Replication and single-cycle delivery of SARS-CoV-2 replicons

Inna Ricardo-Lax†, Joseph M. Luna†, Tran Thi Nhu Thao3,8, Jérémie Le Pen1, Yingpu Yu1, H.-Heinrich Hoffmann1, William M. Schneider1, Brandon S. Razooky1, Javier Fernandez-Martinez2, Fabian Schmidt6, Yiska Weisblum4, Bettina Salome Trüeb2-3, Inês Berenguer Veiga2-3, Kimberly Schmied2-3, Nadine Ebert2-3, Eleftherios Michailidis1, Avery Peace1, Francisco J. Sánchez-Rivera2, Scott W. Lowe7, Michael P. Rout5, Theodora Hatziioannou4, Paul D. Bieniasz6, John T. Poirier6, Margaret R. MacDonald1, Volker Thiel2,3*, Charles M. Rice*†

1Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA. 2Institute of Virology and Immunology (IVI), Bern, Switzerland. 3Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland. 4Graduate School for Biomedical Science, University of Bern, Bern, Switzerland. 5Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA. 6Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA. 7Cancer Biology and Genetics, MSKCC, New York, NY 10065, USA. 8Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.

†These authors contributed equally to this work.

*Corresponding author. Email: volker.thiel@vetsuisse.unibe.ch (V.T.); ricec@rockefeller.edu (C.M.R.)

Molecular virology tools are critical for basic studies of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. There remains a need for experimental systems that do not rely on viruses capable of spread that could potentially be used in lower containment settings. Here, we develop spike-deleted SARS-CoV-2 self-replicating RNAs using a yeast-based reverse genetics system. These non-infectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate Replicon Delivery Particles (RDPs) for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and characterizing viral variants.

Self-replicating RNAs, known as replicons, are model systems used to genetically probe numerous aspects of RNA virus life cycles without producing infectious virus (1–7). Replicons for positive-stranded RNA viruses are typically constructed using reverse genetics approaches to replace one or more viral structural proteins with selectable and reporter genes. When translated inside cells, replicon RNA produces viral gene products that establish RNA replication factories, with reporter genes providing readouts for replicon activity and selectable genes permitting selection of cells that stably harbor the replicon. Because key structural components of the virion are missing, replication proceeds without producing infectious virus. Replicon systems that do not require high containment laboratory settings have been invaluable as molecular virology and high-throughput drug development platforms, as perhaps best exemplified for hepatitis C virus (8, 9).

Reverse genetics systems for SARS-CoV-2, the causative agent of COVID-19, have been developed for fully-infectious recombinant virus production (10–13) and as replicon platforms (14–19). In the latter case, trans-complementation of the deleted structural gene nucleocapsid (N) (18) or envelope (E) and Orf3a genes (19) can enable single-cycle infectious SARS-CoV-2 virion production that may reduce the need for high containment for a range of applications. While these systems permit spike-dependent replicon delivery, interrogating newly emerging spike variants requires replicon reengineering for each variant. In contrast, SARS-CoV-2 spike-pseudotyped lentiviruses (20–22) or chimeric rhabdoviruses (22, 23) bearing spike(s) offer a rapid, plasmid-based means of virion production for spike directed studies (24), such as the characterization of neutralizing antibodies. There remains a need for experimental systems that harness the non-infectious advantages of replicons, while also enabling studies of virus entry and replication. In principle, combining a spike-deleted SARS-CoV-2 replicon with viral glycoprotein trans-complementation would achieve this goal. Such a system would enable isogenic studies of spike variants in a SARS-CoV-2 based platform, while also serving as an appropriately safe-guarded infection-based means of replicon launch that may be extended to additional cell types by using heterologous viral glycoproteins. Here we describe the construction, activity and single-cycle virion generation of spike-deleted SARS-CoV-2 replicons using viral glycoprotein trans-complementation to create replicon delivery particles (RDPs).

