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SUMMARY
Memory enables access to past experiences to guide future behavior. Humans can determinewhichmemories
to trust (high confidence) andwhich todoubt (lowconfidence). Howmemory retrieval,memory confidence, and
memory-guided decisions are related, however, is not understood. In particular, how confidence in memories
is used in decisionmaking is unknown.We developed a spatial memory task in which rats were incentivized to
gamble their time: bettingmore following a correct choice yielded greater reward. Rat behavior reflectedmem-
ory confidence, with higher temporal bets following correct choices. We applied machine learning to identify a
memory decision variable and built a generative model of memories evolving over time that accurately pre-
dicted both choices and confidence reports. Our results reveal in rats an ability thought to exist exclusively
in primates and introduce a unified model of memory dynamics, retrieval, choice, and confidence.
INTRODUCTION

Animals rely on two sources of information to guide behavior:

current sensory information from the external world and mem-

ories of the past from internal storage. Because sensory percep-

tion and memory are both imperfect, metacognitive monitoring

of their possible errors can valuably inform future action, for

instance, by motivating information seeking prior to decisions

or decreased resource investment afterward.1–6

Studies of this metacognitive monitoring have focused

primarily on confidence in information perceived externally

(e.g., motion detection and odor discrimination), reporting confi-

dence-related behaviors across multiple species, including dol-

phins,7 non-human primates,8–12 honeybees,13 and rats.14,15 A

statistical framework that formally defines confidence and its

signatures14,16,17 has helped establish a correspondence be-

tween statistical confidence in perceptions and the subjective

sense of human confidence18 and enabled the identification of

behavioral and neural confidence markers in species including

macaques,10,19 pre-verbal infants,20 and rats.21,22

By comparison, understanding of confidence in information

retrieved from memory is limited.23,24 Human and primate
Current Biology 31, 1–13, O
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studies have focused exclusively on confidence in visual recog-

nition memories,25–30 and whether these findings generalize to

other forms of memory is unclear. Progress at a neural circuit

level has also been hindered by the lack of a rodent model.

Rodents can access various forms of memory,31,32 but whether

rodents can use memory confidence as primates do, to weigh

evidence from a series of past experiences, remains unclear.33

Specifically, one set of previous studies yielded equivocal re-

sults,34,35 while another provided evidence for metacognition,

broadly defined, with a binary decision related to an odor mem-

ory.36 Moreover, we lack a quantitative account of how mem-

ories evolve over time, and we do not understand how this

evolution could lead to behavioral expressions of confidence.

Here, we developed a behavioral task in rats that enabled

quantitative assessment of memory accuracy and confidence

for personally experienced events in their temporal and spatial

contexts. On each trial, rats first made a choice based on infor-

mation retrieved from memory and were incentivized to then

place a bet on whether the choice was correct by waiting for a

period of self-determined length. Temporal betting provided a

graded confidence report on every trial, improving on task de-

signs that assess only a binary confidence,14,27,36 do not allow
ctober 25, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 1
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confidence and choice to be collected in the same trials,8,10,25 or

can only assess confidence on a subset of trials.6,21,22 Our task

design also enabled collection of thousands of trials from each

rat, comprising spatial memory decisions spanning a range of

difficulties, each associated with a behavioral confidence report.

We found that rats consistently bet more time on correct trials,

suggestive of a memory confidence computation. To evaluate

this possibility, we constructed a computational model that intu-

itively unifies memory retrieval, choice, and confidence and

found that it accurately predicts choices and temporal bets.

RESULTS

Memory choice and confidence task
We designed a memory decision task augmented with a post-

decision wager to assess confidence. Toward the eventual aim

of understanding the behavior and neural computation of confi-

dence together, the task was designed to be performed even by

rats implanted with neural recording hardware and wired to a

recording rig. Rats included here (n = 4) were selected from an

original large cohort (n = 30; STAR Methods) based on linear-

track pre-screening, pre-trained over a 2- to 3-month period

on the basic task logic, and implanted with neural recording

hardware prior to the collection of behavioral data (Figures S1A

and S1B–S1E). Each animal performed thousands of trials (see

below), and we analyzed each animal separately to provide inde-

pendent replicates of the effects.

Each trial requires a binary, memory-guided choice, followed

by a confidence report (Figures 1A, 1B, and S1F). A randomly

selected two of six spatially remote choice ports are cued by a

light at the (physically distant) port, and a valid choice is made

by entering one of the lit choice ports. The correct choice, or

target, is the more temporally remote in the ongoing sequence

of visits in the epoch, while the other, more recently visited

port is the distractor. Next, rats have an option to bet on their

choice by remaining at the choice port for a self-determined

duration, with the total time spent serving as a bet (Figure 1B).

For correct choices only, longer bets will yield more reward.

Importantly, the task takes place in fixed, approximately hour-

long epochs, with self-paced trials. Longer temporal bets thus

have a higher possible reward payout in the case of a correct

choice but also a higher penalty in the case of an incorrect

choice, in the form of the opportunity cost of not initiating a

next trial. If rats compute confidence in their memories, they

should bet more time on choices based on memories they are

more confident in, as this will maximize reward over the epoch.

The reward payoff function was designed to incentivize rats to

meaningfully gamble time by countering the possible effects of

temporal discounting. Like humans, rats show hyperbolic dis-

counting, preferring smaller rewards sooner to larger rewards

later,37,38 which could counteract the incentive to bet high.

Therefore, we chose a convex reward payoff function, producing

super-linearly increasing reward returns for bets up to 2.2 s

(RðtÞ = 0:27e0:34ðt+ 0:8Þ; Figure 1B). To discourage excessively

long gambled times, we chose a concave payoff function

beyond 2.2 s, producing sub-linearly increasing reward returns

RðtÞ= 2:63logð0:443ðt + 0:8ÞÞ that delivered 300 mL of reward

for the longest typically observed gambled time of 10 s. The

briefest gamble delivers an approximately 60-mL drop (one
2 Current Biology 31, 1–13, October 25, 2021
minim) of reward, ensuring that rats received an appreciable

reward for all correct choices.

The task takes place on a large, branched track to test mem-

ory for experiences occurring at distinct times and distinct loca-

tions (Figures 1C and S1K). To restrict the number of spatial trial

types, target and distractor are always adjacent, resulting in six

possible spatial pairs (Figure 1D). To probe a range of memory

difficulties, distractor-target pairs were randomly selected span-

ning a range of ages (trials since last visit; Figure 1E). This

enabled study of choice accuracy and confidence as a function

of how long ago the queried episodes occurred. The distractor

age was restricted to 1, 2, or 3 to limit the total number of trial

types for sufficiently powered analysis over a range of difficulties.

The target agewas strictly higher than the distractor age (e.g., for

distractor age 1, allowable target ages are 2, 3, 4, etc.). For each

rat, the proportion of trials with distractor ages 1, 2, and 3 was

approximately one-third each, across and within epochs (Fig-

ures S1G–S1J). Importantly, because distractor-target pairs

1-2, 1-3, and 2-3 are allowable, the task cannot be solved by

simply remembering and universally avoiding ports aged 1, 2,

and 3. After each trial, the choice is appended to the ongoing

sequence of port visits within the epoch (Figure 1F). The correct

choice on any given trial therefore depends on the history of

actual visits, even if they were errors. This prevents high perfor-

mance accuracy based exclusively on visual memory for the

sequence of lit cues.

