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Learning non-stationary Langevin dynamics from
stochastic observations of latent trajectories
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Many complex systems operating far from the equilibrium exhibit stochastic dynamics that

can be described by a Langevin equation. Inferring Langevin equations from data can reveal

how transient dynamics of such systems give rise to their function. However, dynamics are

often inaccessible directly and can be only gleaned through a stochastic observation process,

which makes the inference challenging. Here we present a non-parametric framework for

inferring the Langevin equation, which explicitly models the stochastic observation process

and non-stationary latent dynamics. The framework accounts for the non-equilibrium initial

and final states of the observed system and for the possibility that the system’s dynamics

define the duration of observations. Omitting any of these non-stationary components results

in incorrect inference, in which erroneous features arise in the dynamics due to non-

stationary data distribution. We illustrate the framework using models of neural dynamics

underlying decision making in the brain.
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Many complex systems generate coherent macroscopic
behavior that can be expressed as simple laws. Such
systems are commonly described by Langevin dynam-

ics, in which deterministic forces define persistent collective
trends and noise captures fast microscopic interactions1. Lange-
vin equations are used to model stochastic evolution of complex
systems such as neural networks2–5, motile cells6, swarming
animals7, carbon nanotubes8, financial markets9, or climate
dynamics10. While such systems can be readily observed in
experiments or microscopic simulations, the analytical form of
the Langevin equation usually cannot be easily derived from
microscopic models or physical principles. The inference of
Langevin equations from data is therefore crucial to enable effi-
cient analysis, prediction, and optimization of complex systems.

Numerous methods were proposed for inferring Langevin
dynamics from stochastic trajectories11, e.g., by estimating
moments of local trajectory increments1,12–17. However, in many
complex systems, the trajectories cannot be observed directly, but
are only gleaned from a stochastic observation process that
depends on the latent Langevin dynamics18. For example, spikes
recorded from neurons in the brain form stochastic point pro-
cesses with statistics controlled by the collective dynamics of the
surrounding network2,19,20. Similarly, the dynamics of a protein
are observed through photons emitted by fluorescent dyes tagging
the protein in single-molecule microscopy experiments21–23. The
Poisson noise inherent in spike or photon observations makes the
inference of the underlying Langevin dynamics challenging.

This challenge can be addressed by modeling data as a doubly
stochastic processes, in which latent stochastic dynamics drive
another stochastic process modeling the observations24. The
inference with latent dynamical models is data efficient as it
integrates information along the entire latent trajectory, but it
may be sensitive to the data distribution. Previous work only
considered the inference of latent Langevin dynamics for equili-
brium systems with the steady-state data distribution2,23. Whe-
ther these methods extend to non-equilibrium systems has not
been tested. Yet, all living systems and physical systems that
perform computations operate far from equilibrium, where
transient dynamics play a key role. The inference of non-
stationary Langevin dynamics from stochastic observations
remains an important open problem.

Here we present an inference framework for latent Langevin
dynamics which accounts for non-equilibrium statistics of latent
trajectories. We show that modeling non-stationary components is
critical for accurate inference, and their omission leads to biases in
the estimated Langevin forces. As a working example, we model
non-stationary dynamics of neural spiking activity during percep-
tual decision making, a process of transforming a sensory stimulus
into a categorical choice25. The inference of the underlying
dynamics from spikes is notoriously hard26, and analyses with
simple parametric models result in controversial conclusions27–30.
Our framework accurately infers the Langevin dynamics from spike
data generated by competing models of decision making proposed
previously. Our framework can be extended to different stochastic
observation processes and is broadly applicable for the inference of
the Langevin dynamics in non-stationary complex systems.

Results
Inference framework. We consider the inference of Langevin
dynamics

dx
dt

¼ DFðxÞ þ
ffiffiffiffiffiffi
2D

p
ξðtÞ; ð1Þ

where F(x) is the deterministic force, and ξ(t) is a white Gaussian
noise hξðtÞi ¼ 0; hξðtÞξðt0Þi ¼ δðt � t0Þ. We focus on one-
dimensional (1D) Langevin dynamics representing a decision-

making process on the domain x∈ [−1; 1]. In 1D, the force
derives from the potential function F(x)=−dΦ(x)/dx. The
Langevin trajectories x(t) are latent, i.e. only accessible through
stochastic observations Y(t). We work with observations that
follow an inhomogeneous Poisson process with time-varying
intensity f(x(t)) that depends on the latent trajectory x(t) via a
function f(x) (Fig. 1a). Poisson noise models the variability of
spike generation in a neuron.

The non-stationary data Y(t) arise in non-equilibrium systems
that perform computations. Such systems start their operation in
a specific initial state and finish in a terminal state representing
the outcome of the computation. The initial and terminal states
are fundamentally different from the equilibrium state of the
system. An example of such non-equilibrium computation is
neural dynamics underlying perceptual decision making in the
brain. Each decision process begins when a sensory stimulus is
presented to a subject and terminates when the subject commits
to a choice. Neural activity transiently evolves from the initial
state at the stimulus onset until a choice is made, and different
choices correspond to different terminal states of neural
activity25. In experiment, multiple realizations of the decision
process can be recorded under the same conditions, called trials.
The statistics of trajectories x(t) across trials differs from the
steady-state distribution.