Spike-deleted replicon design and optimization of RNA production

The SARS-CoV-2 genome is thought to encode 16 non-structural proteins (Nsp1-Nsp16) in two overlapping reading frames (Orf1a/1b), as well as four structural proteins—spike (S), membrane (M), envelope (E), and nucleocapsid (N) (10). Spike (19), membrane (16), and nucleocapsid (25) pseudotyped lentiviruses have been extensively used to study these viral proteins. Spike (19), membrane (16), and nucleocapsid (25) pseudotyped lentiviruses have been extensively used to study these viral proteins.
membrane (M), envelope (E), nucleocapsid (N)—and at least seven accessory proteins (3a, 3c, 6, 7a, 7b, 8, and 9b) expressed from subgenomic RNAs or alternative reading frames (Fig. 1A) (25, 26). We adopted a modular design to assemble a replicon consisting of all viral proteins with the exception of the primary structural glycoprotein spike (ΔS). The spike transcription-regulating sequence (TRS) was instead used to drive expression of a gene cassette consisting of neomycin resistance (NeoR) and a reporter gene (nuclear-localized monomeric NeonGreen or secreted Gaussia luciferase) separated by a T2A ribosome shift sequence (Fig. 1A). The plasmid encoding the replicon cDNA contains an upstream T7 promoter at the 5′ end for in vitro transcription and a self-cleaving hepatitis delta virus (HDV) ribozyme at the 3′ end, which cleaves after an encoded polyA sequence yielding an authentic terminus.

For replicon assembly, we employed a recently published RNA virus reverse genetics system in the yeast Saccharomyces cerevisiae (10). This system leverages transformation-associated recombination (TAR) to accurately assemble numerous, large overlapping DNA fragments (27). Transformation of yeast with equimolar ratios of replicon cDNA fragments led to efficient replicon assembly as assessed by multiplex PCR (fig. S1A). We performed restriction enzyme digests of the resulting DNA to assess plasmid integrity and observed that yeast-derived plasmids were contaminated with yeast genomic DNA and did not reveal the expected NdeI digest pattern (Fig. 1B). In an alternative approach, we propagated yeast assembled plasmids in bacteria, which boosted plasmid purity, as demonstrated previously (10). However, the overall DNA yield was suboptimal in both instances and, in the case of bacterial propagation, often resulted in mutations in the coding region of the viral RNA-dependent RNA polymerase (RdRp). To improve plasmid purity and yield, we developed a method that relies on selective enzymatic digestion of contaminating yeast DNA followed by preferential amplification of the plasmid product. We first treated plasmid preparations with BamHI, which digests yeast genomic DNA but whose recognition sequence is absent in the replicon plasmid. We subsequently treated the DNA with Plasmid-Safe (PS) DNase to digest linear contaminating yeast DNA. We next turned to multiple displacement rolling circle amplification (RCA) using phi29 DNA polymerase (28) and random primers to amplify replicon plasmids from either yeast or sequence-verified bacterial clones. Due to its processivity (>70 kb per binding event), strand-displacement activity, and low error rate (<1E-6), phi29 polymerase can exponentially amplify long, circular DNA sequences with high fidelity under isothermal conditions and has been used to replicate bacterial artificial chromosomes, cosmids, mitochondrial DNA, and microbial genomes megabases in length (29–31). Indeed, amplification of replicon plasmids from yeast or bacteria yielded useful quantities of full length and intact replicon DNA (Fig. 1B) as verified by amplicon sequencing. We used the resulting DNA for T7 transcription reactions and observed apparently full-length (~27.5 kb) replicon RNA in addition to shorter RNA products (Fig. 1C). To directly compare launch efficiency, mNeonGreen-encoding replicon RNAs were electroporated into BHK-21 cells together with additional in vitro transcribed N mRNA, previously shown to boost launch efficiency (10, 15), and the percentage of cells expressing the mNeonGreen reporter was measured at 24 h post electroporation. We observed fewer than 1% of replicon positive cells using RNA from non-phi29 amplified templates, where bacteria propagated plasmids yielded the highest (0.8%) mNeonGreen reporter signal (Fig. 1D). In contrast, PS DNase-treated and phi29-amplified templates yielded approximately 20% mNeonGreen positive cells. The mNeonGreen signal was dependent on productive replication and transcription, as no signal was observed using replicon RNA harboring inactivating mutations in Nsp12, the viral RdRp (32, 33) (Fig. 1E, pol(-)). In summary, the most efficient means of reaching high replicon launch efficiency was achieved by making capped RNA from yeast plasmids that are PS digested and phi29-amplified prior to transcription (Fig. 1F).

