markers pro-
vide optimal downstream performance andmake available replicable marker lists
for the 85 BICCN cell types. Replicable marker lists condense interpretable and
generalizable information about cell types, opening avenues for downstream ap-
plications, including cell type annotation, selection of gene panels, and bulk data
deconvolution.

INTRODUCTION

Recent atlas efforts based on single-cell technologies have led to comprehensive cell type taxonomies that

include amultitude of novel cell types (Tasic et al., 2018; Zeisel et al., 2018; Schaum et al., 2018; Packer et al.,

2019; Cao et al., 2020). The discovery of new cell types and novel biological heterogeneity served as a foun-

dation for promising avenues for the understanding of tissue homeostasis and disease. However, to

develop downstream applications and experiments, an actionable description of cell types is required

that extends beyond taxonomic classification. Although sporadic post-hoc markers are published along-

side taxonomies, the replicability of these markers is rarely assessed. Here, we systematically evaluate

marker replicability and propose unprecedented lists of replicable markers (or meta-markers) for neuronal

cell types by selecting an optimal number of robustly upregulated genes across a compendium of brain

datasets.

Given the rapid progression in the number and size of single-cell datasets (Svensson et al., 2018), making

atlases easily accessible is an increasingly difficult challenge. Cell-type centroids provide an efficient sum-

mary of active gene expression programs (Zeisel et al., 2018), but they are subject to batch effects (Tung

et al., 2017) and discard expression variability. Although integrative methods have been successful at miti-

gating batch effects for the joint analysis of a small groups of datasets (Butler et al., 2018; Haghverdi et al.,

2018; Welch et al., 2019; Korsunsky et al., 2019; Lin et al., 2019) and the transfer of cell-type annotations

(Kiselev et al., 2018; Stuart et al., 2019), the abstract embedding of cell types is costly, as well as difficult

to interpret and to extract for downstream applications. In contrast, markers provide an interpretable com-

mon denominator that does not involve data re-analysis or complex mathematical transformations; they

are commonly used for functional characterization (Mancarci et al., 2017), cell-type annotation (Poulin

et al., 2016; Johnson and Walsh 2017; Pliner et al., 2019; Zhang et al., 2019), deconvolution of bulk data

(Wang et al., 2019; Newman et al., 2019; Patrick et al., 2020) and spatial data (Qian et al., 2020), selection

of representative gene panels (Moffitt et al., 2018), cross-species comparisons (Tosches et al., 2018; Hodge

et al., 2019; Krienen et al., 2020; Bakken et al., 2021), and mapping of organoids to in vivo progenitors (Ve-

lasco et al., 2019; Bhaduri et al., 2020). For many of these applications, the strength of individual markers is

limited by the lack of conservation (Bakken et al., 2021) and the sporadic expression in individual cells

(Kharchenko et al., 2014; Risso et al., 2018; Hicks et al., 2018; Chen and Zhou 2018). Moving past individual

markers to small lists is done sporadically to capture combinatorial relationships or improve power but has
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not yet exploited the full power of scRNA-seq data. In specific, because cell types are encoded in a low-

dimensional expression space (Crow and Gillis 2018), we hypothesize that they can be captured with

high resolution and generalizable definitions using redundant and robust marker lists. These lists can

then easily be compared and combined across datasets for downstream analyses.

The problem of finding generalizable descriptions of cell types has a long history in the brain, famously

illustrated by Ramon y Cajal’s morphology-based descriptions (Ramon y Cajal, 1904). More recently, the

Petilla convention emphasized the need to describe neurons according to a multimodal taxonomy,

including morphology, electrophysiology, connectivity, and transcriptomics (Ascoli et al., 2008). Single-

cell data, although only covering one aspect of this multimodal description, have enabled unprecedented

wide and deep sampling of brain cells, with current taxonomies containing several hundred cell types (Tasic

et al., 2018; Zeisel et al., 2018). They thus offer a chance to assess the robustness of transcriptomic cell

types, but current cell types are usually defined based on data from a single lab and a single computational

method, whereas an ideal description should be community based and method independent (Yuste et al.,

2020). With the recent publication of several single-cell compendia by the Brain Initiative Cell Census

Network (BICCN) (Yao et al., 2021a, 2021b), the brain offers a unique opportunity to characterize

marker-based descriptions.

In this manuscript, we systematically assess the replicability of markers for BICCN cell types. We identify

robust markers (meta-markers) across a compendium of 7 brain single-cell datasets containing a total of

482,712 cells from the BICCN, one of the most complex and comprehensive cell-type taxonomies to

date. The assessment procedure is based on two simple steps: (1) identify markers from single datasets;

(2) obtain a list of meta-markers by selecting replicable markers. The compendium samples from 6 sin-

gle-cell and single-nuclei technologies, resulting in meta-markers that are robust to the varying sensitivity

and contamination levels of these technologies.We further investigate the ability of markers to recapitulate

cell types at various levels of granularity. We define two simple performance axes, intuitively representing

coverage (being expressed in all cells of interest) and signal-to-noise ratio (being expressed exclusively in

cells of interest), that can be efficiently summarized using standard differential expression statistics.

Although individual meta-markers only imperfectly capture cell types, we find that aggregating 10 to

200 meta-markers leads to optimal performance in downstream computational analyses, such as cell-

type annotation and deconvolution. Remarkably, these marker-based descriptions, derived from the pri-

mary motor cortex, generalize to other cortical brain regions, enabling accurate annotation of individual

cells. Robust meta-markers thus provide a simple and actionable description of BICCN cell types, which

we make available as high-quality marker lists (Data S1, S2, and S3) ranging from the lowest resolution

(excitatory neurons, inhibitory neurons, nonneurons) to the finest resolution defined by the BICCN

(85 neuronal cell types).

RESULTS

The ideal marker gene fulfills two criteria: (1) it is expressed in all cells of the population of interest,

providing high coverage; (2) it is not expressed in background cells, providing a high signal-to-noise ratio

(Figure 1A). In recently published atlases, it is often unclear how strongly and robustly the proposed

markers fulfill these criteria, particularly at high clustering resolution. To investigate replicability of marker

strength, our basic strategy is to look for simple statistics that can be robustly averaged across datasets and

correctly capture coverage and signal-to-noise. We focused on a BICCN neuron atlas containing 7 datasets

with 482,712 cells, organized into a hierarchy of 116 cell types in 3 levels of increasing resolution: classes,

subclasses, and clusters (Yao et al., 2021a) (Table 1).

Meta-analytic markers are highly replicable

We started by investigating the replicability of standard differential expression (DE) statistics across BICCN

datasets. Previous experiments in microarray and bulk RNAseq data by the MAQC (Shi et al., 2006) and

SEQC (Consortium et al., 2014) consortia established that a fold change (FC) threshold between 2 and 4

was necessary to obtain replicable DE genes. We wondered if a similar threshold would hold for single-

cell RNAseq and how aggregation across datasets would improve the threshold for FC and the area under

the receiver-operator curve (AUROC), a statistic routinely used to compute the statistical significance of DE.

To assess the replicability of FC, we quantified how often one would draw inconsistent conclusions about a

significant DE gene being upregulated (type S error [Gelman and Carlin 2014]). For example, given a gene
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with FC = 2 (strongly upregulated), what is the probability that this gene will have a FC < 1 (downregulated)

in an independent experiment? When FC was estimated from a single dataset, as is routine in published

studies, we found that a threshold of FC > 4 was necessary to call a gene reliably upregulated (type S error

<5%; Figure 1B), in line with MAQC/SEQC conclusions. In contrast, estimating FC from a higher number of

datasets dramatically improved replicability: for 2 datasets the 5% error threshold is reached at FC > 2 and

for 3 datasets at FC > 1.5. Surprisingly, for more than 5 datasets, our results suggest that thresholding be-

comes unnecessary: a gene that was detected as upregulated in 5 independent datasets was almost always

upregulated in the 2 remaining datasets, even at low effect size (FC�1). Moreover, for a single dataset, only

the top 10 upregulated genes were replicable, whereas the top 1,000 genes are reliably upregulated when

aggregating across 6 datasets (Figure S1B). We observed similar trends for AUROCs. Based on a single da-

taset, the replicability threshold was AUROC>0.65, yielding 100 reliably upregulated genes. Aggregating

six datasets, no replicability threshold was needed, and we could identify more than 5,000 reliably upregu-

lated genes (Figures S1A and S1C). The impact of dataset aggregation was particularly dramatic for small

clusters and lowly expressed genes (Figures S1D–S1G); for 5/85 neuron clusters, fewer than 5 of the top 10

single dataset markers (based on FC) were reliably upregulated.