Rats learn and apply the memory rule with high choice
accuracy
Correct performance across distractor-target pairs requires a

comparison of when each location was last visited. This involved

a temporal judgement reflecting memory on the timescale of

minutes: rats took an average of approximately 45 s to perform

a trial, and the previous visits to the target and distractor

were often three or more trials in the past. The rats performed

50–100 trials per epoch and approximately 3,000 total trials

each, maintaining stable performance accuracy across epochs

(STAR Methods). Choice accuracy was 80.2% ± 0.04%

(mean ± SEM; n = 192 epochs pooled across 4 rats), substan-

tially higher than what could be achieved by a random decision

strategy, either across all six choice ports or between the two

cued ports (Figures 2A and S2A–S2C).

Critically, choice accuracy could not be explained by a prefer-

ence for individual ports or learned port sequences or by any of a

variety of alternative strategies (e.g., select the leftmost of the

two cued ports; STAR Methods; Figure S3). Nor could accuracy

be explained by novelty judgements (i.e., have I been here

before?): all armswere familiar to the animals based on extensive

prior experience. High performance also required memories for

visits to locations, not just memories for when lights at those lo-

cations had been lit on previous trials. Specifically, a given port

could first be lit as a distractor and then shortly thereafter be lit

as a target, and animals’ high performance accuracy reflected

their memory of visiting the location, not their memory of when

the light at that location was last lit: memory of lit portwould yield

68% correct, significantly lower than the �80% correct perfor-

mance for each (p = 3.1 3 10�23, p = 3.0 3 10�24, p = 7.8 3

10�32, and p = 1.5 3 10�29 for rats T, S, D, and R). High perfor-

mance further required memory for at least the last three visit
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Figure 1. Memory task with time gambling

(A) Self-paced trials are initiated by nose poke at a home port. Two choice port options are cued with a light; four are uncued, invalid options that are not correct.

One cued port was visited longer ago in the ongoing visit sequence (remote, the target) than the other (recent, the distractor), and is correct. Memory choice is

indicated by nose poke at a port. Time investment, rats gamble on the choice outcome by maintaining the nose-poke position for a self-determined interval.

Reward payoff depends, for correct trials only, on gambled time.

(B) Reward amount (blue) is a function of gambled time and is received at the choice port. On error trials (red), no reward is received.

(C) Track geometry showing back (black), home (gray), and choice ports A–F. After leaving choice port, rats receive at back port the same, gamble-dependent

reward, completing the trial. Scale bar, 1 m.

(D) Cued ports are always adjacent, producing three pairs on the same branch that differ by a stem (top, stem trials: AB; CD; and EF) and three that differ by both

branch and stem (bottom, branch trials: BC; DE; and FA) trials. Scale bar, 1 m.

(E) Distractor ages 1, 2, and 3, with targets older than given distractor, are allowed (yellow).

(F) Example sequence (top to bottom) of cued ports (yellow) and correct (left, blue outlines) or error (right, red outlines) choices for a range of target (bold number)

and distractor (number) ages. After each trial, unvisited port ages increment; last-visited port is set to age 1. Note that trials following error could, but did not

usually, present again the same ports.

See also Figure S1 and Video S1.
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locations, because distractor age was restricted to 1, 2, or 3.

Additionally, the high levels of correct performance on target-

distractor pairs aged 1-2 (correct = 2) and 2-3 (correct = 3) (Fig-

ure 2A) demonstrates that animals remembered the actual

sequence order of at least the last three visits. Finally, we note

that the stable performance accuracy indicates that temporal
bets reflect uncertainty regarding the specific choice rather

than uncertainty in the rule itself.

Temporal bets reflect decision confidence
Rats consistently gambled more time on choices that turned out

to be correct (Figures 2B and S2D–S2F; average area under the
Current Biology 31, 1–13, October 25, 2021 3
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Figure 2. Gambled time predicts choice accuracy

(A) Choice accuracy is stable per epoch, as shown for representative rat T at 80.9% ± 0.9%, significantly above random choice between all six ports (light gray

line, 17%) or the two cued ports (dark gray line, 50%).

(B) For representative rat T, average gambled times (dashed vertical lines) were significantly higher for correct (blue) than error choices (red), inclusive over all trials

in all epochs (p = 4.8 3 10�69).

(C) For each rat, gambled time (10 percentile bins) predicts choice accuracy, measured as proportion correct. For rats T, S, D, R, n trials = 2,978, 4,111, 4,369, and

3,660.

(D) For representative rat T, average gambled times (dashed vertical lines) were significantly shorter for invalid choices (yellow) than for errors to the cued port (red;

p = 2.5 3 10�10). Invalid choices represented the following percentages of total trials: rat T, 3.3%; rat S, 1.7%; rat D, 2.7%; and rat R, 4.6%. Excluding invalid

choices, average gambled time on correct trials (blue dashed line) is still significantly longer than for errors (red dashed line; p = 6.6 3 10�48).

(E) For all four rats, gambled times for correct trials were significantly higher than error trials (rat S, p = 4.93 10�60; rat D, p = 5.03 10�81; rat R, p = 6.53 10�118),

which were significantly higher than invalid error trials (rat S, p = 2.2 3 10�9; rat D, p = 5.6 3 10�14; rat R, p = 2.2 3 10�17).

(F) Low gambled times (10 percentile bins) predict a higher proportion of invalid trials for all four rats. All error bars represent SEM, and all statistical tests were

one-sided rank sum.

See also Figures S2–S4.
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curve [AUC] 0.74 ± 0.03 SEM, n = 4 rats; for each rat, one-sided

rank-sum test p << 1 3 10�5), pointing to a representation of

memory confidence. Similarly, temporal bets predicted overall

choice accuracy in a graded manner (Figure 2C). The difference

was striking and consistent across rats: on average, temporal

bets were 1.45 ± 0.33 s higher for correct than error trials

(average ± SEM; n = 4 rats). Temporal bets were also longer

for correct trials considering each port pair separately (Figures

S2G–S2I; for each rat p << 1 3 10�5, one-sided rank-sum test).

The rats’ behavior on the occasional visits to one of the four

uncued, invalid ports (4.6% ± 0.2% of trials; n = 4 rats) also pro-

vided evidence for the knowledge of the rule and ametacognitive

assessment of memory choice. The low fraction of these choices

indicates that the rats had learned that only cued ports yield

reward. If rats understood this task contingency, their confi-

dence in receiving reward following an invalid choice should be

low; hence, little or no time investment in these choices is

optimal. Consistent with this prediction, the time gambled on

invalid choices was significantly lower than for error trials
4 Current Biology 31, 1–13, October 25, 2021
(Figures 2D, 2E, and S2J–S2L; average AUC 0.74 ± 0.01 SEM,

n = 4 rats; each rat, one-sided rank-sum test p < 1 3 10�5). In

addition, the fraction of trials that were invalid was highest for

the shortest temporal bets, consistent with the possibility that

rats understood these trials as exploratory trials with low ex-

pected reward (Figure 2F). Also consistent with this possibility,

errors to invalid ports were most common (69.1% ± 3.2%;

n = 4 rats) on distractor age 1 trials (Figure S4), which had the

highest proportion correct (Figures 3A–3D), indicating a strategy

of selective exploration on easy trials. Hence, time bet in invalid

trials can be viewed as another form of appropriate metacogni-

tive assessment of memory choice, albeit one that is not formally

considered to be decision confidence.39 Excluding invalid errors,

temporal bets were still significantly higher for correct than error

trials (Figures 2D, 2E, and S2J–S2L; average AUC 0.71 ± 0.02

SEM, n = 4 rats; each rat, one-sided rank-sum test p < 13 10�5).

