
remote sensing

Article

Branch-Pipe: Improving Graph Skeletonization around Branch
Points in 3D Point Clouds

Illia Ziamtsov 1, Kian Faizi 1 and Saket Navlakha 2,*

����������
�������

Citation: Ziamtsov, I.; Faizi, K.;

Navlakha, S. Branch-Pipe: Improving

Graph Skeletonization around Branch

Points in 3D Point Clouds. Remote

Sens. 2021, 13, 3802. https://doi.org/

10.3390/rs13193802

Academic Editor: Riccardo Roncella

Received: 22 July 2021

Accepted: 15 September 2021

Published: 22 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
iziamtso@eng.ucsd.edu (I.Z.); kfaizi@ucsd.edu (K.F.)

2 Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY 11724, USA
* Correspondence: navlakha@cshl.edu

Abstract: Modern plant phenotyping requires tools that are robust to noise and missing data, while
being able to efficiently process large numbers of plants. Here, we studied the skeletonization of plant
architectures from 3D point clouds, which is critical for many downstream tasks, including analyses of
plant shape, morphology, and branching angles. Specifically, we developed an algorithm to improve
skeletonization at branch points (forks) by leveraging the geometric properties of cylinders around
branch points. We tested this algorithm on a diverse set of high-resolution 3D point clouds of tomato
and tobacco plants, grown in five environments and across multiple developmental timepoints.
Compared to existing methods for 3D skeletonization, our method efficiently and more accurately
estimated branching angles even in areas with noisy, missing, or non-uniformly sampled data. Our
method is also applicable to inorganic datasets, such as scans of industrial pipes or urban scenes
containing networks of complex cylindrical shapes.

Keywords: skeleton graph extraction; plant phenotyping; 3D point clouds; 3D shape decomposition;
LiDAR

1. Introduction

The skeleton of a 3D object is a thinned 1D representation (often in the form of a graph)
that captures its basic geometry and shape. Skeletons have broad applications in computer
vision, such as for object matching, surface reconstruction, feature tracking, and computer
animation [1]. Accordingly, there are many approaches for extracting skeleton graphs from
3D meshes or point clouds [2–9].

More recently, skeletonization has become critical to modern plant phenotyping [10–12].
The advent of high-throughput 3D imaging platforms, such as light detection and ranging
(LiDAR), has generated large datasets of point clouds of plant shoot architectures [13,14].
Fast and accurate determination of branch angles is important for many downstream tasks,
including the study of plant growth and development [15], measuring light interception
by leaves [16], and for inferring genotype-to-phenotype relationships [17], both in the lab
and in the field [18,19]. In addition, assessing and quantifying changes in plant morphol-
ogy is often used for measuring agricultural yields [20], analyzing stress responses and
plant-environment interactions [21], and facilitating functional genomics studies [22]. Plant
skeletonization is also important in forestry [23], ecology [24], urban planning [25], and
engineering [26]. All of these applications require methods for accurately skeletonizing
shapes from 3D data.

Compared to man-made structures, skeletonizing natural, organic structures has many
challenges, including dealing with the curvature of branches (i.e., no straight lines), the
tapering of branches (i.e., unequal radii over the length of the branch), the non-uniformity
of branch lengths, and other nuisances, such as trichomes (the fine hairs on plant stems),
which disrupt fitting with simple primitives. These issues lie alongside the usual difficulties
associated with processing point clouds, such as missing data, non-uniform point density,

Remote Sens. 2021, 13, 3802. https://doi.org/10.3390/rs13193802 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1306-0320
https://orcid.org/0000-0002-5505-9718
https://doi.org/10.3390/rs13193802
https://doi.org/10.3390/rs13193802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13193802
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13193802?type=check_update&version=2

Remote Sens. 2021, 13, 3802 2 of 16

and registration errors [27–29]. As a result, while advancements in data acquisition have
made it possible to rapidly scan plants, methods for analyzing them in real-time remain
a bottleneck.

Here, we describe a fast skeletonization method that can generate accurate branch
angles from noisy 3D point clouds of shoot architectures. Our method builds upon our
previous work [30] by analyzing the geometry of normal vectors around branch points,
projecting these vectors onto a Gaussian sphere, and then robustly clustering them into
unique individual branches that better align with the underlying geometry.

As plant shapes vary across species and are highly plastic to environmental changes,
we tested our method on a dataset of two species (tomato and tobacco) grown under
five conditions (ambient light, shade, high-heat, high-light, and drought), and scanned
at multiple developmental time points, to assess the ability of our method to handle
natural variability. Compared to three existing skeletonization methods (Laplacian-based
contraction [3], L1-medial skeletonization [7], and PypeTree [5]), the branch angles we
generated were, on average, 1.71 to 2.69 times (in absolute error) and 1.61 to 2.48 times (in
percent error) more accurate. Finally, our method runs in seconds, making it amenable to
real-time phenotyping applications.

Related Work

Several methods for extracting skeleton graphs from 3D data are designed to function
on closed polygonal meshes. However, it is not straightforward to reliably produce
watertight shapes from point clouds due to challenges posed by self-occlusion and light
reflection by the target surface [2,29]. Surface reconstruction is often unreliable, since the
errors introduced can lead to inaccurate skeletons [3]. Therefore, we focused on approaches
that can be applied directly to unorganized 3D point clouds.

Algorithms for skeleton extraction from unorganized 3D point clouds broadly fall
into four categories: topological thinning, distance field-based, general field-based, or
geometric [1]. Some approaches, such as topological thinning and distance fields, typically
work on voxelized data. However, these methods are sensitive to the discretization resolu-
tion used, and they can have poor results when the point cloud is noisy, non-uniform, or
incomplete. In practice, some methods combine elements from multiple categories, and
thus the distinctions between categories are not strict.

Topological thinning or contraction algorithms start at the surface of an object and
shrink it to a 1D skeletal representation [1]. This is done by iteratively removing voxels
from the shape’s boundary while preserving the basic topology. As each voxel can be eval-
uated locally, thinning algorithms are generally computationally efficient. However, they
are susceptible to the excessive removal of branch endpoints, which can lead to truncated
skeletons [1]. Au et al. [4] developed a mesh contraction algorithm for non-volumetrized
data that uses the Laplacian operator to smoothly collapse an object into a skeletal shape.
Subsequently, Cao et al. [3] adapted this Laplacian thinning approach to work directly on
raw point clouds. However, this method requires careful tuning of contraction param-
eters to remain faithful to the object’s topology and is sensitive to the sampling density.
As the Laplacian operator requires the calculation of higher-order derivatives, it is also
computationally expensive and not guaranteed to be numerically stable.