Spike-deleted SARS-CoV-2 replicons are convenient and versatile assay platforms

To characterize the utility of spike-deleted replicons for antiviral compound evaluation and screening, host factor validation, and viral mutant phenotype assessment, we constructed a replicon encoding secreted Gaussia luciferase (Gluc) (Fig. 1A). RNA transcripts were electroporated into Huh-7.5 cells and cumulative reporter activity per 24 h period was monitored via luciferase quantification from culture supernatant. We detected robust luciferase activity by 24 h post-electroporation which steadily decreased over time (Fig. 2A). Luciferase activity was dependent on viral replication, as no signal was observed for the pol(-) replicon mutant. Replicon-driven luciferase expression was also sensitive to remdesivir, a well-characterized inhibitor of the SARS-CoV-2 RdRp (34). As a luciferase-independent measure of replicon activity, we measured N subgenomic mRNA (sgmRNA) levels by qRT-PCR and observed RNA accumulation kinetics that paralleled reporter gene expression (Fig. 2B). This signal was distinct from co-electroporated N mRNA, needed for efficient replicon or virus launch from RNA (10), which was detectable in all measured samples as expected (fig. S1B). These results show that SARS-CoV-2 replicons undergo robust and quantifiable RNA replication.

One of the most fruitful applications for replicons are as drug screening platforms. As a proof-of-concept, we treated cells bearing luciferase reporter replicons with compounds reported to have direct acting antiviral (DAA) activity at
different stages of the viral life cycle: the SARS-CoV-2 RdRp inhibitor remdesivir (34), and masitinib, a proposed 3CLpro inhibitor (35). As a negative control, we used 27-hydroxycholesterol (27-HC), which was reported to have both anti-SARS-CoV-2 and anti-HCoV-OC43 activity by affecting viral entry, which we bypass by RNA transfection (36). We also tested a host-targeting agent (HTA), AM580, a retinoid derivative reported to have broad antiviral activity by disrupting sterol regulatory element binding protein (SREBP) lipid signaling (37). For remdesivir, we observed IC50 values and low cytotoxicity profiles similar to those previously reported for live virus (Fig. 2C) (34). For masitinib, we observed inhibition with similar IC50 values to what was shown with infectious HCoV-OC43 and SARS-CoV-2 (35). However, cellular toxicity was observed at high concentrations (Fig. 2D). For AM580, IC50 values were consistent with reported results, with low cytotoxicity at inhibitory concentrations (Fig. 2E) (37). As expected, 27-HC showed no detectable inhibition (Fig. 2F). These representative results showcase the utility of SARS-CoV-2 replicons as scalable drug discovery platforms focused on intracellular viral replication events.

We next tested if replicons could be used to identify or validate intracellular SARS-CoV-2 host factors. Transmembrane protein 41B (TMEM41B) was recently reported to be a critical intracellular host factor for multiple coronaviruses (38). To test whether SARS-CoV-2 replicon activity depended on TMEM41B function, we electroporated wild-type and TMEM41B KO Huh-7.5 cells with reporter replicon RNA. Consistent with results obtained with virus, TMEM41B KO resulted in a 22-fold decrease in reporter activity compared to wild-type Huh-7.5 cells (Fig. 2G), an effect similar in magnitude to remdesivir treatment. In contrast, an alphavirus replicon was not affected by TMEM41B ablation (Fig. 2H). TMEM41B reconstitution in KO cells led to an 11-fold rescue in replicon activity (Fig. 2I). These results demonstrate that SARS-CoV-2 replicons are sensitive to disruption of critical intracellular host factors.

SARS-CoV-2 replicons reveal viral determinants of interferon sensitivity

SARS-CoV-2 replicons can also be used to characterize viral mutants. Recent studies have highlighted the importance of Nsp1 as a suppressor of host translation (39–44) consistent with prior studies on SARS-CoV (45, 46). This Nsp1 activity can be ablated by two amino acid substitutions at positions 164 and 165 (47) that are important for association with the 40S ribosomal subunit (39, 40). Nsp1 mutant (Nsp1mut) replicons might preserve translation and cell viability and hence prolong replicon activity or, given the proposed role of Nsp1 in blunting the innate immune response (14, 39, 48), such mutations might attenuate the replicon. We generated Nsp1mut replicons and found that they performed similarly to wild-type versions in Huh-7.5 cells, could be inhibited by remdesivir (Fig. 3A), but exhibited less cellular toxicity (Fig. 3B). In contrast, viability of cells harboring wild-type replicons remained low even when replicons were launched in the presence of remdesivir (Fig. 3B). Taken together, these results suggest that the initial burst of SARS-CoV-2 Nsp1, expressed from transfected replicon RNA, is an important mediator of cell toxicity.

