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Abstract

The ability to chemically modify monoclonal antibodies with the attachment of specific functional 

groups has opened up an enormous range of possibilities for the targeted treatment and diagnosis 

of cancer in the clinic. As the number of such antibody-based drug candidates has increased, so 

too has the need for more stringent and robust preclinical evaluation of their in vivo performance 

to maximize the likelihood that time, research effort, and money are only spent developing the 

most effective and promising candidate molecules for translation to the clinic. Concurrent with the 

development of antibody-drug conjugate (ADC) technology, several recent advances in preclinical 

research stand to greatly increase the experimental rigor by which promising candidate molecules 

can be evaluated. These include advances in preclinical tumor modeling with the development 

of patient-derived tumor organoid models that far better recapitulate many aspects of the human 

disease than conventional subcutaneous xenograft models. Such models are amenable to genetic 

manipulation, which will greatly improve our understanding of the relationship between ADC and 

antigen and stringently evaluate mechanisms of therapeutic response. Finally, tumor development 

is often not visible in these in vivo models. We discuss how the application of several preclinical 

molecular imaging techniques will greatly enhance the quality of experimental data, enabling 

quantitative pre- and post-treatment tumor measurements or the precise assessment of ADCs as 

effective diagnostics. In our opinion, when taken together, these advances in preclinical cancer 

research will greatly improve the identification of effective candidate ADC molecules with the 

best chance of clinical translation and cancer patient benefit.
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INTRODUCTION

In recent years, monoclonal antibodies have become a hugely promising class of anti-cancer 

therapeutic molecules, given their high affinity and precise specificity for any number of 

tumor-specific target antigens. As an effective anti-cancer treatment, antibodies have been 

used to directly and specifically block cell surface receptor signaling (e.g., trastuzumab 

and Her2 receptor-positive breast cancer[1]). Of broader appeal, however, antibodies can 

be readily modified to carry a variety of treatment or imaging payloads and target 

them to practically any tumor-specific cell surface antigen. This effectively concentrates 

the antibody-drug conjugate (ADC) payload to sites of tumor development, significantly 

reducing possible treatment-related cytotoxicity in other organs or improving the ability to 

non-invasively image tumors above background noise[2].

The current development pipeline used to translate any promising cancer agent from the 

bench to the bedside is both high risk and prohibitively expensive in terms of both financial 

and human cost. The overall percent failure rate of taking any new molecule into the clinic 

has been reported to exceed 95%[3]. The average total development cost to FDA approval 

has recently been quoted at 2.8 billion USD[4]. Recent analysis has suggested that poorly 

predictive preclinical assays and models are a key contributing factor to this multifaceted 

problem[5]. In addition to the possible misunderstanding of mechanisms of targeting and 

therapeutic effect, misleading preclinical data also mean that critical “go, not go” decisions 

are not made until late in the drug development process after considerable research dollars 

have been spent and people have been enrolled on clinical trials with a weak premise.

As with the clinical development of any anti-cancer agent, certain aspects of ADC 

performance must first be rigorously evaluated in an experimental preclinical setting. At 

a minimum, in addition to showing safety, the target tumor antigen should be identified and 

then rigorously tested to show that in vivo accumulation of the ADC is antigen-specific 

and not the result of off-target interactions or leaky tumor vasculature and the EPR effect 

(enhanced perfusion and retention)[6]. Given that most ADCs in clinical development 

recognize and bind to human antigens, IHC staining of frozen human tissue microarrays 

will most likely be preferable over in vivo mouse models to predict where appreciable 

levels of the ADC may accumulate in the human body other than tumor sites. However, 

the relationship between ADC and target antigen in the context of whole-body physiology 

and measurements of therapeutic effect and ADC biodistribution can now be interrogated to 

much higher experimental standards.