Distance field-based methods apply the distance transform, which identifies the
shortest distance from each computed interior point to the boundary of the object [31].
Any locally-centered voxels are putative members of the shape’s skeleton, which are
subsequently pruned by thinning or clustering. The remaining voxels are re-connected to
produce a final skeleton graph. Although these methods are efficient, they are sensitive
to boundary noise and suffer from poor centeredness due to errors at the re-connecting
step [1]. Huang et al. [7] applied a spatially-localized version of the L1-median to local
neighborhoods of points, and then applied contraction and re-centering to generate a final
skeleton. However, this method is sensitive to sampling density and uniformity. Some
methods for trees first apply the L1-median [32] or other distance-based measures [33] to

Remote Sens. 2021, 13, 3802 3 of 16

extract a coarse skeleton, which is then used to guide optimization to recover missing data
from the point cloud. This new information is then used to refine the original skeleton.

General field-based approaches apply functions other than the distance transform to
point sets, such as potential fields or Newtonian repulsion [1]. For example, Sharf et al. [8]
performed surface reconstruction by growing a deformable blob that captures the point
cloud’s shape and then extracts a skeleton by finding its centerline. In general, these meth-
ods tend to be robust to noise at object boundaries. However, if the data is incomplete (e.g.,
if there are holes or sparsely sampled areas), the blob can leak outside of the underlying
shape. In addition, some of these methods require calculating higher-order derivatives
and, thus, may be inefficient for large point clouds.

Geometric methods encompass approaches that work directly on raw point cloud
data. For example, Voronoi tesselation can produce an approximation of a shape’s medial
surface [34,35], which can then be pruned into a skeleton. However, this process is highly
sensitive to noise [1]. Alternatively, Reeb graphs are more robust to outliers but can be
sensitive to the object’s orientation [1]. PypeTree [5], which builds off the method by
Verroust and Lazarus [6], is designed specifically for point clouds of plant architectures. It
calculates geodesic distances from the plant’s root to the rest of the point cloud. Skeleton
points are then extracted from the centroids of the points in each level set. However, if a
level set spans a fork, points that belong to multiple branches will not be differentiated.
Therefore, PypeTree can produce geometric errors and poor angle measurements at forks.
ROSA [2] uses normal information and rotational symmetry to extract skeletons from point
clouds that have an underlying cylindrical shape. ROSA performs well on incomplete point
clouds; however, it is generally less robust to noise and outliers, requiring preprocessing
and denoising before it can be applied to raw data [2].

2. Methods
2.1. Overview

As input, we are given a point cloud P = {p1, p2, . . . , pm} of m points, where each
three-dimensional point pi = (xi, yi, zi) describes a location on the surface of the plant. Each
pi has an associated normal vector −→ni = (nx

i , ny
i , nz

i) representing its 3D orientation; these
vectors form a set of normals N = {−→n1 ,−→n2 , . . . ,−→nm}. In our dataset, normal information
was provided by the 3D scanner.

Our method can be divided into two parts (Figure 1): computation of the initial
skeleton, and refinement of the skeleton at branch points (forks). The first part is done
using the approach by Ziamtsov and Navlakha [30], which builds off of PypeTree [5]. We
refer to the improved version as PypeTree*, to distinguish it from the original method [5].

Briefly, PypeTree* divides the points P into level sets, where each level l consists of
points Pl ⊂ P that lie within a similar geodesic distance from the root of the tree. For each
level, a node of the skeleton graph is created at the centroid Cl of that level’s points. For
example, Figure 1 (Part 1) shows nodes (i.e., levels) in different colors, with their associated
points. Forks are detected by running a connected components algorithm on Pl ; if Pl
consists of, say, two disconnected components—points on the left and right of the fork,
each with a similar geodesic distance to the root—then the level is split into two, and two
nodes are created, one at the centroid of each component. The output is a skeleton graph
G = {V, E}, where the nodes V = {Cl} over all l; each level has an associated set of points
Pl and normal vectors Nl ; and the edges E connect nodes across successive levels.

Remote Sens. 2021, 13, 3802 4 of 16

Input to part 1

Point cloud Part 1 Part 2

Input to part 2

Fl = {Pl, Nl}

Figure 1. Overview. As input, we are provided a 3D point cloud of a plant architecture. A partial
point cloud of the region around a branch point (fork) is shown. In Part 1, we compute its skeleton.
Each color represents points and normal vectors that belong to a node in the graph. In Part 2, the
geometry and branch angles around a fork are refined to better match the underlying plant shape.

This approach is fairly fast on large point clouds; however, it often suffers from
geometric errors at forks. Even if there is a fork at level l, in practice, Pl often consists of
only one component, and it is not until level l + 1 where the two branches of the fork are
sufficiently separated from each other that their corresponding points no longer belong
to the same component. In terms of the skeleton, this means that Pl generates a single
node in the graph, and Pl+1 generates two nodes, each connected to the centroid of Pl . This
severely compromises the angle estimation at the fork, since the branch point is detected
late. Furthermore, the location of the centroid Cl can be biased (due to averaging of points
that belong to different branches), leading to inaccurately-placed nodes within forks, and
again, incorrect angles.

Thus, the second part of our method refines the skeleton geometry around each fork,
using as input the points Pl and normal vectors Nl associated with each fork (Figure 1
(Part 2)). If normals are unavailable, existing methods for normal estimation [36,37] can be
applied before using our method.

2.2. Gaussian Sphere Mapping

The points Pl (Figure 2A) and normal vectors Nl for each fork node l are processed as
follows. For simplicity, we drop the subscript l from the notation below, since the same
logic is applied to each fork node/level l. We do not require that forks consist of exactly
two children (branches).

First, for each normal vector Ni = (nx
i , ny

i , nz
i) associated with a point pi in the level,

we compute its local neighborhood of points j where `2(pi, pj) < r, where r defines the
radius of the neighborhood. We then compute a smoothed version of the normal vector by
averaging the normal vectors around its local neighborhood:

Ni =
∑j Nj

|∑j Nj|
.

This reduces the normal vector noise around the fork.
Second, we map each Ni to a Gaussian sphere. Every normal is a unit vector, and

thus if we imagine it as a position, it will lay on the surface of a unit sphere. Mapping
all normals onto a unit sphere will produce a Gaussian sphere. Comparing Figure 2B
(unsmoothed) to Figure 2C (smoothed) shows how smoothening tightens the spread of
normal vectors and generates a clear pattern of rings. All normal vectors that map onto the
same ring belong to the same cylinder, which represents a branch of the fork. Assuming
all branches have an approximately cylindrical shape, the goal is to identify the normal
vectors that belong to different cylinders/branches. The number of rings to identify is set
to the number of children of the fork node in the skeleton graph from Part 1.

Remote Sens. 2021, 13, 3802 5 of 16

For example, the fork in Figure 2A has three cylinders (a mother branch and two
daughter branches), which matches the three rings we observe in Figure 2C; these rings are
color-coded in Figure 2D to match their original branches.

A B C D

Figure 2. Gaussian spheres. (A) Points that correspond to an example fork node. (B) Mapping of normal vectors to a
Gaussian sphere. (C) Mapping of smoothed normals to a Gaussian sphere. (D) Correspondence between colored rings and
original branches in panel A.

