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Key	Points	
	

● Meta-analysis	of	9	mouse	bone	marrow	scRNAseq	identifies	markers	for	cell	types	and	
hematopoietic	development	

● Characterize	a	replicable	functional	landscape	of	cell	types	by	exploiting	co-expression	
	

Abstract	
	
The	clinical	importance	of	the	hematopoietic	system	makes	it	one	of	the	most	heavily	studied	
lineages	in	all	of	biology.	A	clear	understanding	of	the	cell	types	and	functional	programs	during	
hematopoietic	development	is	central	to	research	in	aging,	cancer,	and	infectious	diseases.	
Known	cell	types	are	traditionally	identified	by	the	expression	of	proteins	on	the	surface	of	the	
cells.	Stem	and	progenitor	cells	defined	based	on	these	markers	are	assigned	functions	based	
on	their	lineage	potential.	The	rapid	growth	of	single	cell	RNA	sequencing	technologies	
(scRNAseq)	provides	a	new	modality	for	evaluating	the	cellular	and	functional	landscape	of	
hematopoietic	stem	and	progenitor	cells.	The	popularity	of	this	technology	among	
hematopoiesis	researchers	enables	us	to	conduct	a	robust	meta-analysis	of	mouse	bone	
marrow	scRNAseq	data.	Using	over	300,000	cells	across	12	datasets,	we	evaluate	the	
classification	and	function	of	cell	types	based	on	discrete	clustering,	in	silico	FACS	sorting,	and	a	
continuous	trajectory.	We	identify	replicable	signatures	that	define	cell	types	based	on	genes	
and	known	cellular	functions.	Additionally,	we	evaluate	the	conservation	of	signatures	
associated	with	erythroid	and	monocyte	lineage	development	across	species	using	co-
expression	networks.	The	co-expression	networks	predict	the	effectiveness	of	the	signature	at	
identifying	erythroid	and	monocyte	cells	in	zebrafish	and	human	scRNAseq	data.	Together,	this	
analysis	provides	a	robust	reference,	particularly	marker	genes	and	functional	annotations,	for	
future	experiments	in	hematopoietic	development.	
	
Introduction	
	
The	hematopoietic	lineage	is	one	of	the	most	highly	studied	lineages	in	all	of	developmental	
biology.	Classically,	cell	types	are	identified	by	Fluorescent	Activated	Cell	Sorting	(FACS).	For	
example,	the	Long	Term	Hematopoietic	Stem	Cell	(LT-HSC)	is	identified	by	CD34low,	Flt3-,	and	
TpoR+	expression.	The	role	of	a	progenitor	is	to	produce	differentiated	cells,	and	the	function	of	
a	specified	progenitor	cell	type	is	defined	by	the	potential	to	differentiate	into	a	specific	lineage	
1.	The	Multipotent	Progenitor	4	(MPP4)	is	heavily	biased	toward	differentiation	into	the	
lymphoid	lineage	2.	Importantly,	the	discovery	and	functional	annotation	of	cell	types	are	
dependent	on	the	modality	of	data.	FACS	and	lineage	potential	are	not	the	only	such	methods	
3–5.	The	advent	of	single-cell	RNA	sequencing	(scRNAseq)	allows	for	the	classification	of	the	
hematopoietic	lineage	from	an	entirely	new	data	modality.	Using	gene	expression	to	
characterize	cell	types	gives	us	a	new	opportunity	to	identify	the	gene	regulatory	programs	
important	to	hematopoietic	lineages.	
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A	clear	understanding	of	hematopoietic	development	is	central	to	aging	and	cancer	research.	
The	bias	towards	the	development	of	myeloid	cells	instead	of	the	lymphoid	lineage	is	a	major	
molecular	signature	of	aging	6–8.	Additionally,	some	hematological	cancers	can	be	viewed	as	
misregulation	or	stalled	development	of	myeloid	cells,	leading	to	a	class	of	therapeutics	known	
as	differentiation	therapy	9,10.	Identifying	the	changes	in	gene	regulation	that	cause	lineage	bias	
or	developmental	stalling	is	crucial	to	perturbing	these	systems	back	into	a	healthy	state.	An	
atlas	that	describes	cell	types	involved	in	healthy	hematopoiesis,	and	characterizes	the	function	
for	each	cell	type	using	scRNAseq	will	serve	as	a	critical	reference	for	translational	research.		
	
The	rapid	development	of	scRNAseq	technology	creates	the	opportunity	to	build	a	robust	atlas	
of	hematopoietic	cells	in	the	bone	marrow.	Multiple	studies	publish	individual	atlases	of	
hematopoietic	development,	but	they	do	not	integrate	information	from	other	published	
datasets	11,12.	Replicability	across	many	datasets	resolves	some	technical	limitations	of	
individual	scRNAseq	datasets,	creating	a	more	robust	atlas	13,14.	The	most	comprehensive	and	
robust	cell	atlases	rely	on	meta-analysis	across	many	scRNAseq	datasets	to	characterize	
replicable	cell	types	15–18.	After	identifying	the	present	cell	types,	characterizing	their	functions	
can	be	done	by	evaluating	the	signatures	that	define	the	cell	types	for	known	processes	and	
pathways	19–21.	
	
