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Abstract 

Machine learning in genomics plays a key role in leveraging high-throughput data, but assessing the 
generalizability of performance has been a persistent challenge. Here, we propose to evaluate the 
generalizability of gene characterizations through the shape of performance curves. We identify 
Functional Equivalence Classes (FECs), uniform subsets of annotated and unannotated genes that 
jointly drive performance, by assessing the presence of straight lines in ROC curves. FECs are 
widespread across modalities and methods, and can be used to evaluate the extent and context-
specificity of functional annotations in a data-driven manner. For example, FECs suggest that B cell 
markers can be decomposed into shared primary markers (10 to 50 genes), and tissue-specific 
secondary markers (100 to 500�genes). In addition, FECs are compatible with a wide range of 
functional encodings, with marker sets spanning at most 5% of the genome and data-driven 
extensions of Gene Ontology sets spanning up to 40% of the genome. Simple to assess visually and 
statistically, the identification of FECs in performance curves paves the way for novel functional 
characterization and increased robustness in analysis. 

Introduction 

Characterizing the functional properties of genes across conditions, species, and other perturbations 
is a central challenge in post genome biology. As data sets increase in size and complexity, exploiting 
methods from machine learning and AI research has become increasingly valuable to parse vast data 
collections for subtle convergent signals1–5. However, the complexity and customized nature of these 
methods create interpretation problems of their own. Establishing a consensus framework for 
comparative evaluation has been essential to progress, often using systematic data resources, and 
with well-defined performance metrics. In particular, many problems in genomics map to a supervised 
learning framework with a goal of determining functional sets of genes from partial annotations and 
feature data. A correspondingly high number of methods and assessments report comparative 
evaluation using traditional machine learning statistics, such as the area under the receiver-operator 
characteristic curve (AUROC). However, genomics poses unique challenges and opportunities 
relating to its unusual scalability, both across novel contexts (conditions or species) and the ability to 
collect high-throughput data in consistent assays. 
 
The shared ancestry of organisms forms the basis of many ways we extend results from one system 
to another. Across species, this shared ancestry is the basis for functional annotation using 
homology6; within species, it is the basis for a shared reference to align functional genomics data1,7. 
Both of these foundational ideas exploit the shared existence of the same set of genes across 
systems, placing data collected from heterogeneous sources into a common framework. Whenever a 
gene is described as linked to a disease5,8, annotated with a Gene Ontology (GO) function9,10, or 
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described with respect to structure or biochemical activity11,12, we imply a standardized description of 
the “same” gene found in different systems. Analytically, this frequently creates an oddity within 
machine learning of gene function:  we are often learning over the same sample space, again and 
again (say, human genes), extending an initial positive set to include more and more of what were 
originally negatives5. This is unlike supervised learning in any other field where the intent is to learn a 
classifier that can be applied to “new” samples (as opposed to the same genes/samples over again). 
As a result, generalizability can only be assessed across systems (such as conditions) rather than 
samples; i.e., we ask does this new experiment (feature data for a gene) also imply it possesses a 
given function? Combined with using primarily sparse positive annotations without explicit 
negatives13–15, this separate “closed universe” problem of resampling across novel feature spaces 
makes it difficult to interpret annotation performance from traditional machine learning metrics alone. 
 
A second challenge (and opportunity) relates to the magnitude of genome-scale data. In modern 
genomics, many assays are designed to be comprehensive across the genome, with significance 
arising from the combination of information across genes.  This is used in differential expression16, 
enrichment analysis17,18, and more generally, network analyses that aim to capture gene associations 
of all types1,19.  Thus, networks can be interrogated for overlaps in disease genes or other sets, with 
even a small number of genes contributing to generating a significant result if they are “surprisingly” 
close in the network.  More broadly, there are two potentially complementary models for gene 
associations: in the first model, functions and phenotypes are well captured by a small set of genes 
(Mendelian diseases or large effect loci in GWAS20,21), while in the second model functions are 
distributed over a large set of genes (polygenic model21,22, omnigenic model23). In both models, 
proteins frequently participate in multiple functions, resulting in overlap between gene sets24,25, 
reflecting poor human definitions for functions or true multifunctionality.  Likewise, diffuse interactions 
may reflect noisy data or true omnigenic robustness26. To understand these questions about the 
discreteness and extent of gene function, we need a framework that lets us interpret conclusions 
drawn in one context jointly with others.  
 
In this article, we assess the generalizability of gene associations based on the graphical properties of 
performance curves. We find that genomic ROC curves endemically produce highly significant straight 
line segments which define gene set re-organizations. Each straight segment groups together 
annotated and unannotated genes that are equally likely to have the investigated function. By 
extracting these straight lines using a normalized Kolmogorov-Smirnov statistic, we can rapidly 
evaluate the generalizability of gene sets to other contexts across virtually any study. We find that 
straight lines are pervasive across the data sources investigated (>90% in all functional learning 
tasks) and suggest the existence of large gene modules (up to 40% of the genome). Finally, we 
confirm our findings by extracting ROC curves directly from figures in the published literature. We find 
interpretively important straight lines in 71/77 published performance curves covering a wide body of 
methods and data. Together, these results and methods for the interpretation of performance curves 
extend our ability to rapidly and visually probe gene set generalizability across studies and systems. 