Finding rings in a Gaussian sphere can be challenging when there is missing data,
such as for the mother branch (green) in Figure 2A. As a result, the ring of green points
is incomplete in Figure 2C,D. Next, we discuss how to extract rings that correspond to
different cylinders/branches from a Gaussian sphere.

2.3. Sampling of Cylinder Axes

We extract rings from a Gaussian sphere (Figure 3A) by investigating the cross product
between normal vectors:

Si = Ni × Nj.

If the cross product is taken between two normal vectors that belong to the same ring,
then Si is a perpendicular vector that points along the axis of the cylinder/branch. If we
continue taking cross products between normal vectors that belong to the same ring and
mapping them onto the Gaussian sphere, clear clusters will form on the Gaussian sphere.
However, the problem is that we do not know a priori which normal vectors belong to the
same ring.

A B C

Figure 3. Sampling of cylinder axes. (A) Mapping of smoothed normals to a Gaussian sphere, for an example fork.
(B) Cylinder axes identified using Pipe-run (random sampling). (C) Cylinder axes identified using our sampling approach.
All rings are represented by well-separated clusters, including the ring with missing data.

Remote Sens. 2021, 13, 3802 6 of 16

Previously, a method called Pipe-run [26] was proposed to extract pipes from noisy
point clouds using Gaussian spheres. Pipe-run draws random pairs of normal vectors and
computes their cross products, but this method has several shortcomings. First, it assumes
that most of the randomly drawn normal vectors come from the same ring, which works
well when the input contains a single cylinder. However, in our case, there are multiple
rings, each with a different orientation. Second, each cylinder may not have the same
number of points, since branches could vary in thickness and size. Thus, sampling an equal
number of points per cylinder could produce spurious axes. Third, cylinders with missing
data would be poorly represented by random sampling. Indeed, Figure 3B shows that
Pipe-run sampling does not effectively cluster the three cylinders. Other methods, such as
RANSAC [38], are also highly susceptible to noise and missing data.

Our sampling approach is based on two key observations. First, pairs of normal
vectors that belong to the same ring likely have corresponding points that lie close to each
other in space. Therefore, we sample pairs of points that lie within a local neighborhood,
defined by a radius r. Second, pairs of normal vectors that belong to the same ring will lie on
a circle with approximately the same radius. To compute the approximate radius between
a point and every point in its neighborhood, we used a method called the radius-based
surface descriptor (RSD) [39]:

`2(pi, pj) =
√

2r′ ·
√

1− cos(∠(Ni, Nj)).

The RSD takes two points pi and pj and their normal vectors as input and computes
the approximate radius r′ of an assumed circle, if the points were lying on the circle. For
example, if the points represented a perfect cylinder, r′ would be constant over all pairs. In
reality, the data is noisy and the approximated radii tend to vary.

Given these observations, our sampling method is as follows. Given a point pi, we
compute its approximate radius with all points pj that lie within a distance r from pi. We
then sort all the approximate radii and choose the point pj∗ associated with the median
radius. Finally, we compute the cross product between the smoothed normal vectors of
points pi and pj∗. This results in a single sample per point, and a robust cylinder axis Si
supported by pi’s neighborhood.

Figure 3C shows the results of our sampling method, which reduces noise. There are
six clusters corresponding to the three rings, because the sign of the cross product depends
on the order of operation; thus, we generally expect two opposite vectors for each ring.

2.4. Clustering Cylinder Axes

The previous step generates a set S consisting of an Si for each point i. Our next goal
is to cluster the values in S such that each cluster corresponds to a different cylinder axis.
We performed unsupervised clustering using the mean-shift algorithm [40] because it deals
well with outliers [26]. The algorithm identifies clusters as locations in space with high
sampling density. Formally, the algorithm iterates as follows:

anext =
∑Si∈S κ(

∥∥aprev − Si
∥∥

2) · Si

∑Si∈S κ(
∥∥aprev − Si

∥∥
2)

,

where anext is the current point of highest density, aprev is the previous point, and κ is the
radial basis kernel function (RBF). Initially, aprev is selected randomly from S . After every
iteration, anext is re-projected back to the surface of the sphere. The process stops when the
distance between the current and previous point is very small (e.g., <10−8). The number of
clusters is known from the skeleton graph (i.e., the number of branches at the fork).

Once the process converges, we obtain a vector ai, which represents the cylinder axis
of one branch i. Before searching for the next axis, we perform two steps to find additional
points that belong to the same axis. First, we find all normal vectors that are within 10
degrees of being perpendicular to ai. The resulting normal vectors and their corresponding

Remote Sens. 2021, 13, 3802 7 of 16

points constitute a ring/cylinder. Second, we remove from set S all Si that are within 10
degrees of ai. We then repeat the clustering procedure on a new random point to find the
next cylinder axis.

2.4.1. A Modified Clustering Algorithm

We modified this algorithm in two ways for better performance for our application.
First, the RBF computes ||aprev − Si||2, but as mentioned above, the sign of the cross-
product can be inverted based on the order of the points. Thus, vectors that lie on opposite
sides belong to the same axis. To account for this, we make the following adjustment:

anext =
∑Si∈S κ(min(

∥∥aprev − Si
∥∥

2,
∥∥aprev − (−Si)

∥∥
2) · Si

∑Si∈S κ(min(
∥∥aprev − Si

∥∥
2,
∥∥aprev − (−Si)

∥∥
2))

.

This allows for more precise computation of the direction of higher density.
Second, we reduce σ (a kernel parameter) as the number of iterations increases. A

large σ prevents the algorithm from getting stuck at a local high density location initially;
then, as the algorithm settles, we reduce σ to hone in on the highest density location more
precisely. This is akin to reducing the learning rate over time during gradient descent
optimization. Specifically, when the distance between current and previous step falls below
a threshold ε, we reduce σ by an order of magnitude. If the distance becomes larger than ε,
then we continue iterating with the new σ. Otherwise (if the distance remains below ε),
we say that the algorithm has converged. This dynamic adjustment of σ becomes more
important in forks with higher numbers of branches.

2.4.2. Dealing with Ambiguous Points

One final issue remains: each ring (cylinder) of the Gaussian sphere intersects with
at least one other ring in two places, and it is unclear to which ring the points at these
intersections should be assigned. We call such points ambiguous. In other words, when
we extract normal vectors that are with 10 degrees of being perpendicular to cylinder axis
ai, there are multiple axes that satisfy this rule. The more branches a fork has, the more
intersections there are and the more ambiguity there will be. Figure 4A shows another
example fork, and Figure 4B highlights its ambiguous points in red.