As SARS-CoV-2 Nsp1 activity is proposed to halt production of interferon-stimulated gene (ISG) products (39, 40), we hypothesized that Nsp1mut replicons would be more sensitive to interferon. Indeed, upon launch in Huh-7.5 cells, Nsp1 mutants were hypersensitive to IFNa and IFNb compared to wild-type replicons (Fig. 3C and D) while both replicons exhibited similar sensitivity to remdesivir (Fig. 3E). These results highlight the ability of Nsp1 to blunt the antiviral ISG response by inhibiting host translation, which contributes to cytotoxicity. While these features of Nsp1mut replicons may be advantageous for DAA and HTA screening, the lack of Nsp1 functions may affect screening outcomes in different cell backgrounds, depending upon innate immune competence or other factors. Further, attempts to leverage the lower cytotoxicity of Nsp1mut replicons to select for stable cell lines harboring non-cytopathic replicons, as done previously with HCoV-299E (49), have thus far been unsuccessful in Huh-7.5 and BHK-21 cells. Different cell backgrounds and multiple adaptive mutations may be necessary to achieve this goal.

SARS-CoV-2 replicons can be trans-complemented with spike to generate single-cycle virions

While BHK-21 and Huh-7.5 cells are permissive for replicon launch via electroporation, physiologically relevant lung cell lines and primary cell types are more challenging to transfect. Such cells also have intact RNA sensing and innate immune functions, which BHK-21 and Huh-7.5 cells lack (50, 51). Electroporation or other methods of RNA delivery also preclude the study of normal viral entry processes, and the large quantities of transfected RNA do not mimic virus infection, where one or few RNA genomes initiate productive replication. As a more authentic route for replicon delivery, we attempted to package replicons as single-cycle virions that could infect cells in a spike-dependent manner but would not produce infectious progeny capable of further spread. We refer to these single-cycle virions as replicon delivery particles (RDPs). We transfected BHK-21 cells with a spike-expressing plasmid and 24 h later co-electroporated spike-deleted mNeonGreen replicon RNA and N mRNA (Fig. 4, A and B). The full-length native spike gene was human-codon optimized and designed to lack 5′UTR, leader, TRS, and 3′UTR viral sequences in order to minimize the possibility of recombination into the replicon (52, 53). Given that Nsp1 hindered cell survival post electroporation, we hypothesized that Nsp1mut replicons could be
trans-complemented more efficiently than wild-type replicons. To test this, wild-type or Nsp1mut replicons were electroporated into spike-expressing cells. After 24 h, the putative RDPs were concentrated from the supernatant of producer cells by polyethylene glycol (PEG) precipitation and introduced to the culture medium of recipient Huh-7.5 cells overexpressing ACE2 and TMPRSS2 (Huh-7.5 AT). We detected mNeonGreen-positive cells in a spike-dependent manner (Fig. 4, C and D, P1) with Nsp1mut RDPs yielding a 5-fold higher proportion of positive cells. No mNeonGreen positive cells were detected upon further passage of the supernatant from RDP positive Huh-7.5 AT cells (P1) onto naïve Huh-7.5 AT cells (P2), (Fig. 4, C and D). This suggests that spike RDPs exhibit single-cycle infectivity. Consistent with this observation, spike expression was readily detected in the producer cells (P0), but absent in RDP-infected P1 cells (fig. S2, A and B). N protein expression was observed in producer and P1 cells, but not in P2 cells as expected (fig. S2C). Further, consistent with a single-cycle infectivity, spike RDP infection did not yield characteristic syncytia indicative of spike expression, as is typically seen with live virus (fig. S2, D and E). We observed spike RDP titers of 10^7-10^8 TCID$_{50}$/ml in Huh-7.5 AT using unconcentrated stocks and up to 6.2×10^7 TCID$_{50}$/ml upon concentration, with about 10-fold lower specific infectivity than virus (Fig. 4, E to G). This may indicate that RDPs have reduced spike density compared to virus.