As expected from studies in humans and non-human pri-

mates,25,40 decision time (here, the elapsed time from nose

poke at home to nose poke at choice port) was shorter for
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Figure 3. Defining a memory decision variable

(A–D) Choice accuracy depends on target and distractor ages. For rats S, T, R, and D, the proportion of correct trials decreases with distractor age (columns) and,

for a given distractor, increases with target age (rows); marginal performance at left and bottom, respectively. Black boxes indicate trial types not permitted by

task logic.

(A) For rat S, proportion correct and SEM are annotated. Target ages below 6 are shown, with n trials: rat S, 2,720; rat T, 2,008; rat R, 2,499; and rat D, 2,881. Color

bar (A) applies to all four rats.

(E) A DNN trained by 5-fold cross-validation for each rat takes as input 20 features, a subset of which are depicted in the input layer (left, dark blue). The DNN has

three hidden layers, each with 32 nodes (gray), and outputs a detection statistic related to the probability a trial will be correct, defined as a memory decision

variable (MDVDNN) (green).

(F) Performance (receiver operating characteristic, area under the curve [ROC AUC]) of the DNN trained on the full feature set far exceeded that of a constant

model using only the overall proportion correct (constant, cyan), as well as that of a model trained on target and distractor ages only (teal). Error bars = SEM.

(G) For all four rats, a higher MDVDNN predicts a higher proportion of correct choices. Horizontal and vertical error bars = SEM.
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correct than error trials for all rats (one-sided rank-sum test

p < 1 3 10�5, 0.95, 5.8 3 10�5, and 1.4 3 10�14 for rats T, S,

D, and R, respectively). In theory, both confidence and decision

time are functions of discriminability, and experimentally, they

are both reliably correlated with accuracy.40,41 This raises the

question whether reported confidence should be interpreted as

a sign of cognitive appraisal of a memory or, alternatively, a

‘‘lower level’’ measurement of choice latency itself, which is a

public, external observable.42 We thus asked how well gambled
times can be predicted from choice latency. Less than 10% of

the variance in gambled time could be explained by choice

latency alone (linear regression R2 for rats T, S, D, and R for error

trials = 6%, 0.4%, 8%, and 7%; for correct trials = 0.4%, 0.1%,

0.4%, and 0.2%). By contrast, distractor age alone explains

approximately three timesmore of the variance (linear regression

R2 for rats T, S, D, and R of 20%, 10%, 20%, and 30%). More-

over, when we considered choices and gambles for specific

choice latencies, long gambled times were predictive of high
Current Biology 31, 1–13, October 25, 2021 5
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accuracy across a wide range of choice latencies (for each rat,

gambles were longer on correct trials than error trials, with p <

1 3 10�5 for below-median latency and p = 1 3 10�30 for

above-median latency; one-sided rank sum tests). Together,

these results demonstrate that rats can predict choice outcome,

consistent with a computation of confidence in memories.

Choice accuracy depends on memory age and
discriminability
What information do rats use to predict choice outcome? By

design, trials spanned a range of difficulties determined by

distractor and target ages. If choices are based on memory,

they should be progressively harder for older targets and distrac-

tors.43 Choices should also be harder for lesser age differences

between target and distractor, as episodes that occur closer

together in time are more likely to be confused.44

Both of these predictions proved to be correct. The average

choice accuracies for distractor ages 1, 2, and 3, respectively,

were 89.5% ± 0.5%, 77.7% ± 0.7%, and 72.7% ± 0.7% (n =

192 epochs pooled from 4 rats; Figures 3A–3D). In addition,

choice accuracy increased with the age difference between dis-

tractor and target when controlling for distractor age (Figures

3A–3D).

Constructing a synthetic decision variable
Together, these results suggest a memory confidence computa-

tion. To evaluate this possibility, we aimed to construct a model

of memory confidence that would accurately predict confidence

and temporal bets as a function of memory discriminability. We

therefore had two goals: first, to characterize the memory dis-

criminability axis for these memory confidence signatures and,

second, to build a model of memory dynamics as a function of

discriminability.

The first step, corresponding to a long-standing challenge in

the study of memory confidence, was to identify an appropriate

memory discriminability axis, or decision confidence variable

(P. Masset and A. Kepecs, 2017, Conf. Cogn. Comput. Neuro-

sci., conference). In studies of perceptual confidence, the rele-

vant decision variable is typically defined by external task

parameters (e.g., motion coherence), where a simple monotonic

relationship between the task parameter and task difficulty can

be demonstrated.17 Alternatively, in the context of value-based

decisions, the decision variable is often inferred using a model-

based approach that posits a concrete computational model to

explain choice behavior.45 Here, however, multiple task param-

eters could potentially influence the rats’ choices, and we are

not aware of an existing computational model that could be

used to fit the choice behavior.

We therefore sought a model-agnostic approach to derive a

synthetic memory decision variable (MDV) that is a scalar sum-

mary of the available information that rats could potentially ac-

cess from memory, where higher values of the MDV predict

higher accuracy. We trained a deep neural network (DNN) to pre-

dict rat choice per trial based on an exhaustive 20-feature set

(Figure 3E; STAR Methods). We included only those features

accessible in memory, not directly observable on the given trial

(e.g., previous reward amounts, but not current port identities);

hence, amemory decision variable. A DNN in particular enabled

the agnostic approach we sought: because it is robust to
6 Current Biology 31, 1–13, October 25, 2021
inclusion of redundant and correlated features, an intuitive or

model-based feature selection step was not necessary; likewise,

selection of interaction terms was not required.

Eighteen of the 20 features were, for each of target and dis-

tractor, age in units of trials and time; their last, maximum, and

cumulative delivered reward amounts; time since last reward;

last and cumulative dwell times; and number of trials since any

part of its trajectory was last traversed. The final two features

were, for the target and distractor, their spatial and temporal

(target age � distractor age) trial types. The DNN, trained by

5-fold cross-validation for each rat, output a single value, a

detection statistic between 0 and 1 that corresponds to a pre-

dicted probability that the trial will be correct. As expected,

this model outperformed both a model that learned only the

overall proportion of correct trials and a model trained on mem-

ory age alone (Figure 3F). We reasoned that a higher DNN-pre-

dicted probability of correct output corresponded to lower trial

difficulty, equivalent—because the input features were those

available in memory—to memory discriminability. Thus, we

defined the output of the DNN trained on the full feature set as

the MDVDNN, with higher values corresponding to memory dis-

criminability and predicting more accurate recall (Figure 3G).

We note that any monotonic function of the inferred MDV will

also have the same properties; hence, it is not unique.

A generative memory model (GeMM)
Identifying a memory discriminability axis enabled us to move to

the second step of building a model of episode memory

dynamics. Our goal was to build a model of memory retrieval,

decision, and confidence, based on the MDV as an index of trial

difficulty, with parameters fit to decision data, that would

generate testable predictions for confidence and its underlying

mechanisms. We focused on a subset of parameters and lever-

aged an understanding of memory phenomena to develop a

GeMM that could predict choice and confidence (gambled

time) given an underlying representation of memory.

We focused on memory age, an interpretable and established

determinant of memorability that, in our task, independently

influenced choice accuracy. We represented memory age as a

random variable with probability distribution centered on a

mental timeline at its time of occurrence. Realizations of this

random variable represent specific memory retrievals, corre-

sponding to estimates of how long ago the experience occurred.

The distribution’s variance represents mnemonic noise from

errors in encoding, consolidation, and/or retrieval. We postu-

lated that (1) these errors accumulate over time such that the

memory is less precise, reflected in an increasing variance

over time; (2) the distribution should always take on positive

values, as it is not possible to mistakenly retrieve an episode

frommemory as having occurred in the future; and (3) an episode

should never be completely forgotten.