To model non-stationary dynamics, we introduce three
components into our framework (Fig. 1a, b). First, p0(x) models

Fig. 1 Inference framework for latent non-stationary Langevin dynamics.
a Latent dynamics are governed by the Langevin equation Eq. (1) with a
deterministic potential Φ(x) and a Gaussian white noise with magnitude D.
On each trial, the latent trajectory starts at the initial state x(t0) (blue dot)
sampled from the probability density p0(x). When the trajectory reaches
the domain boundaries (green dashed lines) for the first time, the
observations can either terminate (orange dot) or continue depending on
the experiment design. The latent Langevin dynamics are only accessible
through stochastic observations, e.g., spikes that follow an inhomogeneous
Poisson process with time-varying intensity that depends on the latent
trajectory x(t) via the firing-rate function f(x). b Graphical diagram of the
inference framework. Stochastic observations yti (gray circles) depend on
the latent states xti (white circles), the arrows represent statistical
dependencies. The absorption event (orange circle) indicates that
observations terminate when the latent trajectory hit a boundary. The
framework includes three non-stationary components: the initial state
distribution p0(x) (blue box), the boundary conditions (reflecting or
absorbing) for the time-propagation of latent dynamics (green box), and
the absorption operator (orange box).
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the distribution of the initial latent state at the trial start. On each
trial, the latent dynamics evolve according to Eq. (1) from the
initial condition x(t0)= x0, where x0 is sampled from p0(x). The
distribution p0(x) is latent and needs to be inferred from data.
The two other components account for the mechanism
terminating the observation on each trial, which can be controlled
either by the experimenter or by the system itself. In decision-
making experiments, these possibilities correspond to fixed-
duration or reaction-time task designs25. In a fixed-duration task,
the subject reports the choice after a fixed time period set by the
experimenter. Even if the neural trajectory reaches a state
representing a choice (i.e. a decision boundary) at an earlier
time point, the deliberation process continues. Thus, the latent
trajectory can terminate at any state at the trial end (Fig. 2a). In
contrast, in a reaction-time task, the subject reports the choice as
soon as the neural trajectory reaches a decision boundary for the
first time. Thus trials have variable durations defined by the
neural dynamics itself, and the latent trajectory always terminates
at one of the decision boundaries at the trial end (Fig. 2b, c). To
model these alternative scenarios, we impose appropriate
boundary conditions for the Langevin dynamics Eq. (1): reflecting
for the fixed-duration and absorbing for the reaction-time tasks.
In addition, we derive an absorption operator enforcing the
trajectory termination at a decision boundary in the reaction-time
task (Fig. 1b).

The Poisson noise masks distinctions between different types
of latent Langevin dynamics. The spike trains appear similar for
dynamics with reflecting versus absorbing boundaries (Fig. 2a, b),
and with a linear versus non-linear potential (Fig. 2b, c). A non-
stationary initial state p0(x) is also not obvious in the spike trains.
Distinguishing these qualitatively different dynamics based on

spike data is difficult, despite the latent trajectories and the
corresponding time-dependent latent probability densities epðx; tÞ
(Eq. (5) in Methods section) are different (Fig. 2).

We infer the force potential Φ(x), the noise magnitude D, and
the initial distribution p0(x) from stochastic spike data Y(t). The
data consists of multiple trials Y(t)= {Yi(t)} (i= 1, 2, . . . n), and
for each trial YiðtÞ ¼ fti0; ti1; :::; tiNi

; tiEg, where ti1; t
i
2; :::; t

i
Ni

are
recorded spike times, and ti0 and tiE are the trial start and end
times, respectively. We maximize the data likelihood L YðtÞjθ½ �
with respect to θ= {Φ(x), p0(x),D}. We derive analytical expres-
sions for the variational derivatives of the negative log-likelihood,
which we use to update θ using a gradient-descent (GD)
algorithm2 (Methods section). The variational derivatives of the
potential Φ(x) and p0(x) are continuous functions, which we
evaluate numerically on each GD step using a finite basis
(Supplementary Note 1). Thus, our method is non-parametric in
the sense that we do not specify a parametric form for the
functions Φ(x) and p0(x), but use the analytical expressions for
their continuous variational derivatives evaluated in a finite basis.
The likelihood calculation involves time-propagation of the latent
probability density with the operator exp �Ĥðti � ti�1Þ

� �
, where

Ĥ is a modified Fokker-Planck operator (Eq. (6) in Methods
section). The operator Ĥ satisfies either reflecting (Ĥref , fixed-
duration task), or absorbing boundary conditions (Ĥabs,
reaction-time task). The absorbing boundary conditions ensure
that trajectories reaching a boundary before the trial end do not
contribute to the likelihood. In addition, the absorption operator
A enforces that the likelihood includes only trajectories
terminating on the boundaries at the trial end time tE (Methods
section).