Neutralization assays with RDPs recapitulate authentic SARS-CoV-2 antibody phenotypes

Spike RDPs could complement pseudovirus assays based on HIV-1 or vesicular stomatitis virus (VSV), with a SARS-CoV-2-based, and therefore more authentic, single cycle alternative. We generated Nsp1mut Gluc RDPs trans-packaged with either the prototype spike (WA1/2020 isolate) or the B.1.351 variant of concern (S54). We performed neutralization assays with these RDPs using two well-characterized human monoclonal antibodies, C135 and C144 capable of potently neutralizing SARS-CoV-2 or pseudoviruses expressing the prototype spike (S55). C144 binding and neutralization is ablated by the spike E484K mutation, which was originally identified by antibody selection experiments using a VSV pseudovirus (S56) and which later appeared in the B.1.351 variant (S54). RDPs harboring the prototype spike were neutralized with both antibodies, while only C135, but not C144, neutralized B.1.351 spike RDPs (Fig. 5, A and B). Neutralization curves and relative IC$_{50}$ values were comparable to those obtained with the respective SARS-CoV-2 isolates (Fig. 5, D to F) and with previous reports using pseudovirus assays (S55, S56) with the added advantage that RDP generation does not require deletions in the spike coding sequence (S22).

Spike-deleted SARS-CoV-2 replicons can incorporate VSV glycoprotein

Efficient entry with spike RDPs appears to require high levels of ACE2 and TMPRSS2 in Huh-7.5 cells since RDP addition to Huh-7.5 or Vero cells not overexpressing these factors was unproductive. As numerous cell lines relevant for SARS-CoV-2 studies may have insufficient ACE2 or TMPRSS2 levels unless engineered to support viral entry (S57), we tested whether spike-deleted replicons could be packaged with VSV-G, analogous to one-way lentiviral transduction. In such systems, VSV-G pseudotyping provides an efficient means of lentiviral vector entry (S58) and for RDPs might provide an ACE2-independent means of replicon delivery. We transfected BHK-21 cells with a VSV-G expression plasmid followed by co-electroporation with spike-deleted mNeonGreen replicon RNA and N mRNA (Fig. 6A). The resulting RDPs in the supernatant were concentrated and added to naïve Huh-7.5 cells. After 24 h, we observed mNeonGreen-positive cells in a VSV-G dependent manner (Fig. 6, B and C, P1). Importantly, there was no measurable signal in a second passage (Fig. 6, B and C, P2) and no VSV-G carryover was detected in the P1 cells (fig. S3, A and B), suggesting that VSV-G RDPs possess single-cycle infectivity. In contrast to spike RDPs, producer (P0) VSV-G expressing BHK-21 cells had a significantly higher ratio of mNeonGreen compared to control cells when the Nsp1mut replicon was used, suggestive of local VSV-G-dependent spread. P1 cells also exhibited higher mNeonGreen and N protein positivity using Nsp1mut RDPs compared to wild-type RDPs (Fig. 6, B and C, and fig. S3C). We observed VSV-G RDP titers between 1×10^3 to 1×10^5 TCID$_{50}$/ml on Huh-7.5 cells. We then tested VSV-G RDP infectivity on additional cell types: African green monkey VeroE6 cells, human Caco2 intestinal epithelial cells (S59, S60) and both Calu3 and A549 human lung adenocarcinoma cells (S61–S64). Additionally, we tested RDP activity in two lines of human airway cells: normal human bronchial/tracheal epithelial cells (NHBE) and normal human lung fibroblasts (NHLF) (Fig. 6D). All cells were susceptible to infection with VSV-G RDPs and exhibited productive viral replication, as evident from mNeonGreen reporter expression. We pretreated NHBE, NHLF and A549 cells with 100 nM remdesivir or 100 pM IFNa and subsequently added Gluc VSV-G RDPs. As shown in Fig. 6E, both treatments inhibited Gluc reporter activity to levels approaching baseline. Overall, these data demonstrate that VSV-G RDPs provide flexible means of replicon launch in primary cell contexts.

To further examine whether VSV-G RDPs have single-cycle infectivity using a more sensitive approach, we generated Gluc expressing VSV-G RDPs and infected naïve Huh-7.5 cells followed by Gluc measurements 24h later (P1). While the VSV-G RDP positive cells produced a robust Gluc signal, no signal was observed when the supernatant from P1 was concentrated and passaged onto naïve cells (P2) (Fig. 6F). Input
supernatant was similarly concentrated and used as positive control for VSV-G RDP concentration and single-cycle infection.