No individual marker offers high coverage and signal-to-noise ratio

Having established that DE statistics are replicable in aggregate, we assessed a range of existing statistics

and found they strongly clustered into two groups, corresponding to definitions for coverage and
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Figure 1. The meta-analytic Pareto front of markers: a trade-off between coverage and signal-to-noise ratio

(A) Ideal markers have high coverage (high expression in cells of interest) and high signal-to-noise ratio (relatively low expression in background cells).

(B) Fraction of genes inconsistently detected as upregulated (type S error) depending on the fold change in the training dataset. Colors indicate the number

of datasets used to estimate the fold change (geometric mean). Lines show the median across test datasets, ribbons show the interquartile range.

(C) Schematic of extraction of meta-analytic markers: differentially expressed (DE) genes are computed independently in each dataset, meta-markers are

selected based on the number of times they were DE across datasets.

(D) Spearman correlation of standard DE statistics for putative markers (averaged over cell types and datasets). We highlight two independent groups of

statistics that can serve as a proxy for coverage and signal-to-noise ratio.

(E) Recurrent DE genes in glutamatergic neurons, using AUROC as a proxy for coverage and fold change of detection rate as a proxy for signal-to-noise ratio.

Gene names and lines highlight the Pareto front of markers, which offer optimal trade-off between signal-to-noise and coverage.

(F) Pareto fronts for neuronal classes (glutamatergic neurons, GABAergic neurons, and nonneuronal cells) in the coverage/signal-to-noise space. We

subdivide markers as perfect (high coverage and signal-to-noise), specific, sensitive, or weak (low coverage and signal-to-noise).

(G) Illustration of sensitive (high target expression, some background expression), perfect (high target expression, no background expression), and specific

(low target expression, no background expression) markers along the glutamatergic Pareto front. See also Figure S1.
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signal-to-noise ratio (Figures 1C and 1D). The first block of statistics contained average gene expression

and intuitively mapped to the notion of coverage; it also included the DE p value and the detection

rate, which are strongly indicative of genes that are broadly expressed. The second block contained the

FC and the FC of detection rate and intuitively mapped to the notion of signal-to-noise ratio. The lack

of correlation between the two blocks indicates that there is trade-off; genes have a ‘‘choice’’ between fa-

voring coverage and signal-to-noise ratio. Note that this is broadly consistent with long-standing heuristic

practice of considering both p value and FC in bulk DE through volcano plots (Cui and Churchill 2003;

Goedhart and Luijsterburg 2020). In the following, we use the area under the receiver-operator character-

istic curve (AUROC) as our proxy for coverage (as used in Seurat’s ROC test (Stuart et al., 2019) or LIGER’s

marker detection (Welch et al., 2019; Liu et al., 2020)), FC of the detection rate (FCd) as our proxy for signal-

to-noise when we consider individual markers (as used inM3Drop [Andrews and Hemberg 2019]), and FC as

our proxy for signal-to-noise when we consider marker lists (as used in the traditional Volcano plot [Cui and

Churchill 2003]).

In a FC/AUROC representation, genes offering a trade-off from best signal-to-noise marker to highest

coverage marker form a Pareto front of markers (Figure 1E). The Pareto front representation offers a rapid

visualization of the strength of markers that can be associated with any given cell type. Based on our explo-

ration of the datasets, we subdividedmarkers as perfect (high coverage, AUROC>0.8, high signal-to-noise,

FCd >8), specific (high signal-to-noise), sensitive (high coverage), or weak (DE, but low coverage and low

signal-to-noise). As expected, the Pareto fronts associated with glutamatergic andGABAergic cells contain

perfect markers (Figure 1F) that identify these populations with high confidence across all technologies

sampled, such as Gad1 for GABAergic cells and Neurod2 for glutamatergic cells. In contrast, there is no

perfect marker for nonneuronal cells: their Pareto front only includes highly sensitive markers such as Qk

(highly expressed in nonneurons but also expressed in neurons) and highly specific markers such as the

Slco1c1 transporter (high signal-to-noise, but not covering all nonneurons), consistent with the heteroge-

neous nature of nonneurons and the need to use several markers in conjunction (Figure 1F). Remarkably,

the Pareto fronts were composed of perfectly recurring genes, i.e. genes that are reliably DE across all data-

sets (Figure 1E, FC > 4, FDR <0.05). Conversely, this implies that markers selected based on recurrence

(number of datasets where they are reliably DE) naturally range from highly sensitive to highly specific.

In contrast, high AUROC markers have high sensitivity but low specificity.

To illustrate that the chosen statistics and thresholds offer an intuitive understanding of coverage and

signal-to-noise ratio, we plotted the expression of markers along the glutamatergic Pareto front in one

of the BICCN datasets (Figure 1G). Highly sensitive markers (Arpp21 and Sv2b, AUROC >0.8) are expressed

in all glutamatergic cells at high levels but are also expressed in background cells (e.g., high expression of

Arpp21 in the Vip, Sncg, and Lamp5 cell types). The highly specific marker (Exph5, FCd >8) is expressed

almost exclusively in glutamatergic cells, but not in all cells, indicating high drop-out propensity or cell-

type-specific expression (e.g., it is almost not expressed in L5/6 NP). Finally, the perfect markers (Satb2

Table 1. List of Brain Initiative Cell Census Network (BICCN) datasets used in this study

Dataset Brain regions Assay Technology # Cells # Cell types # Genes detected # UMIs/reads

scSS MOp Cell SmartSeq 6,288 61 9,420 1,750,664

snSS MOp Nucleus SmartSeq 6,171 46 4,363 613,762

scCv2 MOp Cell 10X v2 122,641 90 4,594 12,697

snCv2 MOp Nucleus 10X v2 76,525 43 1,716 3,145

snCv3M MOp Nucleus 10X v3 159,738 113 4,237 12,060

scCv3 MOp Cell 10X v3 71,183 78 7,282 46,148

snCv3Z MOp Nucleus 10X v3 40,166 67 3,445 16,088

AUD AUD Cell 10X v2 71,670 203 3,969 10,105

Isocortex-hippocampus 21 Cell SmartSeq 827 to 16,318 13 to 183 6,099 to 9,006 488,099 to 2,016,775

Isocortex-hippocampus 19 Cell 10X v2 18,307 to 216,203 166 to 263 2,874 to 4,944 6,102 to 15,272

All datasets are mouse datasets. MOp corresponds to the primary motor cortex and AUD to the auditory cortex. The ‘‘# genes detected’’ column contains the

median number of genes detected per cell. The ‘‘# UMI/reads’’ column contains either themedian number of reads per cell (for SmartSeq datasets) or themedian

number of UMIs per cell (for 10X datasets).
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and Neurod2) cover almost all cells of interest and have very limited background expression. To further

investigate if our simple metrics capture known marker genes, we investigated the Pareto fronts of inhib-

itory subclasses as defined by the BICCN. We found that all classical markers were on the Pareto front (Fig-

ure S1H), classified as perfect markers (Pvalb, Lamp5) or highly sensitive markers (Sst, Vip), with the notable

exception of Sncg, which was only imperfectly detected in most datasets (low coverage, high signal-to-

noise). A look at the Pareto front of the Sncg population suggests that multiple genes would offer better

coverage than Sncg while preserving a high signal-to-noise ratio, in particular Cadps2, Frem1, andMegf10

(Figure S1I) but that all markers tend to have some background expression in the Vip Serpinf1 cell type. For

glutamatergic subclasses, the Pareto fronts suggested that all subclasses have perfect markers, except for

IT subclasses, consistent with previous observations of gradient-like properties (Tasic et al., 2018; Yao et al.,

2021a, 2021b) (Figures S1J and S1K).

The FC/AUROC plot rapidly informs about the maximal strength of markers that can be expected for any

given cell type. In contrast to the volcano plot, which is based on one effect size and one significance sta-

tistic (Goedhart and Luijsterburg 2020), FC/AUROC plot relies on two effect sizes. Because we obtain repli-

cable statistics by combining values over multiple datasets, we remove the need to visualize significance

and obtain a plot with two interpretable dimensions of marker strength: signal-to-noise ratio and coverage.