Fig. 2 Observation noise masks qualitative differences in non-stationary Langevin dynamics. Latent Langevin dynamics with: a a linear potential and
reflecting boundaries; b a linear potential and absorbing boundaries; and c a non-linear potential and absorbing boundaries (first column). For each
dynamics, nine example trajectories are displayed (color gradient, second column). In all cases, the initial latent state x(t0) (blue dots, second column) is
sampled from the same density p0(x) (third column, t= 0). The time-propagation of the latent probability density epðx; tÞ strongly depends on the potential
shape and boundary conditions (third column). With reflecting boundaries (a), the latent trajectories terminate anywhere in the latent space at the trial
end, whereas with absorbing boundaries (b, c), the latent trajectories always terminate at the boundaries (orange dots, second column). These qualitative
differences in the Langevin dynamics are difficult to discern from stochastic spike data (fourth column, colors correspond to the trajectories in the second
column).
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Contributions of non-stationary components to the accurate
inference. We found that accurate inference of non-stationary
Langevin dynamics requires incorporating all three non-
stationary components: the initial distribution p0(x), the bound-
ary conditions, and the absorption operator. The necessity of all
components for accurate inference is not obvious. Since spike
trains generated from stationary versus non-stationary dynamics
appear similar (Fig. 2), one could assume that omitting non-
stationary components may affect the inference only insignif-
icantly. To demonstrate how each component contributes to the
accurate inference, we focus here on inferring the potential Φ(x)
from synthetic data with known ground truth, assuming p0(x)
and D are provided (we consider simultaneous inference of
Φ(x), p0(x),D below). We use 200 trials of spike data generated
from the model with a linear ground-truth potential and a narrow
initial state distribution (full list of parameters in Supplementary
Table 1). We simulated a reaction-time task, so that each trial
terminates when the latent trajectory reaches one of the decision
boundaries producing a non-stationary distribution of latent
trajectories (Fig. 2b).

The inference accurately recovers the Langevin dynamics from
these non-stationary spike data when all non-stationary compo-
nents are taken into account (Fig. 3a). The GD algorithm
iteratively increases the model likelihood (decreases the negative
log-likelihood). Starting from an unspecific initial guess
ΦðxÞ ¼ const, the potential shape changes gradually over the
GD iterations. After some iterations, the fitted potential closely
matches the ground-truth shape while the log-likelihood of the
fitted model approaches the log-likelihood of the ground-truth
model. The concurrent agreement of the inferred potential and its
likelihood with the ground truth indicates the accurate recovery
of the Langevin dynamics. At later iterations, the potential shape
can deteriorate due to overfitting, and model selection is required

for identifying the model that accurately approximates dynamics
in the data when the ground truth is not known2 (we consider
model selection and uncertainty quantification below).

To reveal how each non-stationary component contributes to
the inference, we replace all components one by one with their
stationary counterparts and evaluate the inference quality under
these modified conditions. First, we test the importance of the
absorption operator by performing the inference with the initial
distribution p0(x) and absorbing boundary conditions, but
omitting the absorption operator (Fig. 3b). In this scenario, the
likelihood includes all trajectories that terminate anywhere in
the latent space and do not reach the domain boundaries before
the trial end. The inferred potential shows the correct linear
slope, but develops a large barrier near the right boundary, where
the ground-truth potential is low. This behavior arises since
the spurious potential barrier reduces the probability flux
through the absorbing boundary and hence increases the model
likelihood. Accordingly, the likelihood is lower for the ground-
truth potential than for the potential with the spurious barrier
when the absorption operator is omitted in the likelihood
calculation Eq. (4). The absorption operator corrects for this
mismatch by ensuring that only trajectories terminating at the
boundaries contribute to the likelihood.

Next, we test the importance of the absorbing boundary
conditions using the same non-stationary data. We take into
account the initial distribution p0(x), but replace the absorbing
with reflecting boundary conditions in the inference (Fig. 3c). In
this scenario, all trajectories contribute to the likelihood
independent of when and whether they reach the domain
boundaries. The inferred potential exhibits a small barrier near
the right boundary where the ground-truth potential is low. The
probability density of latent trajectories in the data is vanishing at
the absorbing boundaries (Fig. 2b), whereas stationary dynamics

Fig. 3 Contribution of non-stationary components to the accurate inference of latent Langevin dynamics. The spike data are generated from the
Langevin dynamics with a linear potential and absorbing boundaries (Fig. 2b). a The inference incorporates the non-equilibrium initial state distribution
p0(x), absorbing boundary conditions, and the absorption operator (graphical diagram, inset in the left panel). When the likelihood of the fitted model
approaches the likelihood of the ground-truth model (left panel, the relative log-likelihood is logLgt � logL

� �
=logLgt), the inferred potential shape

closely matches the ground truth (right panel, colors correspond to the iterations marked with dots on the left panel). b Same as a, but omitting the
absorption operator in the inference. The relative log-likelihood is with respect to the likelihood for the ground-truth potential, with the absorption operator
omitted in the likelihood calculation for both the ground-truth and fitted potentials. c Same as b, but replacing the absorbing with reflecting boundary
conditions in the inference and in the likelihood calculation for both the fitted and ground-truth potentials. d Same as c, but replacing p0(x) with the
equilibrium density peq(x) in the inference and in the likelihood calculation for both the fitted and ground-truth potentials. Omitting any of the non-
stationary components results in artifacts in the inferred potentials.
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with reflecting boundaries predict high probability density in the
regions where the potential is low (Fig. 2a). Hence, the spurious
potential barrier arises to explain the low probability density at
the right boundary. Accordingly, the likelihood is higher for the
potential with the spurious barrier than for the ground-truth
potential when reflecting instead of absorbing boundary condi-
tions are used in the likelihood calculation.