Results 

To illustrate how the shape of the ROC curve informs about the structure of the data, we first consider 
a toy example of protein function prediction (Fig. 1). A machine learning classifier is applied on a high-
throughput dataset measuring the likelihood that two proteins interact (Fig. 1a). To make predictions, 
the classifier relies on annotations obtained by a low-throughput assay that labeled a subset of genes 
with 50% True Positive Rate (TPR) and 10% False Negative Rate (FNR)(Fig. 1a). The classifier 
correctly identifies that there is a functional module: the highest prediction scores contain an even mix 
of correctly annotated genes and unannotated functional genes, while lower scores contain an even 
mix of incorrectly annotated and unannotated non-functional genes. 
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To build an ROC curve, we apply the closed world assumption14: every unannotated gene is 
considered to be a negative. The curve can be obtained by ranking all genes by prediction score, 
moving up when encountering a positive (annotated gene) and right when encountering a negative 
(unannotated gene)(Fig. 1b), then rescaling axes to range between 0 and 1 (Fig. 1c). The presence of 
a functional module in the data is immediately visible on the ROC curve because of the presence of 
straight lines. The initial straight line on the ROC curve suggests that a subset of annotated genes 
shows high evidence of interaction, but also that the annotation can be “naturally” extended to some 
unannotated genes as, locally, annotated and unannotated genes are evenly mixed. 

Straight lines in ROC space define discrete classes of genes with similar functional 
properties 

In an effort to identify robust functional gene sets, we start our investigation with a focus on cell-type-
defining genes. Recent cell type atlasing efforts based on single-cell RNA sequencing (scRNAseq) 
across tissues and organisms suggest that, in their mature state, most cell types act as remarkably 
discrete transcriptomic entities and constitute well defined and conserved building blocks of 
biology27,28. In transcriptomic space, this discrete nature translates into well-separated clusters and 
cell-type-specific marker genes. Marker genes such as Slc17a7 (glutamatergic neuron marker) or 
Gad1 (GABAergic neuron marker) have distinctive binary expression patterns where the gene is only 
expressed in the cell type of interest, but none of the background cells29. Overall, these patterns 
suggest the existence of discrete gene modules associated with cell types. Ideally, such marker 
modules would be perfectly replicable across tissues, individuals, and technologies. 

To evaluate the replicability of marker modules, we extracted markers from the Tabula Muris atlas30. 
The Tabula Muris provides the perfect opportunity to study marker gene generalizability, as it contains 
100,605 cells sampled from 7 mice (3 males and 4 females). Furthermore, the atlas sampled cells 
from 20 organs and sequenced 55,656 cells using the 10X technology and 44,949 cells using the 
Smart-Seq technology. In the following, we focused on the “B-cell” cell type, because this cell type 
was detected in 42 combinations of individuals (7 individuals), tissues (7 organs) and sequencing 
technologies (10X and Smart-Seq) for a total of 10,323 cells. 
 
First, we extracted the top 20 cell type markers (see Methods) from the “3_10_M” individual in the 
“Fat” tissue, sequenced using the Smart-Seq technology. This corresponds to a typical marker gene 
extraction scenario, in which a study relies on a single tissue and sequencing technology. To study 
the generalizability of these 20 markers, we asked whether they are also predicted as top markers in 
the remaining data. We generated one ROC curve per individual, tissue, and technology combination 
that contained more than 20 cells (25 combinations). In each combination, we treated the top 20 fat 
markers as positives and all other genes as negatives; we used the effect size of the ROC test 
(commonly used to compute markers in Seurat31 or LIGER32) to rank genes. 
 
Marker replicability AUROCs ranged from 0.83 to 1 (median 0.97), suggesting high replicability across 
tissues, individuals, and technologies. Performance differences were mostly explained by variability 
across tissues (61% variance explained), then sequencing technologies (15% variance explained), 
and individuals (6% variance explained). The marker set was perfectly replicable within fat 
(AUROC~1 across all individuals), but suboptimal in other tissues (AUROC<1). 
 
Remarkably, we noted that the initial part of each suboptimal ROC curve was composed of straight 
lines (Fig. 2a). In essence, this indicates sets of genes whose order is irrelevant to the final 
performance statistics; the functional validation “sees” this set of genes as a uniform set.  We 
extracted straight lines from the “Lung” tissue using the normalized Kolmogorov-Smirnov statistic (see 
Methods). In the initial portion of the ROC curves, we identified two straight lines spanning 
approximately 5% of the genome (Fig. 2b). The first line (perfect straight line, KS=NA) highlighted that 
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approximately 50% (~10/20) markers picked in fat were perfectly replicable in lung (Fig. 2b). This line 
went straight up along the y-axis, suggesting that none of the negative genes are equivalently good 
markers in the lung. We call these genes primary markers. 
 
In contrast, the second line (KS=0.85,p=0.47,n=5) contained approximately 25% of the original 
markers, but also 5% of the negative genes. The presence of a straight line that contains both positive 
and negative genes suggests that all genes “contained” in the straight line have equivalent marker 
strength. From a biological point of view, this line suggests the existence of context-dependent 
markers: the list of markers extracted from fat can be completed with previously unidentified genes 
that could be used interchangeably as secondary markers in the lung. Accordingly, lung-specific 
secondary markers were consistent across all individuals and technologies (Sup. Fig. 1a).  
 
Next, in an attempt to create a larger and more robust set of markers, we refined the initial marker set 
(top 20�markers from fat) using the secondary markers identified in lung. We picked all genes 
contained in the first two straight lines, representing a new candidate marker set with 480�genes 
(16/20 initial genes, 464 additional genes). This larger marker set proved to be highly replicable 
across most tissues (AUROC>0.96, ΔAUROC=-0.03-0.03), with the notable exception of the 
mammary gland (ΔAUROC=-0.09) and the spleen (ΔAUROC=-0.36, Sup. Fig. 1b). This pattern 
highlights the context dependency of secondary markers: they are shared for fat, the lung, limb 
muscles, and the liver, but not with the mammary gland or the spleen. 
 