To resolve ambiguous points into their correct branches, we perform the following
steps. First, we compute the centroid c′i over all non-ambiguous points p′i in ring i. Non-
ambiguous points are those that were clustered to only one cylinder axis. These points
are shown in Figure 4B (cyan, yellow, and purple points). Points that were not within
10 degrees of being perpendicular to any ai are marked as noise and shown in green.
Second, viewing each i as a plane with corresponding axis ai and point c′i, we project each
ambiguous point onto each plane i. We then compute the Manhattan distance between
each projected point and each c′i. Ambiguous points are assigned to the ring (axis) with the
shortest Manhattan distance.

Figure 4D shows the final clustering after resolving ambiguous points. Resolution
of ambiguous points not only improves cylinder accuracy but could also be useful for
estimating branch volumes.

Remote Sens. 2021, 13, 3802 8 of 16

A B C D

Figure 4. Clustering of ambiguous points. (A) Initial fork points. (B) Results after initial clustering.
Cyan, yellow, purple: non-ambiguous points (i.e., points assigned to a single cylinder axis). Red:
ambiguous points. Green: noise (i.e., points not assigned to any ring). (C) Non-ambiguous points
only. (D) Final clustering after resolving the assignment of ambiguous points to a single axis/branch.
The cylinder accuracy is improved.

2.5. Final Skeleton Graph

The clustering step produces an axis for each cylinder ring found in the Gaussian
sphere. Each of these axes represents a direction of a splitting branch. To generate the final
skeleton graph, we need to identify the new position of the branch point, and then connect
the new branches to this branch point.

The identified axes (ai) are 3D vectors that will generally not intersect. We find
points of intersection between all pairs of axis vectors by using the skew lines intersection
algorithm. The idea is to find the shortest line segments that connect each pair of initial
axes. For each pair, the point of intersection is defined as the midpoint of the line segment.

For example, for axes i and i + 1, we turned the cylinder axes ai, ai+1 and centroids
c′i, c′i+1 into 3D line equations:

`i := c′i + λai

`i+1 := c′i+1 + µai+1

and solved the linear system of equations Au = v for u where

A =

(
a2

i −ai+1 · ai
−ai+1 · ai a2

i+1

)
u =

(
λ
µ

)
v =

(
(c′i+1 − c′i) · ai
−(c′i+1 − c′i) · ai+1

)
Inserting λ and µ back into the linear equations yields the two closest points on those

lines, which form a line segment. The center of this line segment is the intersection point
of `i and `i+1. The average of the intersection points, across all pairs of lines, is the new
position of the fork node. Lastly, we create a new node for each branch axis vector i at its
centroid c′i and insert these nodes in the old skeleton graph. We then add an edge between
the intersection point and the new nodes for each branch.

For example, in Figure 1 (Part 2), we show how a single fork node is divided into
three nodes, corresponding to the mother branch and two daughter branches. The graph
structure outside the fork node remains the same. This procedure enhances the geometry
of the skeleton graph at fork areas, thus, making angle measurements more accurate as we
evaluate next.

2.6. Plant Data

We tested our method on point clouds generated from 3D scans of tomato (Solanum
lycopersicum cv m82D) and tobacco (Nicotiana benthamiana) plants [10,30,41]. To capture a
wide range of shoot architectures and branch angles, plants were grown under several
conditions: an ambient light control, shade, high-temperature, high-light, and drought.
These conditions promote diverse phenotypes and are representative of realistic growth
environments.

We used the FaroArm EDGE Model 14000, which is a non-invasive laser scanner
that provides micron-level resolution, with an error ± 25 µm. Smaller plants had about

Remote Sens. 2021, 13, 3802 9 of 16

10,000 points (with a height of≈30 cm), whereas the largest plants had about 100,000 points
(height of up to ≈80 cm), excluding leaf/lamina points. The average distance between
points was about 0.125 cm. Not all LiDAR sensors acquire data at the same density; in our
conclusions, we describe how our method’s parameters could be adapted to point clouds
with variable densities.

Each plant was scanned at developmental timepoints 5, 12, and 20 days post-germination.
We analyzed 31 forks (18 tomato and 13 tobacco) from 12 plants (8 tomato and 4 tobacco),
comprising a total of 76 angles; many forks split two ways, but some split > 2 ways.

Prior to applying our method, three pre-processing steps were applied to the raw
scanned point cloud (Figure 5). First, the object of interest was selected within the point
cloud, and all background objects were manually removed. For example, in our scans, we
removed the pot in which the plant grew from the point cloud (Figure 5A→B).

A

Remove pot

B

Remove
lamina points

C D

Remove small
components

E

Radius = 7.0 cm Radius = 10.0 cm Radius = 12.0 cm

= lamina points..= branch points

Classification parameters mis-classified laminamis-classified branches

F Connected components parameters

Distance = 0.2 cm Distance = 0.5 cm Distance = 0.7 cm

= input points..= edges

Input

noise islands
included

holes

Figure 5. Pre-processing steps. (A) The raw input point cloud after scanning. (B) The point cloud after
manually removing the pot. (C) The point cloud after removing lamina points with deep learning
classification [30]. (D) The final set of branch points after removing small connected components.
(E) The effect of the radius parameter on classification performance. The radius parameter is used to
compute fast point feature histograms [42], which are used as feature vectors for classification. (F) The
effect of the distance parameter on the connected components algorithm. The distance parameter is
used to identify and remove isolated islands of points prior to applying our skeletonization algorithm.

Second, points that correspond to the lamina/leaves were removed from the point
cloud. To do this, we applied a classification algorithm [30] to automatically identify branch
and leaf points. This algorithm used a deep learning model, where, for each point, we
computed a feature vector using fast point feature histograms (FPFH [42]) with a radius
parameter. The radius parameter was designed to capture neighborhood points around a
point of interest to compute a descriptive, local feature vector for the point. The geometry
around a lamina point is often flat or plane-like, whereas the geometry around a branch
point often has a cylindrical shape. Thus, the radius should be large enough to capture
these differences, but not so large that it jeopardizes them (particularly since there are many

Remote Sens. 2021, 13, 3802 10 of 16

more lamina points than branch points); in addition, the radius should be adjusted based on
the point cloud density (typically, lower density→ larger radius). For example, Figure 5E
shows examples of different radii that induce different errors, including mis-classifying
branch points as lamina points (Figure 5E, Radius = 10.0 cm) and mis-classifying lamina
points as branch points (Figure 5E, Radius = 12.0 cm). We used a radius of 5.0 cm, which
was selected after performing a grid search and selecting the radius yielding the highest
classification performance. In Ziamtsov and Navlakha (2019), we performed a full analysis
of how different radii affect both classification performance and time complexity. The deep
learning network architecture consisted of an input layer with 33 nodes (FPFH features),
three hidden layers with 33, 66, and 33 nodes per layer, respectively, and an output layer
with two nodes (lamina or branch). We applied the model to each point, and all lamina
points were removed (Figure 5B→C).