We present here several recent advances in preclinical research that stand to significantly 

raise the rigor by which candidate ADC molecules and anti-cancer drugs can be assessed 

prior to clinical application. These include the ability to efficiently establish more 

representative in vitro and in vivo tumor models from patient-derived material (matching 

normal, tumor, and metastatic tumor organoid cell lines), the ability to use CRISPR or 
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inducible transgene technology to specifically manipulate the expression of antigen, and 

advances in non-invasive imaging that allow dynamic tracking of the ADC molecule 

or resulting treatment effects. Essentially, these advances greatly improve the quality of 

experimental control, such that the comparisons of ADC accumulation or therapeutic 

efficacy can be readily made between matched pairs of normal and tumor cells or between 

matched tumors that only differ in antigen expression. Imaging further permits many of 

these effects to be seen in the same individual subject dynamically over time, reducing 

the need for large experimental cohorts. Imaging also enables the standardization of ADC 

administration based on measured and not assumed tumor parameters, greatly improving the 

quality of data.

ADVANCES IN PRECLINICAL CANCER MODELS

The past decade has been transformative for tissue culture technology of patient-derived 

tumors. Until recently, only a limited number of immortalized 2D cancer cell lines was 

available to test the preclinical performance of an ADC using xenograft mouse models. Such 

models remain popular today as they are relatively quick and easy to develop. The cell lines 

are widely distributed among the research community, and some have been the focus of 

extensive genomic and gene expression characterization[7]. However, such cancer models 

also have significant deficiencies, can be prone to genetic drift over time, and their ability to 

accurately model human disease and ultimately predict the clinical performance of candidate 

therapeutics is questionable. The failure rate of establishing an immortalized tumor cell line 

in culture by traditional means is extremely high. Human tumors did not evolve to grow 

on tissue culture plastic as a 2D monolayer; thus, it is questionable how representative 

the low frequency of successfully established cultures are of the original tumor. Further, 

although subcutaneous engraftment of such cells in vivo is very routine (quick to establish 

and tumor development is externally visible), such models fail to recapitulate the tumor 

microenvironment that matches their native tissue of origin.

The advent of patient-derived organoid (PDO) cell cultures has set new biologically relevant 

standards that overcome many limitations of conventional 2D xenograft cell lines[8]. Tumor 

samples received fresh from the operating theatre are processed and plated out in vitro in 

a mixture of growth factors and basement membrane extract such as Matrigel (a viscous 

matrix resembling a decellularized tissue microenvironment) to provide more natural growth 

conditions for the cells. As a result, PDOs grown in three dimensions in vitro retain 

cell polarity and some semblance of structure that can provide biologically relevant cues 

[Figure 1]. The efficiency and general applicability to various tumor types also far surpass 

that of traditional 2D methods. The success rate of establishing a PDO culture can be 

as high as 75% for tumors from a wide range of epithelial organs. Once established, 

they can be propagated in vitro with relative ease in defined culture media for extended 

periods of time. Analyses suggest that organoid cultures are relatively stable genetically for 

many passages[9,10], which opens up a host of research possibilities regarding their genetic 

modification and experimental possibilities, as discussed in Sections ii and iii. Another 

ground-breaking feature of this approach is that it is possible to establish organoid cultures 

from matching normal, tumor, and metastatic tissue from the same individual. This is of 

crucial experimental importance given the outbred nature and diverse genetic background 
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of the human population. Moreover, organoids derived from sequential specimens from 

the same patient have been shown to recapitulate identical sensitivities and resistance to 

treatment, as observed in the clinic[11].

The Human Cancer Model Initiative (an NIH/NCI-funded project[12]) was established 

as a novel resource to give researchers access to these next-generation models via the 

American Type Culture Collection. Many of the organoid lines available in this ground

breaking biorepository are also documented with patient and sequencing information. 

Having such a well-characterized portfolio of cells enables many opportunities for high

quality experimentation to evaluate ADC performance that was impossible or very hard 

to accomplish in the past. For example, genetically and disease-matched PDOs can be 

used to assess the cytotoxicity of targeted ADCs in vitro or in vivo and be compared 

to matching normal tissue-derived PDOs. As discussed in Section iii, the conjugation of 

different moieties for imaging can be used to visualize where ADCs accumulate naturally in 

the body and whether, once bound to the antigen, they stay on the surface of a cell or are 

internalized.