Having established a strong set of primary and secondary markers for 4 out of 6 tissues, we looked 
for evidence of spleen-specific secondary markers. Using ROC curves, we asked which unannotated 
genes had equivalent performance to the 480 markers extracted from the lung. Again, the initial 
segments of the spleen ROC curves were almost perfectly linear (KS=1.2, p=0.12, n=18 for the 
average ROC curve, Fig. 2c). We extracted the first two straight lines, which contained ~25% of the 
lung marker set (~10% as primary markers and ~15% as secondary markers) and 1% negative genes 
with equivalent performance in the spleen, representing a total of 216 genes. This new marker set 
resulted in almost perfect performance in Spleen (0.99) and lower performance in other tissues, 
individuals and technologies (AUROC range=0.89-0.95, Fig. 2d, Sup. Fig. 1b), suggesting that most 
of the newly identified markers are spleen-specific. 
 
This example shows how straight lines in ROC space enable one to quickly assess marker 
generalizability. They decompose a candidate gene set into discrete classes of genes with respect to 
a given functional property (here, cell-type-specificity). A simple look at a set of ROC curves suggests 
the existence of shared primary markers and secondary tissue-specific markers. The size of straight 
lines can be directly interpreted: there are around 10 to 50 primary markers and 100 to 500 secondary 
markers. 

Functional Equivalence Classes (FECs) are pervasive across the functional landscape 

For cell-type-associated genes, the discrete nature of cell types translated into the existence of 
discrete sets of genes. But the discrete nature of the functional property assayed may have 
contributed to the clarity of the discrete classes. An alternative would be to take a network approach, 
capturing many conditions simultaneously. Network biology identifies fundamental functional building 
blocks by analyzing the global topology of molecular interaction networks, including gene-gene or 
protein-protein interactions19. The central hypothesis is that there are robust building blocks whose 
interactions are shaped by evolution. This hypothesis serves as the foundation of widespread 
applications such as gene set enrichment analyses17,18, which look for functional enrichment across a 
pre-defined hierarchy of discrete gene sets (such as the Gene Ontology9,10 or MSigDB17). However, it 
remains difficult to test how well discrete gene sets are supported by the data, and how context-
dependent they are. 
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As we have seen previously, straight lines in ROC space define discrete classes of functionally 
equivalent genes. Usually, perfect straight lines arise when predictions are tied. In contrast, here we 
are interested in straight lines in the absence of ties, which arise when the score distribution of a 
subset of negatives and positives is identical. Mathematically, these lines are conserved under class 
label permutation. Figure 3a shows an example of a performance curve for a gene function prediction 
task for the “growth factor activity” function (GO:0008083, Molecular Function ontology). Strikingly, 
this ROC curve is composed of multiple straight lines. Each straight line can be interpreted as a pool 
containing positive and negative genes with equal strength, i.e. the class labels are locally 
interchangeable (Fig. 3b). If we permute the class labels globally, the ROC curve becomes a random 
walk along the diagonal (AUROC ~ 0.5, Sup. Fig. 2a). However, if we only permute labels from genes 
belonging to a straight line, the ROC curve is essentially unchanged (Fig. 3c, Sup. Fig. 2b). 
Permutations can be seen as a local random walk, allowing to automatically detect straight lines using 
the normalized Kolmogorov-Smirnov test statistic (see Methods). In the following, we refer to straight 
lines in ROC space as Functional Equivalence Classes (FECs). 
 
We now turn to a broad set of functions as defined by the Gene Ontology (GO), and investigate the 
presence of FECs across two types of network data offering wide meta-analytic resources and 
capturing different aspects of function: Protein-Protein Interaction (PPI) networks and co-expression 
networks. PPI networks are binary networks where nodes are proteins and edges connect pairs of 
proteins that physically interact. Data used to build PPI networks include yeast two-hybrid assays 
(assessing whether a pair of proteins interact) and affinity capture methods (finding all proteins that 
interact with a given protein). In contrast, co-expression networks are weighted networks where nodes 
are genes and edges reflect the propensity of two genes to be expressed in the same contexts 
(conditions, tissues or cell types). Co-expression networks rely on genome-wide assessments, usually 
from microarray or RNAseq experiments. 
 
We built a PPI network by aggregating all interactions from the BIOGRID33,34 database annotated as 
“Mouse” and “Physical Interaction”, resulting in a network containing 10,172 proteins and 57,337 
interactions. As PPI networks are typically sparse, we used a propagation algorithm to obtain a dense 
network, which accounts for indirect interactions between proteins (see Methods). We downloaded 
the mouse co-expression network from the CoCoCoNet35 database. The network was obtained by 
aggregating 3,359 samples over 85 experiments, resulting in a dense network containing 17,834 
genes. To allow comparisons between the two modalities, we restricted the two networks to 9,058 
common genes. We restricted our study to 4,238 well-powered GO terms containing at least 20 
genes. 
 
To assess whether a function is supported by a network’s topology, we use the guilt-by-association 
framework implemented by the EGAD36 algorithm. Briefly, EGAD uses a neighbor voting algorithm to 
assess whether genes that are annotated with the same function tend to be neighbors in the network 
(Fig. 4a). Some of the annotated genes are held-out and serve as positives, while all other genes are 
annotated as negatives (closed world assumption). Taking neighbor votes as a predictor for held-out 
genes, we build one ROC curve for each function and network. A high AUROC indicates that the 
function is supported by the network, i.e. genes with this function tend to be highly modular. Overall, 
GO functions were strongly modular in both the PPI (median AUROC=0.72) and co-expression 
networks (median AUROC=0.70, Fig. 4b). Performance was only partially correlated (rho=0.35, Sup. 
Fig. 3a), consistent with the fact that PPI and co-expression capture different aspects of function. 
 
