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AdRoit is an accurate and robust method to infer
complex transcriptome composition
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Bulk RNA sequencing provides the opportunity to understand biology at the whole tran-

scriptome level without the prohibitive cost of single cell profiling. Advances in spatial

transcriptomics enable to dissect tissue organization and function by genome-wide gene

expressions. However, the readout of both technologies is the overall gene expression across

potentially many cell types without directly providing the information of cell type constitution.

Although several in-silico approaches have been proposed to deconvolute RNA-Seq data

composed of multiple cell types, many suffer a deterioration of performance in complex

tissues. Here we present AdRoit, an accurate and robust method to infer the cell composition

from transcriptome data of mixed cell types. AdRoit uses gene expression profiles obtained

from single cell RNA sequencing as a reference. It employs an adaptive learning approach to

alleviate the sequencing technique difference between the single cell and the bulk (or spatial)

transcriptome data, enhancing cross-platform readout comparability. Our systematic

benchmarking and applications, which include deconvoluting complex mixtures that

encompass 30 cell types, demonstrate its preferable sensitivity and specificity compared to

many existing methods as well as its utilities. In addition, AdRoit is computationally efficient

and runs orders of magnitude faster than most methods.
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RNA sequencing is a powerful tool to understand the biology
of normal and disease tissues at the whole transcriptome
level. It helps to elucidate disease mechanisms and identify

potential treatment targets1. Due to the presence of hetero-
geneous cell populations, the bulk tissue transcriptome only
characterizes the overall gene expression across multiple cell
types. The cell type identities and their prevalence remain
unknown in the bulk data. However, knowledge of the cell type
composition is often critical to understanding the biology. For
instance, the constitution of stromal and immune cells sculpts the
tumor microenvironment, which is essential in cancer progres-
sion or response to immune checkpoint inhibition2–6. Excessive
expression of cytokines in particular leukocyte types underlines
the etiology of many chronic inflammatory diseases7–11. Such
information cannot be directly read out from the bulk RNA-Seq.

Recent breakthroughs in spatial transcriptomics methods
enable characterizing whole transcriptome-wise gene expressions
at spatially resolved locations in a tissue section12. However, it
remains challenging to reach a single-cell resolution while mea-
suring tens of thousands of genes transcriptome-wise. Some
widely used technologies can achieve a resolution of 50–100 μm,
equivalent to 3–30 cells depending on the tissue type12,13. The
transcripts therein may originate from more than one cell type,
resulting in another form of RNA-Seq data of multiple cell types.
Unlike the bulk RNA-Seq, the profiling data at each spot contains
substantial dropouts as merely a few cells are sequenced,
imposing additional challenges to demystify the cell type content.
We refer to bulk RNA-Seq data and spatial transcriptome data at
the multi-cell resolution as compound RNA-Seq data hereafter.

The rapid development of single-cell RNA-Seq (scRNA-Seq)
technologies has allowed for cell-type-specific transcriptome
profiling14. It provides the information missing from the RNA-
Seq data of tissues comprised of multiple cell types (e.g., bulk
RNA-Seq). Nevertheless, the technologies have low sensitivity and
substantial noise due to the high dropout rate and the cell-to-cell
variability. Consequently, scRNA-Seq technologies require a large
number of cells (thousands to tens of thousands) to ensure sta-
tistical significance in the results. In addition, the cells must
remain viable during the capture. These requirements render the
scRNA-Seq technologies costly, prohibiting their application in
clinical studies that involve many subjects or cannot allow real-
time tissue dissociation and cell capture. Furthermore, scRNA-
Seq technologies may not be well suited to characterizing cell-type
proportions in solid tissues because the dissociation and capture
steps may not have the same efficiency for different cell
types15–17.

Because sequencing at the single-cell level is not always feasible
and also for the purpose of better interpreting many highly
valuable existing bulk RNA-Seq or spatial transcriptomic data
sets, in silico approaches have been developed to infer cell-type
proportions from compound RNA-Seq data18–24. The most
common strategy is to conduct a statistical inference through the
maximum likelihood estimation (MLE)25 or the maximum a
posterior probability estimation (MAP)26 on a constrained linear
regression framework, wherein the unobserved mixing propor-
tion of a finite number of cell types are part of the latent variables
to be optimized19,21–24. The deconvolution methods are often
applied to dissect the immune cell compositions in blood
samples27–31. However, their performance in more complex tis-
sues, such as the nervous, ocular, respiratory, or gastrointestinal
organs, remains unclear. These tissues often contain many cell
types (10–102) and the difference among related cells can be
subtle, rendering the deconvolution a challenging task. For
example, a recent study on the mouse nervous system using
scRNA-Seq found more than 200 cell clusters and many are
highly similar neuronal subtypes32.

Earlier works often utilized the transcriptome profiling of the
purified cell populations to estimate the gene expressions of cell
type (e.g., Cibersort)19. More recently, acquiring cell type-specific
expression from the scRNA-Seq data was shown to be an intri-
guing alternative21–24. Although it provides higher throughput by
measuring multiple cell types in one experiment, profiling at the
single-cell level has a high noise floor. The accuracy of decon-
volution using scRNA-Seq data as the reference may be affected
by the data noise if not treated properly. Moreover, the platform
difference between the compound data and the single-cell data
cannot be ignored.

To overcome these challenges, additional information from the
data may be considered. A recent method that weighs genes
according to their expression variances across samples greatly
improved the accuracy22, highlighting the importance of gene
variability in inferring cell-type composition. Some other meth-
ods and applications have pointed out the importance of cell
type-specific genes24,28,31,33. In these works, the cell type-specific
expression was only used to select the input genes (e.g., markers).
Nonetheless, it measures how informative a gene is in distin-
guishing cell types and thus can be incorporated as a part of the
model. To address the platform difference between the compound
data and the single-cell data, it is sometimes assumed there exists
a single scaling factor or a linearly scaled bias for all genes that
can be learned and corrected accordingly. This assumption does
not hold, as the impact of changing platforms is different for each
gene. Though learning a uniform scaling factor might correct the
difference in most genes, a few genes that remain markedly biased
can easily confound the estimation, especially under a linear
model framework. Thus, a gene-wise correction should be
considered.

In this work, we present a new deconvolution method, AdRoit,
a unified framework that jointly models the gene-wise technology
bias, as well as the cell type specificity and cross-sample variability
of genes. The method estimates the cell type constitution in the
compound RNA-Seq samples using relevant single-cell data as a
training source. Genes used for deconvolution were automatically
selected from the single-cell data based on their information
richness. It uses an adaptively learning approach to estimate
gene-wise corrections, addressing the issue that each platform
may impact genes differently. AdRoit further makes use of reg-
ularization to reduce collinearity among closely related cell sub-
types that are common in complex tissues. Over a set of
comprehensive benchmarking data with a varying cell composi-
tion complexity, AdRoit showed superior sensitivity and specifi-
city to other existing methods. Applications to real RNA-Seq bulk
data and spatial transcriptomics data revealed strong and
expected biologically relevant information. We believe AdRoit
offers an accurate and robust tool for cell-type deconvolution and
will enhance the value of bulk RNA-Seq and spatial transcriptome
profiling.

Results
Overview of the AdRoit framework. AdRoit estimates the pro-
portions of cell types from transcriptome data of a mixed cell
population including but not limited to bulk RNA-Seq and spatial
transcriptome. It directly models the raw reads without normal-
ization, preserving the difference in total amounts of RNA tran-
script in different cell types. The method utilizes, as a reference,
the relevant pre-existing scRNA-Seq data with cell identity
annotation. It selects informative genes, estimates the mean and
dispersion of the expression of selected genes per cell type, and
constructs a weighted regularized linear model to infer percent
combinations (Fig. 1a). Because sequencing platform bias may
impact genes differently15,34,35, a uniform adjustment for all
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genes may not sufficiently eliminate such bias. AdRoit adopts an
adaptive learning approach, where the bias is first estimated for
each gene, then applied such that more biased genes receive a
larger correction (Fig. 1b).

AdRoit considers a comprehensive set of other relevant factors
including the cross-sample variability and the cell type specificity
of genes, as well as the collinearity of expression profiles among
closely related cell types. The cross-sample variability of a gene is
the variation of its expression in the same cell type across multiple
bulk samples. It shall be distinguished from the expression change
in the gene over different cell types. AdRoit decreases the weight
of genes with high cross-sample variability whilst increasing the
weight of those with an expression highly specific to certain cell
types. The definition of cross-sample variability and cell type
specificity also accounts for the overdispersed nature of counts
data. Lastly, AdRoit adopts a linear model to ensure the
interpretability of the coefficients. At the same time, AdRoit
includes a regularization term to minimize the impact of
statistical collinearity. Each of the factors contributes an
indispensable part to AdRoit, leading to an accurate and robust
deconvolution method for inferring complex cell compositions.