Third, we ran a connected components algorithm on the identified branch points,
where two points are considered neighbors if they are within a distance of 0.5 cm from
each other. We then discarded points from all components except the largest component
(Figure 5C→D). This removed small “noise islands” that were detached from the plant.
Very small distances led to the removal of points in the middle of branches (see blue
circles in Figure 5F, Distance = 0.2 cm), which caused holes in the branches. These small
(non-noise) islands are expected when points are non-uniformly distributed. On the other
hand, large distances caused actual noise islands to be included within the branching (see
blue circles in Figure 5F, Distance = 0.7 cm), which can lead to an incorrect skeleton and
branch angles. Thus, the value of the distance parameter depends on the density of the
point cloud and should be selected so that branch points maintain a solid, cylindrical shape
without capturing peripheral noise. Once the branch points were identified, our method
was then applied directly.

3. Results

We compared the accuracy and run-time of our method to three popular approaches
for skeleton extraction from 3D point clouds: PypeTree* [5,30], L1-medial skeletoniza-
tion [7], and Laplacian-based contraction [3]. PypeTree* [5,30] is a geometric method
specifically tailored for plant biology applications. The L1-medial skeleton [7] is a distance
field-based algorithm designed to operate on general point clouds. Laplacian-based con-
traction [3] is a thinning-based algorithm and is the successor to the well-known ROSA
method [2]. Each of these methods represents a different family of skeleton extraction algo-
rithms (see related work for details). For each method, we used a grid search to identify the
best set of parameters yielding the most visually accurate skeletons. We used the publicly
available code and implementation for each method.

We measured the angles produced at each fork and compared them to ground-truth
angles, which were measured manually via cylindrical fitting in third party point cloud
visualization software. To test our method’s robustness, we selected a range of plants with
varying sizes, amounts of missing data, and levels of registration noise. Figure 6 shows a
subset of 7 of the 12 plants evaluated, consisting of tomato plants spanning four growth
conditions.

3.1. Accuracy of Branch Angles

Our method consistently generated accurate skeletons at forks and remained more
robust to noise and missing data compared to other methods. Figure 6 shows example
forks from tomato plants (columns) and the ground-truth angle calculation for each fork
(top row), followed by the skeletons and estimated angles for each of the four methods
(subsequent rows). For example, on the Highlight (A20) plant, the ground-truth angle was
120◦. The skeleton extracted by our method estimated the angle to be 118◦, whereas the
estimates of the other methods were much worse: 111◦(PypeTree*), 98◦ (L1-medial), and
92◦ (Laplacian).

Remote Sens. 2021, 13, 3802 11 of 16

These seven examples are illustrated because they represent a range of challenges
faced by skeletonization algorithms. For example, Highlight (A20), Control (B5), and Shade
(A20’) all show noisy forks with hairs (trichomes) on the stem and with registration errors;
Highlight (A20) and Highlight (A20’) show examples of missing data at a fork; and Shade
(A20) and Heat (A20) show “webbed” forks.

Each method struggled with overcoming these challenges. For example, L1-medial
often missed small branches due to stochastic sampling (Heat A20, missed two branches).
PypeTree* mainly struggled with averaging points from different branches at forks, which
tended to pull the branch point away from the main axis, in turn reducing the quality of
angles (e.g., Shade (A20’) and Heat (A20)). Laplacian was the least resilient to noise (e.g.,
Shade (A20’), Control (B5)), and closely packed branches often produced loops, spurious
branches, and erroneous skeleton shapes (Shade (A20’), Control (B5)). All three methods
performed the worst on webbed forks.

145˚

137˚

Highlight (A20)

120˚

92˚

Heat (A20)Highlight (A20’) Control (B5) Shade (A20) Shade (A20’)Control (B20)

145˚

146˚

156˚

169˚

136˚

144˚ 126˚

126˚

74˚ 75˚

150˚

152˚

172˚

In
pu

t p
oi

nt
 c

lo
ud

O
ur

 m
et

ho
d

La
pl

ac
ia

n

161˚98˚ 128˚
161˚ 107˚ 83˚

104˚L 1-
m

ed
ia

l

141˚111˚
129˚

132˚ 110˚ 107˚
109˚P

yp
eT

re
e*

162˚ 134˚

118˚

71˚

Figure 6. Branch angle prediction for four methods. Seven forks are shown (columns), each from
tomato plants across different conditions. The name “Highlight (A20)” means the fork comes from a
plant grown in highlight conditions scanned on developmental day 20. Plants are given names “A”
or “B” for replicates. The apostrophe symbol denotes a different fork that belongs to the same plant.
Each row shows the skeletons and estimated angles for each of the four methods; the top row shows
the ground-truth angle, computed manually. Only one angle is highlighted in each fork.

For our method, for the three plants with noisy forks and registration errors, the
estimated angles had an average percent error of 4.9%; for the two plants with missing
data at the fork, our method had an error of 3.5%; and for the two plants with webbed
forks, our method had an error of 5.0%. Thus, while our method performed better than the
other methods in overcoming these challenges, it was most sensitive to registration errors
and noise in the form of webbed forks.

Over all 18 tomato forks analyzed (from 8 plants in 5 conditions), in terms of absolute
errors, our method was on average 1.96-times more accurate than PypeTree*; 2.25-times
more accurate than L1-medial; and 3.15-times more accurate than Laplacian. In terms

Remote Sens. 2021, 13, 3802 12 of 16

of percent errors, our method was on average 1.90-times more accurate than PypeTree*;
2.21-times more accurate than L1-medial; and 2.92-times more accurate than Laplacian.

Importantly, our method demonstrated similar gains when tested on forks from
tobacco plants. Over 13 forks from four tobacco plants across two conditions, in terms
of absolute errors, our method was on average 1.39-times more accurate than PypeTree*;
2.13-times more accurate than L1; and 2.16-times more accurate than Laplacian. In terms
of percent errors, our method was on average 1.26-times more accurate than PypeTree*;
1.99-times more accurate than L1-medial; and 1.99-times more accurate than Laplacian.
Thus, our method was able to generalize well across two species.

The results from all 31 forks are quantified in Figure 7, demonstrating our method’s
improved estimation of branch angles in terms of absolute errors (Figure 7A) and percent
errors (Figure 7B).

Our method PypeTree* L1-medial Laplacian
0

5

10

15

20

25

30

35

A
ve

ra
ge

 a
bs

ol
ut

e
er

ro
r (

de
gr

ee
s)

Our method PypeTree* L1-medial Laplacian
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

A
ve

ra
ge

 p
er

ce
nt

 e
rr

or
 (%

)

A B

Figure 7. Accuracy of predicted angles for all methods. (A) Average absolute errors for each method,
defined as the absolute value of the ground-truth angle minus the predicted angle. Error bars represent
the standard error of the mean. (B) Average percent errors for each method, defined as the ratio of the
absolute error to the ground-truth angle. Error bars represent the standard error of the mean.

3.2. Run-Time Performance

For each fork, we compared the amount of time each method took to run. Measure-
ments were made on a Windows 10 Pro 64-bit machine with an Intel i7-2600 CPU @ 3.4 GHz,
and 16 GB RAM. As the L1-medial method is stochastic (i.e., it requires selection of random
seeds during initialization), we averaged its run-time over four runs.