Unexpectedly, FECs that spanned at least 5% of the genome were detected in 99.8% functions 
(undetected in 10/4238 PPI curves, 8/4238 co-expression curves) and spanned 85% of the genome 
on average (Fig. 4c). 95/8478 (1.1%) functions were even detected to be entirely composed of 
straight lines, such as “meiotic cell cycle” (2 FECs, Fig. 4d) or “determination of left/right symmetry” (2 
FECs, Fig. 4e). 
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3980/8476 functions (46% in co-expression, 48% in PPI) contained exactly two FECs (Fig. 5a). The 
length of individual FEC varied substantially across functions, and had a clear bimodal shape in both 
modalities (Fig. 5b). The first mode contained 62% of FECs and spanned 5% to 40% of the genome. 
Upon further investigation, this mode roughly corresponded to the length of the primary FEC of each 
curve (FEC containing high-ranking genes, i.e. most likely to have the function)(Sup. Fig. 4). Smaller 
primary FECs were found more frequently: 50% FECs spanned <13% of the genome, 80% FECs 
spanned <23%. 
 
Because FECs often spanned large portions of the genome and most curves contained exactly 2 or 3 
FECs, we wondered how many functions could be explained by the presence of two or three discrete 
classes of genes. We identified the start and end of the longest FEC in each curve, replaced it by a 
straight line, then connected this line to the (0,0) and (1,1) points using straight segments. In the case 
where the FEC already contains the (0,0) or (1,1) point, the ROC curve can be correctly approximated 
by two straight lines (function-associated vs non-function associated, Fig. 5c). We found that the two 
or three line-approximation worked to a surprising degree: 74% of curves (50% for high AUROC 
curves) could be approximated with a relative error on the AUROC lower than 5% (Fig. 5d). 
 
Despite partially uncorrelated performance, the presence and size of FECs was remarkably consistent 
across the PPI and co-expression modalities. These results suggest that modular structure is 
widespread in the data, although modules only partially overlap with existing annotations. For most 
functions, the data even suggest a binary partition of genes, with function-associated genes 
constituting up to 40% of the genome. 

FECs are pervasive in the published literature 

Our previous experiments showed that FECs are detected across a large fraction of biological 
functions. We next wondered whether FECs would hold across an even larger body of methods and 
data, and looked for evidence of straight lines in individual studies. 
 
To assess the presence of FECs in published work, we extracted ROC curves from 50 research 
articles, composed of an unbiased selection of 35 articles from the PLoS One journal and 15 manually 
curated high-profile articles (Sup. Note). In total, we extracted 77 ROC curves from main and 
supplementary figure panels using the Engauge Digitizer37 software (Fig. 6a). As in previous sections, 
we assessed the presence of straight lines using the normalized KS statistic (Methods). 
 
While the median performance reported in published studies (median AUROC=0.78, Fig. 6b) was 
slightly higher than the median performance in PPI and co-expression data (median AUROC=0.71), 
the presence of FECs was equally widespread. 92% (71/77) curves contained FECs, spanning 71% 
of the curve on average (Sup. Fig. 5a). 
 
Remarkably, the shape of ROC curves had similar properties to curves obtained from PPI and co-
expression data. 31/77 curves were composed almost entirely of straight lines (covering >90% of the 
curve), with 39/77 curves contained exactly 2 or 3 segments (Sup. Fig. 5b). Even the distribution of 
individual FEC length was remarkably similar to the PPI and co-expression distributions, with primary 
FECs spanning approximately 5 to 40% of the genome (Fig. 6c, Sup. Fig. 5c), and 68% of curves 
correctly approximated by two or three linear segments (Fig. 6d, Sup. Fig. 5d). These results suggest 
that FECs are an omnipresent characteristic of genomics data, found across data sources and 
machine learning methods. 
 
Interestingly, ROC curves extracted from the published literature contained another striking pattern: 
for 4/71 (6%) curves, flipping a segment of the curve significantly increased the AUROC performance 
(Fig. 7a). In the prediction space, a flip corresponds to inverting the ranking of genes contained in the 
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segment: genes that were predicted as most likely to have the function are now predicted as least 
likely. In some instances, optimal performance was achieved by flipping the whole curve (i.e., 
completely inverting predictions); in others, the curve was locally S-shaped and the optimal flip only 
contained around 50% of the curve (Fig. 7b). The latter case suggests that the best predictions are 
located in the initial and final part of the S, and would typically arise by mistakenly treating a two-sided 
assessment (where both highly positive and highly negative predictions should be considered “high”) 
as one-sided (where only positive values are considered high). “Flippable segments” were notably 
absent in ROC curves extracted from co-expression and PPI data, suggesting that they are likely 
related to extreme data distributions or methodological issues. 

Discussion 

In this study, we showed that the shape of ROC curves offers a visual and data-driven interpretation 
of the extent of biological functions. The presence of straight lines in the ROC curve suggests that the 
data are compatible with the extension of a functional gene set to unannotated genes. For example, 
starting with a handful of marker genes for a given cell type, straight lines let us rapidly identify 
unannotated genes of equivalent strength. We call these straight lines Functional Equivalence 
Classes (FECs), because they define discrete classes of genes that are equivalent with respect to the 
functional property investigated. 
 