Given those constraints, we developed amathematical formu-

lation of the model. We define Ma as the actual number of trials

since the last visit to port a (i.e., the age of that port). We define

Ma’ as the subject’s recollection of the port age. Requirements

(2) and (3) together specify an asymmetric noise profile with

greater spread into preceding than subsequent times. We

therefore model Ma’| Ma = ma as a lognormal random variable

(uppercase symbols denote random variables, while lowercase
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Figure 4. The generative memory model

(GeMM)

(A) Family of lognormal distributions representing

the probability density of recalled episode ages

Ma’|Ma = ma as the true age ma increments from 1

to 4 for port a. Uppercase symbols denote random

variables (e.g., Ma’ and Ma) while lowercase sym-

bols represent realizations of those random vari-

ables (e.g., ma’ and ma).

(B) Example trial has target port with age ma = 4

and distractor port with age mb = 1. A correct (blue)

and error (red) realization of the recalled ages for

the two ports is shown as vertical dashed lines for

the target (purple) and distractor (orange) at values

ma’ and mb’, respectively.

(C) The probability density of Ma’ � Mb’ given Ma

and Mb; the area to the right of 0 is the proportion

correct for this target-distractor age pair. Confi-

dence (c) is computed as | ma’ � mb’ |, and the

average confidence is indicated for correct (blue)

and error (red) trials.

(D) Observed choice accuracy across 12 specified

trial types, excluding invalid choices.

(E) Model-predicted choice accuracy across 12

specified trial types, excluding invalid choices.

Representative rat D is used for all plots. For rat D,

the GeMM uses fitted parameters a0 = 1.20, a1 =

0.32, a2 = 0.38, and s0 = 0.38 for a lognormal dis-

tribution with mean a0ma and standard deviation

s0ð1 + a1ma + a2ma2Þ:Positive a1 and a2 define

distributions with increasing variance with elapsed

trials; s0 << 1 sets a low overlap between neigh-

boring densities, consistent with high observed

choice accuracy.

See also Figures S5 and S6.
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symbols represent realizations of those random variables). To

satisfy requirement (1), the family of lognormal distributions

defined by ma = 1,2,...... nelapsed trials represents the memory’s evo-

lution over time (Figure 4A). This family of lognormal distributions

has a time-dependent mean a0ma and a time-dependent stan-

dard deviation s0(1 + a1ma + a2ma
2). We parametrized memory

age by elapsed trials and not elapsed clock time, as the number

of elapsed trials was a better predictor of choice outcome (Fig-

ure S5; STAR Methods). The separation parameter a0 sets the

unit increment on the mental timeline that corresponds to one

real-life trial, the standard deviation s0 sets the baseline preci-

sion of each memory distribution, and the coefficients a1 and

a2 set the rate of change for the standard deviation as a sec-

ond-order polynomial function of its age ma, giving it flexibility

to increase or decrease as a function of time, though our hypoth-

esis was that it should strictly increase. For a given trial, two ports

a and b are cued, with Ma > Mb corresponding to target and dis-

tractor, respectively. Choice (Figure 4B) is determined by the

sign of the difference ma’�mb’ and confidence by its magnitude

|ma’ � mb’| (Figure 4C).

Given that model, we iteratively fit the GeMM parameters for

each rat to choice accuracy (Figure 4D) across trial types based

on a c2 metric (STAR Methods). Based on that fit to memory
accuracy (Figures 4E, S6A–S6C, S6E–S6G, S6I–S6K, and

S6M–S6O), we then generated predictions for memory

confidence.

Embedding the GeMM in data enables prediction of
choice and confidence as a function of the MDV
Finally, we combined the MDV and the GeMM to produce a se-

ries of confidence tuning curves22 to which we could compare

behavioral data (Figure 5). Generating GeMM predictions as a

function of the MDVDNN enabled the best possible estimates

and ensured our predictions spanned the full range of per-trial

memory discriminability. First, for each trial, we input target

and distractor age to the previously fitted GeMM to generate a

distribution of simulated trial outcomes (correct versus error)

and confidence values (Figure 5A; GeMM simulation). Next, we

converted these GeMM-predicted confidence values to

gambled times by mapping, for each rat, the inverse cumulative

distribution function (CDF) of the observed gambled time

distribution (Figures S6D, S6H, S6L, and S6P; STAR Methods).

Note that this mapping has no free parameters. Further, it only

considers the full gambled time distribution, not individual trials;

it does not separately map correct versus error trials or any other

subset of the data; and it does not make assumptions about the
Current Biology 31, 1–13, October 25, 2021 7
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Figure 5. Ensemble model

(A) For each trial in data, task features (left) include

the 20 features used to calculate the MDVDNN,

gambled time, and trial outcome. A subset of

these, the distractor age and target age, are input

to the fitted GeMM (top panel) to simulate two

GeMM outputs: a predicted trial outcome (correct

or error; lime) and a predicted confidence value,

which is converted by a monotonic mapping

function, shown for representative rat T, to pre-

dicted gambled time (pink). The process is

repeated n = 10 times per trial in data to produce a

distribution of model-simulated gambled times per

observed gambled time, all with the sameMDVDNN

(bottom panel). The MDVDNN is calculated from the

20 input features to the trained DNN (green).

(B) The ensemble model makes three signature

predictions of memory confidence based on ac-

curacy (lime), gambled time (pink), and the

MDVDNN (green), as amemory discriminability axis,

to which trends in data can be compared (here,

representative schematics). Middle: blue repre-

sents upper half of gambled times, and red repre-

sents lower half of gambled times. Right: blue

represents correct trials, and red represents error

trials.
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match between the mappings of trial outcome to confidence for

the model and data. Conceptually, this procedure captures the

economic aspect of waiting based on the model, that is, how

long the animal is willing to wait given a specific degree of

confidence.

Every one of these simulated trials has the same MDVDNN,

directly computed as the DNN output from the 20 input features

of the data trial (Figure 5A; MDV calculation). Together, this pro-

cedure generated for each trial, (1) a predicted outcome (correct

versus error), (2) a predicted gambled time, and (3) a calculated

MDVDNN, whichwe used to generate three nominal tuning curves

for memory confidence based on memory discriminability, tem-

poral bets, and choice accuracy (Figure 5B). In effect, this pro-

cedure generates GeMM-predicted trends for gambled time

that are based on all 20 features of the MDVDNN: although the

GeMM only explicitly takes as input distractor and target ages,

the GeMM-simulated trials inherit the 20 MDVDNN inputs from

the data trial they are based on, thereby preserving the covari-

ance structure of the data (i.e., they are embedded in the data,

as for hybrid data-simulation models in collider physics).46

The GeMM accurately predicts memory confidence
behavior
We observed a striking match between GeMM predictions and

observed behavior. Because all the assumptions of statistical

decision confidence also apply to our memory confidence

task, we could quantitatively assess the relationship of behav-

ioral confidence reports and GeMM-derived confidence levels

by focusing on the established set of comparisons to evaluate
8 Current Biology 31, 1–13, October 25, 2021
confidence as a decision variable.16 First,

a calibration curve makes the intuitive

prediction that trials with longer gambled

times should have higher choice accuracy
(Figures 6A, 6D, 6G, and 6J). Consistent with this prediction, ac-

curacy as a function of gambled time rises for both the model

and the data. Second, for any given choice difficulty level (mem-

ory discriminability), accuracy should be higher on trials with

higher confidence, where more time was gambled. We tested

this prediction using a conditioned psychometric curve that di-

vides the data into high and low predicted (GeMM) or actual

(data) gambled times. We found that longer gambled times pre-

dict higher choice accuracy over a range ofmemorability for both

data and the model (Figures 6B, 6E, 6H, and 6K). Third, for any

given trial difficulty level, gambled times should be higher for cor-

rect as compared to error trials. Constructing this ‘‘vevaiometric’’

curve revealed consistently higher gambles for correct than error

trials over a range of memory discriminabilities in both the model

and data (Figures 6C, 6F, 6I, and 6L). For all three signatures and

all four rats, the majority of the data points are within two stan-

dard deviations of the model, indicating surprisingly accurate

predictions given the small number of model parameters and

the fact that the model was fit only to choice behavior, not to

gambled times. This analysis also revealed evidence of an intu-

itive signature of confidence consistent with the standard model

of perceptual decision confidence: the difference in gambled

time between correct and error trials is greater for more memo-

rable trials.