Table 1 shows that PypeTree* and our method are the two fastest algorithms. On
average, our method is only 0.17-times slower than PypeTree*, suggesting that the error
correction process we applied on top of the original PypeTree algorithm only leads to
a small loss in timing efficiency. The other two methods (L1-medial and Laplacian) are
significantly slower. Specifically, our method is 2.81-times faster than L1-medial and
41-times faster than Laplacian. L1-medial was fairly competitive on larger plants with
more cloud points, but showed significantly slower times on smaller plants compared to
PypeTree* and our method.

In summary, our method can compute branch angles for large plants in seconds and
generally produces more accurate branch angles than existing methods.

Remote Sens. 2021, 13, 3802 13 of 16

Table 1. Run-time comparison for all methods. All measurements shown are in seconds.

Species Point Cloud Our Method PypeTree* L1-Medial Laplacian

Tomato Control (B5) 1.40 1.26 3.76 41.77
Tomato Control (B20) 6.13 5.25 5.69 494.49
Tomato Heat (A20) 2.51 2.06 4.05 53.91
Tomato Highlight (A20) 1.68 1.34 3.06 47.44
Tomato Highlight (A20’) 1.89 1.62 5.22 77.95
Tomato Shade (A20) 2.68 2.19 3.05 68.12
Tomato Shade (A20’) 2.27 2.03 2.98 91.01
Tomato Drought (A12) 1.27 1.01 4.49 73.22
Tomato Highlight (B4) 0.75 0.67 3.64 20.56
Tomato Shade (B20) 9.73 7.98 9.99 491.51
Tobacco Control (B6) 0.27 0.23 4.34 13.77
Tobacco Control (B12) 0.82 0.64 4.20 21.66
Tobacco Heat (B6) 0.25 0.19 2.42 14.98
Tobacco Heat (B20) 7.37 5.49 5.77 360.03

4. Conclusions

In this work, we presented a fast method that improved the extraction of skeleton
graphs from point clouds of plant shoot architectures. We tested our method on high-
resolution 3D point cloud data from two species of plants (tomato and tobacco) and showed
significant improvement in the accuracy of angle estimates compared to three competing
approaches. Our method has the potential to be deployed in large-scale phenotyping appli-
cations with noisy point clouds, and is designed to be used with minimal pre-processing.
For example, our method can also be applied to point clouds generated from technologies
other than LiDAR, such as multi-view photogrammetry [43]. In general, such technologies
face challenges not typically faced by laser scanning, including white balance matching,
feature matching across images for registration, and errors associated with approximat-
ing the camera position and camera sensor noise. However, once these challenges are
addressed and normal vectors are estimated, our method can be used after the appropriate
pre-processing steps are applied. All of our algorithms are available and implemented in
P3D, our open-source plant phenotyping toolkit [44].

There are three main challenges to accurate skeletonization: noise, variable point
density, and missing data. To review, our method deals with noise in individual normal
vectors (e.g., due to trichomes) by averaging normal directions within a local neighborhood.
To handle point clouds with different densities, our method includes a radius parameter
that delineates the size of the neighborhood; for lower densities, the radius may need to
be increased. If different parts of the point cloud have different densities, then the radius
parameter may need to adapt to the local density of the point cloud. Finally, for handling
missing data, our method clusters normal vectors that belong to the same ring on the
Gaussian sphere; this allows us to cluster branches even if they have holes.

Our method (Branch-Pipe) includes five main parameters: (1) the radius of the neigh-
borhood for averaging normal vectors; (2) the radius of the neighborhood for sampling
cylinder axes; (3) the σ RBF kernel parameter in the clustering step; (4) the ε stopping
condition in the clustering step; and (5) the degree cutoff, where normals are assigned
to the same ring if they are within a certain range. We offer the following guidance for
how to set these parameters. The first four parameters depend on the density of the point
cloud with sparser point clouds requiring higher values of these parameters. For example,
the first two parameters (the two radii) should be set to capture just enough points to
establish a good local representation. In practice, we used the same value for both radii.
The fifth parameter depends on the noise level of the normal vectors; we observed through
an empirical experiment that normal vectors of a cylindrical branch isolated from our data
set had about 10 degrees of error.

There are several lessons that we learned from applying these methods to noisy plant
architectures. First, accurate angle estimation benefits from considering normal vector

Remote Sens. 2021, 13, 3802 14 of 16

directions at forks. Spawning branches have small angles and can be very close to each
other, which causes points to cluster together; using normal vectors to distinguish each
branch thus becomes critical. Second, while highly parameterized methods (e.g., Laplacian)
provide more flexibility, in practice, it was often difficult to tune the parameters to work
across a range of different fork types. Third, non-deterministic methods that require
random down-sampling (e.g., L1-medial) increase efficiency; however, we found that the
underlying skeletons could be susceptible to noise in the sampling process, often leading
to broken skeletons and non-trivial angle variation across runs. Fourth, taking advantage
of some plant-specific geometric characteristics—such as the assumption that branches are
cylindrical, the absence of loops in the skeleton, and the tapering of branch radii—can lead
to improvements in the overall skeleton quality and performance.

There are several avenues for future work. First, the identification of forks requires that
each level set (colored points in Figure 1) is sampled with enough points from each branch.
PypeTree* generates each level based on distances from the root; however, sometimes
this approach places a border between two adjacent levels that lies right in the middle
of a fork. While uncommon, this can compromise the quality of predicted angles. Thus,
designing automated methods that improve the identification of levels such that the
borders of adjacent levels do not cut through a fork remains an open challenge. Second, the
angle quality can be improved by better calculating the positions of nodes within levels.
Currently, our method defines a node in the skeleton graph to be the centroid of the points
in the level. Developing a method that considers normals when calculating the centroid
could improve not only the angle predictions but also the quality of the entire skeleton
graph. Third, when we insert new nodes into the skeleton after clustering, we assume that
all branches emit from the same node; while this is certainly true in many cases, there are
times when branches can be offset relative to each other. Adding a cleverer node-merging
mechanism would further improve the quality of the skeletons. Finally, while we designed
our method to be species-agnostic, we only tested it on two Solanaceous species: tomato
(Solanum lycopersicum cv m82D) and tobacco (Nicotiana benthamiana). Evaluating it on
broader datasets with more diverse phenotypes could identify additional challenges.

Author Contributions: Conceptualization, I.Z. and S.N.; methodology, I.Z., K.F. and S.N.; software,
I.Z.; validation, I.Z., K.F.; writing—original draft preparation, I.Z., K.F. and S.N.; writing—review
and editing, I.Z., K.F. and S.N.; funding acquisition, S.N. All authors have read and agreed to the
published version of the manuscript.