VSV-G trans-complementation of a SARS-CoV-2 replicon lacking all accessory genes

As the RDP results presented thus far have relied on spike-deleted replicons with or without mutations in Nsp1, we examined whether replicons harboring additional deletions could be packaged into RDPs. Previous work with SARS-CoV and SARS-CoV-2 has shown that M and E genes are required for virion morphogenesis and release (65, 66). On that basis, we tested VSV-G packaging of a replicon that lacked all accessory genes but retained genes encoding the structural M, E, and N proteins (ΔAcc) (fig. S4A). VSVG-dependent infectivity was observed on recipient Huh-7.5 cells using both mNeonGreen and Gluc ΔAcc versions at levels comparable to the spike-deleted (ΔS) replicon (fig. S4, B to D). Thus, accessory genes are dispensable for replicon pseudotyping with VSVG.

We highlight several features of SARS-CoV-2 RDPs. First, RDPs enable a rapid and isogenic means of generating single-cycle SARS-CoV-2 virions for spike-directed efforts, such as screening spike variants against neutralizing antibodies cycle SARS-CoV-2 virions for spike-directed efforts, such as VSV-G.

REFERENCES AND NOTES

58. J. Cronin, X.-Y. Zhang, J. Reiser, Altering the tropism of lentiviral vectors through D.-Y. Chen}

66. Acknowledgments

We thank A. O’Connell, S.M. Pecoraro Di Vittorio, G. Santiago, M. E. Castillo, A. Weberon, and S. Shirley for outstanding administrative or technical support. We thank L. Fabroussa, J. Jones, I. Minia and E. Wyler for technical advice. V. Larionov for TAR plasmid sequences, and M. C. Nussenzevig for neutralizing antibodies and helpful feedback. We thank the Rockefeller University Genomic Resource Center and High Throughput Facility cores, and the FACS Immunocassay and Digital PCR Instruments lab. Funding: The authors were supported for COVID-19 work with funding from the following awards, foundations, and charitable trusts: The G. Harold and Leila Y. Mathers Charitable Foundation (CMR), The Bawl Foundation (CMR), Fast Grants (www.fastgrants.org), a part of Emergent Ventures at the Mercatus Center, George Mason University (CMR), The Evergrande COVID-19 Response Fund Award from the Massachusetts Consortium on Pathogen Readiness, Swiss National Science Foundation grants 310030_173085 and 51NF40-182880 (VT), and National Institutes of Health administrative supplement to U19AI118125

First release: 14 October 2021

science.org

(Page numbers not final at time of first release)
Author contributions: Conceptualization: JML, IRL, TTNT, JLP, WMS, JTP, MRM, VT, CMR. Methodology: IRL, JML, TTNT, JLP, YY, HHH, WMS, JFM, BSR, FSR, NE. Formal analysis: JML, IRL. Investigation: IRL, JML, TTNT, JLP, YY, BT, IBV, BSR, KS. Resources: TTNT, YY, HHH, JFM, FS, YW, EM, BSR, FSR, SWL, MPR, TH, PDB, JTP, VT. Data curation: JML, IRL. Supervision: VT, CMR. Visualization: JML, IRL. Writing—original draft: IRL, JML, CMR. Writing—review & editing: TTNT, JLP, WMS, IBV, BSR, JFM, FSR, MPR, TH, JTP, MRM, VT, CMR. Project Administration: AP, MRM. Funding acquisition: SWL, JTP, VT, CMR. Competing interests: IRL, JML, JTP, VT, and CMR are inventors on a patent filed by The Rockefeller University, New York University, and the University of Bern based on the results described in this manuscript. CMR is a founder of Apath LLC, a Scientific Advisory Board member of Imvaq Therapeutics, Vir Biotechnology, and Arbutus Biopharma, and an advisor for Regulus Therapeutics and Pfizer. PDB has received compensation for consulting services to Pfizer. IRL is a paid consultant for Grit Bio. The remaining authors declare no competing interests.

Data and materials availability: Data supporting the findings of this study are reported in the main text and figures and in supplementary figs. S1 to S4 and table S1. All reagents and materials generated in this study are available from the corresponding authors with a completed Materials Transfer Agreement to the Rockefeller University. Note that the biosafety containment level appropriate for use with these materials is subject to the policies of the requesting institution in addition to relevant regulatory bodies. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using such material.