In	this	work,	we	build	a	comprehensive	mouse	hematopoietic	cell	atlas	by	integrating	and	
labeling	over	300,000	cells	from	14	datasets.	We	identify	robust	gene	regulatory	signatures	
using	multiple	perspectives	of	the	data.	Two	bone	marrow	datasets	from	the	Tabula	Muris	
consortium	and	the	semi-supervised	machine	learning	algorithm	scNym	are	used	to	label	and	
integrate	12	datasets	of	mouse	bone	marrow	data	22,23.	We	identify	robust	markers	for	each	cell	
type	and	learn	functional	annotations	using	the	Gene	Ontology.	Labeling	cells	based	on	genes	
that	traditionally	serve	as	cell	surface	markers	identifies	a	latent	lineage	potential	signature.	
Pseudotime	analysis	finds	signatures	associated	with	the	development	of	the	monocyte	and	
erythroid	lineages.	Co-expression	and	scRNAseq	from	zebrafish	and	human	samples	evaluates	
the	conservation	of	lineage-associated	signatures	in	21	species.	We	present	a	replicable	view	of	
hematopoietic	development	in	the	mouse	bone	marrow,	that	complements	the	FACS	and	
lineage	potential-based	perspective	of	hematopoietic	development.	
	
Methods	
	
Data	preprocessing	
Data	were	downloaded	for	each	dataset	based	on	the	info	provided	by	their	publication.	For	a	
detailed	explanation,	see	the	code	for	each	dataset	in	the	Github	repository.	
	
Integration	using	scNym	
Data	was	normalized	to	logTPM	(normalize_total=1e6)	as	per	the	requirements	for	scNym.	A	
column	in	the	Anndata	object	was	created	that	had	the	cell	type	labels	from	the	two	tabula	
muris	datasets	and	the	placeholder	“Unlabeled”	for	cells	from	all	other	datasets.	Additionally,	
we	included	a	column	in	the	obs	data	that	denoted	the	batch.	When	training	and	testing	the	
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model	we	use	batch	as	the	domain.	The	output	layer,	consisting	of	256	features	was	used	as	the	
input	to	UMAP.	All	of	this	was	run	on	a	server	with	a	Nividia	Tesla	V100	GPU	and	the	UMAP	was	
done	using	the	Nvidia	rapids	library.	
	
Marker	identification	and	enrichment	
We	use	the	MetaMarkers	package	in	R	to	compute	cell	type	markers	for	both	the	scNym	
labeled	cell	types	(Figure	2)	and	in	silico	sorted	cell	states	(Figure	3)	24.	MetaMarkers	computes	
differential	expression	using	the	Mann-Whitney	test	within	each	batch	and	then	computes	
meta-analytic	statistics	to	aggregate	the	statistics	across	batches.	For	the	in	silico	analysis,	we	
also	use	the	score_cells,	compute_marker_enrichment,	and	summarize_precision_recall	
functions	to	evaluate	the	identifiability	and	classification	of	cell	states.	Enrichment	was	done	
using	the	pyMN	MetaNeighbor	package	and	the	mouse	gene	ontology.		
	
Pseudotime	
Pseudotime	was	computed	using	monocle3	on	each	dataset	25.	We	tuned	the	parameters	
minimum_branch_length	and	rank.k	to	balance	the	complexity	of	the	trajectory	and	the	
coverage	of	the	lineages.	We	used	the	monocle2	differentialGeneTest	function	to	calculate	the	
genes	associated	with	each	lineage	and	with	branching	26.	For	GO	enrichment	we	used	custom	
code	for	Fisher's	exact	test	(see	GitHub)	and	the	mouse	gene	ontology	on	the	top	50	markers	
for	each	lineage.		
	
Cross-Species	Co-expression	
We	evaluated	the	co-expression	of	orthologs	to	the	lineage-associated	gene	lists	for	every	
species	in	CoCoCoNet	with	at	least	5		orthologs	for	both	lineages	using	EGAD	27	 .	In	the	human	
data	Pelin	et	al	2019	and	zebrafish	dataset	Xia	et	al	2021	we	scored	the	expression	of	the	
orthologs	using	the	Scanpy	score_gene_list	functions.		
	