Typically, for each population, we suggest building the FC/AUROC plot across at least 5 datasets, identify

genes on or next to the Pareto front, visualize their expression across datasets to appreciate the optimal

coverage/signal-to-noise trade-off, and then select the best marker(s) for the application at hand.

The strength of individual markers decreases with finer cell-type resolutions

The BICCN defined three levels of cell types: classes (such as glutamatergic neurons), subclasses (such as

PV + interneurons), and clusters (such as Chandelier cells) (Figure 2A). Although classes and subclasses had

been previously experimentally characterized and showed strong statistical robustness across datasets,

clusters obtained from independent datasets were more elusive (Yao et al., 2021a). To further characterize

how distinct cell types are, we evaluated the number of replicable markers with increasing clustering res-

olution. We controlled for the increasing number of cell types by using a hierarchical approach, for

example, we compared a cluster with clusters from the same subclass only (Figure 2A).

To investigate how the number and quality of markers depends on the cell-type hierarchy, we extracted all

reliable markers (FC > 4, FDR<0.05) and classified them as perfect (AUROC >0.8 and FCd >8), sensitive

(AUROC >0.8), specific (FCd >8), and weak (FDR <0.05). We observed an overall decrease in the median

number of markers when going from coarse to finer resolution (397 total markers at the class level, 108

at the subclass level, 35 at the cluster level), confirming that the signal that separates neighboring popu-

lations becomes increasingly weaker (Figure 2B). We found that all classes and subclasses had at least

one perfect marker except for nonneurons and IT subclasses (Figures 2B–2E). In contrast, only around

50% of clusters had a perfect marker (Figures 2F and S2A–S2D). This proportion dropped to 25%, with

the additional requirement that the marker should be robust across all technologies (Figure S2A). Strik-

ingly, a handful of clusters had extremely strong support, totaling close to 50 perfect markers in some of

the datasets. Upon closer investigation, these clusters corresponded to experimentally identified popula-

tions, such as the long-projecting interneurons (Paul et al., 2017; Tasic et al., 2018) (Sst Chodl, up to 43 per-

fect markers) or Chandelier cells (Paul et al., 2017; Tasic et al., 2018) (Pvalb Vipr2, up to 20 perfect markers),

suggesting that for these cell types, experimentally characterized differences in morphology and physi-

ology are reflected by a high number of marker genes. Reassuringly, almost all clusters had at least one

specific marker, suggesting the presence of unique characteristics (Figures 2F and S2B).

Althoughmore data are needed to experimentally validate cell types, we wondered whether the number of

markers would be predictive of computational replicability. Intuitively, a higher number of markers indi-

cates unique aspects in a population’s transcriptional program, which should increase its identifiability

across datasets. We assessed cluster replicability using MetaNeighbor, which tests the consistency of

cell types across datasets using a neighbor voting framework: intuitively, if two clusters represent the

same cell type, they will preferentially vote for each other (see STAR Methods). We found that cluster repli-

cability was indeed associated with the number of markers (rho = 0.4, Figure 2G). To understand why repli-

cability and number of markers are only partially associated, we further investigated the relationship in the

best-powered datasets. We noted that, although a high number of markers was associated with higher

replicability, a low number of markers did not imply low replicability (Figure 2H). Some clusters, such as
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Figure 2. Markers are associated with higher cluster replicability, but become rare at finer resolutions

(A) Schematic of the BICCN taxonomy. Markers are selected hierarchically: each cluster is only compared with its direct neighbors in the hierarchy (dashed

lines).

(B) Number of reliable markers (FC > 4, FDR<0.05) along the BICCN cell-type hierarchy, according to marker type: perfect (AUROC >0.8 and FCd >8),

sensitive (AUROC >0.8), specific (FCd >8), and weak (FDR <0.05).

(C) Number of markers of each type for BICCN classes; error bars are interquartile range across datasets.

(D) Same as C for glutamatergic subclasses.

(E) Same as C for GABAergic subclasses.

(F) Number of markers of each type for BICCN clusters, with cell types ordered according to number of markers. Ribbons indicate interquartile range across

datasets.

(G) Association between number of makers and cross-dataset MetaNeighbor replicability score at the cluster level (Spearman correlation, one dot per BICCN

dataset). Boxes show the first quartile, median and third quartile, whiskers extend to the smallest and larget values up to 1.5 interquartile range from the box.

(H) Illustration of association of replicability (MetaNeighbor score) and number of markers in the scCv2 dataset. See also Figure S2.
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Lamp5 Slc35d3, are found independently in all BICCN datasets and match with high statistical confidence

(MetaNeighbor replicability >0.7), despite the absence of strong markers. However, we noted that these

clusters usually had a high number of specific markers (Figure S2E). Conversely, we found some instances

of clusters with low replicability and high number of markers (e.g., Pvalb Nkx2.1, Figure S2F), but, upon

further investigation, all identified ‘‘markers’’ were stress-related genes likely to be artefacts of the extrac-

tion protocol. Overall, the imperfect association of markers and replicability suggests that individual

markers only provide a partial view of cell-type identity, which is encoded broadly across the transcriptome.

Meta-marker aggregation enables near-optimal cell-type descriptions

Our previous results suggest that, at the finest level of resolution, single markers are not sufficient to unam-

biguously identify cell types (only �10 genes with AUROC >0.8 at the subclass level; Figure 3A). These

results are consistent with the ideas that markers are affected by dropout and that clustering procedures

capture information from the full transcriptome. We next tested if cell-type identity can be efficiently char-

acterized by redundant marker lists. In particular, we ask how many markers contribute to make cell types

more unique and how the selection of replicable markers improves cell-type characterization.

To study how the number of markers affects cell-type identifiability, we framed gene aggregation as a clas-

sification task (Figure 3B). How well can we predict cell-type identity for the average expression of an

increasing number of markers? We first created ranked marker lists for each dataset by ranking genes

according to their AUROC. To test the effect of meta-analytic marker selection, we used cross-dataset vali-

dation: we computed marker replicability across 6 datasets and predicted cell types on the held-out data-

set. To rank meta-analytic markers, we used two criteria: first, the number of datasets in which they were

reliable DE (FC > 4, FDR<0.05) and second, the average AUROC. To predict cells that belong to a given

cell type, we ranked cells based on the average expression of the top N markers for that cell type. We visu-

alized performance in the FC/AUROC space, displaying classification results as a trade-off between

coverage (AUROC) and signal-to-noise ratio (FC). We found that marker aggregation improved cell-type

identification at all levels of the hierarchy, independently of the marker prioritization strategy (Figures

3C–3E). Coverage reached an optimum between 10 and 200 genes (Figures 3C–3E), at the cost of a slightly

lower signal-to-noise ratio (class, FC = 6 to 6; subclass, 6 to 5; cluster, 5 to 3). Optimal performance was

reached between 50 and 200 genes for classes, 20 and 100 genes for subclasses, and 10 and 50 genes

for clusters.

Meta-analytic markers systematically outperformed single dataset marker genes in terms of coverage (Fig-

ure 3F; class, AUROC = 0.92 to 0.99; subclass, 0.9 to 0.99; cluster, 0.85 to 0.95), signal-to-noise ratio (Fig-

ure 3G), and number of relevant genes (Figure 3F). In other words, the best candidates in a single dataset

by a single metric are ‘‘too good to be true.’’ The gain in signal-to-noise ratio is particularly apparent at the

cluster and subclass levels (Figures 3D and 3E), suggesting that the meta-analytic approach successfully

extracts and combines lowly expressed markers. We checked that all results were robust to another marker

prioritization strategy, where we ranked genes by FC instead of AUROC (Figures S3A–S3C).

We further investigated how the performance was distributed within hierarchy levels and across datasets

(Figures S3D–S3O). The overall classification performance (AUROC) increased with dataset depth (Fig-

ure S3D). More surprisingly, the signal-to-noise ratio was approximately constant across datasets (Fig-

ure S3H), and the number of relevant markers was slightly lower for high-depth datasets (Figure S3L).