To evaluate the performance, we compared AdRoit with
NNLS18,36, MuSiC22, Bisque37, and SPOTlight38 for bulk data
deconvolution, and Stereoscope23, Cell2location39, and SPOTlight38

for spatial transcriptomics data deconvolution. When evaluating the
algorithms, a common practice is to pool the single-cell data to
synthesize a “bulk” sample with the known ground truth of the cell
composition. We measured the performance by comparing the
estimated cell proportions with true proportions using four metrics:

mean absolute difference (mAD), root mean square deviation
(RMSD), and two correlation statistics (i.e., Pearson and Spearman).
While Pearson reflects linearity, Spearman measures whether the
estimated results and the ground truth are monotonically related,
even if their relationship is not linear, which avoids the artificial
high linearity scores driven by outliers when the majority of
estimates are small. Thus, both correlations statistics were included.
Good estimations feature low mAD and RMSD along with high
correlation statistics. We further applied AdRoit to real bulk RNA-
Seq data and validated the results by available RNA fluorescence in-
situ hybridization (RNA-FISH) data. The estimates were further
confirmed by the biological knowledge of human pancreatic islets.
We also used AdRoit to map cell types within spatial spots, and the
accuracy was verified by in-situ hybridization (ISH) images from
Allen mouse brain atlas40.

AdRoit excels in both simple and complex cell constitutions.
We started with a simple human pancreatic islets data set that
contains 1492 cells and four distinct endocrine cell types (Alpha,
Beta, Delta, and PP cells)41 (Supplementary Fig. 1a; Supplemen-
tary Data 1). The synthesized bulk data were constructed by
mixing the single-cell data at known proportions. When using
AdRoit to estimate cell proportions for a synthetic sample, data
from this sample were excluded from the model construction (i.e.,
leave-one-out). All methods except SPOTlight achieved satisfac-
tory performance according to the evaluation metrics, AdRoit
performed the best as reflected by scatterplots of estimated pro-
portion vs. true proportion (Supplementary Fig. 1b and

Fig. 1 Schematic representation of AdRoit computational framework. a AdRoit inputs compound (bulk or spatial) RNA-Seq data, single-cell RNA-Seq
data, and cell type annotations. It first selects informative genes and estimates their means and dispersions, then computes the cell type specificity of
genes. Depending on the availability of multiple samples, cross-sample gene variability is derived from either the compound RNA-Seq, or the single-cell
data (see also “Methods”). Lastly the gene-wise correction factors are computed to reduce the platform bias between the compound and the single-cell
RNA-Seq data. These quantities are used in a weighted regularized model to infer the cell type composition. b A mock example to illustrate the role of the
gene-wise correction factor. Conceptually, an accurate estimation of the cell proportions should be represented by the slope of the green line; however,
fitting in the presence of outlier genes would result in the red line. Outlier genes exist because the platform bias affects genes differently. AdRoit adopts an
adaptive learning approach that first learns a coarse estimation of the slope (red line), from which the gene-wise corrections are derived and applied to the
outlier genes, moving them toward the green line. The more deviated the gene, the larger the correction (i.e., longer arrows). After the adjustment, the new
estimated slope (blue line) is closer to the truth (green line) and thus is a more accurate estimation.
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Supplementary Data 1). It had the lowest mAD and RMSD, and
the highest correlation values (MuSiC’s correlations are com-
parable) among the five methods tested (Supplementary Fig. 1c).
Given that MuSiC is a weighted NNLS and consistently showed
an improved accuracy here and in the original publication22, we
excluded NNLS from further evaluation hereafter.

We then tested the methods on a complex tissue—human
trabecular meshwork (TM). We acquired published single-cell
data that contains 8758 cells and 12 cell types from eight
donors42. The data include three similar types of endothelial cells,
2 types of Schwann cells, and 2 types of TM cells (Supplementary
Fig. 2; Supplementary Data 2). Cells from each donor were pooled
as individual synthetic bulk samples. The cell-type proportions
vary from <1 to 43%. These proportions were the ground truth
cell composition and were compared head-to-head with the
estimated proportions inferred by four methods. For each
synthetic bulk sample, estimations by AdRoit were performed
using the reference and gene weights built upon the remaining
samples (i.e., leave-one-out). In each of the eight samples, the
estimates made by AdRoit best approximated the true propor-
tions. In particular, AdRoit had the lowest mAD and RMSD, and
the highest correlation values among the methods (Fig. 2a). We
further assessed the deviation of the estimates from the true
proportions for each cell type. AdRoit consistently had the lowest
deviations from the true proportions for all cell types, as well as
the lowest variation among eight samples (Fig. 2b, blue dots),
indicating robustness over various cell types and samples
(Supplementary Fig. 3 and Supplementary Data 2).

AdRoit has better sensitivity and specificity. To assess the level
of granularity that AdRoit can achieve when deconvoluting
similar cell types, we used well-studied, closely related immune
cells from myeloid lineage and lymphoid lineage. We obtained B
cells, naïve CD4+ T cells, memory CD4+ T cells, CD8+ T cells,
natural killer (NK) cells, dendritic cells (DC), CD14+ monocytes,
FCGR3A+ monocytes, and platelets from a public release of the
human peripheral blood mononuclear cell (PBMC) single cells by
10x Genomics (see also “Data Availability”). We simulated bulk

samples that each contained a mixture of myeloid lineage or
lymphoid lineage cell types. Such a sample was created by ran-
domly selecting cells from a given set of cell types and mixing
them according to their predefined percentages. We repeated this
procedure 100 times for a series of mixing proportions among
myeloid or T lymphoid cells. The bulk mixtures of CD14+

monocytes, FCGR3A+ monocytes and dendritic cells (DC) fol-
lowed three schemes of proportions: 0.33:0.33:0.33 (mix0),
0.1:0.45:0.45 (mix1) and 0.1:0.3:0.6 (mix2). The same ratios were
applied to the mixtures of naïve CD4+ T, memory CD4+ T, and
CD8+ cells. All the nine cell types in the PBMC data were used to
build the reference for the deconvolution. AdRoit accurately
estimated the known percentages in all cases (Fig. 3a and Sup-
plementary Data 3). In addition, there were no noticeable false
positive predictions of any excluded cell types. These results
highlight that AdRoit can capture the fine difference among
similar cell types and quantitatively distinguish them.

We next systematically benchmarked the sensitivity and
specificity of each of the algorithms. In the context of the cell
type deconvolution, a false negative occurs when the proportion
of an existing cell type is predicted to be zero (or below a given
threshold). Conversely, a non-zero prediction (or above a given
threshold) of an absent cell type results in a false positive. False
negatives and false positives measure the sensitivity and
specificity of a deconvolution algorithm, respectively. Both
quantities are crucial to establish the utility of the algorithm.
Particularly, in real-world applications, it is often difficult to
know a prior what cell types exist in a bulk sample, users may
inform the algorithm to consider more possible cell types than
what actually exists in the sample. False-positive predictions in
this situation would make the algorithm unusable.

We designed a simulation to test sensitivity and specificity. we
selected 6 out of the 12 human trabecular meshwork cell types,
i.e., Schwann-cell-like cell, TM1, smooth muscle cell, melanocyte,
macrophage, and pericyte, from each donor sample and pooled
them within that sample to synthesize eight new bulk samples
(Supplementary Data 4). The unselected six cell types were
considered absent in the bulk samples. Some cell types selected

Fig. 2 Benchmark on simulated bulk data generated from the trabecular meshwork (TM) single cells. a AdRoit has the closest estimation to the true cell
proportion comparing to Bisque, MuSiC, and SPOTlight. Each dot is a cell type from a donor. The performance metrics were derived from eight distinct
donors. b For each cell type in TM, AdRoit has the smallest differences from the true cell type proportion and the smallest variance of estimates across
eight distinct donors. For each cell type, a dot on the graph denotes a donor, and the bars represent the 1.5× interquartile ranges. The reference and gene
weight estimations used for deconvoluting each synthetic bulk sample exclude the data from that sample (leave-one-out).
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highly resembled those in absence, challenging the programs to
pinpoint the right cell type present in the bulk among similar
candidates. We provided the full list of 12 single cell types as the
reference to the programs to estimate the cell type proportions.
Consistently across eight samples, AdRoit had the most accurate
estimates for the six present cell types, and zero or close to zero
estimated values for the non-existing cell types in the simulated
bulk data. MuSiC, Bisque, and SPOTlight were notably less
accurate on the six selected cell types, as well as they had many
non-negligible values for the six cell types excluded in the eight
synthetic samples (Fig. 3b and Supplementary Data 4). For
example, smooth muscle cells accounted for ~14% in donor 4 but
were largely missed (~0.03%) by MuSiC. We noted that TM2 had
false non-zero estimates from all methods though not included.
This is because TM2 is easily mistaken as TM1 due to their high
similarity42. Nonetheless, AdRoit’s estimates of TM2 were
consistently low across samples (<1% for 44 out of 48 estimates),
while the other methods had markedly larger estimates of TM2
that occasionally even exceeded the TM1 estimates. For a

systematic comparison, we constructed the receiver operating
characteristic (ROC) curve by varying the threshold of detection
(i.e., a cutoff below which the cell type was deemed undetected)
(Fig. 3c). AdRoit had a higher area under the curve (AUC) than
the other methods (AdRoit: 0.95, Bisque: 0.79, MuSiC: 0.74,
SPOTlight: 0.37), implying both better sensitivity and specificity.