PDO co-cultures can also be established in vitro to examine critical tumor cell 

interactions with defined aspects of the tumor microenvironment, such as cancer-associated 

fibroblasts[13,14], and possibly also with immune cells in the near future. Such co-cultures 

will enable testing of an ADC on tumor and normal cells at the same time, helping to better 

understand the effects an ADC may have on either cell type or their ability to interact.

The engraftment of human-derived PDO material into a mouse for in vivo studies, as with 

conventional 2D tumor xenograft-based models used for ADC development, necessitates 

the employment of immune-compromised host strains. As such, such in vivo models do 

not allow the study of tumor interactions with a fully intact host immune system. Further 

exploration of the important role played by the host microenvironment in PDO tumor 

development (and potentially ADC interaction) has shown that different implantation sites 

in the same organ can significantly influence in vivo tumor biology. For example, in the 

case of organoids derived from pancreatic ductal adenocarcinoma (the most common form 

of pancreatic cancer), it has been shown that the tumor growth pattern and interaction with 

the microenvironment differ greatly when growing in the parenchyma of the pancreas vs. the 

actual pancreatic duct (where the disease is understood to originate)[15]. No one can argue 

with the relative ease of setting up conventional subcutaneous tumor xenograft models, but 

studies such as these do raise serious questions regarding what aspects of the disease they 

accurately recapitulate.

Taken together, these advances in tumor organoid technology enable more complex, 

rigorous, and informative validation of ADC performance before proceeding to large 

and expensive clinical studies. The broad diversity of human PDO models available will 

massively enrich research efforts and possibilities to validate ADC effects in various disease 

models and thus enable the stratification of the patients who will most likely benefit from 

treatment with a specific ADC molecule.
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ADVANCES IN GENETIC MANIPULATION

A critical aspect of ADC development is to stringently test and understand the specificity 

of binding to the target antigen. This knowledge is ultimately key for successful clinical 

translation and identifying which individual patients are most likely to benefit from 

treatment with the ADC.

The specificity of the antigen is often demonstrated experimentally using different, non

genetically matched tumor cell lines that differentially express the antigen or a pre-treatment 

block with non-labeled antibody. These are acceptable methods, but recent advances in 

genetic manipulation, namely the widespread adoption of CRISPR (clustered regularly 

interspaced short palindromic repeats), have greatly facilitated the potential adoption of 

significantly higher experimental standards.

An ideal experimental scenario to test antigen specificity in vivo would be to employ 

paired preclinical tumor models, identical in every way except for target antigen 

expression. Tumors plus or minus antigen, developing on contralateral flanks or in matched 

experimental cohorts, would elegantly demonstrate that observed ADC accumulation at a 

tumor is specific and not due to off-target interactions or simple passive accumulation via 

leaky tumor vasculature and the EPR effect.

Traditionally, the only available approach to precisely knock-out the expression of a target 

gene relied upon homologous recombination between a targeting vector and endogenous 

allele[16]. The approach was technical, inefficient, and time consuming to employ and 

was seldom performed in any other context than in the targeting of murine ES cells to 

produce genetically modified mice. The subsequent discovery of RNAi and the ability to 

easily and specifically knock-down gene expression with shRNA[17] or miRNA[18] was 

transformative by rapidly facilitating specific and significantly reduced levels of gene 

expression in practically any eukaryotic cell line of interest. This approach is still valid 

today, however gene knock-down by RNAi is frequently not 100% and so the target antigen 

is still expressed to some extent.

The relatively recent discovery, rapid development, and widespread adoption of CRISPR 

technology has completely revolutionized our ability to precisely modify the genome [19]. 

Among the many documented applications, it is now relatively straightforward and efficient 

to generate such matched tumor model pairs, plus or minus the expression of antigen. 

Briefly, CRISPR introduces precisely targeted double-strand breaks in the genome, which 

are typically imperfectly repaired by non-homologous end joining. This repair process often 

results in the microdeletion of one or more nucleotides at the DSB. Accordingly, bi-allelic 

frame-shifting mutations can be readily introduced into the specific coding sequence of a 

gene of interest, effectively knocking out its expression.