Classification performance was high for all classes and subclasses (median AUROC >0.99, median

FC > 3; Figures S3E, S3F, S3I, and S3J), with the notable exception of L5 IT and L6 IT (AUROC <0.99,

FC < 3). The classification performance had a wide variance at the cluster level (AUROC ranging from

0.9 to 1, FC ranging from 1.5 to 8; Figures S3G and S3K), and 32/85 cell types had a low signal-to-noise ratio

(median FC < 2; Figure S3G). Finally, we found that the ideal number of markers ranged from 10 to 200 and

was remarkably consistent within each hierarchy level (Figures S3L–S3O).

Meta-marker enrichment is robust across datasets

Automatic annotation of cell types typically involves two steps: (1) prioritize cells that are most likely to

belong to a given cell type; (2) annotate cells that exceed a prespecified threshold condition. The threshold

indicates that there is enough evidence to proceed with the annotation, for example, preventing misanno-

tation when a cell type is missing in the reference dataset. In the previous assessment, we showed

that meta-analytic marker lists successfully prioritize cells, without explicit consideration for correct
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Figure 3. Meta-analytic aggregation of markers considerably improves the coverage/signal-to-noise trade-off

(A) Cell-type classification performance of single markers as a function of marker rank.

(B) Schematic of classification task using cross-dataset validation for markers from single datasets and meta-analytic markers.

(C) Cell-type classification performance of aggregated markers (average expression) with increasing number of markers. Performance is plotted as a

parametric curve in a coverage (AUROC), signal-to-noise (fold change) space similar to Figure 1. The arrow points toward an increasing number of markers,

and the numbers next to the dots show the number of genes at which performance was measured (shown in full as an example for one arrow, otherwise

highlighting optimal performance).

(D) Same as C at the subclass level.

(E) Same as B at the cluster level.

(F–H) Coverage (F), signal-to-noise ratio (G), and average number of genes (H) at optimal coverage as a function of hierarchy level. Boxplots show median

and interquartile range (F, G), and bar plot shows mean and standard deviation (H) across datasets. In all panels, colors indicate whether markers were

prioritized according to a single dataset or using the meta-analytic approach. See also Figure S3.
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Figure 4. Aggregated expression of meta-analytic markers enables robust identification of cell types

(A) Schematic of threshold-based classification. The initial steps of the procedure are identical to Figure 3.

(B) Illustration of statistics measuring cell-type annotation performance at various thresholds. For a given dataset, cell type and number of genes (scSS

dataset, Pvalb subclass, 100 genes in the illustration); F1opt is the score obtained by picking the single best threshold, indicated by a dot. The line indicates

the range of near-optimal thresholds (leading to a performance higher than 0.9*F1opt).

(C) Comparison of near-optimal expression thresholds across datasets (for Pvalb subclass and 100 genes). The position of the dotted line (F1meta) is

obtained by averaging optimal expression thresholds across datasets.

(D) Similar to B, but defining optimal thresholds based on proportion of marker expression instead of expression.
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thresholding. We wondered whether marker expression was sufficiently consistent to be compatible with a

simple thresholding method: a cell belongs to a given cell type when its marker expression exceeds the

same prespecified value for each test dataset.

For each dataset in the compendium, we computed the annotation performance at various threshold

values (Figure 4A). For example, in the Pvalb subclass, meta-analytic markers had a high maximal perfor-

mance (F1opt>0.9) across all datasets (Figure 4C). In addition, the maximal performance had a distinctive

plateau, indicating that a large range of thresholds had almost equivalent performance, as expected from

the meta-markers’ tendency to preserve a high signal-to-noise ratio. To visualize how well optimal thresh-

olds aligned across datasets, we defined the plateauing region as the thresholds that had at least 90% of

the maximal performance (Figure 4B). Although there was a large plateau in all datasets, the plateaus did

not align well, suggesting normalization issues (Figure 4C). As a result, a meta-analytic threshold leads to

good performance in most datasets, but fails in dataset with extreme properties, such as snCv2 (nuclei,

10X v2, low depth) or scCv3 (cells, 10X v3, high depth).

To overcome the normalization discordance, we reasoned that the normalization issues are mainly driven

by nonmarker genes. Instead of considering marker expression for each cell type independently, we

divided marker expression by the total marker expression (across all putative cell types). After this change,

plateaus of optimal thresholds aligned across all datasets (Figure 4D), suggesting that marker lists have

preserved relative contributions in all datasets. To assess the utility of marker-wide renormalization, we

directly compare how much performance is lost by switching from dataset-specific thresholds (optimal

threshold per dataset) to a consensus threshold. The decrease in performance was systematically lower

with marker-wide renormalization for classes and subclasses and was generally lower for clusters

(Figure 4E).

We compared the performance achieved for transcriptome-wide and marker-wide normalization as a func-

tion of the number of markers (Figures 4G–4H, S4A and S4B) and within each hierarchical level (Figures 4F

and S4C–S4E). Both methods reached high classification performance at the class and subclass level

(optimal average F1 > 0.75; Figures 4G and 4H), but the average performance was considerably lower at

the cluster level. Marker-wide normalization yielded substantially higher classification performance

(DF1 � 0.1) and reached peak performance by successfully integrating a higher number of genes

(50–500 markers; Figures 4G and 4H). Performance was distributed unequally within hierarchy level, in

particular for subclasses and clusters (Figure 4F). Almost all subclasses reached optimal performance

around 100–200 markers with a high performance (F1 > 0.75), with the exception of L5 IT, L6 IT, and

Sncg. At the cluster level, the performance degraded substantially: peak performance was attained around

50–100 markers, with only 43/85 of cell types reaching high performance (F1 > 0.75). All these trends were

consistent with results obtained using transcriptome-wide normalization, with overall higher annotation

performance (Figures S4C–S4E).

Meta-markers are enriched for genes involved in synaptic regulation and development

We next wondered if top meta-markers were enriched for specific biological processes. We performed

gene set enrichment analysis for the top markers in each cell type against gene ontology (GO) terms

from the biological process (BP) ontology. To focus on specific processes, we only queried terms contain-

ing between 20 and 100 genes. For each cell type, we extracted the top 3 enriched terms based on the

false discovery rate (FDR) from the hypergeometric test. We found that the top 100 markers offered a

good balance between number of enriched terms and cell-type specificity for both classes and subclasses

(Figures 5A, S5A).

We found strong enrichment for synaptic properties for all cell types. At the class level, nonneuronal

markers were enriched for synaptic support functions, such as ‘‘Regulation of neuronal synaptic plasticity’’

Figure 4. Continued

(E) For each cell type, we show how much performance is lost by switching from a dataset-specific threshold (F1opt) to a single meta-analytic threshold

(F1meta) for the two types of thresholds (CPM expression, marker expression proportion). Colors indicate hierarchy level; the dashed line is the identity line

(performance loss is identical for the two types of thresholds).

(F) For each hierarchy level, heatmap detailing classification performance for each cell type as a function of the number of genes.

(G and H) Average performance as a function of the number of genes using the optimal meta-analytic expression threshold (G) or optimal marker expression

proportion threshold (H). Ribbons show interquartile range across populations and test datasets. See also Figure S4.
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(Figure 5B). Glutamatergic neurons were enriched for synaptic regulation (such as the regulation of

GABAergic transport), while GABAergic neurons were enriched for gene sets related to the regulation

of spine and dendrite formation. At the subclass level (Figures 5C and 5D), GABAergic neurons were

most distinguishable based on synaptic subproperties, such as localization to synapse (Vip), synapse as-

sembly (Sst, Lamp5), or glutamate transmission regulation (Sncg). Glutamatergic subclasses showed a

similar enrichment of synaptic sub-properties, including various aspects of potential regulation and synap-

tic transmission (L6b, L6 IT, L2/3 IT, L5/6 NP), as well as synaptic development (L6 CT, L5 IT, L5 ET). We

further confirmed that these findings were consistent with the enrichment of the top 200 markers, which

also highlighted gene sets involved in synaptic regulation and development (Figures S5B–S5D). These re-

sults suggest that meta-markers define a plausible biological subspace revealing cell-type differences in

terms of synaptic properties.

Meta-markers improve deconvolution performance

One of the primary purposes to which cell atlas data may eventually be put is deconvolution of bulk data

where cell composition is likely related to the condition of interest (e.g., disease). Single-cell data have

been routinely used to increase deconvolution performance in recently developed tools (Tsoucas et al.,

2019; Wang et al., 2019; Newman et al., 2019; Dong et al., 2021), but performance remains plagued by

batch effects and cell-type similarity (Newman et al., 2019; Huang et al., 2020; Avila Cobos et al., 2020).