DISCUSSION

We studied memory-based choice and confidence together, us-

ing a novel form of confidence report, time gambling, which was
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H I

F

B

E

C Figure 6. The GeMM predicts trends

in memory discriminability, choice, and

gambled times in data

Each plot shows GeMM predictions (lines) with

data (points) overlaid.

(A, D, G, and J) GeMM-predicted calibration curves

(gray lines) for accuracy as a function of mean-

normalized gambled time compared to data (black

points), for the lowest 14 of n = 15 percentile bins.

Horizontal bars represent bin widths.

(B, E, H, and K) Conditioned psychometric curve

predicted by the GeMM shows proportion correct

for upper half (dark blue) versus lower half (red) of

gambled times compared to proportion correct in

upper half (light blue) versus lower half (orange) in

data, each in n = 7 percentile bins.

(C, F, I, and L) Vevaiometric curve depicts gambled

times predicted by the GeMM for correct (dark

blue) and error (red) trials compared to correct (light

blue) and error (orange) in data, each in n = 7

percentile bins. Vertical error bars represent SEM

for all plots.
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available on every trial. Critically, we found that temporal bets

predicted choice accuracy in a graded manner. The task also

allowed us to address the long-standing challenge of defining

a MDV: we trained a DNN on an exhaustive list of task observ-

ables to predict choice accuracy and interpreted its output

detection statistic as defining a synthetic memory difficulty

axis or decision variable, the MDVDNN. Next, we developed a

GeMM that posited the age of memories is represented as a

lognormal distribution that evolves with experiences. We inte-

grated the GeMM and MDVDNN in a final model that used the

MDVDNN to assign a difficulty to each trial and found that, across

the range of difficulties, GeMM predictions recapitulated choice

and confidence behaviors. These findings are consistent with

memory confidence in rats and introduce a simple, interpretable

model of the underlying computation.

Studies of learning and memory in animals have typically

focused on measures of memory accuracy (e.g., time spent

freezing in a conditioned context).47 Our results indicate that

rats can not only execute behaviors based on representations

of multiple past experiences but also evaluate confidence in

the content, storage, retrieval, and use of those memories.

Rats gambled more time on trials when they had made a
Cu
correct decision, even though the

outcome of the trial was not revealed un-

til after the gambling period ended. That

is, when the rats were more confident in

a decision, they waited longer in the

port, forgoing a smaller, earlier reward

in favor of a larger, later reward (correct

trials average �1.5 s longer than error tri-

als or 0.8 standard deviations of the

gambled time distribution).

Rarely, rats selected uncued ports,

which were never rewarded (invalid

choices), and when they did so, they

gambled even less than on errors to

cued ports, also consistent with an inter-
nal representation of confidence. Invalid choices most often

occurred on easy trials (distractor age = 1), and overall, the

lowest gambled times correspond to below-chance accuracy,

attributable to a high proportion of invalid trials. This is sugges-

tive of an exploration strategy where the true answer is known

and ‘‘throwing’’ a trial can therefore ascertain that the optimal

strategy is unchanged. Together, these results provide strong

evidence of an ability to compute and act on confidence in a

memory-guided decision in a non-primate animal. The present

study extends the one previous study reporting a form of meta-

cognition in the rat,36 with a novel, graded confidence report;

collection of thousands of trials in neural-recording-enabled

rats; and a quantitative model of memory confidence.

Evidence for memory confidence and metacognition in
rats
Our findings specifically indicate this ability for memories related

towhere the subject was on the previous three or more trials and

at what relative order in time. This memory requirement is similar

to that of N-back tasks, used in humans to study ‘‘working’’

memory,48 typically defined as memory on seconds to minutes

timescale.49 Although our task does not distinguish a relative
rrent Biology 31, 1–13, October 25, 2021 9
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familiarity mechanism from a recollective one,50 the recency

judgments made by rats cannot be explained by access merely

to whether a specific experience is novel or not. As such, its

memory requirement differs from the visual recognition memory

tasks that have established memory confidence in human and

non-human primates,25–28 which require such an old or new

judgment but do not require that the subject remember where

or specifically when the item was seen. Finally, animals were

required to recall an element of ‘‘what’’ had occurred and distin-

guish whether they had previously seen a visual cue (port light)

versus visited its location.

Tasks that require elements of "what, where, and when’’ are

often referred to as episodic or episodic-like.51 Here, we avoid

those terms for lack of a precise definition that would allow

determination of whether ‘‘episodic’’ is appropriate for any

given non-human task. We note that, in general, it is not clear

specifically which mechanism(s) rats use for temporal context

or whether they qualify as episodic (when).52,53 Regardless,

the GeMM operates on amemory decision variable that defines

memories for episodes on a timeline and how they evolve over

time and thus has the potential to describememory dynamics in

humans and non-human animals alike. As is the case for all

tasks, multiple memory systems (procedural and semantic)

are also required.

Our task uses a graded confidence report, where previous

studies of memory confidence, in monkeys12 and rats,36 used

decline option tasks. This class of task poses delayed match-

to-sample decisions between target, distractor, and an addi-

tional option to decline the decision and earn a lesser reward.

The claim that these tasks probe memory confidence rests on

two response patterns: (1) the rate of decline choices increases

with difficulty and (2) choice accuracy is lower on forced choice

trials compared with freely chosen memory tests. However,

these choice patterns can be explained bymore elementary pro-

cesses than a confidence computation.6,42,54 Simple reinforce-

ment learning mechanisms can explain why decline choices

track difficulty, for example.55 Similarly, accuracy difference be-

tween forced and free choices can arise when animals have ac-

cess to their own motivation or engagement levels, with high

motivation and engagement predicting lower declines and

higher accuracy.42,56

These interpretational challenges, and similar challenges

associated with other tasks,35,57,58 highlight the importance of

specifying an explicit computational model, determiningwhether

that model can accurately describe the data, and testing other

possible explanations. Thus, an important contribution of our

study is providing a new behavioral task design and a model of

memory determining choice and confidence. The same frame-

work is also applicable to human behavior and may therefore

allow us to placememory confidence on the same footing across

species.

A model of memory-guided choice and confidence
To build the model, we first used the behavioral data to infer a

decision variable and then devised a generative model, fit its

parameters to choice behavior, and generated confidence

predictions to test against data. To deduce the memory deci-

sion variable, we used a model-agnostic, data-driven approach

based on all variables potentially available to the rats in
10 Current Biology 31, 1–13, October 25, 2021
memory. Crucially, in contrast to perceptual59 or value-based60

tasks where the experimenter controls the difficulty of each

trial, here, it was unknown how the various elements of each

memory trial would interact to define the difficulty. Our DNN

reached a high degree of prediction accuracy (�80%), outper-

forming a network based on port age alone. Such an approach

may be broadly useful when trial difficulty cannot be estab-

lished a priori.