Our examples show that the extensibility of gene sets is context specific: B-cell markers that worked 
well in the lung did not necessarily work in the spleen. Instead, we found that a subset of primary 
markers was conserved across tissues, while secondary markers varied from tissue to tissue. One of 
the strengths of FECs is that the generalizability and extensibility of a gene set can be probed with 
one look at the ROC curve. Either the gene set works perfectly well in the new context (AUROC=1), 
or performance is suboptimal and FECs suggest how the gene set can be reorganized in the new 
context. FECs can be automatically extracted using the normalized Kolomogorov-Smirnov statistic, 
suggesting which genes to remove from the initial annotation (not generalizable) and which genes to 
add (equivalent in the current context). 
 
Straight lines were equally prevalent in ROC curves obtained by testing marker consistency in single-
cell data, ROC curves mined from published articles sampling across various sources of data and 
methods, and ROC curves obtained by testing the modularity of GO sets in meta-analytical PPI and 
co-expression data. The existence of straight lines is thus unlikely to be an artefact of specific data or 
methods. At least 92% of ROC curves contained straight lines, and curves were often piecewise 
linear. Overall, the data support a view where most functions map to discrete representations in the 
genome, with the initial FEC representing a pool of genes primarily engaged in the function (primary 
FEC). 
 
The omnipresence of FECs suggests a functional space where functions are distributed over discrete 
gene sets. This view is compatible with the discrete organization of genes in gene sets (such as GO 
sets, MSigDB signatures, or marker sets) and reminiscent of the polygenic model, where disease risk 
is distributed over a larger set of genomic loci22,38,39. However, these discrete sets are observed in one 
biological (e.g., a given tissue in the marker space) or technological (PPI, co-expression data) context. 
The marker example suggests that, while primary and secondary markers formed discrete sets of 
genes, the secondary marker sets varied from one tissue to the other. Integrated across enough 
contexts, the degree of functionality of genes may start to appear continuous, consistent with the 
omnigenic model, which posits that all expressed genes are likely to contribute a disease due to the 
interconnections of regulatory networks23. 
 
ROC curves have a rich history in genomic assessments, and are frequently interpreted through the 
lens of AUROCs. However, AUROCs are often deemed unintuitive in the presence of extreme class 
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imbalance, which led to a more particular focus on the evaluation of top predictions, either through 
partial ROC curves (ROC5040, pAUC41,42) or precision-recall curves43,44.  Interestingly, what is seen as 
a weakness becomes a strength when the ROC curve as a whole is considered. Indeed, for given 
positive and negative score distributions, the shape of the ROC curve is independent of class 
imbalance, facilitating visual interpretation. As seen in this article, when negatives and positives have 
the same score distributions locally, we obtain “null” segments in the form of straight lines that can be 
rapidly identified visually or statistically. Strictly speaking, FECs could also be extracted from other 
performance curves, such as the precision-recall curve. However, null segments are harder to assess 
visually, as they become curves in precision-recall space (see e.g.45), with highly unintuitive 
curvatures that depend on class imbalance46. The idea that the shape of the ROC curve can be 
visually interpreted was previously noted by Janssens and Martens, who distinguished “rounded” and 
“non-rounded” ROC curves, attributing the occurrence of “angles” to the presence of a dominant 
binary predictor47. In this study, we find that the presence of such “angles” is widespread in genomic 
data, and usually accompanied by the presence of straight lines, suggesting an underlying modular 
organization of the data. 
 
FECs define a formal framework to visualize and probe the context-specificity of functional gene sets. 
They are simple to visualize and extract, providing a novel way to summarize complex data. They are 
widely applicable, as ROC curves are frequently used in genomic assessments, paving the way for 
comparative and meta-analytic studies. Applied across a range of contexts, they provide a first step 
towards teasing out shared and context-specific gene set components. 

Methods 

Datasets 

We downloaded the Tabula Muris30 single-cell RNA sequencing (scRNAseq) dataset from FigShare, 
specifically Version 2 of the 10X48 and Smart-Seq249 data, along with metadata and annotations. The 
expression data and annotations from individual tissues were then merged into two 
SingleCellExperiment objects (one for 10X and one for Smart-Seq2) for downstream analyses in R, 
keeping all cells for which an annotation was available (100,605 cells). For the marker analysis, we 
applied CP10K (counts per 10k) normalization for the 10X data and CPM (counts per million) 
normalization for the SmartSeq data using custom code. 
 
We downloaded the mouse PPI data BIOGRID-ALL version 4.4.197 from the BIOGRID�website33,34. 
We filtered the BIOGRID data for mouse (taxonomy ID 10090), physical interaction 
(“Experimental.System.Type” == “physical”), then converted the data into a sparse matrix format using 
the “sparseMatrix” function in R. This initial network contained 57,337 interactions across 10,172 
genes. To take into account indirect connections50, we propagated the existing interactions, setting 
the weight for each pair of proteins as 1/shortest path between the two proteins. To do this, we 
imported the sparse matrix in Python, then computed the shortest paths between any two proteins 
using the scipy.sparse.cs.graph.shortest_path function from the scipy package in Python. 
 
We downloaded the mouse co-expression network from the CoCoCoNet35 website (last updated on 
04/20/2021). We then converted Ensembl identifiers gene into symbols using the mapIds function 
from the AnnotationDbi R package and the org.Mm.eg.db R package (last updated on 04/21/2021). 
We only kept genes that had a 1:1 mapping from Ensemble to gene symbols, resulting in a dense 
network of 17,834 genes. 
 