The role of marker genes in deconvolution remains particularly unclear: a recent benchmark suggests

A

C D

B

Figure 5. The top 100 meta-markers are enriched for specific synaptic processes

(A) Total number of significantly enriched GO terms (orange) and fraction of significant GO terms that are enriched in a

unique cell type (blue) for BICCN subclasses when an increasing number of meta-markers are considered.

(B) Top 3 enriched gene ontology (GO) terms for the top 100 meta-markers for each BICCN class. For each dot, the size

reflects the false discovery rate (FDR), and the color reflects the odds ratio (OR) of the enrichment test (hypergeometric

test).

(C) Same as B for the top 100 meta-markers for BICCN GABAergic subclasses.

(D) Same as B for the top 100 meta-markers for BICCN Glutamatergic subclasses (only top 2 terms per cell type are

shown). See also Figure S5.
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that the quality of markers is more important than the deconvolution method (Avila Cobos et al., 2020), and

in most studies the influence of the number of markers is only partially assessed (Newman et al., 2019; Hunt

and Gagnon-Bartsch 2021). Our annotation assessment suggested that cell types are best captured with

10–200 meta-analytic markers; deconvolution is a natural place to test this heuristic.

To measure the number of genes that yield maximal deconvolution performance, we generated thousands

of pseudo-bulk datasets with known mixing proportions from each of the BICCN datasets (Figure S6A). As

in previous experiments, we directly compared the performance of markers extracted from single datasets

and performance of meta-analytic markers. We initially compared two tasks: (1) within-dataset cross-vali-

dation, where cell-type profiles are learned from a training fold and tested on a held-out set from the

same dataset and (2) cross-dataset-validation, where profiles are learned on one dataset and tested in

another dataset. Within-dataset cross-validation proved to be a simple task, yielding extremely high

performance (median Pearson correlation coefficient (PCC)� 1, not shown). In contrast, cross-dataset-vali-

dation showed only modest performance (median PCC ranging from 0 to 1; Figure S6B), highlighting the

difficulty of the deconvolution task. Because deconvolution applications typically involve different data-

sets, we focused our analyses on cross-dataset validation.

Deconvolution performance rapidly degraded along the neuron hierarchy (Figure S6B), ranging from

almost perfect performance for classes (median PCC �1) to low performance for clusters (median

PCC <0.5). Classes were highly learnable across all tasks (Figure S6C), even using random genes, suggest-

ing that at this level of the hierarchy, cell types are strongly uncorrelated and can easily be separated along

the first principal component. At the subclass level, the performance of random genes remained close to 0,

suggesting stronger covariation compared with classes (Figure S6D). Meta-analytic markers yielded more

robust deconvolution performance, with performance increasing up to 100 genes, whereas markers from

single datasets prioritized only around 10 informative genes. The trend was similar at the cluster level

but with lower overall performance (Figure S6E). Meta-analytic markers again proved to be more robust,

prioritizing around 50 informative genes compared with 10–20 from single datasets. Overall, our results

suggest that, in conjunction with batch effects, the increasing covariation of cell types at finer resolution

significantly complicates the deconvolution task. However, at the subclass level, the prioritization of a large

number of robust marker genes is an important first step toward successful deconvolution.

Meta-markers reveal a generalizable description of cell types

We have previously shown that meta-marker signatures generalize across laboratories and technologies.

We next asked how well they generalize across the cortex by predicting cell types in a BICCN dataset

combining multiple cortical and hippocampal brain regions (Yao et al., 2021b). To understand how easily

meta-markers generalize, we used a straightforward annotation method: assign cells to the cell type with

the highest average meta-marker expression. For simplicity, we considered the same number of meta-

markers for all cell types: 100 at the class and subclass level, 50 at the cluster level.

We started by predicting cell types in the auditory cortex sub-dataset, containing 71,670 cells annotated to

203 cell types. We chose to focus on the auditory cortex because of its large number of cells and to inves-

tigate the generalizability of cell types derived from a motor area (MOp) to a sensory area. Although inhib-

itory cell types are expected to generalize, excitatory cell types have been shown to have divergent

patterns (Tasic et al., 2018). At the class level, top meta-markers enabled perfect classification down to

every single cell (Figure 6A). Assignments can be traced back to meta-marker scores, as well as individual

genes (Figure 6B). Consistent with our previous points, the GABAergic score is uniformly high across all

cells labeled as GABAergic. In contrast, the expression of the single best marker, Gad1, is more variable

in GABAergic cells and displays sporadic expression in non-GABAergic cells.

Remarkably, at the subclass level, meta-markers enabled similarly strong cell-type assignments, as sug-

gested by the uniform coloring of clusters in UMAP space (Figure 6C). Note that the assignments occur

in each cell independently, without knowledge about clusters or expression profiles of neighboring cells,

highlighting the consistency of meta-marker expression. This procedure allowed the identification of rare

cell types, even when only one or two cells were present in the dataset (e.g., smooth muscle cells and peri-

cytes, Figure S7B). The predicted assignments corresponded almost perfectly to the reference cell types

(Figure 6C). The main exception were deep layers IT cell types, in particular one group of L5 IT cells tended

to be assigned as L4/5 IT or L6 IT (Figure S7C). Finally, cluster-level predictions also proved extraordinarily
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consistent, with smooth transitions between cell types that mapped with auditory cortex reference anno-

tations (Figure S8).

To further highlight high-quality predictions, we quantified assignment confidence using meta-marker

enrichment (observed expression over expected expression, see STAR Methods) as a ‘‘QC’’ metric. In

the auditory cortex, we found that a threshold of 1.5 offered an optimal trade-off between annotation recall

and precision (Figures S9A–S9C). Raising the threshold to 2 further selected high-confidence calls, yielding

higher precision for slightly lower recall. Interestingly, cells that became unassigned were mostly located in

regions where predictions and reference disagreed: deep IT layers and inhibitory neurons bridging medial

ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) subclasses (Figure S7A). Meta-marker

enrichment thus offers a good proxy for prediction quality, enabling to identify cells with a high-confidence

cell-type assignment.

Next, we systematically quantified the agreement of meta-marker-based predictions and reference anno-

tations across all brain regions and 43 consensus subclasses. We found exceptionally good agreement,

with all reference subclasses mapping to exactly one predicted MOp subclass (Figure 6D). All MOp sub-

classes matched strongly with their ‘‘natural’’ counterparts in the reference dataset, such as ‘‘L2/3 IT’’

with ‘‘L2/3 IT CTX-1.’’ Remarkably, reference cell types absent in MOp (such as hippocampal cell types)

were mostly labeled as ‘‘unassigned,’’ suggesting that meta-marker signatures correctly avoid labeling un-

seen cell types. This trend became particularly obvious for cells with marker enrichment >2 (Figure S9D),
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Figure 6. Meta-analytic markers from the primary motor cortex (MOp) generalize to other cortical regions

(A) Example of class-level predictions in the auditory cortex (AUD), where cells are embedded in UMAP space and colored according to predictions based on

the top 100meta-markers for MOp classes. Cells are assessed independently and remain unassigned (NA) if the marker enrichment score is lower than 1.5 for

all classes.

(B) Marker scores (renormalized between 0 and 1) used to determine cell-type assignments. The first subpanel shows the score obtained from a single

GABAergic marker; the three other panels show the scores obtained by combining the top 100 meta-markers for each class.

(C) Subclass-level predictions in the auditory cortex based on the top 100 MOpmeta-markers (left) and reference labels (right). Cells remain unassigned (NA)

if the marker enrichment score is lower than 1.5 for all subclasses. See panel D for color legend (some reference cell types are absent from AUD).

(D) Confusion matrix showing the concordance of subclass-level predictions based on the top 100 meta-markers with reference cell types across 40 brain

areas. Cells are unassigned if the marker enrichment is lower than 1.5 for all subclasses. See also Figures S7, S8, S9.
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where all unseen cell types became ‘‘unassigned,’’ while conserving high matching scores between shared

cell types.