Data	and	code	availability	
The	code	for	all	analysis	is	available	in	the	GitHub	repository	
https://github.com/bharris12/hsc_paper	and	processed	data	is	available	on	the	FTP	site	
ftp://gillisdata.cshl.edu/data/HSC_atlas/.	The	data	can	also	be	explored	in	the	Shiny	app	at	
https://gillisweb.cshl.edu/HSC_atlas/	
	
Results	
	
Integration	and	Filtering	of	Datasets	
	
We	collected	12	published	datasets	that	use	high	throughput	scRNAseq	methods	to	profile	
mouse	hematopoietic	progenitor	cells	11,28–33.	Not	all	of	the	original	publications	label	every	cell	
and	each	publication	has	unique	rules	for	defining	cell	types.	These	two	challenges	make	it	
unclear	what	cell	types	are	shared	across	publications	by	looking	at	the	published	papers	and	
associated	metadata.	It	is	preferable	to	have	an	integrated	latent	space	with	cells	from	all	
datasets	for	some	analyses.	After	identifying	the	shared	populations	across	the	publications,	we	
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can	evaluate	the	discrete	and	continuous	models	of	cell	types	(Figure	1A).	We	use	the	tool	
scNym	and	the	Tabula	Muris	bone	marrow	dataset,	a	high-quality	reference	dataset,	to	
integrate	and	label	the	cell	types	from	all	of	the	studies.	From	7	publications,	we	identified	12	
sequencing	batches	that	we	refer	to	as	datasets.	Projecting	individual	datasets	into	a	latent	
space	using	UMAP	for	Weinreb	et	al	2020	and	Rodriguez-Fraticelli	et	al	2020	clearly	shows	
technical	variation	between	annotated	batches,	while	Tikhonova	et	al	2019,	despite	annotating	
multiple	batches,	does	not	present	strong	batch	effects	(Supplementary	Figure	1).	We	treat	
each	of	the	batches	in	the	3	publications	as	individual	datasets	to	avoid	fitting	to	technical	
variation	within	some	datasets.	Projecting	all	the	cells	into	a	low	dimension	integrated	UMAP	
space	shows	the	clustering	of	cell	types	based	on	the	scNym	labels	and	consistent	overlap	for	
most	of	the	datasets	(Figure	1B-C).		
	
It	is	important	to	assess	cell	type	label	accuracy	when	transferring	cell	type	labels	from	
reference	data	using	the	confidence	scores	computed	by	scNym.	In	the	reduced	space,	the	high	
confidence	areas	are	cells	towards	the	center	of	clusters,	while	lower	confidence	cells	are	in	the	
areas	between	cluster	centers	(Figure	1D-E).	Displaying	just	the	training	Tabula	Muris	data	in	
the	latent	space	makes	it	clear	that	the	high	confidence	scores	are	in	the	regions	of	the	latent	
space	occupied	by	Tabula	Muris	cells,	and	regions	of	low	confidence	are	in	between	the	
reference	cell	types	(Figure	1F).	The	low	confidence	between	clusters	reflects	the	degree	to	
which	the	model	is	extrapolating	outside	the	training	data	space.	Most	of	the	Tabula	Muris	
clusters	are	islands	in	the	latent	space	with	no	adjoining	neighbors.	We	suspect	this	is	because	
the	Tabula	Muris	cells	were	sorted	based	on	cell	surface	markers	to	enrich	for	specific	cell	types	
before	sequencing	23.	This	selects	for	more	transcriptionally	homogenous	populations,	useful	
for	annotation	but	less	so	for	understanding	lineage	relationships	and	variability.	On	the	other	
hand,	the	datasets	labeled	by	scNym	were	only	sorted	to	broadly	include	hematopoietic	stem	
and	progenitors	and	some	lineage-committed	cells.	After	the	integration,	we	removed	the	
datasets	R2,	R3,	and	T	because	they	did	not	map	to	the	other	9	datasets’	cell	types	
(Supplementary	Figure	2A).	We	exclude	the	tabula	muris	datasets,	R2,	R3,	and	T	to	focus	on	
datasets	that	sampled	similar	portions	of	the	hematopoietic	lineage	for	the	remaining	analysis.		
	