As complex tissues often contain several tens of different cell
types, we continued the evaluation of the sensitivity and
specificity in more complicated cell mixtures. We utilized the
published mouse brain single-cell atlas by Zeisel et al. that
contains a comprehensive set of neuronal and supporting cells32.
Without loss of generality, we consolidated the original annota-
tion into 46 major cell types (“Methods” and Supplementary
Data 5). To synthesize a bulk mixture, we randomly selected 30
cell types and pooled all their associated cells. This procedure was
repeated independently 100 times for thorough coverage of
different cell type combinations. The deconvolution was per-
formed using all 46 cell types as the reference. As illustrated in
Fig. 3d, AdRoit was able to estimate the proportions closely

Fig. 3 AdRoit can achieve a high granularity and exhibits good sensitivity and specificity in complex tissues. a AdRoit is accurate in deconvoluting the
simulated bulk samples that contain a mixture of similar cell types from myeloid or lymphoid lineage. The vertical dashed lines indicate the true mixing
proportions. CD14+ monocytes, FCGR3A+ monocytes and dendritic cells (DC) were mixed under three schemes of proportions: 0.33:0.33:0.33 (mix0),
0.1:0.45:0.45 (mix1) and 0.1:0.3:0.6 (mix2). The same ratios were applied to the mixtures of naïve CD4+ T, memory CD4+ T, and CD8+ cells. Each boxplot
was derived based on n= 100 independent simulations, with bars denoting the 1.5× interquartile ranges. b AdRoit’s estimates are more accurate and
specific than those from Bisque, MuSiC, and SPOTlight on synthetic samples that contain only 6 out of the 12 cell types. The deconvolution was done using
all 12 cell types as the reference. A pair of size-matched blue (true value) and red (estimated value) bubbles indicate an accurate prediction. Red-only and
blue-only bubbles mark false positives and false negatives, respectively. c The comparison of Receiver operating characteristic (ROC) curves (n= 8
independent donors) shows that AdRoit has a notable higher area under the curve (AUC) than other methods, meaning better sensitivity and specificity.
d Scatterplots between the ground truth and the deconvoluted cell proportions in the simulated bulk samples of high complexity (mixtures of 30 cell
types). e ROC curves (n= 100 independent simulations) show AdRoit has the best AUC among all methods on highly complex cell constitutions.
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consistent with the ground truth while the other three tools made
less satisfactory predictions (see also Supplementary Data 6). The
ROC curve further indicates that AdRoit has the best sensitivity
and specificity given its highest AUC (Fig. 3e). These observations
convince us that AdRoit offers a leading performance on highly
complex cell constitutions.

AdRoit outperforms in deconvoluting closely related cell sub-
types. To further evaluate AdRoit when multiple homologous
subtypes of cells are present in a complex tissue, we performed
scRNA-Seq experiment on mouse lumbar dorsal root ganglion
(DRG) from five mice. Following the standard analysis pipeline
(Methods), we obtained 3352 single cells after quality control
procedures. After clustering and annotation, we discovered 14 cell
types including multiple subtypes of neuronal cells (Fig. 4a and
Supplementary Data 7). The heatmap of the top marker genes
showed distinct patterns of the major cell types as well as similar
patterns of the subtypes (Supplementary Fig. 4a), with the cell
type proportions varying from 0.5 to 33.71% (Supplementary
Fig. 4b). These 14 cell types include three subtypes of neurofila-
ment containing neurons (i.e., NF_Calb1, NF_Pvalb,
NF_Ntrk2.Necab2), three subtypes of non-peptidergic neurons
(i.e., NP_Nts, NP_Mrgpra3, NP_Mrgprd), and five subtypes of
peptidergic neurons (i.e., PEP1_Dcn, PEP1_S100a11.Tagln2,
PEP1_Slc7a3.Sstr2, PEP2_Htr3a.Sema5a, PEP3_Trpm8). Also
discovered were tyrosine hydroxylase-containing neurons (Th),
satellite glia, and endothelial cells. Such complex compositions
formed a challenging testing ground for evaluating the ability to
distinguish closely related cell types. We again performed the
leave-one-out deconvolution on five synthesized bulk samples.

AdRoit had highly accurate estimations on all cell subtypes
across samples (Fig. 4b). Worth noting, for the rare cell types that
account for less than 5%, AdRoit still had a good estimation that is
close to the true proportions and did not miss a cell type, showing
that AdRoit is robust on rare cell types (Supplementary Fig. 5 and
Supplementary Data 7). Conversely, Bisque, MuSiC, and

SPOTlight were notably less accurate, especially for the cell types
less than 5%, and all three missed multiple cell types including
some large clusters accounting for ~10% of the cells (PEP1_Sl-
c7a3.Sstr2 cells of Sample5). We continued to examine how much
the variability of the estimates was in each sample. We computed
the same four metrics used previously to evaluate the performance
on each of the five synthetic samples and compared them head-to-
head among the algorithms. This fine comparison showed AdRoit
notably outperformed on nearly every sample (Fig. 4c). Moreover,
the performance metrics of AdRoit were highly consistent across
samples with the lowest variability among all four methods.

AdRoit consistently performs well on spatial transcriptomics
data. Given the promising performance on complex tissues, we
moved forward to test AdRoit’s applicability to spatial tran-
scriptome data. Spatial transcriptomics data differs from bulk
RNA-Seq data in that each spot only contains transcripts from a
handful of cells (3–30)12. Some of the spots contain multiple cells
of the same type, while others may have heterogeneous cell types
at varying mixing percentages (e.g., spatial spots at the boundary
of different cell types). As the spot is a pool of only a few cells, the
variations across spatial spots are expected to be greater than the
changes in bulk samples, imposing an additional challenge for
deconvolution. We simulated a large number of spatial spots
(2900 in total) by using sampled cells from the DRG single-cell
data above (Methods), then compared AdRoit with Stereoscope,
Cell2location, and SPOTlight over a range of simulation
scenarios.

We first tested whether the methods could correctly infer a
single cell type when the spots contain cells from that same type.
For each of the 14 cell types from DRG, we sampled 10 cells and
pooled them to form a spatial spot. We repeated the simulation
100 times for robust testing, then used the full set of 14 cell types
as a reference to deconvolute the 1400 simulated spots. All
methods except SPOTlight were able to identify the correct cell
types with high accuracy on the target cell types (i.e., percentages

Fig. 4 Benchmark on simulated bulk data generated using mouse dorsal root ganglion (DRG) cells containing closely related subtypes of neurons. a 14
cell types are identified from scRNA-Seq samples of 5 mice, including multiple subtypes of neurofilaments (NF), peptidergic (PEP), and non-peptidergic
(NP) neurons. b Benchmarking with the synthetic data shows the cell type proportions inferred by AdRoit are more accurate. In particular, AdRoit remains
a better accuracy when the cells are rare (e.g., <5%; see also the zoom-in inserts). Each dot represents a cell type from one sample. c For each sample,
mAD, RMSD, Pearson, and Spearman correlations are compared across four methods. AdRoit has the lowest mAD and RMSD, and the highest Pearson and
Spearman correlations. In addition, AdRoit’s estimation is the most stable across samples. Each boxplot was generated based on n= 5 distinct mice (one
dot represents one animal). The bar of each boxplot indicates the 1.5× interquartile range. Same animals are chained by the dotted lines across the
methods. The deconvolution was done by using the leave-one-out strategy.
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close to 1) and comparably low estimated values (i.e., percentages
close to 0) for other cell types excluded from the simulation
(Supplementary Fig. 6 and Supplementary Data 8).