Funding: S.N. was supported by the Pew Charitable Trusts, the National Science Foundation under
award CAREER DBI-1846554, and funding from the Simons Center for Quantitative Biology at Cold
Spring Harbor Laboratory.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and code executable are available at: https://github.com/
iziamtso/P3D, accessed on 14 September 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cornea, N.D.; Silver, D.; Min, P. Curve-Skeleton Properties, Applications, and Algorithms. IEEE Trans. Vis. Comput. Graph. 2007,

13, 530–548. [CrossRef] [PubMed]
2. Tagliasacchi, A.; Zhang, H.; Cohen-Or, D. Curve Skeleton Extraction from Incomplete Point Cloud. In ACM SIGGRAPH 2009

Papers; Association for Computing Machinery: New York, NY, USA, 2009; pp. 1–9.
3. Cao, J.; Tagliasacchi, A.; Olson, M.; Zhang, H.; Su, Z. Point Cloud Skeletons via Laplacian Based Contraction. In Proceedings of

the 2010 Shape Modeling International Conference, Aix-en-Provence, France, 21–23 June 2010; pp. 187–197. [CrossRef]
4. Au, O.K.C.; Tai, C.L.; Chu, H.K.; Cohen-Or, D.; Lee, T.Y. Skeleton Extraction by Mesh Contraction. ACM Trans. Graph. 2008,

27, 1–10. [CrossRef]
5. Delagrange, S.; Jauvin, C.; Rochon, P. PypeTree: A Tool for Reconstructing Tree Perennial Tissues from Point Clouds. Sensors

2014, 14, 4271–4289. [CrossRef] [PubMed]

https://github.com/iziamtso/P3D
https://github.com/iziamtso/P3D
http://doi.org/10.1109/TVCG.2007.1002
http://www.ncbi.nlm.nih.gov/pubmed/17356219
http://dx.doi.org/10.1109/SMI.2010.25
http://dx.doi.org/10.1145/1360612.1360643
http://dx.doi.org/10.3390/s140304271
http://www.ncbi.nlm.nih.gov/pubmed/24599190

Remote Sens. 2021, 13, 3802 15 of 16

6. Verroust, A.; Lazarus, F. Extracting Skeletal Curves from 3D Scattered Data. Vis. Comput. 2000, 16, 15–25. [CrossRef]
7. Huang, H.; Wu, S.; Cohen-Or, D.; Gong, M.; Zhang, H.; Li, G.; Chen, B. L1-Medial Skeleton of Point Cloud. ACM Trans. Graph.

2013, 32, 1–8. [CrossRef]
8. Sharf, A.; Lewiner, T.; Shamir, A.; Kobbelt, L. On-the-fly Curve-skeleton Computation for 3D Shapes. In Computer Graphics Forum;

Blackwell Publishing Ltd.: Oxford, UK, 2007; Volume 26, pp. 323–328.
9. Ai, M.; Yao, Y.; Hu, Q.; Wang, Y.; Wang, W. An Automatic Tree Skeleton Extraction Approach Based on Multi-View Slicing Using

Terrestrial LiDAR Scans Data. Remote Sens. 2020, 12, 3824. [CrossRef]
10. Conn, A.; Pedmale, U.V.; Chory, J.; Navlakha, S. High-Resolution Laser Scanning Reveals Plant Architectures That Reflect

Universal Network Design Principles. Cell Syst. 2017, 5, 53–62.e3. [CrossRef] [PubMed]
11. Bucksch, A.; Atta-Boateng, A.; Azihou, A.F.; Battogtokh, D.; Baumgartner, A.; Binder, B.M.; Braybrook, S.A.; Chang, C.; Coneva,

V.; DeWitt, T.J.; et al. Morphological plant modeling: Unleashing geometric and topological potential within the plant sciences.
Front. Plant Sci. 2017, 8, 900. [CrossRef] [PubMed]

12. Prusinkiewicz, P.; Lindenmayer, A. The Algorithmic Beauty of Plants; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2012.

13. Perez-Sanz, F.; Navarro, P.J.; Egea-Cortines, M. Plant Phenomics: An Overview of Image Acquisition Technologies and Image
Data Analysis Algorithms. GigaScience 2017, 6, gix092. [CrossRef]

14. Pieruschka, R.; Schurr, U. Plant phenotyping: Past, present, and future. Plant Phenomics 2019, 2019, 7507131. [CrossRef]
15. Li, M.; Frank, M.H.; Coneva, V.; Mio, W.; Chitwood, D.H.; Topp, C.N. The Persistent Homology Mathematical Framework

Provides Enhanced Genotype-to-Phenotype Associations for Plant Morphology. Plant Physiol. 2018, 177, 1382–1395. [CrossRef]
16. Gaetan, L.; Serge, C.; Annie, E.; Didier, C.; Frederic, B. Characterization of Whole Plant Leaf Area Properties Using Laser Scanner

Point Clouds. In Proceedings of the 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization
and Applications, Shanghai, China, 31 October–3 November 2012; pp. 250–253. [CrossRef]

17. Xu, H.; Bassel, G.W. Linking Genes to Shape in Plants Using Morphometrics. Annu. Rev. Genet. 2020, 54, 417–437. [CrossRef]
18. Sun, S.; Li, C.; Paterson, A.H.; Jiang, Y.; Xu, R.; Robertson, J.S.; Snider, J.L.; Chee, P.W. In-Field High Throughput Phenotyping

and Cotton Plant Growth Analysis Using LiDAR. Front. Plant Sci. 2018, 9, 16. [CrossRef]
19. Andújar, D.; Rueda-Ayala, V.; Moreno, H.; Rosell-Polo, J.; Escolá, A.; Valero, C.; Gerhards, R.; Fernández-Quintanilla, C.; Dorado,

J.; Griepentrog, H.W. Discriminating Crop, Weeds and Soil Surface with a Terrestrial LIDAR Sensor. Sensors 2013, 13, 14662–14675.
[CrossRef]

20. Mathan, J.; Bhattacharya, J.; Ranjan, A. Enhancing Crop Yield by Optimizing Plant Developmental Features. Development 2016,
143, 3283–3294. [CrossRef]

21. Giovannetti, M.; Małolepszy, A.; Göschl, C.; Busch, W. Large-Scale Phenotyping of Root Traits in the Model Legume Lotus
Japonicus. In Plant Genomics; Springer: New York, NY, USA, 2017; Volume 1610, pp. 155–167. [CrossRef]

22. Yang, W.; Duan, L.; Chen, G.; Xiong, L.; Liu, Q. Plant phenomics and high-throughput phenotyping: Accelerating rice functional
genomics using multidisciplinary technologies. Curr. Opin. Plant Biol. 2013, 16, 180–187. [CrossRef]

23. Hackenberg, J.; Spiecker, H.; Calders, K.; Disney, M.; Raumonen, P. SimpleTree—An efficient open source tool to build tree
models from TLS clouds. Forests 2015, 6, 4245–4294. [CrossRef]