Finally, we test the importance of the initial state distribution
p0(x). Using the same non-stationary data, we perform the
inference with p0(x) replaced by the equilibrium distribution
peqðxÞ / expð�ΦðxÞÞ under the reflecting boundary conditions
(Fig. 3d). Instead of the linear slope, the inferred potential
exhibits a flat shallow valley, which accounts for the high density
of latent trajectories near the domain center in the data due to
non-equilibrium p0(x). The equilibrium dynamics in the ground-
truth potential predict lower probability density at the domain
center than in the data, hence the likelihood is lower for the
ground-truth potential than for the inferred shallow potential
when incorrect initial distribution is used in the likelihood
calculation. These results demonstrate that all three non-
stationary components are critical for the accurate inference of
non-stationary Langevin dynamics, and omitting any of them
results in incorrect inference that accounts for the non-stationary
data statistics by artifacts in the potential shape.

Discovering models of decision-making. To demonstrate that
our framework can accurately infer qualitatively different non-
stationary dynamics, we perform the inference on synthetic data
generated by the alternative models of perceptual decision-
making. We consider latent Langevin dynamics corresponding to
the ramping and stepping models of decision making proposed
previously27. The ramping model assumes that on single trials
neural activity evolves gradually towards a decision boundary as a
linear drift-diffusion process, which corresponds to a linear
potential with a constant slope (Fig. 2b). The stepping model
assumes that on single trials neural activity abruptly jumps from
the initial to a final state representing a choice, which corresponds
to a potential with two barriers where trajectories have to over-
come one of the barriers to reach a decision boundary (Fig. 2c).
Distinguishing between these alternative models of decision
making is difficult with the traditional approach based on para-
metric model comparisons28.

We generated spike data with the ramping and stepping latent
dynamics in a reaction time task (Fig. 2b, c). We choose the
potential Φ(x), noise magnitude D, and the initial state
distribution p0(x) so that the speed and accuracy of decisions in
the model is similar to typical experimental values, and f(x) is
chosen to produce realistic firing rates31 (parameters provided in
Supplementary Table 1). First, we infer the potential shape Φ(x)
with the correct D and p0(x) provided. For both ramping and
stepping dynamics, our framework accurately infers the correct
potential shape from 200 data trials (a realistic data amount in
experiment, Fig. 4a, b). At the iteration when the likelihoods of
the fitted and ground-truth model are equal, the inferred
potentials are in good agreement with the ground truth,
confirming the inference accuracy. The inference accuracy further
improves with a larger data amount of 1600 trials.

Finally, we demonstrate simultaneous inference of all functions
governing the non-stationary dynamics Φ(x), p0(x), and D using
synthetic data generated from the ramping model (Fig. 4c). We
update each of Φ(x), p0(x), and D in turn on successive GD
iterations. As the likelihood of the fitted model approaches the
likelihood of the ground-truth model, the potential shape, noise
magnitude, and the initial state distribution all closely match the
ground truth, confirming the accurate inference of a full model of

latent non-stationary Langevin dynamics. The inference of p0(x)
can be less accurate when the data consist of a few long trials so
that the dynamics equilibrate and trajectories contain little
information about the initial state. In this quasi-stationary
regime, p0(x) does not play an important role and the potential
Φ(x) and noise magnitude D that define equilibrium dynamics
can be inferred accurately even with an inaccurate inference of
p0(x) (Supplementary Fig. 1).

Model selection and uncertainty quantification. So far we
validated the inference accuracy by comparing the fitted model
and its likelihood with the ground truth. However, in practical
applications, the ground truth is unknown, and we need a pro-
cedure for selecting the optimal model among many models
produced across iterations of the gradient descent. On early
iterations, the fitted models miss some features of the correct
dynamics (underfitting), whereas on late iterations, the fitted
models develop spurious features (overfitting). The model that
best captures the correct dynamics is discovered at some inter-
mediate iterations. The standard approach for selecting the opti-
mal model is based on optimizing model’s ability to predict new
data (i.e. generalization accuracy), e.g., using cross-validation.
However, methods optimizing generalization accuracy cannot
reliably identify correct features and avoid spurious features when
applied to flexible models2. An alternative approach for model
selection is based on directly comparing features of the same
complexity discovered from different data samples2. Since true
features are the same, whereas noise is different across data
samples, the consistency of features inferred from different data
samples can separate the true features from noise. Model selection
based on feature consistency can reliably identify the correct
features for stationary dynamics2. Here we extended this method
for the case of non-stationary dynamics (Methods section).

We illustrate the model selection method based on feature
consistency using the same synthetic data as in Fig. 3a. We split
the full dataset into two halves and optimize the model on each
half independently. For each model produced by the gradient
descent, we calculate the feature complexity defined as a negative
entropy of latent trajectories M ¼ �S ½ΦðxÞ;D; p0ðxÞ� (Eq. (14)).
For non-stationary dynamics, the entropy depends not only on the
potential shape Φ(x) but also on the initial distribution p0(x)
(Supplementary Note 6). The feature complexity grows over GD
iterations as the model develops more and more structure (Fig. 5a).
After the true features are discovered, M exceeds the ground-
truth complexity, and further increases of M indicate fitting noise
in the training data. The optimal feature complexityM� separates
the true features from noise. To determine the optimal M� when
the ground truth is unknown, we compare models of the same
complexity discovered from two data halves. For M<M�, the
models of the same complexity tightly overlap between two data
samples (Fig. 5c, left). For M>M�, the models of the same
complexity diverge, because overfitting patterns are unique for
each data sample (Fig. 5c, right). We quantify the overlap of two
models using the Jensen-Shannon divergence (JSD) between time-
dependent probability densities of their latent trajectories (Eqs.
(15) and (16)). For low feature complexities, JSD is small
indicating that the true features of the dynamics are consistent
between data samples (Fig. 5b, c, left). For higher feature
complexities, JSD rises sharply indicating divergence of spurious
features between data samples (Fig. 5b, c, right). We define the
optimal M� as the feature complexity for which JSD reaches a
threshold. This procedure returns two overlapping potentials
corresponding to M�, which agree with the ground-truth model
on synthetic data (Fig. 5c, middle). We also performed model
selection based on feature consistency for stepping and ramping
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dynamics (Fig. 4a, b) and found that the selected models agree
well with the ground truth (Supplementary Fig. 2b, c).