Robust	Clustering	
	
The	remaining	9	datasets	all	broadly	cover	the	same	area	of	the	latent	space	(Figure	2A-B,	
Supplementary	Figure	2B).	Most	identified	cell	types	are	in	all	9	datasets;	6	of	the	13	clusters	
are	shared	across	all	datasets,	and	the	remaining	clusters	are	in	at	least	5	of	the	9	datasets	
(Figure	2C).	Every	cell	type	contains	at	least	one	marker	with	an	AUROC	>	.8	and	a	large	fold	
change	(Figure	2D,	Supplementary	Table	1).	The	top	markers	are	very	specific	to	the	clusters	
they	identify	(Figure	2E).	Klf1	and	Ermap,	two	genes	identified	as	markers	for	proerythroblast,	
are	commonly	known	as	erythroid	markers	34,35.	In	our	dataset	selection	process,	we	focused	on	
studies	that	sorted	cells	based	on	the	commonly	used	LSK	markers:	Lin-,		Sca1+	(some	Sca1-),		
and	cKit+.	The	expression	of	cKit	distinguishes	proerythroblasts	from	more	differentiated	cell	
types	in	the	erythroid	lineage	36.	Between	the	selection	method	and	the	marker	genes,	we	are	
confident	in	the	identification	of	the	proerythroblast	lineage,	especially	over	more	
differentiated	cell	types	within	the	lineage.	
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We	evaluate	the	function	of	each	cell	type	by	using	MetaNeighbor	to	identify	replicable	
functional	programs	associated	with	each	cell	type,	as	labeled	by	the	Gene	Ontology.	
MetaNeighbor	characterizes	gene	sets	by	their	ability	to	“barcode”	particular	cell	types	via	their	
expression	profile.		Each	cell	type	has	at	least	75	GO	terms	with	an	AUROC	>	.9	(Figure	2F,	
Supplementary	Table	2),	meaning	that	the	set	of	genes	within	that	GO	term	is	highly	
characteristic	for	a	cell	type	and	replicable	in	its	expression	profile.	The	term	Embryonic	
Hemopoiesis	(GO:00035162)	has	an	average	AUROC	of	.79,	with	moderate	variation	between	
the	different	cell	types	(Figure	2F).	We	visualize	that	variation	between	the	cell	types	with	a	
dotplot	to	show	the	expression	of	the	genes	within	the	term	in	each	cell	type	(Figure	2G).	The	
high	performance	of	the	term	on	basophils	is	largely	driven	by	Runx1	expression	(AUROC=.82).	
This	is	consistent	with	previous	studies	that	show	knockout	of	Runx1	reduces	basophil’s	found	
in	bone	marrow	by	90%	37.	Proerythroblasts	are	the	highest	performing	cluster	on	the	term	
(AUROC	=	.92).	Gata1,	and	two	genes	associated	with	Gata1	expression,	Klf1,	and	Zfpm1,	are	
enriched	in	the	proerythroblasts.	The	co-expression	of	Lmo2	and	Ldb1	in	proerythroblasts	is	
consistent	with	results	that	show	their	role	as	maintainers	of	erythroid	progenitor	states	and	
preventing	further	differentiation	into	the	erythroid	lineage	38.	The	marker	genes	and	genes	
identified	from	GO	enrichment	show	that	we	are	predominately	sampling	proerythroblasts	
from	the	erythroid	lineage.	
	
In	Silico	Sorting	Identifies	Latent	Stem	Cell	States	
	
Sorting	cells	based	on	cell	surface	marker	protein	expression	is	the	established	way	of	defining	
hematopoietic	stem	and	progenitor	cell	types.	We	use	the	same	marker	genes,	Slamf1	(CD150),	
Slamf2	(CD48),	and	Flt3	to	sort	the	hematopoietic	precursor	cell	cluster	into	Long	term	HSCs	
(LT-HSC),	Short-term	HSC	(ST-HSC),	and	Multipotent	Progenitors	(MPP2-4)	based	on	published	
guides	12,39.	Interestingly,	they	do	not	appear	to	spatially	organize	in	UMAP	space,	even	when	
each	dataset	is	individually	projected	onto	a	latent	space	(Figure	3A).	Using	MetaNeighbor	to	
evaluate	the	replicability	of	the	cell	states,	there	is	moderate	replicability,	especially	with	the	
MPP4	and	LT-HSCs	(Figure	3B).	MetaNeigbhor	does	not	identify	a	strong	distinction	between	
the	MPP2	and	MPP3	labeled	cells,	but	they	are	distinct	from	the	remaining	cell	states.	
	
The	top	marker	genes	show	modest	cell	type	predictability	(AUROC)	and	weak	signal-to-noise	
ratios	(log	Fold	Change)	(Figure	3C).	The	ST-HSCs	have	a	near-even	signal-to-noise	ratio	despite	
the	highest	predictability	for	the	top	markers.	We	test	the	identifiability	of	each	cell	state	using	
the	top	1-1000	markers	to	see	if	that	does	better	than	individual	markers	(Figure	3D).	The	ST-
HSCs	have	modest	identifiability,	while	the	other	cell	states	have	extremely	low	identifiability	
(Figure	3D).	ST-HSCs	are	the	cell	type	defined	by	no	expression	of	Slamf1,	Slamf2	and,	Flt3,	
given	the	sparsity	of	scRNAseq	data	and	the	low	signal	to	noise	ratio	for	ST-HSC	marker	genes,	it	
could	be	possible	that	the	cell	type	is	a	mixture	of	actual	ST-HSCs	and	the	other	cell	states	
incorrectly	labeled.	When	removing	the	ST-HSCs,	the	identifiability	(F1)	increases	to	moderate	
levels	for	the	MPP3	and	MPP4	cell	states	using	as	few	as	10	markers.	LT-HSC	identifiability	is	
extremely	low	with	1	gene	but	steadily	increases	with	the	number	of	markers.	To	look	at	the	
variation	across	datasets	we	learn	the	top	10	markers	for	each	cell	state	in	8	datasets	and	
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measure	how	well	they	classify	the	held	out	(test)	dataset.	The	average	AUROC	across	all	the	
tests	is	.71,	but	with	considerable	variability	between	the	different	datasets	and	cell	states	
(Figure	3E).	Classifying	these	cell	states	across	datasets	provides	modest	performance.	The	
MetaNeighor	and	marker	classification	analysis	identify	replicable	axes	of	variation,	even	if	not	
the	primary	ones	that	would	be	visible	in	UMAP	space.	
	