We then proceeded to a more difficult scenario where we
sampled cells from the 5 PEP neuron subtypes and mixed them.
We created three simulation schemes for a comprehensive
evaluation: (1) 5 PEP subtypes had the same percent of 0.2; (2)
PEP1_Dcn was 0.1 and the other 4 were 0.225; (3) PEP1_-
S100a11.Tagln2 and PEPE1_Dcn were 0.1, PEP2_Htr3a.Sema5a
and PEP1_Slc7a3.Sstr2 were 0.2, and PEP3_Trpm8 was 0.4.
Again, each simulation scheme was repeated 100 times. Under
each scheme, the estimates by AdRoit consistently centered
around the true proportions while the predictions of irrelevant
cell types remained close to 0 (Fig. 5a and Supplementary Data 8).
In comparison, Cell2location systematically overestimated the
PEP1_Slc7a3.Sstr2 by about 2.5%. Stereoscope more notably
overestimated PEP2_Htr3a.Sema5a and underestimated the
PEP3_Trpm8. SPLOTlight had high noise for some cell types
(e.g., endothelial and satellite glia) and generally deviated from
the truth for multiple cell types under all simulation schemes.

We expanded the simulated spatial spots to the mixture of 3
NP cell subtypes and the mixture of 3 NF subtypes. In addition,
we blended either NP_Mrgpra3 cells, NF_Calb1 cells, or
PEP3_Trpm8 cells with three other cell types (i.e., Th, satellite
glia, and endothelial). For all these simulated spatial spots,
AdRoit’s estimates consistently centered around the true propor-
tions, whereas the other methods deviated by different degrees in
most of the simulated schemes (Supplementary Fig. 7 and
Supplementary Data 8). We speculate one important reason for
the underperformance of some methods such as Stereoscope is
that they normalize the total UMI counts to the same value for all
cells. However, in real world, different cell types are unlikely to
have the same amount of RNA transcripts (e.g., immune cells
have about 10 fold fewer total UMIs than the neurons). Our
simulation pooled the cells by adding up the raw UMI counts per
gene, which we believe best mimics the real data. Normalizing the
data by total UMI not only eliminates this factual difference
between cell types but may distort the data from the assumed
negative binomial distribution. AdRoit avoids this problem by
model the raw UMI counts.

Next, we asked how sensitive the methods are in detecting rare
cell populations. We simulated mixtures of 3 PEP subtypes (i.e.,
PEP1_Slc7a3.Sstr2, PEP2_Htr3a.Sema5a, and PEP3_Trpm8)
wherein the percentage of PEP3_Trpm8 cells varied from 0.01
to 0.1 by 0.01, and the other two cell types sharing the remaining
percentage equally (Methods). At each given mixing ratio, the
simulation was repeated 100 times. We then checked how
accurately the concentration of PEP3_Trpm8 cells was estimated.
The medians of AdRoit’s estimates were closest to the true
proportions (Fig. 5b, red dashed lines) among all four methods,
followed by Cell2location. Stereoscope’s estimates were system-
atically lower than the true values and failed to detect the
PEP3_Trpm8 cells when the simulated proportion was below
0.06. On the other hand, SPOTlight constantly overestimated the
presence of PEP3_Trpm8 cells. The median of its predictions
remained around 9% even when the true population was at 1%.
Such observations are consistent with the frequent false positives
made by SPOTlight when deconvoluting the simulated bulk
samples (Fig. 3b). This comparison implied AdRoit is more
advantageous in detecting low percent cells. For a complete
evaluation, we replicated the comparison using five additional sets
of cell mixtures: NF_Calb1 with NF_Pvalb and NF2_Ntrk2.Ne-
cab2 (NF subtypes); NP_Mrgpra3 with NP_Mrgprd and NP_Nts
(NP subtypes); NF_Calb1 with Th, satellite glia and endothelial
(NF_Calb1+ others); NP_Mrgpra3 with Th, satellite glia and
endothelial (NP_Mrgpra3+ others); and PEP_Trpm8 with Th,

satellite glia and endothelial (PEP_Trpm8+ others). In each set,
the first cell type mentioned was considered rare with its percent
varied from 0.01 to 0.1. The rest cell types shared the remaining
proportion evenly. At each given percent of the rare cell type, we
computed how many times out of 100 the rare cell component
was detected (estimation > 0.005). AdRoit had systematically high
detection rates especially when the percent is below 3% (Fig. 5c
and Supplementary Data 9). Note that the apparent high
detection rates in SPOTlight were merely the result of its high
false-positive estimates (Figs. 3b and 5b). The detection sensitivity
of Cell2location was comparable to that of AdRoit. Notably, given
a rare cell population of 5%, both AdRoit and Cell2location
achieved a detection rate >90% under all simulation schemes,
making them powerful tools to uncover rare cells.

Application to real bulk RNA-Seq data of human pancreatic
islets. Though using synthetic bulk data based on the mixing of
single cells is a useful benchmarking strategy, the bulk and single-
cell RNA-Seq often use distinct RNA library preparations and
sequencing protocols. The capability of a method to deconvolute
real bulk samples shall be addressed to ensure it is useful in real-
world applications. We acquired 70 real human pancreatic islets
bulk samples from published studies41,43,44 (Supplementary
Data 10) and used single-cell data of the same tissue41 as the
reference to infer the percentages of four endocrine cell types (i.e.,
Alpha, Beta, Delta, PP). The 70 bulk samples were collected from
39 distinct donors, including 26 healthy donors, and 13 donors
with type 2 diabetes (T2D). Each donor contributed 1–5 bulk
RNA sample repeats.

Replicates from the same donor are expected to have similar
compositions and thus were used to assess the reproducibility of
the estimates from AdRoit. For all cell types, AdRoit had
consistent estimates for the same donors (Fig. 6a and Supple-
mentary Data 11). The average standard deviations did not
exceed 1% for all four cell types (i.e., Alpha: 0.010; Beta: 0.008;
Delta: 0.004; PP: 0.002). To seek an independent validation, we
obtained cell sorting results by RNA-FISH for 4 of the 39
donors41 (Supplementary Data 11). The estimated cell propor-
tions in the four samples agreed well with the percentages
measured by RNA-FISH (Fig. 6b). The consistency held for both
major cells (Alpha and Beta) and the minor cells (Delta and PP).
The observed reproducibility and the success of the independent
validation showed AdRoit is reliable in deconvoluting real bulk
RNA-Seq data.

We then asked if AdRoit can detect known biological
differences between healthy and T2D donors. Loss of functional
insulin-producing Beta cells is a prominent characteristic of
T2D45–47, typically reflected by an elevated level of hemoglobin
A1c (HbA1c)48,49. Among the healthy donors, most Beta-cell
proportions estimated by AdRoit ranged from 50 to 75% (Fig. 6c),
agreeing with the known percent range of Beta cells in human
islets tissue50,51. A significant decrease in the estimated Beta-cell
proportions was seen in T2D patients (p value= 4.1e− 6 by two-
sided t-test). Further, a linear regression of estimated Beta-cell
proportions on HbA1c levels showed a statistically significant
negative association (p value= 1.8e− 6 by two-sided t-test on the
regression coefficient) showing that AdRoit adequately reflected
the cell composition difference between healthy donors and T2D
patients.

Application to mouse brain spatial transcriptomics. We lastly
demonstrated an application to the real spatial transcriptomics
data. Given that the molecular architecture of brain tissues has
been well studied, for this evaluation, we chose a set of mouse
brain spatial transcriptomics data generated by 10x genomics,
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containing 2703 spatial spots. The consolidated version of the
aforementioned mouse brain single-cell atlas32 was used as the
reference for deconvolution (“Methods”).