Practical applications often require quantifying uncertainty of
the inferred model, which can be performed via bootstrapping, as
we illustrate using the same data as in Fig. 3a. To obtain confidence
bounds for the inferred model, we generate ten bootstrap samples
by sampling trials randomly with replacement from the set of all
trials. For each bootstrap sample, we refit the model and perform
model selection using our feature consistency method (Fig. 5d).
We then obtain the confidence bounds for the inferred potential by

computing a pointwise 5% and 95% percentile across 20 potentials
produced by the model selection on ten bootstrap samples (Fig. 5e).
As expected, the uncertainty is largest in the regions where the
potential is high, i.e. where the density of latent trajectories and
hence the amount of spike data are low.

Discussion
Our framework accurately infers non-stationary Langevin dynamics
from stochastic observations and accommodates non-additive

Fig. 4 Inference of decision-making dynamics and simultaneous inference of all functions governing non-stationary Langevin dynamics. a The spike
data are generated from the Langevin dynamics with a linear potential and absorbing boundaries (Fig. 2b), which corresponds to the ramping model of
decision-making dynamics. When the likelihoods of the fitted and ground-truth models are equal (upper panel, colored dots), the inferred potential closely
matches the ground-truth potential (lower panel, colors correspond to dots in the upper panel). The inference accuracy improves with more data (teal -
200 trials, purple - 1600 trials). b Same as a, but for the spike data generated from the Langevin dynamics with a non-linear potential with two barriers and
absorbing boundaries (Fig. 2c), which corresponds to the stepping model of decision-making dynamics. c Simultaneous inference of the potential Φ(x), the
initial state distribution p0(x), and noise magnitude D from the same spike data as in a (400 trials). As the likelihood of the fitted model approaches the
likelihood of the ground-truth model (upper left), all fitted components simultaneously approach the ground truth.

Fig. 5 Model selection and uncertainty quantification. a Feature complexityM increases over GD iterations at a rate that varies across data samples. The
ground-truth feature complexity (gray line) is achieved on different iteration for different data samples. b JS divergence between the models discovered
from data samples 1 and 2 for each level of the feature complexity. The optimal value M� is defined as a maximum feature complexity for which JS
divergence does not exceed a fixed threshold (dashed line). The dots correspond to the potential in c. c A pair of fitted potentials at M < M� (left, gray
dot in b),M ¼ M� (middle, orange dot in b), andM > M� (right, teal dot in b) for data samples 1 and 2 (colors correspond to data in a). In all panels the
ground-truth model is shown in gray. d JS divergences between models of the same complexity discovered from two data halves for each of 10 bootstrap
samples (red line - same data as in b). The same threshold is used to select a pair of optimal models for each bootstrap sample. e Fitted potential (red) is
the average of two potentials at optimal M� produced by the model selection (middle panel in c). The confidence bounds (shaded area) are obtained as a
pointwise 5% and 95% percentile across twenty potentials produced by the model selection on 10 bootstrap samples in d. The ground-truth model is
shown in gray.
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Poisson observation noise. We demonstrate that accurate inference
requires taking into account the non-equilibrium initial and final
states that represent the start and outcome of computations per-
formed by the system. Ignoring the non-equilibrium initial or final
states results in incorrect inference, in which erroneous features in
the dynamics arise due to non-stationary data distribution. We
consider non-stationarity that arises from transient dynamics on a
fast timescale within each trail, while the dynamical model com-
ponents—potential, noise, and p0(x)—are the same across trials. An
additional source of non-stationarity may arise from slow drifts in
the dynamics across trials32,33. Such non-stationary drifts can be
modeled as changes in the potential, noise, and p0(x) on a slow
timescale across trials.

The inference accuracy depends on the amount of available
data and the complexity of underlying dynamics. Here we con-
sidered cases where the inference accuracy was not limited by the
data amount to isolate how it depends on non-stationary com-
ponents. A larger data amount generally results in more accurate
inference (Fig. 4a, b). With insufficient data, the inference can
underfit, i.e. not discover all features of the system’s dynamics2.
Inferring more complex dynamics requires larger amounts of
data2.

We illustrate our inference framework using models of neural
dynamics during decision making, an inherently non-stationary
process of transforming sensory information into a categorical
choice. Comparisons between simple parametric models, which
instantiate a discrete set of alternative hypotheses, proved inef-
fective to reveal the underlying neural dynamics27–30. An obvious
pitfall is that none of the a priori guessed alternative hypotheses
may be correct28, and therefore model selection limited to a
discrete set of hypotheses critically lacks flexibility. In contrast,
our Langevin framework provides a flexible non-parametric
description of dynamics, which covers a continuous space of
hypotheses within a single model architecture2. Our framework
can smoothly interpolate between many qualitatively different
dynamics, which are all expressed with the same analytical
equations, offering a powerful alternative to parametric model
selection28. The inferred Langevin equation provides an inter-
pretable description of dynamics, which opens access to many
analytical tools available for the analysis, prediction, and control
of stochastic systems1,34. Other approaches were also proposed to
achieve the balance between flexibility and interpretability, for
example, by approximating non-linear dynamics with a hierarchy
of locally linear systems35. Flexible interpretable models can
discover new hypotheses by fitting data, thus going beyond the
classical model comparisons2,36–38. Our framework can be gen-
eralized to several latent dimensions and parallel data streams39

(e.g., multi-neuron recordings) and opens new avenues for ana-
lyzing dynamics of complex systems far from equilibrium.