We	evaluate	the	replicability	of	functional	connectivity	of	gene	sets	within	the	cell	states	using	
MetaNeighbor.	Most	of	the	5516	tested	GO	terms	have	consistently	low	AUROCs	across	all	cell	
states	(Figure	3F,	Supplementary	Table	3).	However,	81	terms	have	an	AUROC	>.9	in	at	least	1	
cell	state	(Figure	3G).	Within	top	enriched	terms,	we	see	that	many	match	the	known	
differentiation	bias	of	MPPs.	The	GO	term	“Lymphocyte	Proliferation”	(GO:0046651)	has	an	
AUROC	of	.98	in	the	MPP4	cluster.	MPP4s	are	also	referred	to	as	the	Lymphoid	Multipotent	
Progenitor	(LMPP)	and	have	a	significant	bias	towards	differentiating	into	the	lymphoid	lineage	
2.	The	expression	patterns	for	the	genes	in	the	term	are	displayed	in	a	dotplot	(Figure	3H).	The	
most	variably	expressed	genes	in	the	term	show	expression	patterns	consistent	with	bulk	
sorted	cell	populations	from	the	Immgen	Consortium	(Figure	3I,	40).	Rag2	and	Il7r	are	standard	
markers	for	B	and	T	cell	development	and	Satb1	promotes	lymphocyte	differentiation	41.	The	
enrichment	of	the	lymphoid	proliferation	term	and	lymphoid-associated	genes	could	indicate	
that	the	cells	in	the	MPP4	cell	state	are	lymphoid	primed.	While	not	the	primary	axis	of	
variability,	these	cell	states	constitute	a	replicable	axis	of	variation	within	the	hematopoietic	
precursor	cell	cluster	associated	with	lineage	potential.	
	
Robust	Signatures	of	Hematopoietic	Differentiation	
	
Modeling	the	cells	as	an	ordered	continuum,	instead	of	clusters,	depicts	the	differentiation	
process	within	the	data	and	can	identify	gene	regulation	dynamics	specific	to	lineage	
determination.	We	model	this	by	computing	pseudotime	in	individual	datasets	to	avoid	learning	
trajectories	that	are	artifacts	of	the	integration	process/batch	effects	(Figure	4A).	The	
pseudotime	computed	on	the	integrated	space	is	markedly	different	for	each	dataset	
(Supplementary	Figure	3).	In	addition	to	producing	an	ordering	of	the	cells,	the	algorithm	
assigns	all	of	the	cells	to	nodes	along	a	tree	that	estimates	the	differentiation	branching	within	
the	data.	We	associated	each	end	segment	of	the	trees	to	either	root,	erythroid,	monocyte	
based	on	gene	expression	and	label	all	segments	in	the	middle	as	intermediate.	While	the	
clustering	includes	lymphocyte	cells,	the	individual	dataset	projections	do	not	connect	the	
lymphocyte	cells	to	the	root	in	the	latent	space	and	we	can	not	compute	a	confident	trajectory	
through	the	non-linear	gaps	in	the	latent	space	(Supplementary	Figure	4).	Evaluating	the	
replicability	of	the	segments	using	MetaNeigbhor	shows	that	the	root,	erythroid	and	monocyte	
segments	are	replicable	across	the	datasets,	while	the	intermediate	segments	are	not	replicable	
across	the	datasets	(Figure	4B,	Supplementary	Figure	5).	The	inconsistency	of	the	intermediates	
could	be	a	result	of	the	transient	nature	of	intermediate	cell	types	or	more	technical	issues	with	
scRNAseq	42,43.	
	
Using	a	broader	approach,	we	fit	models	for	every	gene	to	each	dataset	and	use	meta-analytic	
statistics	to	identify	consistent	gene	expression	signatures	associated	with	the	erythroid	and	
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monocyte	lineages	(Figure	4C,	Supplementary	Table	4).	The	top	3-5	genes	for	lineages	are	very	
similar	to	the	cluster	level	analysis	for	erythroid,	but	not	for	monocyte.	However,	looking	at	the	
top	50	genes	for	each	dataset	shows	that	only	19	for	erythroid	and	4	for	monocyte	genes	are	
shared	between	the	cluster	and	pseudotime	analysis	(Supplementary	Figure	6).	GO	enrichment	
of	the	top	50	genes	for	each	lineage	identifies	11	for	erythroid	and	54	for	monocyte	
significantly	associated	terms	(p<.05,	Figure	4D,	Supplementary	Table	5).		Visualization	of	the	
top	5	genes	for	each	lineage	ordered	by	pseudotime	shows	a	consistent	monotonic	expression	
trend	across	the	datasets	(Figure	4E).	Despite	the	consistent	monotonicity,	each	dataset	has	a	
unique	inflection	point	where	the	gene	expression	substantially	increases.	The	differences	in	
timing	across	the	datasets	explain	some	of	the	replicability	limitations	of	comparing	the	
intermediate	cells	across	datasets.		
	