The nature of the DNN precluded an immediate understanding

of how memory confidence might be computed. We thus

focused, in the second, modeling step, on a subset of parame-

ters, specifically target and distractor ages, to design a model

to predict choice and memory confidence. Under the GeMM, a

few parameters govern the evolution of the underlying lognormal

distributions based on known features of memory processes.

Each memory is represented at the time of encoding as a delta

function and therefore does not include perceptual noise. At later

time points, its variance represents mnemonic noise from pro-

cesses including encoding. The GeMM parameters were fit to

choice data for each rat and used to predict memory confidence.

They define an increasing standard deviation with age, consis-

tent with the understanding that memories become less precise

over time and that memory retrieval for consolidation or use pre-

cipitates lability.61

Although the GeMM describes memory dynamics as a func-

tion of age only, the other MDVDNN features are accounted for

by its embedding in the data in the full ensemble model. An alter-

native approach to generating confidence predictions from the

GeMM would be to use the MDVDNN as a decision axis, assume

that on each trial the memory decision and memory confidence

are both determined based on a simple noise profile (e.g.,

Gaussian noise with fixed variance),50,62 and from this predict

gambled time.18,22 Such a model would predict that confidence

increases for correct trials and decreases for error trials as a

function of discriminability.16 However, in our data, gambled

times do not increase with the ease of the decision; our model

captures that feature with an asymmetric noise profile.

The GeMM builds on previous models related to signal detec-

tion and memory,63–67 including strength theory63 and episodic

trace models.65 It defines confidence as the absolute difference

between two samples, or a balance of evidence,68 a model that

has been successfully applied to confidence in perception14

and memory.25 This memory decision variable could be inter-

preted as the strength of association between memory items in

a list, a key variable in the influential temporal context model of

memory.66,67 As inmodels of decisionmaking based on diffusion

to a bound,40 the GeMM could support sequential sampling from

memory distributions when multiple internal retrieval events are

used to estimate memory age. Indeed, it has been proposed

that decision time in memory-based decisions, as in perceptual

discrimination, may also be the result of sequential sampling,

potentially in the form of multiple memory retrievals.69–71 Recent

reinforcement-learning (RL) models incorporate sampling from

memory to explain choice,72–74 using a recency weighting coeffi-

cient that down weights older experiences to reflect possible

environmental change. Our results suggest that incorporating a

factor reflective of the perceived reliability of retrieved memories

(i.e., memory confidence) into models of value-based decision

making might increase their accuracy.



ll
OPEN ACCESS

Please cite this article in press as: Joo et al., Rats use memory confidence to guide decisions, Current Biology (2021), https://doi.org/10.1016/
j.cub.2021.08.013

Article
The importance of understanding memory confidence
Finally, we highlight that aberrant confidence in perceptions

has been proposed to account for a variety of psychiatric

symptoms.75–77 Distortions in memory confidence could

account for additional dimensions of psychiatric pathology.

Although psychological studies indicate memory confidence

deficits as driving checking behaviors in obsessive compulsive

disorder and a risk factor for developing schizophrenia,78 the

study of memory confidence has lagged behind perceptual con-

fidence in terms of behavioral tasks for animals and theoretical

frameworks for quantifying memory-guided confidence reports.

A deeper understanding of memory confidence has potentially

broad applications, from judging the credibility of eyewitness

testimony (e.g., in the 2018 Kavanaugh hearings)24 to quantifying

distorted beliefs in mental illness.
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Materials availability
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Data and code availability
All original code has been deposited at GitHub: https://github.com/hrjoo/TotalRecall and is publicly available as of the date of pub-

lication. All original data have been deposited at Zenodo: https://doi.org/10.5281/zenodo.5123545 and are publicly available as of

the date of publication. DOIs are listed in the Key resources table. DOIs are listed in the key resources table. Any additional informa-

tion required to reanalyze the data reported in this paper will be made available upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures followed the guidelines from the University of California San Francisco Institutional Animal Care and Use Committee

and US National Institutes of Health. Male Long-Evans hooded rats, age 1-2 years at the time of data collection, were trained to

perform a memory task with time gambling for liquid reward. Rats were housed in pairs during training (stages I – III, see below)

and singly housed during data collection (stage IV).

METHOD DETAILS

Behavioral training and task
Behavioral testing was controlled by custom software written in Python using data acquisition hardware (Trodes ECU, SpikeGadgets

LLC) to record rat nose-pokes and un-pokes at the ports and to control reward delivery.

Habituation
Four cohorts of experimental behavior-naive Long Evans male rats (3-4 months old, 450-600 g; n = 8 rats in cohorts 1, 3, and 4; n = 6

rats in cohort 2) were habituated to daily handling for a week and to hand-delivered liquid food reward (evaporatedmilk plus 5 percent

sucrose) from a syringe in the home cage for three days.

Stage I: Raised linear track plus delayed reward
Animals were then food deprived to 85-90 percent of their baseline weight and pre-trained on a raised linear track for 3-4 days, 2-3

epochs/day, 10 mins/epoch (Figure S1A). A port was located at each end of the track, equipped with an LED light and an IR beam, to

detect entry and exit from the port. Each port could automatically deliver reward, which was available for only a specified length of

time as it flowed through the port at a rate of 0.17mL/sec to a drainage outlet and did not remain in the port. A variable delay t between

nose-pokeand rewarddeliverywasdrawn fromanexponential distribution,whichwasgradually incremented from t= 0:2� 0:5seconds

to t= 1� 8 seconds. Only one port was cued by a light on each trial. After nose-poke detection, the light went out and rewardwas deliv-

ered. The twoportswere lit alternatingly over the course of the epoch.Rats learned to run back and forth on the track to visit the currently

lit port and to wait for the delayed reward. From each cohort, rats with the highest accuracy and speed were selected for training on the

memory confidence task (from cohort 1, n = 2 rats; from cohort 2, n = 3 rats; from cohort 3, n = 2 rats, from cohort 4, n = 5 rats).
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Stage II: Full memory confidence task sequence with single light cue and experimenter-delayed reward
In Stage II, rats learned the basic task structure (Figures S1B–S1E), but with only one cue lit per trial and a pseudo-gambled time

determined by the experimenter. The track has eight ports in total: one home port at the center, one back port, six choice ports

at each end of six branches. As in Stage I, each port could be cued with a light and deliver liquid milk reward. On each day, data

was collected over 1-3 periods, called epochs, between which the animal was returned to a sleep box or home cage. Each epoch

was of a fixed length per animal, during which trials were self-paced. The lit cue corresponded to the target selected by the same

code as in the final task logic; lighting of the distractor port was suppressed. The sequence of visits within a trial was: home port light

on; rat pokes at home port for a small fixed reward (350ms); home port light off; after a variable cue delay, one choice port light on; rat

pokes lit choice port; choice port light off and port delivers initial reward (350 ms) and, after a variable, experimenter-controlled

reward delay, a wait-dependent reward; back port light on; rat pokes back port; back port light off and port delivers back reward.

Choice accuracy was measured as the percentage of trials for which the rat visited the lit choice well.

The cue delay was introduced to jitter the events of each trial relative to every other trial, to control for across-trial temporal cor-

relations between behavioral and neural events. To train rats to wait for the cue lights to come on, the cue delay was gradually

increased from range [0.2, 0.5] to [0.5, 2.0] seconds. Initially, the back port delivered the same reward amount as the wait-dependent

reward regardless of trial outcome, which encouraged the animals to solidify knowledge of the port visit sequence (i.e., to not skip the

back port). After three epochs, back port reward was only delivered on correct trials. The reward delay was determined by sampling

from an exponential distribution with rate parameter l = 1=2, accepting only samples that were between 1-3 at the start of this

training phase and 2-10 by the end, with a wait-dependent reward amount that increased accordingly, to allow rats to learn that a

longer period spent nose-poked in the port would result in a larger reward. At this stage, three rats were excluded from cohort 4

for relatively low accuracy and trial counts.