Methods
Maximum-likelihood inference of latent non-stationary Langevin dynamics.
We provide a brief summary of the analytical calculation of the model likelihood and
its variational derivatives (see Supplementary Information for details). The likelihood
L YðtÞjθ½ � is a conditional probability density of observing the data Y(t) given a model
θ= {Φ(x), p0(x),D}. We only consider here a single trial Y(t)= {t0, t1, . . . , tN, tE}, since
the total data likelihood is a product of likelihoods of all trials. The likelihood
L YðtÞjθ½ � is a probability density of the observed spike data, since in continuous time
the probability of any precise spike sequence {t1, t2,…tN} is infinitesimal. We can
obtain the probability of observing a spike within dt of each {t1, t2,…tN} by multi-
plying the likelihood with dtN.

The likelihood is obtained by marginalizing the joint probability density
PðX ðtÞ;YðtÞjθÞ over all possible latent trajectories XðtÞ that may underlie the
data2,23:

L YðtÞjθ½ � ¼
Z

DX ðtÞ PðXðtÞ;YðtÞjθÞ: ð2Þ

Here X ðtÞ is a continuous latent trajectory, and the path integral is performed over
all possible trajectories. Note that if the trajectory X ðtÞ was fixed and fully

observed, Eq. (2) would reduce to the well-known expression for the likelihood of
an inhomogeneous Poisson process with the instantaneous firing rate λðtÞ ¼
f ðX ðtÞÞ (Supplementary Note 4). Since the latent trajectory that produced the data
is unknown, we need to consider all possible latent paths weighted according to
how consistent they are with the spike data and with the Langevin dynamics.

To compute the path integral in Eq. (2), we consider a disrectized latent
trajectory XðtÞ ¼ fxt0 ; xt1 ; ¼ ; xtN ; xtE g, which is a discrete set of points along a
continuous path X ðtÞ at each of the observation times {t0, t1,…, tN, tE}. Once we
calculate the joint probability density P(X(t), Y(t)) of a discretized trajectory and
data, then we can obtain the data likelihood by marginalization over all discretized
latent trajectories:

L ¼
Z

xt0

Z
xt1

¼
Z

xtN

Z
xtE

dxt0 ¼ dxtE PðXðtÞ;YðtÞÞ: ð3Þ

Using the Markov property of the latent Langevin dynamics Eq. (1) and
conditional independence of spike observations, the joint probability density
P(X(t), Y(t)) can be factorized24 (Fig. 1b):

PðXðtÞ;YðtÞÞ ¼ pðxt0 Þ
YN
i¼1

pðyti jxti Þpðxti jxti�1
Þ

 !
pðxtE jxtN ÞpðAjxtE Þ: ð4Þ

Here pðyti jxti Þdt is the probability of observing a spike within small dt of time ti
given the latent state xti , hence pðyti jxti Þ ¼ f ðxti Þ by the definition of the
instantaneous Poisson firing rate. pðxt0 Þ is the probability density of the initial
latent state. pðxti jxti�1

Þ is the transition probability density from xti�1
to xti during

the time interval between the adjacent spike observations, which accounts for the
absence of spikes during this time interval. Finally, the term pðAjxtE Þ represents
the absorption operator, which ensures that only trajectories terminating at one of
the domain boundaries at time tE contribute to the likelihood. The absorption term
pðAjxtE Þ is only applied in the case of absorbing boundaries, and it is absent in the
case of reflecting boundaries (Supplementary Note 1).

The discretized latent trajectory XðtÞ ¼ fxt0 ; xt1 ; :::; xtN ; xtE g is obtained by
marginalizing the continuous trajectory X ðtÞ over all latent paths connecting xti�1

and xti during each interspike interval. These marginalizations are implicit in the
transition probability densities. For the Langevin dynamics Eq. (1), the time-
dependent probability density epðx; tÞ evolves according to the Fokker-Planck
equation34:

∂epðx; tÞ
∂t

¼ �D
∂

∂x
FðxÞ þ D

∂2

∂x2

� �epðx; tÞ � �Ĥ0epðx; tÞ; ð5Þ

which accounts for the drift and diffusion in the latent space (Fig. 2, third column).
In addition, the transition probability density pðxti jxti�1

Þ in Eq. (4) should also
account for the absence of spike observations during intervals between adjacent
spikes in the data. Thus, pðxti jxti�1

Þ satisfies a modified Fokker-Planck equation
(Supplementary Note 5):

∂pðx; tÞ
∂t

¼ �D
∂

∂x
FðxÞ þ D

∂2

∂x2
� f ðxÞ

� �
pðx; tÞ � �Ĥpðx; tÞ; ð6Þ

where the term−f(x) accounts for the probability decay due to spike emissions2,23.
The solution of this equation pðx; tiÞ ¼ pðx; ti�1Þ expð�Ĥðti � ti�1ÞÞ propagates
the latent probability density forward in time during each interspike interval.
Depending on the experiment design, we solve Eq. (6) with either absorbing or
reflecting boundary conditions (Supplementary Note 1).