Cross-Species	Co-Expression	of	Lineage	Signatures	
	
Co-expression	networks	reflect	the	functional	landscape	of	gene	expression	44.	Reference,	bulk-
RNAseq	derived,	co-expression	networks	are	used	to	evaluate	the	cross-species	relevance	of	
the	lineage-associated	gene	lists	45.	We	measure	the	connectivity	(AUROC)	of	the	erythroid	and	
monocyte	gene	lists	using	these	co-expression	networks	(Figure	5A).	strong	connectivity,	or	
high	AUROC,	of	a	gene	set	indicates	shared	function.	As	expected,	the	highest	co-expression	for	
both	gene	lists	is	in	the	mouse	network;	the	training	species	for	the	gene	lists	(monocyte	
AUROC=.92,	erythroid	AUROC=.90).	Using	1-to-1	orthologs	we	evaluate	the	co-expression	of	
the	gene	lists	in	21	species.	The	monocyte	gene	list	is	more	co-expressed	in	most	species	than	
the	erythroid	gene	set.	At	the	extreme	is	zebrafish,	with	near-random	co-expression	for	
erythroid	(AUROC=.42)	and	strong	co-expression	for	monocyte	genes	(AUROC=.81).	Strikingly,	
both	gene	sets	perform	well	in	the	human	co-expression	network,	indicative	of	strong	mouse-
human	conservation,	an	encouraging	sign	for	translational	research	purposes	(monocyte	
AUROC=.88,	erythroid	AUROC=.82).		
	
In	addition	to	evaluating	conservation	using	co-expression	networks,	we	look	at	the	expression	
of	the	gene	sets	in	a	zebrafish	hematopoietic	dataset	(Figure	5B,	46).	The	monocyte	scores	are	
bimodal,	with	the	highest	scoring	cells	matching	the	cells	labeled	as	myeloid	progenitors	in	the	
original	study	(Figure	5C-D).	They	mostly	have	very	low	scores	for	the	erythroid	gene	set,	and	
many	of	the	highly	scoring	cells	are	myeloid	progenitor-labeled	cells.	We	next	assessed	the	
human	bone	marrow	dataset	from	Pellin	et	al	2019	to	evaluate	the	expression	of	the	gene	sets	
in	human	data	47.	We	rely	on	top	markers	from	the	publication	to	identify	the	HSCs,	Monocyte,	
Erythroid,	and	Lymphocyte	cell	populations	because	discrete	labels	were	unobtainable	(Figure	
5E).	The	scores	form	increasing	gradients	from	the	HSCs	to	their	respective	lineage	(Figure	5F).	
The	two	lineage	scores	are	orthogonal	to	each	other,	showing	they	serve	as	a	good	marker	for	
the	lineages	(Figure	5F).	The	orthogonal	signatures	show	a	binary	fate	decision	between	the	
erythroid	and	monocyte	lineages;	if	one	lineage	score	is	upregulated,	the	other	one	remains	
inactivated.	Between	the	co-expression	and	human	scRNAseq	results,	it	is	clear	that	the	
functional	relationship	of	the	genes	in	the	lineage-associated	gene	lists	is	conserved	between	
mice	and	humans.	
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Discussion	
	
Our	results	provide	a	robust	evaluation	of	hematopoietic	cell	populations	in	mouse	bone	
marrow.	After	identifying	9	hematopoietic	datasets	that	broadly	share	cell	types,	we	identified	
cellular	populations	using	3	different	methods:	clustering,	in	silico	FACS	sorting,	and	trajectory	
inference.	These	populations	were	characterized	using	both	markers	and	functional	
annotations.	Furthermore,	we	demonstrated	the	conservation	of	lineage-associated	genes	
using	co-expression	analysis	across	21	species.	Finally,	we	made	the	data	and	identified	
signatures	accessible	on	our	shiny	webserver	to	compare	with	future	experiments.	
	
Meta-analysis	serves	to	find	robust	signatures	across	datasets	with	significant	technical	
variation	15,	thereby	determining	what	markers	and	properties	are	likely	to	generalize	to	new	
data.	This	meta-analytic	atlas	resolves	technical	limitations	with	individual	batches	to	better	
represent	the	continuous	nature	of	the	system	and	provide	strongly	replicable	signatures.	The	
datasets	sample	cells	unbiasedly	from	hematopoietic	progenitors,	recapitulating	a	developing	
system	unlike	the	discrete,	FACS	sorting-based	sampling	in	the	Tabula	Muris	23.		The	most	
popular	present	resource	for	hematopoietic	transcriptomic	signatures	is	built	from	a	single	bulk	
RNAseq	dataset,	but	has	still	been	invaluable	for	basic	research	and	studying	SARS-Cov2,	
tuberculosis,	and	leukemia	40,48–53.	By	extending	the	availability	of	reference	data	to	single	cell	
and	comparing	across	datasets,	we	enhance	both	the	depth	and	breadth	of	transcriptomic	
signatures	available	to	researchers.	
	