On occasion, knock-out of gene expression is poorly tolerated by the targeted cell, 

significantly affecting cell fitness or causing phenotypic drift, such that the genetically 

paired cell lines are no longer a good match biologically. In those circumstances, inducible 

transgene technology can be employed (e.g., doxycycline inducible expression[20]) to 

limit the amount of time between antigen knock-out and antibody affinity assay. Further, 
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inducible gene expression can introduce or restore the expression of an antigen in a cell line 

that the ADC does not otherwise recognize. For example, the expression of a tumor-specific 

antigen could be readily introduced into a “normal” and non-expressing organoid cell line 

(as mentioned in Section i); implanted cells in non-induced mice will not express the antigen 

and so lack affinity for the ADC, whereas induced mice will become antigen positive and 

show ADC accumulation.

It is significantly easier and faster to manipulate gene expression in cell line-based cancer 

models than in transgenic mice. Therefore, it is exciting that the advances in tumor 

modeling discussed above are to some extent tissue-culture based, as this opens up many 

possibilities for their efficient genetic manipulation and thus thorough and rigorous in vivo 
experimentation.

ADVANCES IN PRECLINICAL IMAGING

Depending on the nature of the conjugated moiety, ADC molecules can be considered 

“theranostic”, a term used to describe a molecule with both therapeutic and diagnostic 

properties. Once a candidate ADC molecule has satisfied stringent in vitro and tissue

histology performance criteria, preclinical imaging can be used to dynamically measure both 

aspects of this, i.e., to visualize the biodistribution of an ADC molecule in the context of the 

whole body over time and to accurately measure the anticancer effects of ADC treatment. 

Critically, imaging can be used to standardize the timing of ADC administration (e.g., on 

the basis of tumor size) across experimental cohorts of mice and can provide meaningful 

“before and after” ADC treatment measurements of the same tumor in the same individual. 

Collectively, these experimental advantages serve to reduce the number of assumptions 

made in an in vivo study, greatly improving study robustness and reducing animal cohort 

size. Non-invasive imaging is also particularly pertinent in the context of the tumor organoid 

model advances discussed above, as tumors development in orthotopic and deep tissue 

locations are otherwise not visible externally.

Rather than comprehensively review the field of preclinical imaging, we instead mention 

here several key imaging practices that we believe are particularly impactful for current and 

future ADC development.

Approaches to image antibody biodistribution in vivo

ADCs are extremely versatile tumor targeting molecules due to the broad variety of 

functional groups that can be attached to them, whether therapeutic “warheads” used to 

treat cancer or diagnostic ones for tumor imaging. All preclinical imaging modalities 

have relative strengths and weaknesses and so the conjugated imaging moiety should be 

selected based on the nature of the experimental goal. It should also be noted that different 

conjugates will influence the in vivo biodistribution of an ADC and that not all variant ADC 

can be presumed to perform equally.

In the preclinical space, the attachment of a fluorescent moiety (e.g., an Alexa Fluor dye[21]) 

to a candidate ADC can uniquely enable direct visualization and accurate quantitation 

of antibody binding to target cells by microscopy or flow cytometry in vitro. However, 
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fluorescence imaging is in general poorly suited for whole-body in vivo imaging, as visible 

wavelengths of light are poorly tissue penetrant and prone to scatter and absorption from 

overlying tissues[22]. Autofluorescence generated from surrounding gram amounts of non

labeled tissue can also prove troublesome in the context of attempting to detect a signal 

above background from small, milligram-sized tumors. Intravital microscopy, however, is a 

unique in vivo fluorescence-based imaging approach that allows the researcher to look at the 

accumulation of labeled antibody at the site of tumor development at sub-cellular resolution 

in vivo[23]. No other mainstream in vivo imaging modality can offer this kind of imaging 

scale, but it should be noted that IVM only offers a small field of view with limited depth of 

tissue penetration (0.5 mm) and is only suitable for imaging through an implanted “window” 

at a single location in the body. Fluorescent immunopeptides are also of additional clinical 

interest and are being developed for guided intraoperative imaging purposes, to assist 

surgeons to both locate tumors and set resection margins in theatre[24]. We speculate that 

recent advances in tissue clearing techniques and light sheet microscopy may also enable 

visualization of fluorescent ADC binding at cellular resolution in reconstructed 3D images 

of tissue[25].