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.abj8430
Materials and Methods
Figs. S1 to S4
Table S1
References (69–73)
MDAR Reproducibility Checklist

5 June 2021; accepted 6 October 2021
Published online 14 October 2021
10.1126/science.abj8430
Fig. 1. SARS-CoV-2 replicon design and launch optimization. (A) Upper schematic: SARS-CoV-2 genome, with structural proteins in black. Lower schematic: Replicon amplicon fragments for yeast assembly. Fragments from (10) are shown in gray, fragments harboring mutations in Nsp1 or Nsp12 (pol-), are indicated. Reporter gene cassette in place of spike in purple; re-engineered flanking regions in blue. L: leader, UTR: untranslated region, pA: polyA, HDV: hepatitis delta virus, NLS: nuclear localization sequence. (B) Agarose gel of replicon DNA recovered from yeast or bacteria. Phi29 amplification or plasmid-Safe (PS) DNase treatment indicated. Expected NdeI digest depicted at right. (C) Agarose gel of T7 RNA transcription reactions from DNA plasmids shown in (B). Arrow highlights the expected size of full-length RNA. Asterisk denotes truncated product. (D and E) Percent of mNeonGreen replicon positive BHK-21 cells from non-amplified (D) or phi29-amplified (E) DNA templates measured by flow cytometry. Insets show representative mNeonGreen (NG) and bright-field (BF) images. N = 3, error bars = SEM. Mock = no RNA electroporation. (F) Optimized RNA production for SARS-CoV-2 replicons. Overlapping PCR fragments are assembled in yeast and propagated in bacteria or yeast, in which case they are PS DNase treated. Subsequent phi29 amplification ensures full-length DNA template availability for transcription.
Fig. 2. SARS-CoV-2 replicons are sensitive to antiviral compounds, host factor loss, and viral mutant phenotypes. (A) Gaussia luciferase (Gluc) in Huh-7.5 supernatant from cells electroporated with Gluc replicon RNA, seeded with 100nM remdesivir (RDV) or vehicle. Mock electroporation and pol(-) replicons were used as controls. Dashed line indicates the limit of detection. N = 4. (B) qRT-PCR measurements for subgenomic N RNA for cells in (A). Signal from mock infected cells used for normalization (dashed line), N = 3. (C to F) Representative experiments in Huh-7.5 cells were electroporated with the Gluc replicon RNA and seeded with (C) remdesivir (N = 4), (D) masitinib (N = 4), (E) AM580 (N = 3), or (F) 27-hydroxycholesterol (27-HC) (N = 3). After 24 h, Gluc signal in the supernatant (black circles) and cell viability (empty circles) was measured and normalized to vehicle-treated cells, error bars = SEM. (G) IC50 values from independent experiments using the compounds presented in (C) to (E). (H) Parental Huh-7.5 (WT) and clonal TMEM41B KO cells were electroporated as in (A). Gluc was measured 24h post-electroporation, N = 4. (I) Cells as in (H) were electroporated with SinRep-GFP alphavirus replicon RNA. After 24 h, GFP-positive cells were quantified by flow cytometry, N = 3. (J) As in (H), using cells reconstituted with TMEM41B. N = 5. Error bars = SD, *** denotes P-value <0.001 using a two-sided Student’s t test.
Fig. 3. Nsp1 deficient replicons are hypersensitive to interferons. (A and B) Timecourse measurements of Gluc in the supernatant (A) or cell viability (B) of Huh-7.5 cells electroporated with WT or Nsp1 K164A/H165A mutant (Nsp1mut) Gluc replicon RNA. Cells were seeded with 100nM remdesivir (RDV) or vehicle and were washed in PBS 24 h prior to each respective timepoint collection. Mock-electroporated cells were used as controls for post-electroporation cell viability. The dashed line indicates the limit of detection. N = 4, error bars = SD. (C to E) Huh-7.5 were electroporated with WT or Nsp1mut replicon RNA and seeded on 96-well plates containing indicated concentrations of (C) IFNα, (D) IFNβ, or (E) remdesivir (RDV). Gluc activity (closed circles) and cell viability (open circles) were measured 24 h post electroporation. N = 4, error bars = SD. IFN: interferon.