To make co-expression and PPI network performance comparable, we subset the two networks to 
common genes, resulting in networks of 9,058 common genes. 
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Gene Ontology Annotations 

We downloaded the Gene Ontology9,10 (GO) from the GO website (GO-basic table in OBO format, last 
updated 12/18/2019), then imported the ontology in R using the get_ontology function from the 
ontologyIndex package, with “extract_tags=“everything””. We downloaded gene ontology annotations 
from the MGI website (“gene-association” table, last updated 09/09/2019). Some annotations 
contained alternative GO IDs, which we converted to default IDs using the “alt_id” slot from the 
ontology. We propagated annotations to higher level terms using the “ancestors” slot. Finally, we 
exported the propagated annotations in sparse matrix format for downstream use in R and Python. 
For downstream analyses, we only kept 4,238 GO terms with ≥20 annotated genes after restricting to 
common genes. 

Computation of ROC curves from marker sets from scRNAseq data 

We computed markers for each mouse by tissue combination independently using 1-vs-all DE (genes 
upregulated in one cell type compared to cells from all other cell types). Explicitly, we first subset the 
datasets to a given mouse using the “mouse_id” metadata, then ran the compute_markers function 
from the MetaMarkers51 package on the CP10K- or CPM-normalized Tabula Muris expression matrix, 
using the “cell_ontology_class” as cell type labels, and “tissue” metadata as group labels (stratifying 
marker search by tissue). MetaMarkers returns a ranked list of all genes, with the best markers 
ranked at the top. We then combined all putative markers into a single table. Because of the 
stratification by individual, tissue and sequencing technologies, some data combinations contained 
too few cells or reads for robust marker inference. We only kept markers inferred for cell types 
containing at least 20 cells, and genes that had a detection rate≥10% in all mice for a given tissue by 
cell type combination.  
 
The first set of markers was obtained by selecting the top 20 markers for the “3_10_M” mouse from 
the Smart-Seq dataset, for the “B cell” cell type in the “Fat” tissue. To compute ROC curves, we asked 
whether these top 20 markers were also top markers in other mouse by tissue combination. For a 
given mouse and tissue combination, we extracted genes from the previously computed marker table, 
then ordered genes according to the effect size of the ROC test, “auroc” column in the MetaMarkers 
table. This ordered list was used as a predictor for the top 20 Fat markers; we used the “prediction” 
and “performance” functions from the R ROCR package to compute the ROC curve (“tpr” and “fpr” 
statistics) and the AUROC (“auc” statistic). 
 
To determine the second set of markers, we visually estimated that the top 2 FECs in “Lung” spanned 
5% of negatives. We extracted and pooled the top 5% markers (ranked by MetaMarkers “auroc”) in all 
4 individuals (“3_39_F”, SS, “3-F-57”, 10X, “3-F-56”, 10X, “3-M-7/8”, 10X), resulting in a marker set of 
480 genes. The ROC computation was similar to the prediction of the top 20 Fat markers, exchanging 
the initial top 20 markers with this second set of markers. 
 
To determine the third set of markers, we visually estimated that the top 2 FECs in “Spleen” spanned 
1% of negatives. We extracted and pooled the top 1% markers (ranked by MetaMarkers “auroc”) in all 
8 individuals (“3-M-8”, 10X, “3-F-56”, 10X, “3_8_M”, SS, “3_9_M”, SS, “3_11_M”, SS, “3_10_M”, SS, 
“3_38_F”, SS, “3_39_F”, SS), resulting in a marker set of 216 genes. The ROC computation was 
similar to the prediction of the top 20 Fat markers, exchanging the initial top 20 markers with this third 
set of markers. 

Computation of ROC curves from EGAD modularity in PPI and co-expression networks 

EGAD36 computes the modularity of a set of genes in a given network by using a neighbor voting 
algorithm. Since EGAD’s implementations was in R originally, we re-implemented EGAD’s modularity 
metric in Python. Following the original algorithm, we implemented 3-fold Cross-Validation (CV), with 
2/3 of positives used for training, and 1/3 of positives held-out for testing. In detail, let ��� be a positive 
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symmetric adjacency matrix representing a weighted network, where � and � range from 1 to N 
(Number of genes). Let �� be the one-hot encoding of the training positives. The EGAD algorithm was 
reproduced by computing the node degree �� � ∑ ���� , the neighbor votes � � �. � and finally the 
normalized neighbor vote ��

� � �� / ��. The normalized neighbor votes was used as a predictor of held-
out positives, yielding one ROC curve per CV fold. For a given gene set, the final ROC curve is 
reported as the average ROC curve (across the 3 CV folds), the final AUROC as the average 
AUROC. 

Extraction of ROC curves from the literature 

We systematically sampled 35 research articles from the PLoS One journal during one calendar year 
(genomics-related Subject Areas) and selected 15 high-profile research articles (see Supplementary 
Note for a detailed list of papers and figures extracted). We used the Engauge Digitizer37 software to 
extract curves from the selected figures, following the standard procedure (selection of 3 axis points 
for scale, automatic segment detection). In instances where the figure contained too many 
overlapping curves and individual curves proved too difficult to extract, we removed the figure from 
the analysis. After the extraction process, Engauge Digitizer generated CSV files with data points 
evenly distributed along the curve. To harmonize the curve resolution, we interpolated the curves 
such that they contained 200 total points evenly spaced along the x-axis (FPR axis). 

Assessment of linear segments using the Kolmogorov-Smirnov statistic 

The one-sample Kolmogorov-Smirnov (KS) statistic computes the maximum deviation of an empirical 
cumulative distribution function (ECDF) from a theoretical cumulative distribution function (CDF). 
Conceptually, the KS statistic is related to the Brownian bridge, a random walk with fixed starting and 
ending points. The KS statistic measures the maximal deviation from a straight line connecting 
starting and ending points, with expected deviations provided by the Kolmogorov distribution. Since 
the ROC curve can be seen as a walk in (TPR, FPR) space (Fig. 1), the walk becomes a Brownian 
bridge under random labeling of positives and negatives. The “randomness” of annotation (local 
equivalence of positives and negatives) can thus be evaluated by computing the normalized KS 
statistic and comparing it to the Kolmogorov distribution. 
 