The cell contents inferred by AdRoit per spot appear to
accurately match the expected cell types at that location
(Supplementary Fig. 8 and Supplementary Data 12). For example,
the three subtypes of cortex excitatory neurons each occupied a
sub-area in the cerebral cortex region. As another example, the
shape of the hippocampal region was delineated by the estimated
percentages of dentate gyrus granule/excitatory neurons. As an

independent validation, we checked the consistency between the
estimated cell types with the in-situ hybridization (ISH) images
from Allen mouse brain atlas40. We chose four genes highly
expressed in 4 brain regions respectively, i.e., Spink8 for the
hippocampal field CA1; C1ql2 for the dentate gyrus; Clic6 for the
choroid plexus; and Synpo2 for the thalamus32. The spots
enriched with the four indicative cell types, hippocampal CA1
excitatory neuron type 2, dentate gyrus granule neuron type 2,
choroid plexus cell, and thalamus excitatory neuron type 1, as
mapped by AdRoit, precisely co-localized with the regions that

Fig. 5 AdRoit shows a good accuracy and sensitivity in deconvoluting spatial spots simulated from dorsal root ganglion cells. a Estimations from
AdRoit, Cell2location, Stereoscope, and SPOTlight on simulated spatial spots that contain 5 PEP neuron subtypes. True mixing proportions are denoted by
the red dashed lines. Three schemes are presented: (1) the proportions of 5 PEP cell types are the same and equal to 0.2; 2) PEP1_Dcn is 0.1 and the other 4
are 0.225; 3) PEP1_Dcn and PEP1_S100a11.Tagln2 are 0.1, PEP1_Slc7a3.Sstr2 and PEP2_Htr3a.Sema5a 0.2 are 0.2, and PEP3_Trpm8 is 0.4. The boxplots were
derived from n= 100 independent simulations. b The performance of AdRoit, Cell2location, Stereoscope, and SPOTlight in estimating rare cell populations
in the spatial spots. The spots contain a mixture of three PEP cell subtypes (i.e., PEP1_Slc7a3.Sstr2, PEP2_Htr3a.Sema5a, and PEP3_Trpm8), with the percent
of PEP3_Trpm8 ranging from 1 to 10% and the other two cell types sharing the remaining proportion equally. The boxplots were drawn upon n= 100
independent simulations. c Compare the rate of detecting rare cells in simulated spots. An inferred percent greater than 0.5% is deemed as a positive
detection. Six sets of cell mixtures are employed: NF_Calb1 with NF_Pvalb and NF2_Ntrk2.Necab2 (NF subtypes), NP_Mrgpra3 with NP_Mrgprd and NP_Nts
(NP subtypes), PEP3_Trpm8 with PEP1_Slc7a3.Sstr2 and PEP2_Htr3a.Sema5a (PEP subtypes), NF_Calb1 with Th, satellite glia and endothelial
(NF_Calb1+ others), NP_Mrgpra3 with Th, satellite glia and endothelial (NP_Mrgpra3+ others), and PEP_Trpm8 with Th, satellite glia and endothelial
(PEP_Trpm8+ others). In each set, the first cell type listed is the target of detection and varies its percent from 1 to 10%. The rest cell types split the
remaining proportion evenly. The red dashed lines mark the detection rate of 90%. The rates were computed based on n= 100 independent simulations.
Bars in the boxplots mark the 1.5× interquartile ranges.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02739-1

8 COMMUNICATIONS BIOLOGY |          (2021) 4:1218 | https://doi.org/10.1038/s42003-021-02739-1 | www.nature.com/commsbio

www.nature.com/commsbio


showed a strong signal of the 4 marker genes on the ISH images
respectively (Fig. 6d). This agreement confirmed that the spatial
mapping of cell types by AdRoit is reliable.

Computational efficiency. Besides the accuracy and robustness,
another major advantage of AdRoit is its magnitude higher com-
putational efficiency. AdRoit uses a two-step procedure to do the
inference. The first step prepares the reference using the single-cell
data where the per-gene means and dispersions are estimated, and
cell-type specificity is subsequently computed. The built reference can
be saved and reused. We tested the running time on the reference
construction using the mouse brain single-cell dataset discussed
earlier that contains ~15,000 cells. It took about 4.5min on a CPU
that has 24 cores (23 used for parallel computing). The second step
inputs the built reference and the compound RNA-Seq data and does
the estimation. Deconvoluting ~2700 RNA-Seq samples of mixed cell
populations took around 5min. Therefore, AdRoit in total took less
than 10min and ~3Gb memory usage on a regular CPU. As a
comparison, MuSiC and Bisque took about 1 h and 30min on the
same data using the same CPU setup. SPOTlight took about 2 h with
the default parameters (cl_n= 100, hvg= 3000, ntop= 200,
transf= “uv”, method= “nsNMF”, min_cont= 0). Stereoscope ran
about 24 hours continuously with the published parameter setting
(-scb 256 -sce 75000 -topn_genes 5000 -ste 75000 -lr 0.01 -stb 100
-scb 100) on a powerful V100 GPU with 80 cores and 16G memory.
The efficiency of Cell2location was comparable to Stereoscope, taking
about 18 h on the V100 GPU (posterior n_sample= 1000,

n_iteration= 10000, selection_specificity= 0.45). These methods can
be prohibitive when seeking a quick turnaround.

Discussion
In this work, we have demonstrated that AdRoit is capable of
deconvoluting the cell compositions from the compound RNA-
Seq data with a leading accuracy, measured by the consistency
between the true and predicted cell proportions. Its advantage
over the existing state-of-the-art methods was verified over a
wide range of use cases. In particular, AdRoit excelled in
complex tissues composed of more than ten different cell types
with a wide range of cell proportions (e.g., trabecular mesh-
work, mouse brain, and dorsal root ganglion). In these cases,
AdRoit consistently performed better than the comparators on
deconvoluting bulk RNA-Seq data. AdRoit is also more accu-
rate and sensitive than tools specifically designed for decon-
voluting spatial transcriptomics spots, especially in detecting
low percent rare cells. Previous benchmarking often assumed
the types of cells in the synthetic bulk data are not more or less
than the cell types collected in the reference, and thus the only
unknown was the proportion of each cell type. This assumption
may not hold. Missing existing cell types or false predictions of
non-existing ones can hinder the utility of an algorithm. Thus,
besides the overall accuracy, we also examined the sensitivity
and specificity of the algorithms. We observed a superior sen-
sitivity and specificity in AdRoit, an important leverage for its
usage in practice.

Fig. 6 Applications to real bulk RNA-Seq data and mouse brain spatial transcriptome data. a The deconvoluted cell compositions in the real bulk RNA-
Seq data of human Islets are highly reproducible for the repeated samples from the same donor. b AdRoit estimation of the cell type proportions agrees
with the RNA-FISH measurements. c AdRoit-inferred Beta-cell proportions in type 2 diabetes patients (n= 13 distinct subjects) are significantly lower than
those in healthy subjects (n= 26 distinct subjects). Bars in the boxplots represent the 1.5× interquartile ranges. In addition, the estimated proportions have
a significant negative linear association with the HbA1C levels (n= 36 distinct donors with valid HbA1C measurements). All statistical metrics were derived
based on. d The spatial mapping of four mouse brain cell types is consistent with the locations of four region-specific markers shown on the ISH images
obtained from Allen mouse brain atlas40. The four genes, Spink8, C1ql2, Clic6, and Synpo2, were identified by Zeisel et al.32 as markers of the hippocampal
field CA1, dentate gyrus, choroid plexus, and thalamus, respectively.
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The reference single-cell data used by AdRoit came from dif-
ferent platforms, such as the 10x Genomics Chromium Instru-
ment (the mouse dorsal root ganglion), and the Fluidigm
C1 system (the human pancreatic islets data). AdRoit consistently
exhibited excellent performance across all benchmarking datasets
independent of their single-cell sequencing technology platforms.
More importantly, this statement holds not only for deconvo-
luting the synthesized bulk data, but also for the real bulk RNA-
Seq data. The latter typically does not apply the unique molecular
barcoding and requires a different cDNA amplification procedure
from what is used in the single-cell RNA-Seq (“Methods”).
Moreover, the sequencing depth, read mapping and gene
expression quantification are dissimilar as well. The fact that
AdRoit accurately dissected the cell compositions in the real bulk
samples based on the single-cell reference data further supports
its cross-platform applicability.

We attribute the power of AdRoit to its comprehensive modeling
of relevant factors. Firstly, the impact of platform difference on
genes may be different and not linearly scaled. Correcting such
differences entails adjustments specifically tailored to each gene.
AdRoit uses an adaptive learning approach to estimate such gene-
wise correcting factors and does the correction in a unified model.
In addition, the contribution of a gene in a cell type to the loss
function is jointly weighted by its specificity and variability, where
specificity and variability are defined in a way accounting for the
overdispersion property of counts data. Our observations over the
multiple benchmarking data sets also show that the coexistence of
similar cell types may have induced a collinearity condition that
negatively impacted the regression-based methods developed by
others. Being able to alleviate this problem gives AdRoit an edge. All
these factors help AdRoit to distinguish similar cell clusters while
remaining sensitive enough to separate rare cell types.