For rats that were consistently performing at above 80 percent choice accuracy and waiting for the full reward delay, the initial

reward was omitted. Once rats were able to wait for themajority of the reward delays (6-10 s), the switch wasmade to gambling logic.

In the gambling logic of the final task, rats voluntarily reported the time they were willing to wait for a potential reward. The gambled

time began at the time of nose-poke in the choice port and ended when rats withdrew from the port. Nose-poke withdrawal was de-

tectedwith a ‘grace period’ (800ms for rats T, S, D; 700ms for rat R in final behavior, calibrated based on how quickly each ratmoved)

to allow for small head movements during the gambling period: rats were only declared to have ended the gambling period after a

grace period had passed between the port’s IR beam re-forming (un-poke) and being broken again (re-poke).

Stage III: Binary choice
After gambled times were observed to be stable across at least three epochs, the distractor cue was introduced alongside the target

cue, starting with distractor age 1 (Figure S1F). Distractors age 2 and 3were introduced when choice accuracy was approximately 80

percent and stable. At this training stage, two rats were excluded from cohort 2 for relatively low accuracy or insufficient body weight

(Figure S1A).

Neurosurgical device implantation and recovery
Rats (n = 7) with satisfactory performance, trial count, and body weight were implanted with neural recording devices. Intraoperative

and post-operative mortalities (n = 3) resulted in a final cohort (n = 4) for behavioral data collection (Figure S1A).

Stage IV: Data collection
Approximately 3000 - 4000 trials were collected from each of four rats following neural recording device implantation. Each rat had a

typical length of time for which hewould continuously perform the task, after which hewould occasionally perform trials but otherwise

sleep or lean off the edge of the track and attempt to eat the milk tubes or cables, and this determined the epoch length. Epochs

shorter than 20minutes (Rat T, n = 5 excluded epochs), 40minutes (Rat S, n = 0 excluded epochs, and Rat D, n = 2 excluded epochs)

or 45 minutes (Rat R, n = 2 excluded epochs) were excluded from final analyses. This resulted in the following epoch and trial counts:

From rat T, 2978 trials over 42 epochs; from rat S, 4111 trials over 40 epochs; from rat D, 4369 trials over 61 epochs; from rat R, 3660

trials over 49 epochs. Typically rats ran an average of 350-400 m per day (the human equivalent of approximately five miles) and

consumed 50 mL of sweetened evaporated milk.

Parameter setting: distractor and target selection
The selection of distractor and target was random with temporal weighting, to guarantee that trials with distractor ages 1, 2, and 3

were evenly distributed throughout the epoch. This also prevented success of the alternative strategy to choose the least recently lit

port, rather than the true rule, to choose the least recently visited, by increasing the number of trials for which a port was lit but not

visited. During an initialization period, the rat was cued to visit each of the six choice ports in a randomly generated order, establishing

a history of visits. After every port was visited at least once, the logic used for selection of the two cued ports on each trial was: from

the list of possible port pairs with their ages, for example, the top row of Figure 1F, [AB(4,5), BC(5,3), CD(3,1), DE(1,6), EF(6,2),

FA(2,4)], select candidate pairs for which at least one of the ports has an allowable distractor age (1, 2, or 3), which are [BC(5,3),

CD(3,1), DE(1,6), EF(6,2), FA(2,4)] here. If there is more than one candidate pair in this list, remove from it the candidate pairs with

distractor ages equal to those presented on the last trial, the penultimate trial, and the trial before that, in that order, until candidate

pairs with only one distractor age remain. If there is only one candidate pair in this set, select it as the presented pair. If there is more
Current Biology 31, 1–13.e1–e4, October 25, 2021 e2
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than one candidate pair in this set, randomly select between them with equal probability. For example, if the last three trials were

distractor ages 1, 2, 3 (N.B.: regardless of which ports these distractor ages corresponded to), then on the upcoming trial, the candi-

date pair(s) with distractor age 3, [BC(5,3)], would be removed first, then the candidate pair(s) with distractor age 2, [EF(6,2), FA(2,4)].

The candidate pair(s) with distractor age 1, [CD(3,1), DE(1,6)], would be selected; if there were more than one candidate pair with

distractor age 1 remaining, the cued pair would be selected randomly from this set. On every trial, there will necessarily be a candi-

date pair with distractor age 1. There will not, however, be candidate pairs with distractor ages 2 and 3 on every trial; this can occur in

the case of revisits, where the port with distractor age 3 is the same as the port with distractor age 1 (or the age 2 port = the age 1 port,

or the age 3 port = the age 2 port = the age 1 port). This selection algorithm has the effect of sampling evenly across distractor types,

resulting in approximately 1/3 each per epoch and preventing an alternation sequence from developing.

We verified by simulation (for each rat, n = 100 synthetic experiments, where each experiment matched the number of epochs and

trials per epoch in experimental data) that with this port selection rule, an alternative strategy using memory of when the ports were

last lit would yield a maximum average performance accuracy of 68%. Rats that achieved stable performance accuracy higher than

this could not be relying on a visual working memory of the light cues alone (see Evaluation of alternative strategies below).

Parameter setting: reward function
The reward function was designed to counter the potential effects of temporal discounting on gambled times. The expected effect of

such temporal discounting is that rats would reduce their gambled times to receive a smaller reward sooner rather than waiting for a

larger one. This effect may be greater on trials where they are highly confident in their memories and choice, as the option of a smaller

reward sooner ismore certain. This effect could obscure the difference between gambled times on correct and error trials by inducing

a left shift of gambled times on correct trials. To counter this possible effect, the reward amount delivered was a piecewise function of

gambled timewith a relatively low derivative for the first 2.2 s and a relatively high derivative after 2.2 s (Figure 1B). On correct trials, for

investments less than 2.2 s, the length of time for which a sweetened evaporated milk reward was delivered at a constant rate of

0.17 mL/sec was given by R = 0:27e0:34ðt+ 0:8Þ; for investments greater than 2.2 s, R = 2:63logð0:443ðt + 0:8ÞÞ. A ten-second

wait, for example, will yield a four-second reward. The desired effect was to bias the rat toward longer gambled times on trials for

which he would already have waited at least 2.2 s, as he could double the reward amount by waiting just one second longer. If

rats were able to access memory confidence, these longer waits should be more common for correct trials, and the reward function

could help resolve them from error trials. The non-zero intercept ensured that the rat received an appreciable reward amount (350ms,

60 mL, equal to approximately one drop, or minim) even for very short waits on correct trials, preventing the development of uncer-

tainty in the memory rule itself following correct trials that resulted in zero reward due to short gambled times. To ensure a high

enough number of trials per epoch to sample trial types evenly, we discouraged extremely long gambled times greater than 9.5 s

by choosing a reward functionwith a derivative that fell by 9.5 s to the level it was prior to 2.2 s. Rats took an average of 15 s to perform

a trial excluding gambled time. With a 9.5 s gambled time and the resulting 4 s reward delivered at both choice and back ports, this

yields approximately 30 s trials and our aim of at least 80 trials per epoch.

Rats that performedmany trials per epoch with a large spread in gambled times were implanted with hardware for recording neural

data. Following a week or more of recovery, behavioral data in the final task were acquired from implanted rats.