The	generalizability	of	our	results	will	make	it	a	valuable	resource	for	translational	research.	An	
accurate	reference	of	healthy	hematopoietic	stem	cells	is	critical	for	identifying	reliable	
therapeutic	targets.	While	learning	functional	signatures	of	disease	from	clinical	samples	is	
often	preferable,	they	can	be	difficult	to	acquire,	and	an	alternative	is	to	learn	signatures	
associated	with	diseases	from	mouse	models	54,55.	In	order	to	identify	disease	signatures,	
correctly	identifying	cell	types	in	healthy	conditions	is	critical	for	evaluating	changes	in	
expression	or	abundance.	Disease-associated	signatures	identified	in	single-cell	data	could	then	
be	evaluated	as	arising	from	changes	in	expression	within	cell	types,	or	changes	in	cell	type	
proportions	56,57.	Importantly,	our	cross-species	analysis	shows	that	we	can	evaluate	the	
conservation	of	signatures	identified	in	mice	to	human	data,	demonstrating	the	atlas’	utility	for	
pre-clinical	therapeutic	research.	
	
Here,	we	focus	on	the	integration	of	one	data	modality,	scRNAseq,	but	we	expect	additional	
modalities	to	be	incorporated	as	data	continues	to	be	generated	and	robust	meta-analysis	can	
be	conducted.		In	general,	expression	data	serves	as	a	foundation	for	the	integration	of	other	
data	modalities,	providing	robust	signatures	which	can	then	be	annotated	by	the	data	used	in	
other	modalities	18.		A	cross-dataset,	multi-modal	atlas	will	resolve	limitations	and	produce	a	
more	detailed	picture	of	the	gene	regulatory	networks	driving	hematopoiesis.	Integrating	CITE-
seq	data,	which	measures	cell	surface	protein	expression	and	RNA	with	this	atlas	will	resolve	
the	progenitor	states	better	than	in	silico	FACS	sorting	58.	Single	cell	ATACseq	data	from	mouse	
bone	marrow	will	identify	transcription	factors	and	cis-regulatory	elements	important	to	
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lineage	commitment	59.	CRISPR	screens	will	test	lineage-specific	gene	dependencies	60,61.	Cell	
non-autonomous	signaling	influences	lineage	commitment,	either	from	the	non-hematopoietic	
cells	in	the	bone	marrow	or	cell-cell	communication	between	hematopoietic	populations	62–64.	
Evaluating	such	cell-cell	interactions	will	identify	external	signals	that	dictate	lineage	
commitment.	More	data	covering	gaps	in	continuity,	particularly	the	lymphoid	lineage,	will	
generate	a	more	complete	atlas—	of	great	utility	for	studying	lymphoid	malignancies.	
Integrating	other	modalities	with	our	robust	scRNAseq	atlas	will	resolve	gaps	in	the	atlas	and	
produce	a	high-resolution	picture	of	hematopoietic	development.	
	