The term pðAjxtE Þ in Eq. (4) represents the absorption operator A, which
ensures that the likelihood only includes trajectories terminating at the boundaries.
The instantaneous probability pA for a trajectory to be absorbed at the boundaries
given the latent state xtE is obtained by applying A to a delta-function initial
condition δðxte Þ and then integrating over the latent space:

pA ¼
Z 1

�1
δðxte ÞAdx: ð7Þ

To derive the absorption operator, we consider the survival probability PΔtðStE jxtE Þ
for a trajectory to survive (i.e. not to be absorbed at the boundary) within a time
interval Δt given the latent state xtE . The survival probability is obtained by

propagating the initial condition δðxtE Þ with the operator expð�Ĥ0ΔtÞ and
integrating the result over the latent space:

PΔtðStE jxtE Þ ¼
Z 1

�1
δðxtE Þ expð�Ĥ0ΔtÞdx: ð8Þ

Here we use the operator Ĥ0 instead of the operator Ĥ, because the survival
probability accounts only for the probability loss due to absorption at the
boundaries and not for the probability decay due to spike emissions.

The probability for a trajectory to be absorbed during a time interval Δt given
the state xtE is given by PΔtðAtE

jxtE Þ ¼ 1� PΔtðStE jxtE Þ. Thus, the instantaneous
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probability of absorption is obtained as

pA ¼ lim
Δt!0

PΔtðAtE
jxtE Þ

Δt
¼ lim

Δt!0

1� PΔtðStE jxtE Þ
Δt

¼
Z 1

�1
dxδðxtE ÞĤ0; ð9Þ

where we use Eq. (8) to take the limit. Comparing this result with Eq. (7), we find
that A ¼ Ĥ0. Note that �Ĥ0 is the Fokker-Planck operator in Eq. (5) that
describes the rate of change of the latent probability density at each location x.
Integrating both sides of Eq. (5) over the latent space, we obtain

depðtÞ
dt

¼ d
dt

Z 1

�1
dxepðx; tÞ ¼ �

Z 1

�1
dxAepðx; tÞ: ð10Þ

This equation describes the decay of the total probability epðtÞ ¼ R xdxepðx; tÞ in the
latent space due to probability flux through the absorbing boundaries. Thus,
applying the absorption operator A and integrating over the latent space represents
the instantaneous loss of the total probability at time t, which is the fraction of all
survived trajectories that reach the absorbing boundaries at exactly time t.

To compute and optimize the likelihood numerically, we represent Eq. (3) in a
discrete basis39 (Supplementary Note 1). In the discrete basis, all continuous
functions, such as p0(x), are represented by vectors, and the transition, emission,
and absorption operators are represented by matrices. Thus, Eq. (3) is evaluated as
a chain of vector-matrix multiplications.

Gradient descent optimization. We minimize the negative log-likelihood with the
gradient descent (GD) algorithm. Instead of directly updating the functions Φ(x)
and p0(x), we, respectively, update the driving force FðxÞ ¼ �Φ0ðxÞ and an aux-
iliary function F0ðxÞ � p0ðxÞ=p0ðxÞ. The potential Φ(x) and p0(x) are obtained from
F(x) and F0(x) via

ΦðxÞ ¼ �
Z x

�1
FðsÞdsþ C; p0ðxÞ ¼

exp
R x
�1 F0ðsÞds

� �R 1
�1 exp

R s0
�1 F0ðsÞds

	 

ds0

: ð11Þ

We fix the arbitrary additive constant C in the potential to satisfyR
x exp½�ΦðxÞ�dx ¼ 1. The change of variable from p0(x) to F0(x) allows us to

perform an unconstrained optimization of F0(x), and Eq. (11) ensures that p0(x)
satisfies the normalization condition for a probability density

R 1
�1 p0ðxÞdx ¼ 1,

p0(x) ⩾ 0. We ensure the positiveness of the noise magnitude D by rectifying its
value after each GD update D ¼ maxðD; 0Þ.

We derive analytical expressions for the variational derivatives of the likelihood
δL=δFðxÞ, δL=δF0ðxÞ and the derivative ∂L=∂D, which are then evaluated in the
discrete basis (Supplementary Notes 2 and 3). On each GD iteration, we update the
model by stepping in the direction of the log-likelihood gradient:

Θnþ1 ¼ Θn þ γΘ
1
L

δL

δΘ
: ð12Þ

Here Θ is one of the functions F(x), F0(x), or the noise magnitude parameter D,
with the corresponding learning rates γΘ > 0, and n is the iteration number. For
simultaneous inference of Φ(x), p0(x), and D (Fig. 4c), we update each of F(x),
F0(x), and D in turn on successive GD iterations. The list of optimization
hyperparameters, including learning rates and initializations, is provided in
Supplementary Table 1.

Synthetic data generation. To generate synthetic spike data from a model with
given Φ(x), p0(x), and D, we numerically integrate Eq. (1) with the Euler-
Maruyama method to produce latent trajectories x(t) on each trial. We then use
time-rescaling method40 to generate spike times from an inhomogeneous Poisson
process with the firing rate λ(t)= f(x(t)). We use 200 data trials in Fig. 3; 200 and
1600 trials in Fig. 4a, b; and 400 trials in Fig. 4c. These data amounts are typical for
experiments in which neural activity is recorded during decision making25,31. A
single experimental session usually contains a total of 1000−2000 trails under
different behavioral conditions, with about 100−200 trials in each condition.