Optoacoustic (or photoacoustic) imaging is similar in nature to fluorescence-based 

approaches, but it is better suited for deep tissue imaging. Instead of attaching a fluorophore, 

this approach relies upon the conjugation of a light absorbing or quenching moiety[26,27], 

i.e., the attachment of a molecule with a high molecular extinction co-efficient and low 

quantum yield. Unlike a strong fluorescent label, whereby absorbed excitation energy 

is largely emitted as red-shifted light, a strong photoacoustic label predominantly emits 

absorbed excitation energy as heat. When the excitation light is pulsed in nanosecond bursts, 

the resulting pulses of heat (and associated pulses of thermal tissue expansion) generate 

an ultrasound signal that can be readily detected. Most imaging modalities offer either 

high resolution images with poor image sensitivity (e.g., MRI) or highly sensitive and 

poorly resolved images (e.g., PET). While not yet offering subcellular image resolution 

similar to fluorescence imaging, optoacoustic imaging is a good compromise whole-body 

and clinically translatable imaging modality, offering both reasonable imaging resolution 

and sensitivity at deeper tissue sites.

Arguably the most sensitive and quantifiable way to non-invasively track the biodistribution 

of an ADC candidate molecule throughout the whole body is by PET (positron emission 

tomography). Full-size antibodies have a relatively long serum half-life in vivo and so 

conjugation of the positron emitting isotope Zirconium 89 (t1/2 = 3.3 days) allows follow up 

biodistribution scans for more than a week after administration[28]. Unlike optical signals, 

the gamma rays detected by PET are much less prone to scatter or attenuation from 

overlying tissue. Accordingly, resultant tomographic images are not surface-weighted and 

allow for the detection and discrimination of individual lesions in relatively close proximity, 

irrespective of depth in tissue. Derivative antibody fragments, such as Fabs or diabodies, 

have a significantly shorter serum half-life, often clearing the body within 24 h, and so can 

be adequately imaged by PET with more conventional and shorter-lived radioisotopes, such 

as Fluorine 18[29].
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In the absence of a formal biodistribution study, whole-body PET images of an antibody 

can be used to estimate where in the body the same ADC with a different therapeutic 

radioisotope attached [such as Yttrium 90 (β-emitter) or Actinium 225 (α-emitter)] would 

accumulate in the body. As mentioned above, ADCs with different conjugated moieties 

cannot be assumed to behave in an identical fashion in vivo. Matched pairs of imaging 

and diagnostic radioisotopes [such as Scandium 44 (positron emitter for PET imaging) and 

Scandium 47 (β-emitter for therapy)] are being developed to circumvent such issues, lending 

greater predictive power to the PET scan[30].

Advances in imaging the therapeutic effects of an ADC

In addition to being able to non-invasively track the biodistribution of a candidate ADC 

molecule, preclinical imaging can be equally useful in providing a dynamic and quantifiable 

measure of tumor cell cytotoxicity and therapeutic effect.

The most obvious preclinical modality to mention in this context is bioluminescence 

imaging (BLI). For reasons of relative sensitivity, speed, safety (does not involve ionizing 

radiation), and affordability, this optical imaging modality has been widely adopted by the 

research community[31]. The BLI signal is reliant upon first introducing the expression of 

a luciferase transgene into the tumor model of interest. An expanding list of candidate 

enzymes and substrates suitable for BLI have now been described[32]; however, enzymes 

that rely upon ATP to generate light are the most useful for assessing relative tumor cell 

viability in vivo. A highly relevant feature of these enzymes is that dead cells no longer 

emit light and so the cytotoxic effects of any drug or ADC can be readily assessed following 

treatment. This viability measure is often possible at experimental time-points far earlier 

than when gross anatomic changes to the tumor become evident.