Fig. 4. Trans-complementation of replicons with spike yields single-cycle SARS-CoV-2. (A) A scheme to trans-complement replicons with ectopically expressed spike for single-cycle virion production. BHK-21 cells are transfected with a spike-encoding plasmid, and 24 h later are electroporated with ΔS mNeonGreen SARS-CoV-2 replicon RNA. Supernatant from these producer cells (P0) is collected and passed onto naïve recipient cells (P1) yielding reporter activity. A second round of passaging onto naïve recipient cells (P2) fails to propagate the replicon. (B) A spike trans-complemented replicon consists of spike-deleted replicon RNA alongside plasmid-driven spike expression. Nsp1 mutations relative to the WT sequence are indicated. (C) BHK-21 producer cells (P0) alone or transfected with a spike-encoding plasmid were electroporated with WT or Nsp1mut replicon RNAs. The RDPs in resulting supernatants were concentrated after 24 h and passaged onto Huh-7.5 ACE2/TMPRSS2 (Huh-7.5 AT) cells (P1 and P2) as in (A). Immunofluorescence images at 4X magnification of the mNeonGreen signal (green) and N antibody staining (magenta) are shown. Scale bar, 100 μm. (D) Quantification of the percentage of NeonGreen positive cells in each passage for the results in (C). The dashed lines denote the lower limit of quantification. N = 8, error bars = SD. (E) TCID50/ml values of independently prepared SARS-CoV2 and RDP stocks were calculated by end-point dilution assay on Huh7.5 AT cells. Conc: stocks concentrated by PEG precipitation. n.d., not detected. (F) Genome RNA copies/ml from the virus and RDP stocks in (E) were calculated by qRT-PCR. (G) The ratio between RNA copies/ml in (F) and TCID50/ml values in (E) was calculated to reflect specific infectivity.
Fig. 5. Neutralization assays with RDPs recapitulate authentic SARS-CoV-2 antibody phenotypes. (A and B) Antibody neutralization assays in Huh-7.5 cells of Gluc RDPs trans-complemented with WA1/2020 spike (A) or the B.1.351 South African variant (B) in the presence of increasing concentrations of C144 and C135 neutralizing antibodies. Data are representative from two independent experiments and are normalized to infected cells without antibody. N = 3, error bars = SEM. IC_{50}, concentration resulting in 50% reduction in relative RLU values; NA, not applicable. (C to E) Neutralization assays for SARS-CoV-2 RDPs or virus in the presence of increasing concentrations of antibody. WT spike with C144 antibody (C), B.1.351 spike with C144 antibody (D) and B.1.351 with C135 antibody (E) are shown, representative from two independent experiments. Data are normalized to infected cells without antibody. N = 3, error bars = SEM. IC_{50}, concentration resulting in 50% relative reduction in RLU values; NA, not applicable.
Fig. 6. VSV-G pseudotyping for efficient SARS-CoV-2 replicon delivery.
(A) Schematic of the elements required for production of VSV-G RDPs. (B) BHK-21 producer cells (P0) alone or transfected with VSV-G were electroporated with WT or Nsp1mut replicons. After 48 h, RDPs in supernatants were serially passaged onto Huh-7.5 cells (P1 and P2). mNeonGreen signal and N antibody staining depicted at 4X magnification. (C) Percentage of mNeonGreen positive cells in each passage from (B), N = 8, error bars = SD. (D) Indicated cell lines were incubated with mNeonGreen VSV-G RDPs for 24 h. Brightfield and fluorescent images were taken at 10X magnification. Scale bars, 100 μm. (E) NHBE, NHLF and A549 cells were pretreated for 24 h with 100nM of remdesivir (RDV) or 100pM of IFNα, and infected with Gluc VSV-G RDPs. Gluc activity was measured 24 h post-infection. N = 3, error bars = SD, dashed lines: signal from mock infected cells. (F) Single-cycle infectivity of VSV-G RDPs. Supernatant from RDP infected cells (P1) was read for Gluc activity and passaged onto naive cells (P2) after PEG concentration. Input supernatant serves as a positive control for concentrated input. Schema at left, results at right for two experiments.
Replication and single-cycle delivery of SARS-CoV-2 replicons

Science, Ahead of Print • DOI: 10.1126/science.abj8430

View the article online
https://www.science.org/doi/10.1126/science.abj8430

Permissions
https://www.science.org/help/reprints-and-permissions