Feature complexity. We define feature complexity as the negative entropy of latent
trajectories generated by the model2 M ¼ �S½ΦðxÞ;D; p0ðxÞ;ΦRðxÞ;DR; pR0 ðxÞ�. The
trajectory entropy is defined as a negative Kullback-Leibler (KL) divergence between
the distributions P½X ðtÞ� and Q½X ðtÞ�41:

S½ΦðxÞ;D; p0ðxÞ;ΦRðxÞ;DR; pR0 ðxÞ� ¼ �
Z tobs

0
DX ðtÞP X ðtÞ½ � ln P X ðtÞ½ �

Q X ðtÞ½ � : ð13Þ

P½X ðtÞ� is the distribution of trajectories in the model of interest with Langevin
parameters {Φ(x),D, p0(x)}, and Q½X ðtÞ� is the distribution of trajectories in the
reference model with Langevin parameters fΦRðxÞ;DR; pR0 ðxÞg. The path integral is
performed over all possible trajectories X ðtÞ. The reference model is a free diffusion
with zero driving force (i.e. constant potential ΦRðxÞ ¼ const) and the same diffusion
coefficient D as in the model of interest. The analytical expression for the trajectory
entropy was derived previously for equilibrium dynamics41. In the equilibrium case,
the trajectory entropy is defined by the equilibrium distribution peq(x) and does not
depend on the initial state distribution p0(x). We generalized this result and derived
an expression for the trajectory entropy for non-stationary dynamics (Supplementary

Note 6):

S½ΦðxÞ;D; p0ðxÞ;ΦRðxÞ;D; pR0 ðxÞ� ¼ �
Z

dxp0ðxÞln
p0ðxÞ
pR0 ðxÞ

� D
4

Z 1

0
dt
Z

dxF2ðxÞpðx; tÞ: ð14Þ

For non-stationary dynamics, the trajectory entropy depends on the time-dependent
distribution of the latent trajectories p(x, t) and thus on p0(x). We choose the initial
distribution pR0 ðxÞ for the reference model to be uniform. We derived an expression
for efficient numerical evaluation of Eq. (14), where we take the integral over time
analytically in the eigenbasis of the operator H0 (Supplementary Eq. (69) in Sup-
plementary Note 6).

Model selection based on feature consistency. To select the optimal model, we
compare models discovered from two non-intersecting halves of the data and
evaluate the consistency of their features. We quantify the overlap between two
models by evaluating Jensen-Shannon divergence (JSD) between their time-
dependent probability densities over the latent space:

DJS ¼
Z 1

0
JSD p̂1ðx; tÞjjp̂2ðx; tÞ� �

dt; ð15Þ

where

JSDðpðxÞjjqðxÞÞ ¼ 1
2

Z
pðxÞln 2pðxÞ

pðxÞ þ qðxÞ dx þ
Z

qðxÞln 2qðxÞ
pðxÞ þ qðxÞ dx

� �
: ð16Þ

The probability density p̂ðx; tÞ is normalized to account for the probability loss
through the absorbing boundaries: p̂ðx; tÞ ¼ epðx; tÞ þ Ipδðx � xbÞ. Here epðx; tÞ is
the time-dependent solution of Eq. (5), Ip ¼ 1� R epðx; tÞdx is the total probability
loss through the absorbing boundaries up to time t, and xb denotes a boundary (we
combine the probability loss through both boundaries into a single term). We
approximate the time integral in Eq. (15) by the midpoint rule and calculate the time-
dependent probability densities by numerically solving the Fokker-Planck Eq. (5)
(Supplementary Note 6.3).

We compare models of roughly the same complexity between the two sets of
models fΦ1

nðxÞ;D1; p10ðxÞg and fΦ2
nðxÞ;D2; p20ðxÞg produced by GD on each data

half (n= 1, 2,…N is the iteration number). First, we calculate the feature
complexitiesM1

n and M2
n for all models in the two sets. Since feature complexities

do not match exactly between the two sets due to nuances in the data, we need to
allow for some slack in feature complexity when comparing models2. Accordingly,
for each level of feature complexity M1

i , we find the index j* that minimizes the
absolute difference jM1

i �M2
j� j. Next, we calculate DJS(j) between the model with

feature complexity M1
i and each of the models in the second set with similar

complexity M2
j , where j= j*− R, j*− R+ 1,…j*+ R and we set R= 5. We then

set DJSðM1
i Þ ¼ minjDJSðjÞ. We repeat this procedure for different iterations i to

obtain the dependence DJSðMÞ (Fig. 5b, d). To find the optimal feature
complexity, we set the threshold DJS;thres ¼ 0:001 and select M� as the maximum
feature complexity for which DJS ⩽ DJS;thres . This procedure returns two
overlapping potentials of roughly the same feature complexity which represent the
consistent features of dynamics across data samples (Fig. 5c).

Data availability
The synthetic data used in this study can be reproduced using the source code.

Code availability
The source code to reproduce the results of this study is freely available on GitHub
(https://github.com/engellab/neuralflow, https://doi.org/10.5281/zenodo.5512552).
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