We would also like to draw particular attention to a relatively little used imaging technique 

termed NIS-SPECT. Similar to in vivo bioluminescence imaging, whereby cancer cells are 

first labeled with the expression of a reporter transgene, cells are labeled with Sodium 

Iodide symporter (NIS) expression[33]. Physiologically, NIS expression is predominantly 

limited to the salivary gland, thyroid, stomach, and lactating breast in the mouse and 

transports iodine, an essential component of thyroid hormone biosynthesis. Crucially for 

imaging, NIS also imports the widely available and cheap gamma-emitting radiotracer 
99mpertechnetate, which can be detected by SPECT. In our experience, NIS-SPECT can 

readily detect and individually resolve multiple sub-cubic-millimeter-sized metastatic tumor 

lesions in three-dimensional space (see Figure 2). As background expression of endogenous 

NIS is effectively absent in all organs other than those mentioned above, the signal-to-noise 

ratio is generally excellent and this approach can produce visually striking and accurate 

3D images of tumor development and metastatic spread in vivo. It would be an extremely 

attractive experimental proposition to co-register the 89Zr-labeled ADC biodistribution PET 

image with the NIS-SPECT tumor image, especially in the context of metastatic disease 

models that have been rendered positive or negative for expression of the target antigen (as 

mentioned in Section ii).
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CONCLUDING REMARKS

In the immediate future, it is exciting to consider that the confluence of advances in 

cancer modeling, genetic manipulation and preclinical imaging discussed here will be able 

to provide significantly more robust evaluation of candidate ADC performance prior to 

clinical application. This is especially pertinent given the high attrition rate of promising 

candidate molecules as they progressively develop from the laboratory to the clinic. For 

practical reasons, we are not suggesting that these new techniques completely replace 

existing experimental approaches, but they should be considered and applied to some extent 

to rigorously explore key ADC development milestones. Improvements in the methods 

employed to more stringently test and assess the in vivo performance of any candidate drug 

or ADC can only stand to enable more informed “go, no go” decisions earlier in their 

development and ultimately ensure that efforts and resources are focused on those candidate 

molecules identified as most likely to succeed in the clinic and benefit cancer patients.
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Figure 1. 
An example of pancreatic tumor organoids growing in culture and in vivo. (A) A brightfield 

microscopy image of organoids growing in structured 3D spheres in Matrigel in vitro. 

Organoids can be efficiently generated from a wide range of epithelial tissues and, as 

they are genetically stable over an extended time in culture, are amenable to genetic 

manipulation. (B) A schematic of how an organoid’s sensitivity to a therapeutic can 

be presented. Organoid cell viability can be measured in a high-throughput manner by 

standard assay techniques [e.g., CellTiter-Glo (Promega)] and plotted against drug or ADC 

concentration. The therapeutic responses of normal, tumor, and metastatic organoids derived 

from the same patient, organoids from different patients, or genetically modified variant 

organoids can be readily compared. (C) Two serial sections of a pancreatic tumor developed 

in vivo following orthotopic implantation of tumor organoid cells. The top panel is an 

H&E stain, highlighting regions of tumor cells in deep purple. The bottom panel is a 

Masson’s trichrome stain, which stains collagen blue. These organoid tumors develop a 

dense stroma composed of connective tissue and fibroblasts when grown orthotopically in 
vivo, recapitulating key clinical characteristics.
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Figure 2. 
An example of a metastatic prostate cancer model with the tumors labeled with: firefly 

luciferase (A); and NIS expression (B). The BLI image (A) takes less than 1 min to 

acquire, and, as only the tumor cells emit light, it clearly shows widespread dissemination 

of metastases throughout the body, most clearly in the abdomen and leg. The optical signal 

is absorbed and scattered by overlying tissue, thus it is not possible to resolve individual 

lesions by this imaging method. A NIS-SPECT image of the same mouse (B) shows the 

same tumor burden, but now in 3D. Metastases are clearly present and prevalent in the liver 

and bone (spine, skull, and femur) of this mouse. Some normal organs in the body also 

express NIS and so also show up on the scan. SG: Salivary gland/thyroid; ST: stomach; 

BL: bladder (excretion route of 99mTcO4 probe). (C) Images of a femur from a different 

mouse with a prostate tumor metastasis. The top panel is a CT image only and shows clear 

evidence of bone degradation. When the NIS-SPECT image is co-registered, it is clear that 

an osteolytic lesion is growing in this part of the bone.
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