This	atlas	serves	as	a	reference	for	future	hematopoiesis	experiments	that	transition	from	FACS,	
the	current	gold	standard,	to	RNA	expression	as	the	phenotypic	measurement.	In	our	results,	
we	demonstrate	multiple	targeted	analyses,	made	possible	by	a	meta-analytic	atlas	and	web	
server.	Our	analysis	provides	a	detailed	and	robust	evaluation	of	hematopoietic	lineage	
development	in	mouse	bone	marrow.	Our	webserver	makes	it	easy	to	evaluate	the	expression	
of	any	gene	or	known	function	identified	in	future	experiments	
(https://gillisweb.cshl.edu/HSC_atlas/).	
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Figure	1:	Integrations	and	filtering	of	unlabeled	datasets	using	the	Tabula	Muris	and	scNym.	A)	Two	tabula	muris	bone	
marrow	datasets	are	used	as	references	with	scNym	to	label	12	datasets.	3	datasets	are	excluded	from	further	analysis	due	to	
poor	alignment	with	the	remaining	9	datasets.	The	9	remaining	datasets	are	evaluated	using	a	cluster,	in	silico	FACS,	and	
pseudotime	analysis.	The	results	of	the	psuedotime	analysis	are	evaluated	across	many	species.	B-C)	UMAP	projection	of	the	
integrated	datasets	colored	by	B)	cell	type	annotated	by	scNym	and	C)	dataset.	D)	The	confidence	score	for	each	cell	type	label	
in	the	UMAP	projection.	E)	Confidence	scores	by	cell	type	show	most	cells	within	a	cell	type	are	confidently	labeled.	F)	UMAP	
projection	of	the	reference	tabula	muris	datasets	show	disconnected	clusters.			
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Figure	2:	Identification	of	robust	markers	and	functional	programs	that	define	cell	types.	A-B)	UMAP	projection	of	cells	
retained	for	downstream	analyses	colored	by	A)	cell	type	label	and	B)	dataset.	C)	Upset	plot	depicts	that	most	cell	types	are	
shared	across	datasets.	D)	Each	cell	type	has	high-performing	markers,	as	calculated	using	MetaMarkers.	The	top	markers	are	
plotted	by	their	significance	(Average	AUROC)	and	effect	size	(Average	Log	Fold	Change	of	Detection).	They	are	colored	by	the	
same	scheme	as	in	A).	E)	The	top	3	markers	for	each	cluster	show	high	expression	specificity	in	a	heatmap	of	expression.	Z	
scores	were	calculated	within	datasets	and	then	aggregated	across	datasets	to	account	for	technical	variation	between	
datasets.	F)	Violin	plot	of	AUROCS	for	the	MetaNeighbor	results	run	on	the	Gene	Ontology	identifies	many	highly	robust	
functional	annotations	that	identify	cell	types.	The	AUROCs	for	the	term	Embryonic	Hematopoiesis	(GO:0035162)	are	marked	
for	each	cell	type.	F)	Expression	levels	and	%	of	cells	expressed	for	the	genes	in	the	term	Embryonic	Hematopoiesis	
(GO:0035162)	identify	genes	associated	with	the	cell	types	that	have	the	highest	AUROCs	from	MetaNeighbor.	The	expression	
values	are	computed	by	Zscoring	within	datasets	and	then	aggregating	the	values	across	datasets.	
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Figure	3:	in	silico	FACS	sorting	identifies	robust	latent	signatures	of	hematopoietic	precursor	cell	states.	A)	Cells	from	the	
hematopoietic	precursor	cell	labeled	as	either	LT-HSC,	ST-HSC,	and	MPP2-4	do	not	cluster	in	UMAP	space	when	projected	by	
dataset.	B)	MetaNeigbhor	unsupervised	analysis	shows	consistency	of	MPP4s	across	datasets	and	moderate	replicability	of	the	
other	cell	states.	C)	MetaMarkers	defined	cell	type	markers	show	limited	significance	(AUROC)	and	weak	effect	sizes	(log	Fold	
Change).	D)	Evaluating	the	identifiability	(F1	score)	of	cell	states	using	1-1000	markers	in	all	cell	states	(top)	and	excluding	the	
ST-HSC	cell	type	(bottom).	Computed	using	leave	one	out	cross-validation.	The	shaded	region	represents	1	standard	
deviation.		E)	Classification	performance	(AUROC)	using	the	top	10	marker	genes.	The	model	is	trained	on	9	datasets	and	the	
performance	is	shown	for	the	9th	held	out	dataset.	The	dashed	lines	are	the	average	across	all	folds.	F)	Metaneighbor	
evaluation	of	cell	states	using	the	whole	Gene	Ontology	G)	Subset	of	Metaneighbor	results	for	terms	with	AUROC	>.9	in	at	least	
1	cell	state	F)	Expression	of	the	term	lymphocyte	proliferation	(GO:0046651)	in	each	of	the	cell	states.	The	Z-scores	are	
computed	within	datasets	and	then	aggregated	across	datasets.	G)	Bulk	expression	from	ImmGen	data	for	genes	with	notable	
expression	in	the	single	cell	data	matches	single	cell	expression.		
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Figure	4:	Pseudotime	analysis	in	individual	datasets	identifies	lineage-associated	modules	and	sampling	differences	between	
datasets.	A)	Individual	datasets	are	projected	into	2-dimensional	space	using	UMAP	and	then	Monocle3	learns	a	pseudotime	
ordering	of	the	cells.	B)	Branches	of	the	pseudotime	trajectories	are	assigned	to	either	Root,	Erythroid,	Monocyte,	or	Non-
replicable	based	on	MetaNeighbor	results	(Supplementary	Figure	5).	C)		Meta-analytic	MAplot	of	marker	genes	for	Erythroid	
and	Monocyte	lineages.	D)	Top	10	terms	from	Gene	Ontology	enrichment	using	fisher’s	exact	test	for	the	top	50	makers	for	
each	lineage.	E)	Expression	of	top	5	markers	from	each	lineage	across	datasets	ordered	by	pseudotime	shows	monotonic	
patterns	but	different	expression	profile	dynamics	between	datasets.		
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Figure	5:	Cross-species	co-expression	analysis	predicts	functional	conservation	of	lineage-associated	gene	sets.	A)	Co-
expression	of	1-to-1	orthologs	across	21	species	for	both	the	erythroid	and	monocyte	associated	gene	lists	shows	bias	towards	
conservation	of	the	monocyte	lineage.	B)	UMAP	of	Xia	et	al	2021	zebrafish	hematopoietic	dataset	colored	by	cell	type	label.	C)	
Histogram	of	lineage	scores	for	each	cell	in	zebrafish	dataset	has	enriched	population	of	cells	for	only	the	monocyte	gene	list	D)	
Lineage	score	for	both	monocyte	and	erythroid	lineages	plotted	on	UMAP	of	dataset	shows	only	has	specificity	for	monocyte	
lineage.	E)	Expression	of	known	markers	for	major	hematopoietic	lineages	in	the	human	hematopoietic	dataset	Pellin	et	al	
2019.	F)	Scores	for	erythroid	and	monocyte	lineages	in	the	human	dataset	specifically	identify	both	erythroid	and	monocyte	cell	
populations	G)	The	lineage	scores	for	each	cell	in	the	human	dataset	show	the	gene	programs	are	orthogonal	to	each	other.	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.12.456098doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456098
http://creativecommons.org/licenses/by/4.0/