24. Morsdorf, F.; Meier, E.; Kötz, B.; Itten, K.I.; Dobbertin, M.; Allgöwer, B. LIDAR-based geometric reconstruction of boreal type
forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 2004, 92, 353–362. [CrossRef]

25. Zhang, X.; Li, H.; Dai, M.; Ma, W.; Quan, L. Data-driven synthetic modeling of trees. IEEE Trans. Vis. Comput. Graph. 2014,
20, 1214–1226. [CrossRef]

26. Qiu, R.; Zhou, Q.Y.; Neumann, U. Pipe-Run Extraction and Reconstruction from Point Clouds. In Computer Vision–ECCV 2014;
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 8691,
pp. 17–30. [CrossRef]

27. Han, X.F.; Jin, J.S.; Wang, M.J.; Jiang, W.; Gao, L.; Xiao, L. A review of algorithms for filtering the 3D point cloud. Signal Process.
Image Commun. 2017, 57, 103–112. [CrossRef]

28. Pauly, M.; Mitra, N.J.; Guibas, L.J. Uncertainty and Variability in Point Cloud Surface Data. In Proceedings of the Eurographics
Symposium on Point-Based Graphics, SPBG’04, Zurich, Switzerland, 2–4 June 2004;Eurographics Association: Goslar, Germany,
2004; pp. 77–84.

29. Xia, S.; Chen, D.; Wang, R.; Li, J.; Zhang, X. Geometric primitives in LiDAR point clouds: A review. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2020, 13, 685–707. [CrossRef]

30. Ziamtsov, I.; Navlakha, S. Machine Learning Approaches to Improve Three Basic Plant Phenotyping Tasks Using Three-
Dimensional Point Clouds. Plant Physiol. 2019, 181, 1425–1440. [CrossRef]

31. Hassouna, M.S.; Farag, A.A. Robust centerline extraction framework using level sets. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1,
pp. 458–465.

32. Mei, J.; Zhang, L.; Wu, S.; Wang, Z.; Zhang, L. 3D tree modeling from incomplete point clouds via optimization and L 1-MST. Int.
J. Geogr. Inf. Sci. 2017, 31, 999–1021. [CrossRef]

http://dx.doi.org/10.1007/PL00007210
http://dx.doi.org/10.1145/2461912.2461913
http://dx.doi.org/10.3390/rs12223824
http://dx.doi.org/10.1016/j.cels.2017.06.017
http://www.ncbi.nlm.nih.gov/pubmed/28750198
http://dx.doi.org/10.3389/fpls.2017.00900
http://www.ncbi.nlm.nih.gov/pubmed/28659934
http://dx.doi.org/10.1093/gigascience/gix092
http://dx.doi.org/10.34133/2019/7507131
http://dx.doi.org/10.1104/pp.18.00104
http://dx.doi.org/10.1109/PMA.2012.6524842
http://dx.doi.org/10.1146/annurev-genet-022620-094553
http://dx.doi.org/10.3389/fpls.2018.00016
http://dx.doi.org/10.3390/s131114662
http://dx.doi.org/10.1242/dev.134072
http://dx.doi.org/10.1007/978-1-4939-7003-2_11
http://dx.doi.org/10.1016/j.pbi.2013.03.005
http://dx.doi.org/10.3390/f6114245
http://dx.doi.org/10.1016/j.rse.2004.05.013
http://dx.doi.org/10.1109/TVCG.2014.2316001
http://dx.doi.org/10.1007/978-3-319-10578-9_2
http://dx.doi.org/10.1016/j.image.2017.05.009
http://dx.doi.org/10.1109/JSTARS.2020.2969119
http://dx.doi.org/10.1104/pp.19.00524
http://dx.doi.org/10.1080/13658816.2016.1264075

Remote Sens. 2021, 13, 3802 16 of 16

33. Wang, Z.; Zhang, L.; Fang, T.; Mathiopoulos, P.T.; Qu, H.; Chen, D.; Wang, Y. A structure-aware global optimization method
for reconstructing 3-D tree models from terrestrial laser scanning data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5653–5669.
[CrossRef]

34. Ogniewicz, R.; Ilg, M. Voronoi Skeletons: Theory and Applications. In Proceedings of the 1992 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Champaign, IL, USA, 15–18 June 1992; pp. 63–69. [CrossRef]

35. Dey, T.K.; Sun, J. Defining and computing curve-skeletons with medial geodesic function. In Proceedings of the Symposium on
Geometry Processing, Cagliari, Italy, 26–28 June 2006; Volume 6, pp. 143–152.

36. Mitra, N.J.; Nguyen, A. Estimating surface normals in noisy point cloud data. In Proceedings of the Nineteenth Annual
Symposium on Computational Geometry, San Diego, CA, USA, 8–10 June 2003; pp. 322–328.

37. Zhang, J.; Cao, J.; Liu, X.; Wang, J.; Liu, J.; Shi, X. Point cloud normal estimation via low-rank subspace clustering. Comput. Graph.
2013, 37, 697–706. [CrossRef]

38. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

39. Marton, Z.C.; Pangercic, D.; Blodow, N.; Kleinehellefort, J.; Beetz, M. General 3D modelling of novel objects from a single view.
In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October
2010; pp. 3700–3705. [CrossRef]

40. Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell.
2002, 24, 603–619. [CrossRef]

41. Conn, A.; Pedmale, U.V.; Chory, J.; Stevens, C.F.; Navlakha, S. A Statistical Description of Plant Shoot Architecture. Curr. Biol.
2017, 27, 2078–2088.e3. [CrossRef]

42. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [CrossRef]

43. Nguyen, T.T.; Slaughter, D.C.; Max, N.; Maloof, J.N.; Sinha, N. Structured light-based 3D reconstruction system for plants. Sensors
2015, 15, 18587–18612. [CrossRef] [PubMed]

44. Ziamtsov, I.; Navlakha, S. Plant 3D (P3D): A Plant Phenotyping Toolkit for 3D Point Clouds. Bioinformatics 2020, 36, 3949–3950.
[CrossRef]

http://dx.doi.org/10.1109/TGRS.2013.2291815
http://dx.doi.org/10.1109/CVPR.1992.223226
http://dx.doi.org/10.1016/j.cag.2013.05.008
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1109/IROS.2010.5650434
http://dx.doi.org/10.1109/34.1000236
http://dx.doi.org/10.1016/j.cub.2017.06.009
http://dx.doi.org/10.1109/ROBOT.2009.5152473
http://dx.doi.org/10.3390/s150818587
http://www.ncbi.nlm.nih.gov/pubmed/26230701
http://dx.doi.org/10.1093/bioinformatics/btaa220

	Introduction
	Methods
	Overview
	Gaussian Sphere Mapping
	Sampling of Cylinder Axes
	Clustering Cylinder Axes
	A Modified Clustering Algorithm
	Dealing with Ambiguous Points

	Final Skeleton Graph
	Plant Data

	Results
	Accuracy of Branch Angles
	Run-Time Performance

	Conclusions
	References