QUANTIFICATION AND STATISTICAL ANALYSIS

Correlation of choice latency and gambled time
For analysis of correlation between gambled times and latency to choice, outliers with gambled times greater than 10 s or latency to

choice greater than 20 s were excluded, leaving over ninety percent of the data per rat. Linear regression was implemented in SciPy.

To test whether choice latency alone could account for the difference in gambled time for correct versus error trials, we excluded

outliers as above, split each rat’s data by the median choice latency and performed a one-sided rank-sum test for a difference in the

distribution of gambled times for correct versus error in the low and high latency subsets: for rat T, n trials = 2770, median gambled

time = 3.8 s, low p = 8.03 10�19, high p = 1.23 10�46; for rat S, n trials = 3930, median gambled time = 3.3 s, low p = 4.83 10�22, high

p = 7.8 3 10�33; for rat D, n trials = 4026, median gambled time = 4.2 s, low p = 1.43 10�9, high p = 2.0 3 10�65; for rat R, n trials =

3247, median gambled time = 3.3 s, low p = 1.43 10�20, high p = 2.83 10�73. These highly significant differences indicate that there

was a difference in gambled times even when selecting trials to match latencies.

Evaluation of alternative strategies
For each rat, the proportion of times that each port was presented as target versus distractor were compared. Per epoch, these

values were rarely above or below 50 percent by greater than 3 percent, and the majority of differences were not statistically signif-

icant at p = 0.05 by a t test for independent samples.

We tested whether there existed an alternative strategy that could better explain the rat’s choices than the true rule, which is to

select the least recently visited of the two cued ports. For every trial in every epoch, for each rat, we determined whether the alter-

native rule would have resulted in the same choice as the one the rat made, or the same choice dictated by the true rule. This resulted

in two proportions per epoch for each rat.

To compare each rat’s performance accuracy to that which could be achieved by relying on a visual working memory of the light

cues alone, we simulated 100 experiments for each rat, matching the number of epochs and trials per epoch to experimental data.
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The simulated rat made visits to the least recently cued port, and made no errors aside from those introduced by this logic. A one-

sided rank-sum test compared the overall distribution of per-epoch accuracies in data to those in simulation for each rat.

Evaluation of logistic regression and neural network models of choice accuracy
We used a DNN model to predict choice outcome (correct or error) as a function of an exhaustive feature set, or a feature set

comprised of target age and distractor age alone. The exhaustive feature set included for each of target and distractor: age in trials

and time; their last, maximum, and cumulative delivered reward amounts; time since last reward; last and cumulative dwell times;

number of trials since any parts of its trajectory was last traversed. The feature set also included, for the target and distractor, their

spatial trial type (branch/stem) and temporal (target age – distractor age) relationships. The features were each standardized to have

zero mean and unit variance. The DNNs were feedforward, fully connected networks implemented in KERAS using the TENSORFLOW

backend and optimized using ADAM. Each network had three hidden layers with 32 nodes each and the rectified linear unit activation.

The output of the last layer was a sigmoid and the binary cross-entropy was the loss function. Networks were trained with 200 epochs

with early stopping using a patience of 5 epochs. A k = 5-fold training procedure was used whereby 1=kth of the data were withheld

for testing, 1=kth were withheld for validation and the rest were used for training. Datasets used for training were subsets of the full

dataset for each of rats T, S, D, R (N = 2857, 4031, 4246, 3452, respectively) due to the requirement that training trials have data for

every feature in the exhaustive set. The trials that comprise each fold were uniformly selected at random. A total of 10 networks were

trained for this configuration and the network with the best validation loss was used to evaluate on the test set. The test set was then

rotated k times until all data are used for testing. The loss wasweighted during training so that the weighted number of instances from

the two trial outcomes (i.e., correct or error) are the same.

Logistic regression was implemented in KERAS, where it is simply a neural network without any hidden layers.

Fitting the generative memory model (GeMM) parameters
The GeMMwas fit on a subset of distractor-target trial types for which there was enough data, excluding invalid errors. The reduced

datasets were 1877, 2593, 2722, and 2284 trials for rats T, S, D, R, respectively. Model parameters a0; a1; a2 and s0 were fit for each

rat based on its performance across trial types defined by distractor and target - distractor ages (excluding invalid error trials and

target - distractor ages > 4). The probability density of the difference between two lognormal distributions (whose negative density

is the error rate) does not have a closed-form analytic solution, so we simulated 104 trials for each trial type within the fit. Each

simulated trial generated an m1
0 and m0

0, from which we computed an outcome (correct or error). Across many simulated trials,

this returned a predicted error rate pattern across trial types for the current set of parameters.

A c2 metric was used to evaluate model performance and find the best fit parameters:

X
trial type i

 
εi;data � εi;model

s
εi;data

!2

;

where ε is the error rate and s
ε
is the uncertainty in the error rate. The uncertainty s

ε
is determined via bootstrapping, accounting for

correlations between the number of trials that were incorrect (Ni) and the total number of trials (NT) by modeling each as an indepen-

dent Poisson random variable and taking the standard deviation of Ni/(Ni + Nc) over 100,000 simulated trials.We use theNelder-Mead

method with 200 maximum iterations as implemented in SCIPY, minimizing the c2 fit to error rates across trial types. Then, using these

parameters, we generated the distributions corresponding to each episode memory and sampled from each 100,000 times to

generate target memories, distractor memories, the outcome of the trial (correct/error) and a confidence (absolute value of the

difference between target and distractor).

Mapping GeMM-predicted confidence to gambled time
To convert the simulated confidence values to invested times, wemapped the confidence ðCÞ probability density onto the probability

density of the rat’s invested times ðTÞ. Let FðxÞ=PrðC%xÞ be the cumulative distribution function (CDF) for C andGðxÞ= PrðT < xÞ be
the CDF of the invested times. Then, the mapping procedure proceeds as follows:

1. Compute the empirical CDF of the confidence values from themodel bF using ECDF from STATSMODELS. Trials are generated from

the model such that the number of trials from each trial type follows the relative rates in data which are not uniform. The

minimum number of trials generated is 104.

2. Compute the empirical CDF of the wait times from data bG using ECDF from STATSMODELS. This is inclusive over trial types.

3. For each confidence value c, evaluate bG�1ðbFðcÞÞ. The inverse bG�1
is computed via linear interpolation (using NUMPY’s interp

function) inverting the x and y coordinates.
Current Biology 31, 1–13.e1–e4, October 25, 2021 e4


	CURBIO17785_proof.pdf
	Rats use memory confidence to guide decisions
	Introduction
	Results
	Memory choice and confidence task
	Rats learn and apply the memory rule with high choice accuracy
	Temporal bets reflect decision confidence
	Choice accuracy depends on memory age and discriminability
	Constructing a synthetic decision variable
	A generative memory model (GeMM)
	Embedding the GeMM in data enables prediction of choice and confidence as a function of the MDV
	The GeMM accurately predicts memory confidence behavior

	Discussion
	Evidence for memory confidence and metacognition in rats
	A model of memory-guided choice and confidence
	The importance of understanding memory confidence

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Behavioral training and task
	Habituation
	Stage I: Raised linear track plus delayed reward
	Stage II: Full memory confidence task sequence with single light cue and experimenter-delayed reward
	Stage III: Binary choice
	Neurosurgical device implantation and recovery
	Stage IV: Data collection
	Parameter setting: distractor and target selection
	Parameter setting: reward function

	Quantification and statistical analysis
	Correlation of choice latency and gambled time
	Evaluation of alternative strategies
	Evaluation of logistic regression and neural network models of choice accuracy
	Fitting the generative memory model (GeMM) parameters
	Mapping GeMM-predicted confidence to gambled time