Technically, the input profiles of individual cell types to AdRoit
need not come from the single-cell RNA-Seq. Bulk RNA-Seq
profiles of individual isolated cell types can be used as well.
Nevertheless, using single-cell RNA-Seq data as the reference has
a few key advantages. It is a high throughput approach wherein
multiple cell types can be interrogated simultaneously. Prior
knowledge of the cell types in presence, as well as their specific
gene markers are not required, which allows novel cell types to be
identified. Although detection of lowly expressed genes has been a
challenge for the single-cell RNA-Seq, great enhancements have
been demonstrated. For example, the number of detectable genes
currently can reach an order of 10,000 per cell and keeps
improving52. As AdRoit focuses on the informative genes whose
expressions are generally high, the detection limit of the single-
cell RNA-Seq does not impose a noticeable drawback. Indeed,
given the single-cell reference profiles, AdRoit successfully
deconvoluted the real bulk RNA-Seq data and spatial tran-
scriptomics data. The results suggest that, besides enriching our
understanding of the bulk transcriptome data, AdRoit can
leverage the usage of the vast amount and continuously growing
single-cell data as well.

AdRoit is a reference-based deconvolution algorithm. A compre-
hensive collection of the possible cell components is important.
However, completeness may not always be guaranteed. Even with the
single-cell acquisition that is independent of prior knowledge, rare
and/or fragile cell types may not survive through the capture pro-
cedure and hence are excluded. It is also difficult to generate a solid
reference profile for cells that are versatile from sample to sample
(e.g., tumor cells). Currently AdRoit deals implicitly with the com-
ponents unknown to the reference. If an unknown cell type reas-
sembles one of the referenced ones, it may be considered as part of
the known cell type and their joint population is predicted. Such an
outcome is acceptable as treating two similar cell types as one is still
biologically meaningful although the resolution of the system may be

compromised. If the unknown component is dissimilar to all the
known ones, it will be ignored by AdRoit because its representative
markers are unlikely among the top-weighted genes associated with
the known components. At the same time, the distinct component is
expected to have a unique gene expression pattern and thus unlikely
to interfere with the gene expressions from the known cell types.
Therefore, AdRoit essentially deconvolutes the relative populations
among the known cell components. For example, AdRoit was able to
correctly uncover the populations of four endocrine cell types from
the human islet bulk data despite the absence of many other cell types
such as macrophages, Schwann cells, and endothelial cells in the
input single-cell reference20. Although under such a circumstance,
the absolute percentages of the cells remain obscure, we expect their
relative proportions can be studied and valuable. A future improve-
ment is to explicitly model the unknown cell types and estimate their
percentages upon the signals in the compound data that cannot be
explained by the contribution from the known components. AdRoit
may also be coupled with other programs to output the deconvoluted
cell type-specific transcriptome profiles. The inferred cell type
proportions by AdRoit can serve as the input to the downstream
program and benefit the outcome with the reliability and accuracy
demonstrated in this work.

Methods
Gene selection. AdRoit selects genes that provide information about cell type
identity, excluding non-informative genes that potentially introduce noise. There
are two ways for selecting such genes: (1) union of the genes whose expression is
enriched in one or more cell types in the single-cell UMI count matrix. These genes
are referred to as marker genes; (2) union of the genes that vary the most across all
the cells in the single-cell UMI count matrix, referred to as the highly variable
genes. For example, marker genes can be defined as the union of the top 200
perturbed genes that pass a p-value cutoff of 0.01, ranked by fold change, from each
cell type in comparison to the rest. Considering some genes may be enriched in
more than one cell type, we selected markers presenting in no more than 5 cell
types to ensure specificity.

AdRoit also offers the option to use highly variable genes. To avoid the selected
highly variable genes being dominated by large cell clusters, AdRoit first balances
the cell types in the single-cell UMI count matrix by finding the median size (i.e.,
the number of cells) of all clusters, then samples cells from each cluster to make its
size equal to the median. Next, AdRoit computes the variance of each gene across
all the cells in the balanced single-cell UMI matrix. The variance-stabilizing
transformation (VST)53 is applied to normalize the data prior to the variance
calculation. Genes with the top largest variances are then selected.

In both ways, mitochondria genes are excluded as their expression does not
have information of cell identity. The results shown in the current paper were
based on the marker genes derived as described above. We also demonstrated that
using the balanced highly variable genes yielded comparably accurate estimations
(Supplementary Fig. 9).

Estimate gene-wise mean and variance per cell type. Modeling single-cell RNA-
Seq data is challenging due to cell heterogeneity, technical sensitivity, and noise.
Some genes may not be detected by chance, while others may be found to be highly
dispersed. These factors can lead to excessive variability even within the same cell
type. AdRoit combats high noise and computational complexity by building
models with estimated mean and dispersion per gene per cell type. This strategy
reduces the data complexity while preserves the cell type-specific information.

Although typical analyses of RNA-Seq data start with normalization, AdRoit
does not do normalization before the mean estimation. Performing a normalization
across all cell types forces every cell type to have the same amount of RNA
transcripts, measured by the total unique molecular identifier (UMI) counts per
cell. However, different cell types can have dramatically different amounts of
transcripts. For example, the amount of RNA transcripts in neuronal cells is about
5 times higher than that in glial cells. Thus, normalization can falsely alter the
relative abundance of cell types, misleading the estimation of cell type percentages.
To avoid this problem, AdRoit models the means using the raw UMI counts.

Studies have shown that UMI counts follow a negative binomial
distribution54,55. We, therefore, fit negative binomial distributions to genes of each
cell type and build the model based on the estimated means and dispersions from
the selected genes. More specifically, let Xik be the set of single-cell UMI counts of
gene i∈ 1, .., I for all cells in cell type k∈ 1,…, K. I is the number of selected genes,
and K denotes the number of cell types in the single-cell count matrix. The
distribution of Xik follows a negative binomial distribution,

Xik � NBðλik; pikÞ; ð1Þ
where λik is the dispersion parameter of the gene i in cell type k, and pik is the
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success probability, i.e., the probability of one observed UMI belonging to gene i in
cell type k. The two parameters are estimated by MLE. The likelihood function is

LHðλik; pikjXikÞ ¼
Ynk
i¼1

f ðXikjλik; pikÞ; ð2Þ

where nk is the number of cells in cell type k, and f is the probability mass function
of the negative binomial distribution. The MLE estimates are then given by

ðcλik;cpikÞ ¼ argmaxλik ;pik LHðλik; pikjXikÞ ð3Þ
Once the success probability and the dispersion are estimated, the mean and the
variance of the negative binomial distribution can be computed numerically,

μik ¼
cλik �cpik
1�cpik

; ð4Þ

σ2ik ¼
cλik �cpik

ð1�cpikÞ2
: ð5Þ

Model fitting using MLE has been readily coded in many R packages. We
choose the ‘fitdist’ function from the ‘fitdistrplus’ package56 for its fast computation
speed and flexibility in selecting distributions. The mean and variance estimations
are done for each selected gene in each cell type, resulting in a I × K matrix each.

Cell type specificity of genes. Genes with a cell-type-specific expression pattern
better distinguish cell types, thus are more important for resolving cell-type
composition. In line with this property, AdRoit weighs more the genes with a
higher cell-type specificity. Highly specific genes usually have consistently high
expression and thus relatively low variance among cells within a cell type. To
compute the cell type specificity of a gene, we first identify the cell type in which
the gene has the highest expression (i.e., most expressed cell type), then defines the
specificity of this gene as the mean-to-variance ratio within that cell type. A high
ratio renders a high weight to the gene in the model. Here the mean and the
variance refer to the estimated values from the negative binomial model (μik and σ2ik
in Eqs. (4) and (5)). Let k′ be the index of the cell type that has the highest mean
expression of gene i,

k0 ¼ argmaxkfμikjkϵ1¼Kg; ð6Þ
then the weight of the cell type specificity for gene i, denoted wS

i , is given by,

wS
i ¼

μik0
σ2ik0

; ð7Þ

and it is computed for each gene in the set of selected genes.