Formally, we assessed the linearity of an ROC subcurve by rescaling it to a [0,1] by [0,1] square, then 
computing its deviation from the diagonal line (CDF of the uniform distribution). Mathematically, given 
a subcurve starting at the (��
�,��
�) point and ending at the (��
�,��
�) point, we computed the 
rescaled subcurve given by ��
� � ���
 � ��
�� / ���
� � ��
�� and ��
� � ���
 � ��
�� /
 ���
� � ��
��. We then computed the deviation from the diagonal (KS statistic), �� � sup�|��
� �
��
�|�, and the normalized KS statistic, �� � ��. √�. Under random annotations, the normalized KS 
statistic asymptotically follows the Kolmogorov distribution, i.e. the expected deviation of a Brownian 
bridge. The asymptotical 5% threshold to reject linearity is ~1.36. To compute p-values, we used the 
C_pKS2 function used by the R function ks.test, corresponding to the one-sample test with uniform 
distribution and parameter “exact=FALSE”. 
 
In the marker example, we visually estimated the range of FECs (5% for Lung, 1% for spleen), then 
computed the KS statistic and p-values for the extracted segments as described above. For ROC 
curves computed from PPI data, co-expression data and curves extracted from articles, we applied an 
automatic extraction procedure. We considered all possible subcurves (start/end point combinations) 
spanning at least 5% negatives (��
� � ��
� � 0.05�. We then computed the normalized KS statistic 
�� as described above. For articles, the number of positives was generally unknown and was set 
arbitrarily to n=100. We then tagged all subcurves with �� � 1 (asymptotic p-value of p≥0.27) as 
linear, creating a list of candidate straight lines for each ROC curve. Note that, at this stage, candidate 
straight lines may overlap. We established the final list of FECs using a greedy algorithm, starting by 
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extracting the longest straight line. We then extracted the second-longest straight line that did not 
overlap with the previously extracted FEC, and so on, until no candidate straight line remained. 

Longest segment approximation of ROC curves 

For each ROC curve, we extract the longest linear segment as described above, then reduced the 
ROC curve to 4 points: (0,0), (��
�,��
�), (��
�,��
�), (1,1), where (��
�,��
�) and (��
�,��
�) 
are the two extremities of the longest linear segment. We then computed the AUROC using the 
trapezoidal rule. 

Extraction of optimal ROC subcurve flip 

For each ROC curve, we computed the updated AUROC after flipping each possible subcurve. Given 
a subcurve with extremities (��
�,��
�) and (��
�,��
�), we computed a local area under the curve 
(�� �	
��) using the trapezoidal rule. Specifically, we considered the area between the subcurve, the 
horizontal line at ��
 � ��
� and the vertical line at ��
 � ��
�. Note that the complement of this 
area in the rectangle enclosing the subcurve is given by Δ��
. Δ��
 � �� �	
��, where Δ��
 �
��
� � ��
�, and Δ��
 � ��
� � ��
�. Considering that flipping the subcurve is equivalent to 
rotating the rectangle enclosing the subcurve by 180°, the impact on the global AUROC can be 
computed as 

��
" ���
 � ��
" � �� �	
��  # Δ��
. Δ��
 � �� �	
�� � ��
" # �Δ��
. Δ��
 � 2. �� �	
��� 
where ��
"  is the original AUROC. After considering all start and end combinations, we identified 
the subcurve flip that resulted in the highest ��
" ���
. 
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Figure Legends 

Figure 1. Straight lines in ROC space reveal the presence of functional modules. a Schematic 
representation of a gene function prediction task. Nodes represent genes, edges represent the 
strength of interactions between genes as determined by a high-throughput assay (for simplicity, only 
strong interactions are shown). The fill color of nodes shows the genes’ current annotation (as 
established by a low-throughput assay), the outline color shows the true status. Genes are organized 
according to prediction scores from a machine learning classifier, with genes most likely to be 
functional (highest predictions scores) at the center. b Taking current annotations as the ground truth 
(positive=annotated, negative=unannotated, closed-world assumption), predictions can be 
summarized as an ROC curve. The ROC curve can be conceptualized as a walk in (FPR, TPR) 
space: starting from the gene with the highest prediction score, the curve moves up every time an 
annotated gene is encountered, and right every time an unannotated gene is encountered. c The 
presence of a functional module that mixes annotated and previously unannotated gene is revealed 
by the presence of straight lines in the ROC curve. 
 
Figure 2. Straight lines identify generalizable markers and tissue-specific markers. a Evaluation 
of the generalizability of the top 20 Fat markers obtained from a single individual. Thin lines show 
individual ROC curves (one mouse, tissue, technology combination), thick lines show average ROC 
curves per tissue. A high AUROC indicates that markers generalize well, i.e., they are also top 
markers in other tissue x technology combinations. Inset: a zoom on the ROC curve up to 5% FPR 
highlights the presence of straight lines in the Lung. b The presence of straight lines can be assessed 
using the Kolmogorov-Smirnov (KS) test. The initial straight lines can be used to identify primary 
markers (perfect markers shared across tissues) and secondary markers (tissue-specific markers). 
Secondary markers contain a mix of previously annotated genes and unannotated genes with equal 
marker strength. c Same assessment as a, but taking primary and secondary markers from the Lung 
as the reference marker set. Inset: a zoom on the ROC curve up to 1% FPR highlights the presence 
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of straight lines in the Spleen. d Same assessment as a, but taking primary and secondary markers 
from the Spleen as the reference set. 
 