DISCUSSION

By assessing marker replicability across 7 datasets, we selected robust markers and identified the optimal

number of markers to define a cell type. Our contribution is 3-fold. First, we found that 5 datasets are neces-

sary to obtain reliable FC estimates for individual genes. Second, we found that aggregating genes

enabled to reliably identify individual cells and estimated that there is an optimal 50 to 200 markers per

cell type. Finally, we proposed ready-to-use marker lists for 85 cell types from the mouse primary motor

cortex identified by the BICCN (Data 1,2, and 3).

Compared with previous efforts (Tasic et al., 2018; Mancarci et al., 2017; Yao et al., 2021a), we identified a

high number of robust markers at high cell-type resolution: at the BICCN cluster level, cell types were best

characterized by 10–200 meta-analytic markers, a 2-fold increase of reliable markers compared with

markers selected from single datasets (Figure 3). Interestingly, we found that only 50% of clusters had

strong markers (Figure 2) but that some of the clusters lacking strong markers (e.g., Lamp5 Slc35d3)

were consistently identified in all BICCN datasets, suggesting broad encoding of their identity and high-

lighting the need of extended marker signatures.

We found that the simple aggregation of marker expression enabled the annotation of individual cells (Fig-

ure 4), suggesting that careful feature selection is enough to provide a rough definition of cell types.

Remarkably, marker lists derived from a single cortical region generalized with high accuracy to other

cortical regions without any methodological fine-tuning (Figure 5). By introducing redundant information

about cell types, meta-analytic markers dramatically increased cell-type separability (Figure 3). However,

addingmoremarkers is only beneficial if they are cell-type specific. As a result, we established that the ideal

number of markers decreases with cell-type resolution: 200 genes to separate classes (lowest resolution,

e.g., GABAergic neurons), 100 genes for subclasses (e.g., Pvalb interneurons), and 50 genes for clusters

(highest resolution, e.g., Chandelier cells).

By combining datasets that were generated using different technologies, themarkers we propose are likely

to generalize well with respect to this axis of variation. Moreover, we show that our marker descriptions

generalize to other cortical regions, despite all ‘‘training’’ datasets sampling from the same cortical region.

However, the data used in this study were obtained from adult mice with limited genetic background and

grown in lab conditions. As a result, it remains unclear how well the marker descriptions would generalize

across development or biological conditions. On the other hand, as our approach relies on a simple pro-

cedure, marker lists can easily be extended to incorporate new sources of variation, such as additional brain

regions, species, or biological conditions. On a similar note, markers depend on one particular annotation

effort, but we can expect the neuron taxonomy to evolve with additional data, in particular the fine-reso-

lution clusters. Our framework, available as an R package, allows user to rapidly evaluate the consistency

of marker expression for new cell-type annotations.

This study focused on the neuron hierarchy, but our strategy generalizes to other tissues. In order to

encourage broader adoption, we have made our code available as a package, and in the vignette we

show how our analyses and guidelines can be similarly applied to a pancreas compendium. We chose to

focus on the BICCN dataset because of its complexity (85 neuronal cell types), comprehensiveness

(�500,000 cells with latest sequencing technologies), and diversity (6 technologies used). Our results

suggest that, in the brain, there is a clear separation at the top two levels of the hierarchy (3 classes, 13 sub-

classes) but that the molecular signature of half the clusters remains unclear. We expect that similar con-

clusions can be drawn for other tissues, such as blood, where there is a similar hierarchical organization

of cell types.

To highlight the replicability of marker descriptions, our results rely on simple methods, but marker lists can

easily be combined with more sophisticated methods for marker selection or cell-type assignment. For

example, experimental applications routinely require either a few specific markers to target one cell

type (Huang 2014) or a panel of hundreds of markers to jointly separate all cell types (Moffitt et al.,

2018). Marker lists can be combined with methods to select concise sets of markers (Asp et al., 2019; Zhang

et al., 2019; Dumitrascu et al., 2021) by filtering candidates that are likely to generalize. Similarly,

ll
OPEN ACCESS

14 iScience 24, 103292, November 19, 2021

iScience
Article



development studies (Hobert 2008; Huang 2014; Kessaris et al., 2014; Lodato and Arlotta 2015; Mayer et al.,

2018; Tosches et al., 2018) indicate that neural lineages are marked by the specific onset and offset of key

transcription factors (TFs), but the expression of these key TFs may not bemaintained at later stages or only

at low levels. Because our approach is powered to identify lowly expressed markers, it can be combined

with time series data to help identify replicable lineage-specific genes.

For cell-type annotation, we used a simple classification scheme based on thresholding averaged marker

expression, which can be seen as a baseline that can be easily and rapidly applied without specialized ma-

chine learning knowledge. More sophisticatedmethods, such as random forests, support-vector machines,

or neural networks, may yield better results, generating a trade-off between simplicity of use and accuracy.

In a recent benchmark, high-resolution cell types proved difficult to annotate (Abdelaal et al., 2019), sug-

gesting that our results provide a strong baseline compared with state-of-the-art performance.

To establish the marker lists, we rely on the averaging of simple marker statistics, which may be extended in

several ways: first, by using a weighted average that depends explicitly on dataset quality (number of cells,

median number of detected genes) and second, by taking into account the variance of AUROC and FC

within and across datasets. The within dataset variance can be used to guide the averaging across datasets,

with low-variance datasets being allocated higher weights (similar to the weighting used in fixed-effect

meta-analysis). The variance of an estimator across datasets also provides important information that

can guide marker choice. A low variance indicates uniform performance across, e.g., sequencing technol-

ogies and therefore higher potential to replicate.

In conclusion, replicable markers are a promising avenue to define a generalizable and shareable charac-

terization of cell types, reducing rich atlas-level information to a prioritized list that is simple to use and

refine. New computational methods will benefit from highly condensed prior information about genes in

the cell-type space, without having to train on large reference datasets. As new datasets are generated,

marker lists will become increasingly robust to new sources of variation, leading to higher downstream per-

formance across a diverse array of tasks.

Limitations of the study

Cell types and markers were defined based on transcriptional data, which only captures a facet of the true

underlying biological types (Kim et al., 2020; Scala et al., 2020). We focused on brain types, which have

clearly defined characteristics, such as their localization, morphology, or electrophysiological characteriza-

tion. In other tissues, marker selection may be complicated by the presence of more continuously distrib-

uted cell types or the absence of a clear hierarchical relationship between cell types. Ideal markers have a

binary pattern (expressed only in the cells of interest), but we showed that this is rarely the case in practice,

particularly at the individual cell level. By aggregating imperfect markers, we move from close-to-binary

patterns to continuous distributions of marker scores that robustly identify cell types. This approach is ex-

pected to hold for cell types that are defined by weaker markers, such as gradient-like genes, where expres-

sion patterns are continuous to begin with. Finally, to identify recurrent markers, cell types must be aligned

across studies before marker selection. This may be achieved by merging datasets and performing joint

clustering (Stuart et al., 2019; Welch et al., 2019) or identifying replicable cell types (Crow et al., 2018).
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, Jesse Gillis

(jgillis@cshl.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in

the key resources table. The full meta-marker lists for the BICCN cell types and optimal number of

markers have been depositied on FigShare and are publicly available as of the date of publication.

DOIs are listed in the key resources table.

d All original code has been deposited at Github at https://github.com/gillislab/MetaMarkers and is pub-

licly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We downloaded the mouse primary cortex (MOp) BICCN datasets and cell type annotations from the

NeMO archive (http://data.nemoarchive.org) according to author instructions (Yao et al., 2021a). We

considered the 7 transcriptomic datasets from the mouse primary cortex: single cell Smart-Seq (scSS), sin-

gle nucleus Smart-Seq (snSS), single cell Chromium v2 (scCv2), single nucleus Chromium v2 (snCv2), single

cell Chromium v3 (scCv3), single nucleus Chromium v3 from the Macosko and Zeng labs (scCv3M and

scCv3Z, respectively)(Table 1). We kept all cells with ‘‘class’’ annotated as ‘‘Glutamatergic’’, ‘‘GABAergic’’

or ‘‘Non-Neuronal’’ and kept genes that were common to all datasets, arriving at a total of 482,712 cells and

24,140 genes. We normalized counts to counts per millions (CPM). For cell types, we considered five levels

of annotations provided by the BICCN: ‘‘class’’, ‘‘subclass’’, ‘‘cluster’’, ‘‘joint_subclass’’ and ‘‘joint_cluster’’.