Cross-sample gene variability. The variability of a gene contrasts with how stable
a gene is across samples. The idea of weighting genes based on their variability
across samples is first explored by Wang et al.22, wherein the variability was defined
as the cross-sample variance. By weighting down the high variability genes, the
authors achieved a great advantage over the traditional unweighted method. Genes
with a low cross-sample variability better represent the sample population, hence
are more trustworthy for learning the cell composition. AdRoit incorporates the
same notion to weigh the importance of genes; however, it defines the variability
more comprehensively. AdRoit acknowledges the dependency between the gene
expression level and its variance and thus computes a variance-to-mean ratio
(VMR) as the cross-sample variability. Here the mean and the variance are com-
puted across samples. The distribution of the VMR values is less skewed than that
of the variance alone. The VMR also circumvents underweighting genes with a low
expression, or overweighting genes highly dispersed. Let Yij denote the counts for
gene i in sample j∈ 1, …, J, then

Yij � NB ðλij; pijÞ; ð8Þ
where λij is the dispersion parameter of the gene i in sample j, and pij is the success

probability. Again, we use MLE to estimate bλij and bpij , following which the cross-
sample mean and variance can be numerically computed:

μSi ¼
bλij � bpij
1� bpij

; ð9Þ

ðσ2i Þ
S ¼

bλij � bpij
ð1� bpijÞ2

; ð10Þ

and the cross-sample variability VMR for gene i is then defined as

VMRi ¼
ðσ2i ÞS
μSi

¼ 1

wC
i
; ð11Þ

where wC
i is later used in the model. The cross-sample variability weight is com-

puted for each gene in the set of selected genes.

Typically, the RNA-Seq data of mixed cells to be deconvoluted include multiple
replicated samples with similar cellular compositions. In this case, the VMR is
computed as described above using the cross-sample mean and variance of the
gene. In case the RNA-Seq data to be deconvoluted lack multiple replications
whereas the single-cell reference contains replicates, AdRoit pools cells of the same
type in each replicate to synthesize multiple samples to compute the gene means
and variances per cell type, and subsequently estimate the VMRs with them. If
neither input has multiple repeats, AdRoit takes a bootstrapping approach to
sample and pool cells from each cell type in the single-cell reference several times
to generate multiple samples.

Gene-wise correction for the platform bias. When comparing the RNA-Seq data
of the mixture samples to the single-cell data, one needs to account for the possible
library size and platform difference. The simplest means is to adopt a fixed global
correction for each sample, e.g., all genes in a sample are linearly transformed in
the same way. This operation is based on a strong assumption that the platform
difference impacts every gene equally and is linearly scalable among different cell
types, which hardly holds. In addition, because linear models are sensitive to
outliers, the estimation of cell proportions can be steered away from the truth by
genes that are largely affected by the platform bias. Therefore, applying a uniform
correction to all genes is inappropriate.

To overcome this problem, AdRoit estimates a gene-wise correction per sample
via an adaptive learning strategy and applies it to each gene respectively. To
proceed, we first input the mean expression of gene i from the replicated
mixture samples (μi) and the estimated means of each cell type from the single-cell
data (μik in Eq. (4)), then obtain a coarse estimation (e.g., via a non-negative least
square regression57) of the proportions of each cell type, τk. For each gene i, a
predicted mean expression (∑K

k bτkμik in Eq. (13)) in the sample of mixed cells is
computed as the weighted sum of the means of this gene in each cell type wherein
the weights are τk. The regression equation is given by,

μi ¼ A � ∑
K

k
τkμik þ ε

� �
; 0< τk;∑

K

k
τk ¼ 1 ð12Þ

where A is a constant to ensure the sum of τk’s is 1 and ε is the error term. Next, we
calculate the ratio between the mean expression from the mixture samples and the
predicted counterpart, which constitutes the platform bias. We define the
correction factor as a function that depends on the estimated platform bias. An
option is the logarithm of the ratio plus 1,

ri ¼ log2
μi

∑K
k bτkμik

þ 1

 !
ð13Þ

Given the dispersed nature of count data, the logarithm results in relatively
more stable values. The addition of 1 avoids taking logarithm on zeros. By applying
the gene-wise ri, the genes affected more strongly by the platform bias (i.e.,
“outliers”) receive a larger correction (Fig. 1b).

Weighted and regularized loss function for training. AdRoit employs a non-
negative least square regression model to infer the cell compositions in a com-
pound RNA-Seq sample of mixed cell types. The model (Eq. (14)) approximates
the gene expression observed in the compound sample by the weighted (the
weights are the mixing percentages) sum of the cell type-specific gene expressions
from the single-cell reference, after correcting the platform difference.

yij � ri �∑
K

k
βkcμik ðβ1; ¼ ; βK > 0Þ ð14Þ

Where yij is the expression of gene i in the compound transcriptome sample j; the
coefficient βk is the mixing proportion for cell type k; cμik is the estimated mean
expression of gene i in cell type k computed according to Eq. (4); ri is the gene-wise
correction computed by Eq. (13) to alleviate the bias due to the technology dif-
ference. To infer the βk coefficients, AdRoit uniquely incorporates all the factors
discussed in the previous sections. This is implemented in a weighted sum-of-
squared loss function L, where the weights consist of two components, wC

i in Eq.
(7) and wS

i in Eq. (11). Thus, a larger weight is given to the genes with a higher cell-
type specificity and a lower cross-sample variability. In cases of complex tissues
where many similar cell subtypes exist, strong collinearity among the subtypes can
render the model sensitive to noise and prone to overfitting. AdRoit handles this
problem by including an L2 norm of the mixing proportions as the regularization
component in the loss function. For a compound transcriptome sample j, the loss
function is given by,

Lj β1; ¼ ; βK jyij;wC
i ;w

S
i ; ri;cμik

� �
¼ ∑

I

i
wC
i � wS

i � yij � ri �∑
K

k
βkcμik

� �2

þ λ∑
K

k
β2k

ð15Þ
where i is the index of a gene among the selected genes used for the deconvolution;
yij, βk , ri , and cμik are the same as defined in Eq. (14); wS

i and wC
i are computed as

described above in Eqs. (7) and (11), respectively. λ is the strength of the reg-
ularization. The βk coefficients are estimated by minimizing the loss function
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subject to the constraint β1; ¼ ; βK>0,

bβ1; ¼ ;cβK ¼ arg max
β1 ;¼ ;βK

β1 ;¼ ;βK>0
Lj ð16Þ

The minimization is done by a gradient projection method proposed by Byrd
et al.58. We derive the gradient function by taking the partial derivative of the loss
function with respect to βk,

Gk ¼ ∇βk
Lj ¼ �2∑

I

i
ri �cμik � wC

i � wS
i � yij � ri �∑

K

k
βkcμik

� �
þ 2λβk ð17Þ

AdRoit uses the function ‘optim’ from the R package ‘stats’ to perform the
minimization59, providing the loss function (Eq. (15)) and the gradient (Eq. (17)).
To get the final estimates of cell-type proportions, we rescale the coefficients βk’s to
ensure a summation of 1,

θk ¼
bβk

∑K
k
bβk

ð18Þ

Each compound RNA-Seq sample j is independently estimated by the model
described above.

Evaluation statistics. We compared the estimated cell-type proportions with the
ground truth by calculating the following four statistics. The mean absolute dif-
ference (mAD) and root mean square deviation (RMSD) are given by,

mAD ¼ ∑K
k jθk � θ0k j

K
ð19Þ

RMSD ¼ ∑K
k ðθk � θ0kÞ

2

K
ð20Þ

where θk and θ0k are the estimated proportions and true proportions, respectively.
Pearson correlation coefficient is computed as,

ρp ¼
∑K

k ðθk � θkÞðθ0k � θ0kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

k ðθk � θkÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

k ðθ0k � θ0kÞ
2

q ð21Þ

where θk and θ0k are the means of the estimated proportions and true proportions,
respectively. Spearman correlation coefficient is given by,

ρs ¼
∑K

k ðrk � rkÞðr0k � r0kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

k ðrk � rkÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑K
k ðr0k � r0kÞ

2
q ð22Þ

where rk and r0k is the rank of θk and θ0k , respectively, and rk and r0k are the means of
rk’s and r0k ’s.

Generation of synthesized bulk RNA-Seq and spatial transcriptomics data.
Bulk RNA-Seq data used for the benchmarking were synthesized by adding up the
raw UMI counts per gene from all cells within a subject. Let tk denote a cell of cell
type k, tk∈ 1, …, Tk, where Tk is the total number of cells in cell type k. Let YB

ij be
the count of gene i in a synthesized bulk sample associated with the subject j, and
Xijtk

be the UMI count of gene i in cell tk within the subject j, then

YB
ij ¼ ∑

K

k
∑
Tk

tk
Xijtk

ð23Þ

The true proportion of cell type k is given by,

θ0k ¼
Tk

∑K
k Tk

ð24Þ

To simulate the spatial transcriptomic spots, we first sampled 10 cells without
replacement from each cell type, then weighed them by their respective mixing
proportions before adding them up. For example, to simulate a spot with pk percent
of cell type k, the count Ys

ij of gene i in a spatial spot j is given by,

Ys
ij ¼ ∑

K

k
pk ∑

10

n¼1
Xikn ð25Þ

where Xikn is the UMI count of gene i in a selected cell n of cell type k. For each
mixing scheme, the simulation was repeated 100 times.