Figure 3. Straight lines in ROC space are Functional Equivalence Classes (FECs). a Example of 
ROC curve obtained from a function prediction task. The initial part of the ROC curve is a FEC, a 
straight line containing a mix of 54% previously annotated genes and 13.5% previously unannotated 
genes. b The presence of a straight line indicates that the classifier sees positives and negatives as 
functionally equivalent, as if they originated from a single class. Formally, the presence of a FEC can 
be tested by shuffling annotations. c Under local annotation permutation (within the FEC), the ROC 
curve is essentially unchanged. The thick black line shows the original ROC curve, thin gray lines 
show 10 simulations of annotation permutation. The inset shows a zoom of the FEC. 
 
Figure 4. FECs are pervasive across the functional landscape. a Schematic of the function 
prediction task. EGAD predicts functional annotations based on the connectivity of genes in network 
data (neighbor voting algorithm). Using held-out annotated genes as positives, performance can be 
summarized as an ROC curve, which reflects the degree of modularity of a functional gene set. b 
Degree of modularity (EGAD AUROC) of functional gene sets defined by the Gene Ontology (GO) in 
meta-analytic co-expression (COEXP) and protein-protein interaction (PPI) data. c Fraction of ROC 
curves detected to be straight lines. d,e Examples of ROC curves composed almost exclusively of 
straight lines. Each facet shows a specific GO term, colored curves show the ROC curve for this term, 
black lines show the FECs detected using the KS test. 
 
Figure 5. FECs offer a data-driven view of the extent of biological functions. a Distribution of the 
number of FECs detected in ROC curves corresponding to each GO term. b Distribution of length of 
individual FECs, as measured by the fraction of the x-axis (FPR axis) spanned by the FEC. c 
Example of 2-segment approximation for the “growth factor activity” GO term. The initial ROC curve 
and AUROC are shown in red, the straight line approximation and approximated AUROC are shown 
in black. d Distribution of approximation error on the AUROC when swapping ROC curves by their 2 
or 3-segment approximation. A low approximation error suggests that performance is driven by the 
presence of 2 or 3 discrete modules in the data. The inset further breaks down the approximation 
error by stratifying on the original AUROC. 
 
Figure 6. FECs are pervasive in research articles. a Schematic of ROC curve extraction using the 
Engauge Digitizer tool. ROC curves were extracted from 15�selected publications and 35 
publications published during one calendar year in genomics-related subject areas of the PLoS One 
journal. b Distribution of estimated AUROCs from curves extracted from the literature. c Fraction of 
ROC curves detected to be straight lines. d Examples of ROC curves composed almost exclusively of 
straight lines. 
 
Figure 7. Flips in ROC curves identify sections where predictions can be inverted. a Scatter plot 
showing optimal AUROC increase obtained by flipping a single ROC segment. The dashed line 
corresponds to a 0.1 AUROC increase. b ROC curves of the 4 curves with AUROC increase > 0.1 
highlighted in a. Solid lines show the original ROC curve, dashed lines show the ROC curve after 
flipping the optimal ROC segment. In prediction space, these flips correspond to inverting the order of 
predictions for the genes contained in the ROC segment. 

Supplementary Information 

 
Supplementary Note. List of articles and figures selected for ROC curve extraction. 
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Supplementary Figure 1. a Upset plot showing the overlap of primary and secondary Lung markers 
across individuals. In the name of individuals, F/M indicates the sex, ss/10x indicates the sequencing 
technology (ss=SmartSeq, 10x=Chromium 10X), the remaining number indicates the age of the 
mouse in weeks. b Generalizability of the 3 marker sets (top 20 from Fat, primary and secondary 
markers from Lung, primary and secondary markers from Spleen) across tissues. 
 
Supplementary Figure 2. a ROC curves generated by shuffling annotation labels globally. The thick 
black line is the original ROC curve, the thin gray line shows 10 independent simulations of label 
shuffling. b Impact of label permutation on AUROC (100 independent permutations for each case). 
Colors show two types of permutations: labels are shuffled globally (blue, as shown in a) or only within 
the initial FEC (red). The AUROC from the original AUROC curve is shown as a dashed line. 
 
Supplementary Figure 3. a Scatter plot showing EGAD modularity for 4,238 GO terms in PPI and 
co-expression networks. The dashed line is the diagonal (same modularity in both networks), the 
correlation value is Spearman correlation. b Relationship between the number of linear segments 
(FEC) and fraction of curve detected as linear for curves computed from the co-expression (COEXP) 
network. c Same as b for the PPI�network. 
 
Supplementary Figure 4. a Distribution of length of the initial FEC, as measured by the fraction of 
the x-axis (FPR axis) spanned by the FEC. Curves that did not have any FEC are omitted from the 
distribution. b For the co-expression network (COEXP), AUROCs from the original ROC curve against 
AUROC from the straight line approximation based on the longest FEC. c Same as b for the 
PPI�network. 
 
Supplementary Figure 5. a Fraction of ROC curve detected as linear for the 77 ROC curves 
extracted from the literature. b Distribution of the number of FECs detected in each of the 77 ROC 
curves. c Distribution of length of the initial FEC, as measured by the fraction of the x-axis (FPR axis) 
spanned by the FEC. d Distribution of approximation error on the AUROC when swapping ROC 
curves by their 2 or 3-segment approximation. 
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