‘‘subclass’’ and ‘‘cluster’’ labels were obtained by clustering and annotating the datasets independently,

while ‘‘joint_subclass’’ and ‘‘joint_cluster’’ labels were obtained through joint clustering and annotation.

Throughout the manuscript, we use ‘‘joint_cluster’’ labels when we need common annotations across

datasets, otherwise, we use ‘‘cluster’’ labels. To map ‘‘subclass’’ labels across datasets, we used the

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

BICCN atlas of the mouse primary motor cortex Yao et al. 2021a NEMO: dat-ch1nqb7;

RRID: SCR_016152

Transcriptomic data for the isocortex and hippocampus Yao et al. 2021b NEMO: dat-jb2f34y

Full marker lists for BICCN cell types This paper https://doi.org/10.6084/m9.figshare.13348064.v2

Software and algorithms

MetaMarkers This paper https://github.com/gillislab/MetaMarkers

MetaNeighbor Crow et al. 2018 https://github.com/gillislab/MetaNeighbor

nnls R package Mullen and van Stokkum 2012 https://CRAN.R-project.org/package=nnls

org.Mm.eg.db R package Carlson 2019b https://doi.org/10.18129/B9.bioc.org.Mm.eg.db;

http://bioconductor.org/packages/org.Mm.eg.db/

GO.db R package Carlson 2019a https://doi.org/10.18129/B9.bioc.GO.db;

http://bioconductor.org/packages/GO.db/
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independent clustering, but mapped all clusters to one of the following names: ‘‘L2/3 IT’’, ‘‘L5 ET’’, ‘‘L5 IT’’,

‘‘L5/6 NP’’, ‘‘L6 CT’’, ‘‘L6 IT’’, ‘‘L6 IT Car3’’, ‘‘L6b’’, ‘‘Lamp5’’, ‘‘Pvalb’’, ‘‘Sncg’’, ‘‘Sst’’, ‘‘Vip’’. In the last section

(generalizability of meta-markers), we use the ‘‘joint_subclass’’ annotation instead, because it explicitly in-

cludes the distinction between L4/5 IT and L5 IT cells.

The BICCN isocortex and hippocampus dataset was downloaded from the NeMO archive (http://data.

nemoarchive.org) (Yao et al., 2021b). The full dataset contains 1,646,439 cells annotated to 379 cell types.

Due its size, it was separated into sub-datasets corresponding to individually sequenced brain regions

(as annotated in the ‘‘region_label’’ metadata column), resulting in 19 brain regions sequenced with 10X

v3, 21 brain regions sequenced with SmartSeq (Table 1). We subset all datasets to a common set of

24,140 genes. Preprocessing was similar to the MOp datasets: we kept all cells with ‘‘class’’ annotated as

‘‘Glutamatergic’’, ‘‘GABAergic’’ or ‘‘Non-Neuronal’’ and normalized counts to counts per million (CPM)

for SmartSeq datasets or counts per 10,000 (CP10K) for 10X datasets.

METHOD DETAILS

Meta-analytic hierarchical differential expression statistics

For each cell type, we computed DE statistics independently in each dataset using MetaMarkers’ ‘‘compu-

te_markers’’ function. We compared a cell type to neighboring cell types in the BICCN taxonomy by setting

the ‘‘group_labels’’ parameter. For example, the ‘‘GABAergic’’ class contains the ‘‘Pvalb’’, ‘‘Sst’’, ‘‘Sncg’’,

‘‘Lamp5’’ and ‘‘Vip’’ subclasses. By stratifying analysis by classes, DE statistics for ‘‘Pvalb’’ were obtained

by comparing ‘‘Pvalb’’ cells to all cells that are either ‘‘Sst’’, ‘‘Sncg’’, ‘‘Lamp5’’ or ‘‘Vip’’, but ignoring cells

from other classes (excitatory neurons and glia). At the cluster level, analysis is stratified by subclasses,

e.g., Pvalb subtypes are compared to other Pvalb subtypes only.

For each dataset, ‘‘compute_markers’’ returns a table of standard statistics. Let xij be the expression of

gene i in cell j (normalized to CPM in all the manuscript), let C be the cells belonging to the cell type of

interest, and C be all background cells. All statistics are computed for each gene independently, so we

will drop the subscript i in the following. The fold change (FC) is computed as the ratio of average expres-

sion between the cell type of interest and background cells, FC = fxjgj˛C =fxjgj˛C . Statistical significance is

based on the ROC test. First we compute the AUROC according to the following formula (derived from

the Mann-Whitney U statistic):

AUROC =
1

NP

 X
j˛C

rj �PðP + 1Þ
2

!
;

where P = jCj are the number of positives (cells from the cell type of interest),N= jCj are the number of neg-

atives (background cells), and rj are the ranks of positives (obtained after ranking all cells according to the

gene’s expression value). p values are computed under a normal approximation of the AUROC with con-

tinuity and tie correction according to the following formulas:

z = ðAUROC � 0:5Þ=s ; s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP

12
ðP + 1� TÞ

r
;T =

Xk
i = 1

ti3 � ti
ðN+ PÞðN+P + 1Þ;

where z follows a standard normal distribution under the null hypothesis that positives and negatives are

from the same population, s is the analytical standard deviation of AUROC, T is a tie correction formula

where k is the number of distinct expression values and ti is the number of cells that share the same expres-

sion value with index i. p values are converted to False Discovery Rates (FDR) according to the Benjamini-

Hochberg procedure. For exhaustivity, we considered four additional statistics related to binarized gene

expression: gene detection rate, fold change of detection rate (FCd), recall and precision. Gene detection

rate is the fraction of cells in the population of interest that express the gene of interest, drC =���fxj>0gj˛C���=jCj . FCd=drC=drC is the ratio of gene detection rates in the population of interest over the

background population. Recall is identical to gene detection rate (seen from a classification perspective).

Precision =
���fxj>0gj˛C���=���fxj>0gj˛CWC

��� is the fraction of cells expressing the gene of interest that belong to

the population of interest. All operations are vectorized across genes and cell types to allow rapid marker

extraction and aggregation across datasets.
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We combined statistics across datasets using MetaMarkers’ ‘‘make_meta_markers’’ function, which aver-

ages the above statistics across datasets for all cell types. ‘‘make_meta_markers’’ uses the arithmetic

mean by default, and uses the geometric mean for the following statistics: FC, FCd, expression. To define

DE recurrence, we used the number of datasets where a gene is reliably DE (‘‘fdr_threshold = 0.05’’,

‘‘fc_threshold = 4’’). Throughout the manuscript, we considered a gene to be DE if it had a FC>1 and an

FDR<0.05, and reliably DE if FC R 4 and FDR<0.05.

Reliable fold change and AUROC thresholds

To establish the reliability of FC, we picked all combinations of training datasets and extracted genes that

were significantly upregulated in all training datasets (AUROC>0.5, FDR<0.05, average FC > 1). Then, for

each gene, we looked up the held out datasets and counted how often the gene remained upregulated

(FC > 1) or was detected as downregulated (FC% 1). We summarized the results as a type S error, the frac-

tion of held out datasets where the gene was detected as downregulated. Formally, let G be the set of

genes that are consistently upregulated across training datasets d1;.;dm: Let d01;.;d0n be the held-

out test datasets. For a given cell type, the average type S error is defined as:

e =
1

njGj
����FCgd0

i
<1
�
g˛G; i˛f1::ng

���;
where FCgd0

i
is the fold change of gene g in test dataset d0i. We computed the type S error across all com-

binations of cell types and training datasets. To establish the reliability of AUROC, we followed a similar

procedure, replacing the FC < 1 condition by AUROC>0.5.

Correlation of DE statistics for reliable markers

To compute the association between the DE statistics computed by MetaMarkers, we extracted all reliably

DE genes at the class level (FDR<0.05, FC % 4) in each of the 7 datasets. Then, for each cell type, we ex-

tracted the DE statistics shown in Figure 1D, resulting in a matrix with reliable markers as rows and DE sta-

tistics as columns. We then computed the Spearman correlation of this matrix, obtaining one correlation

matrix for each cell type in each dataset. Finally, we averaged all matrices to obtain the matrix shown in

Figure 1D.