Single-cell RNA sequencing of mouse dorsal root ganglion. As described
previously60, lumbar DRGs were isolated from five 18-week old adult C57BL/6
mice (three males and two females) and transferred to a dissociation buffer
(Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated
Fetal Calf Serum) (Gibco; cat # A38400-02). To generate a single cell suspension,
DRGs were subjected to a 2 step-enzymatic dissociation followed by a mechanical
dissociation. In brief, DRGs were first incubated with 0.125% collagenase P from
Clostridium histolyticum (Roche Applied Science; cat # 11249002001) for 90 min
in an Eppendorf Thermomixer C (37 °C; intermittent 750 rpm shaking for about
10 s every 2 min). Then, DRGs were transferred to a Hank’s Balanced Salt Solution

(HBSS, Mg2+ and Ca2+ free; Invitrogen) supplemented with 0.25% Trypsin
(Worthington biochemical corp.; cat # LSoo3707) and 0.0025% EDTA and incu-
bated for 10 min at 37 °C in the Eppendorf Thermomixer C. Trypsin was neu-
tralized by the addition of 2.5 mg/ml MgSO4 (Sigma; cat #M-3937) and DRGs were
triturated with Pasteur pipettes. The resulting cell suspension was passed through a
70 µm mesh filter to remove remaining chunks of tissues and centrifuged for 5 min
at 2500 rpm at room temperature. The pellet was resuspended in HBSS (Ca2+,

Mg2+ free; Invitrogen) and the cell suspension was run on a 30% Percoll Plus
gradient (Sigma GE17-5445-02) to further remove debris. Finally, cells were
resuspended in PBS supplemented with 0.04% BSA at a concentration of 200 cells/µl
and cell viability was determined using the automated cell analyzer NucleoCounter®

NC-250™. The suspended single cells were loaded on a Chromium Single Cell
Instrument (10x Genomics) with about 6000 cells per lane to minimize the presence
of doublets. 2000–3000 cells per lane were recovered. RNA-Seq libraries were
constructed using Chromium Single Cell 3′ Library, Gel Beads & Multiplex Kit (10x
Genomics). Single-end sequencing was performed on Illumina NextSeq500. Read
1 starts with a 26 bp UMI and cell barcode, followed by an 8 bp i7 sample index.
Read 2 contains a 55 bp transcript read. Sample de-multiplexing, alignment, fil-
tering, and UMI counting were conducted using Cell Ranger Single-Cell Software
Suite61 (10x Genomics, v2.0.0). Mouse mm10 Genome assembly and UCSC gene
model were used for the alignment.

Data preprocessing. For the DRG single-cell data, the UMI data output from the
Cell Ranger Single-Cell Software Suite (10x Genomics, v2.0.0) was analyzed using
Seurat package62 to assess the cell quality and identify cell types, similar to what
was described previously42. Cells with the number of detected genes less than 500
or over 15000, or with a UMI ratio of mitochondria encoded genes versus all genes
over 0.1 were also removed. The UMI data was normalized by the ‘NormalizeData’
method in Seurat with default settings. To avoid potential sample-to-sample var-
iation caused by the technical variation at various experiment steps, we employed
Seurat data integration method. The top 2000 variable genes of each of the 5 DRG
samples were identified using ‘FindVariableFeatures’ with selection.method= ‘vst’.
Based on the union of these variable genes, the anchor cells in each sample were
identified by ‘FindIntegrationAnchors’. All the samples were then integrated by
‘IntegrateData’. We subsequently scaled the integrated data (‘ScaleData’) and
performed dimension reduction (‘RunPCA’). Cells were then clustered based on
the first 15 principal components by applying ‘FindNeighbors’ and ‘FindClusters’
(resolution= 0.6, algorithm= 1). Marker genes for each cluster were identified
using ‘FindAllMarkers’. Parameters were used such that these genes were expressed
in at least 25% of the cells in the cluster, and on average two-fold higher than the
rest of cells with a multiple-testing adjusted Wilcoxon test p value of less than 0.01.
The specificity of the canonical cell-type-specific genes or cell cluster-specific genes
were further examined by visualizations (Supplementary Fig. 4) and used to define
the cell type for each cluster. In the end, the original UMI data from 17271 genes
and 3352 cells that passed the quality control were organized into a matrix (genes
as rows and cell identifiers as columns). This matrix, together with the cell type
label for each cell therein, were loaded into AdRoit as the reference profiles.

To build the mouse brain single-cell atlas, the scRNA-Seq reference data of the
mouse brain were obtained from Zeisel et al.32. Among all the available data, we only
retained 96,572 cells that were acquired from the brain regions, had an assigned cell
type by the authors, and a minimal total UMI of 1000. These cells correspond to 183
clusters at the finest taxonomy level in the original study. As many of the clusters are
highly similar, we decided to merge some of them to simplify the reference landscape.
First, the top 50 cluster enriched markers were derived using Scanpy63 via the
‘rank_genes_groups’ function (method= ‘wilcoxon’), following the normalization
(‘normalize_per_cell’), log transformation (‘log1p’) and regressing out (‘regress_out’)
the variances associated with the total UMI and the percentage of mitochondrial
chromosome encoded genes per cell. Then, the pair-wise overlapping p-values among
the clusters were calculated using the top 50 marker genes assuming a hypergeometric
null distribution. Last, clusters with overlapping p-values more significant than 1e−10
were merged and new names were assigned by combinedly considering the original
annotation, the molecular features, and the specificity to certain brain regions. A total
of 46 cell types were determined that cover all the 12 brain regions and their
important substructures40 (Supplementary Data 5). To make the reference dataset
more manageable in size and more balanced in the representation of cell types, we
down-sampled each cluster to no more than 360 cells. A final set of 14,666 cells over
46 cell types was used for the deconvolution of the mouse brain spatial
transcriptome data.

The human Islets single-cell RNA-Seq data contained 1492 high-quality human
islets single cells and the associated annotations from Xin et al.41. The RPKM
expression table was directly downloaded and used as-is. The RNA-FISH data was
also from this study41. The real bulk RNA-Seq data of human islets was acquired
from a large-scale study referred in multiple publications41,43,44. We only included
the data from donors with a valid HbA1C level measurement in the regression
analysis of the Beta-cell proportion with respect to the HbA1C level (Fig. 5c and
Supplementary Data 10).

The human trabecular meshwork single-cell data were acquired from the
authors of Patel et al.42. We used the UMI counts, tSNE coordinates, and the cell
type annotation of 8759 high-quality cells. Details of the quality control and the cell
type identification were presented in the original publication.
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The Mouse Brain Spatial transcriptomics data by 10x Visium platform were
download from the 10x Genomics website (see “Data availability”), including the
filtered count matrix, tissue image, and the spatial coordinates of a coronal section
of an adult C57BL/6 mouse brain. A total of 2698 in-tissue spots were provided in
the data set and used as-is.

The Mouse Brian ISH images were directly downloaded from Allen mouse
Brain Atlas40 by searching the gene names. The images were used without further
editing except for cropping.

Statistics and reproducibility. The statistical analyses were done with R sta-
tistical software (v3.6.0)59 and python (v3.7.2)64. The packages used include
Seurat (v3.0.1)62, scanpy (v1.6.0)63, dplyr (v0.8.0.1)65, doParallel (v1.0.14)66,
data.table (v1.12.4)67, fitdistrplus (v1.1-1)56, nnls (v1.4)57, MuSiC (v0.1.1)22,
BisqueRNA (v1.0.4)21, SPOTlight (v1.0.4)38, Cell2location (v0.05-alpha)39,
Stereoscope(v_03)23.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mouse DRG single-cell data were deposited at NCBI GEO (accession number:
GSE163252). The bulk RNA-Seq and RNA-FISH data for human pancreatic islets were
initially published as aggregated data where the data processing and experimental
procedure were described therein41,43,44. We acquired the individual sample data from
the authors and released them along with the current study (Supplementary Data 10).
The other public data analyzed in this study were obtained using GEO accession number
GSE81608 (human pancreatic islets single-cell data), NCBI SRA accession number
PRJNA616025 (human trabecular meshwork single-cell data), and NCBI SRA accession
number SRP135960 (mouse brain single-cell data). The 10x Genomics PBMC data68 and
the Visium mouse brain spatial transcriptomics data69 were downloaded from 10x
Genomics website.

Code availability
AdRoit’s source code is available on Github (https://github.com/TaoYang-dev/AdRoit)70.
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