MetaNeighbor cell type replicability score

To compute the association between the number of markers and cell type replicability, we computed cell

type similarity using MetaNeighbor (Crow et al., 2018) by following the procedure described in (Yao et al.,

2021a). Briefly, MetaNeighbor uses a neighbor voting framework to match cell types from a train dataset to

a test dataset, where the matching strength is quantified as an AUROC (ability of cells from the train type

to predict cells from the test type based on the similarity of expression profiles). First, we use the

‘‘MetaNeighborUS’’ function to create a graph where each node is a cell type and each edge is the match-

ing strength AUROC (directed from train dataset to test dataset). By applying the ‘‘extractMetaClusters’’

function, we keep only edges that correspond to high confidence reciprocal matches (1-vs-best AUROC

>0.7 both ways). After this step, we are left with groups of connected cell types that we call ‘‘meta-clusters’’.

The replicability score is the number of datasets spanned by the meta-cluster, e.g. a cell type has a score of

6 if it is connected to cell types from 5 other datasets. For visualization purposes, we created jittering in

Figure 2H by adding the average AUROC across the meta-cluster to the replicability score. To avoid over-

fitting, we considered the ‘‘cluster’’ annotations from the BICCN, which were obtained by clustering and

annotating the datasets independently.

Marker-based cell type classification

To quantify the ability of a list of markers to identify a cell type, we framed the problem as a hierarchical

classification task where we predict cell type labels from gene expression. First, for each cell, we computed

a prediction score by averaging expression profiles across markers. Let xij be the CPM-normalized expres-

sion of gene i in cell j, andMc be a set of marker genes for cell type c. For each cell j, we compute the marker

score is:

SjðcÞ =
1

jMc j
X
i˛Mc

log2
�
xij + 1

�
This score is efficiently implemented by MetaMarker’s ‘‘score_cells’’ function.

ll
OPEN ACCESS

iScience 24, 103292, November 19, 2021 21

iScience
Article



To obtain marker-wide renormalized scores, or meta-marker enrichment, we compute the above score for a

series of cell types c1;.; cn then, for each cell type, we compute:

S0
jðcÞ = SjðcÞ

,
1

n

Xn
i = 1

SjðciÞ

To compute classification performance, we labeled cells from the cell type of interest as positives and cells

from cell types sharing the same parent class or subclass as negatives (similar to DE statistics computation,

see ‘‘Meta-analytic hierarchical differential expression statistics’’). Intuitively, we are looking whether pos-

itives (cells from the cell type of interest) have high prediction scores (marker scores). We summarized the

prediction accuracy as an AUROC (in the threshold-free case) and F1 (harmonic mean of precision and

recall, in the thresholding case). To avoid circularity, we always made predictions on held out datasets.

For markers from a single dataset, predictions were averaged across the 6 remaining datasets; for meta-

analytic markers, we picked markers on all combinations of 6 datasets and predicted cell types in the re-

maining dataset. We obtained classification scores for individual populations of neurons by averaging

over every combination of train and test datasets.

Gene ontology enrichment of meta-markers

Gene ontology terms and mouse annotations were downloaded using the org.Mm.eg.db (Carlson 2019b)

and GO.db (Carlson 2019a) R packages. To focus on specific cell processes, we further selected terms from

the ‘‘Biological Process’’ ontology containing between 20 and 100 gene annotations. Gene set enrichment

was computed using the hypergeometric test, based on R’s ‘‘phyper’’ function and the Maximum Likeli-

hood Estimate (MLE) of the sample odds ratio (OR).

Marker-based deconvolution

To investigate the impact of marker selection on deconvolution, we applied deconvolution in a hierarchical

framework similar to DE computation and cell type classification. We applied Non-Negative Least Square

(NNLS) deconvolution (Abbas et al., 2009) using the nnls R package (Mullen and van Stokkum 2012), which

was shown to be both efficient and accurate according to multiple recent benchmarks (Patrick et al., 2020;

Avila Cobos et al., 2020). Briefly, we inferred cell type proportions from the following equation:

T = C:P

where T is a bulk expression matrix (genes x sample), in our case pseudo-bulk matrices extracted from each

test dataset, C is a cell type signature matrix (genes x cell type), P is the estimated cell type proportion ma-

trix (cell type x sample). To test all combinations of train and test datasets, we split each dataset in half by

assigning each cell randomly to a test or train fold. From each train fold, we built signature matrices by aver-

aging unnormalized expression profiles for each cell type. From each test fold, we built 1000 pseudo-bulks

containing 1000 cells. To generate pseudo-bulks with highly variable cell type proportions, we started by

drawing target cell type proportions for each pseudo-bulk, in a procedure similar to (Avila Cobos et al.,

2020). We sampled target proportions for each cell type from a uniform distribution, normalized propor-

tions to 1, then converted to a target number of cells which we sampled with replacement, then averaged

the unnormalized counts.

Given a set of markers (obtained from a single dataset or meta-analytically across all datasets except the

test dataset), a train dataset (signature matrix) and a test dataset (1000 pseudo-bulks), we performed NNLS

deconvolution by subsetting the signature matrix C and pseudo-bulks T to the set of markers. We

computed deconvolution performance as the Pearson correlation between theoretical cell type propor-

tions and the predicted cell type proportions (one value per pseudo-bulk). For computational efficiency,

we only tested one group of populations at the ‘‘joint cluster’’ level. We chose to focus on the Lamp5 pop-

ulations, as it contained 8 populations that were well represented across all datasets (range 14–3016 cells

per single population, 257 cells on average).

Note that, because of the difficulty of matching UMI counts with full-length read counts (Newman et al.,

2019), we only considered train-test combinations within similar technologies (one pair of Smart-seq

datasets, 10 pairs of 10X datasets). To control for globally encoded differences in expression profiles

(correlating with the first principal component), we created random marker sets by picking genes that

were expression-matched with meta-analytic markers. Specifically, we assigned genes to 10 bins based
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on their average expression across datasets (as computed by meta-markers), then replaced genes from

each marker set with a random gene from the same bin.

Generation of robust meta-marker sets

We generated meta-marker sets for each cell type in the MOp hierarchy (Data 1,2, and 3), using the ‘‘class’’,

‘‘joint_subclass’’ and ‘‘joint_cluster’’ annotation levels (see ‘‘Meta-analytic hierarchical differential expres-

sion statistics’’). We kept meta-markers that were either strongly DE (FC > 4, FDR<0.05) in at least one data-

set or had a meta-analytic FC > 2. We ranked the remaining markers by recurrence, then by AUROC, and

selected the top 100 genes (top 50 genes for clusters). If fewer than 100 markers remained, we selected all

remaining markers.

Cell type annotation of the BICCN isocortex and hippocampus datasets

We annotated cells in the isocortex and hippocampus datasets using our robust marker lists (see ‘‘Gener-

ation of robust marker lists for all BICCN MOp cell types’’). To annotate cell types, we adopted a hierarchi-

cal cell type annotation procedure. We classified each brain region independently, starting from the

log-normalized count matrix. First, we obtained marker scores (average meta-marker expression, see

‘‘Marker-based cell type classification’’) for all cells by running MetaMarker’s ‘‘score_cells’’ function.

Then, marker scores were converted into cell type predictions using MetaMarker’s ‘‘assign_cell’’ function,

which finds the marker set with the highest score and returns several QCmetric, including the highest score

and the marker enrichment (observed score divided by expected score, under the assumption that all

marker sets have equal expression). The ‘‘assign_cell’’ function takes two parameters: marker scores and

group-level assignments. For subclasses, we provided class-level predictions as the group assignments;

for clusters, we provided subclass-level predictions as the group assignments. To filter out cells with un-

clear assignments, we labeled cells that had a marker enrichment below 1.5 (unless otherwise indicated

in the text) as ‘‘unassigned’’.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential expression of genes was based on a custom implementation of the ROC test (see STAR

Methods). Significance depends on the number of cells for each cell type, which can be found in Data

1,2, and 3 in the column ‘‘population_size’’. We converted p values to False Discovery Rates using the

Benjamin-Hochberg procedure implemented by R’s p.adjust function with ‘‘method = fdr’’ parameter.

The analysis was stratified according to the cell type taxonomy, such that a cell type was only compared

to siblings (e.g., Pvalb subtypes were only compared to other Pvalb subtypes, see STARMethods for further

details). Gene set enrichment was based on the hypergeometric test, with p values derived from R’s phyper

function (see STAR Methods for further details).
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