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SUMMARY
The accurate identification and quantitation of RNA isoforms present in the cancer transcriptome is key for
analyses ranging from the inference of the impacts of somatic variants to pathway analysis to biomarker
development and subtype discovery. The ICGC-TCGA DREAM Somatic Mutation Calling in RNA (SMC-
RNA) challengewas a crowd-sourced effort to benchmarkmethods for RNA isoform quantification and fusion
detection from bulk cancer RNA sequencing (RNA-seq) data. It concluded in 2018 with a comparison of 77
fusion detection entries and 65 isoform quantification entries on 51 synthetic tumors and 32 cell lines with
spiked-in fusion constructs. We report the entries used to build this benchmark, the leaderboard results,
and the experimental features associated with the accurate prediction of RNA species. This challenge
required submissions to be in the form of containerized workflows, meaning each of the entries described
is easily reusable through CWL and Docker containers at https://github.com/SMC-RNA-challenge. A record
of this paper’s transparent peer review process is included in the supplemental information.
INTRODUCTION

While only a small fraction of the genome encodes proteins, the

majority is either transcribed or has putative regulatory functions,

with the consequence that cellular functions are extensively

regulated at the RNA level. The regulation of RNA, and its dra-

matic dysregulation in cancer cells, occurs in multiple ways.

RNA abundances of certain spliced products may be altered

and these have served as the basis for clinically important prog-

nostic biomarkers. RNA sequencing (RNA-seq) uses sequencing

techniques to detect and quantify specific RNA isoforms. These

isoforms can derive from the same gene but differ in many ways,

including through alternative splicing, by germline or somatic
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variation on any allele, or through the generation of novel fusion

transcripts. The raw read counts from an RNA-seq study can be

used to estimate transcript abundances, and from it elucidate

other biologically relevant information. Traditional protocols for

RNA-seq involve reverse transcription into cDNA, which is then

sequenced using high-throughput technologies, such as Illumina

HiSeq, Roche 454, or PacBio (Metzker, 2010). After sequencing,

reads can be assembled de novo, aligned to a reference

genome, or aligned to a reference transcriptome. Some key

challenges in RNA-seq include biases occurring in RNA frag-

mentation, cDNA fragmentation, and library preparation, in addi-

tion to, potential polymerase chain reaction (PCR) artifacts that

skew estimated abundances and possible alignment to multiple
gust 18, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 827
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locations in a reference genome (Han et al., 2015). Many of these

same artifacts remain for the more recent task of interpreting

RNAs from individual cells (i.e., with single-cell RNA-seq plat-

forms). Due to these and other influences, methods for detecting

and quantifying transcriptional isoforms and fusion products re-

mains an important task.

Genomic rearrangements in cancer cells produce fusion tran-

scripts, which may give rise to protein products not present in

normal cells. These can serve as robust diagnostic markers,

e.g., TMPRSS2-ERG in prostate cancer (Tomlins et al., 2008)

or drug targets, e.g., SET-NUP214 in acute T-lymphoblastic

leukemia (Mohseni et al., 2018). Ongoing research efforts are

beginning to unveil the potential clinical relevance of aberrant

processing of RNA in cancer, such as defects in alternative

splicing. An assortment of computational methods is needed

to fully document the transcriptomic differences between tumor

cells and their normal counterparts. Cataloging the ‘‘alterome’’ of

tumors by fully characterizing their RNA landscapes will expand

our understanding of cancer mechanisms, provide new bio-

markers, and reveal possible new RNA-based therapeutics,

improving personalized patient treatment.

Gene fusions occur when two genes are joined through a DNA

translocation, interstitial deletion, or chromosomal inversion.

Trans-splicing events can also occur in which two transcripts

are fused (Zaphiropoulos, 2011). Gene fusions often have an

important role in the initial steps of tumorigenesis. Specifically,

gene fusions have been found to be the driver mutations in

neoplasia and have been linked to various tumor subtypes. An

increasing number of gene fusions are being recognized as

important diagnostic and prognostic parameters in malignant

hematological disorders and childhood sarcomas. Reviews

have estimated that gene fusions occur in all malignancies and

that 16.5% of human cancer cases harbor at least one driving

RNA fusion event (Gao et al., 2018).

Isoforms are alternative combinations of exons combined into

a transcript formed from splicing during post-transcriptional pro-

cessing. Dysregulation of alternative splicing occurs in every one

of the hallmarks of cancer (Hanahan and Weinberg, 2000, 2011).

Modifications in splicing may occur due to mutations of cis-

acting splicing elements, trans-acting regulators, and micro-

RNAs. Moreover, the switch from one isoform to another in

cancer cells leads to functional consequences and measurable

differences in patient outcomes, especially when observed in

multiple tumor types (Vitting-Seerup and Sandelin, 2017).

The goal of the ICGC-TCGA DREAM SMC-RNA Challenge

was to use a crowd-based competition to identify optimal

method(s) for quantifying isoforms and detecting mRNA fusions

from RNA-seq data. Several methods have been developed to

detect and quantify cancer-associated RNA species abun-

dance. It is not clear which methods are best used and in what

contexts. However, the evaluations published in these studies

may suffer from the well-known ‘‘self-assessment trap,’’ as the

benchmarking includes one of the tools developed by the

evaluators. The challenge we describe evaluated workflows

composed of one or more methods for two separate sub-chal-

lenges using an objective approach. The Fusion Detection

sub-challenge measured performance in detecting cancer-

associated fusions at any expression level while the Isoform

Quantification sub-challenge measured performance in predict-
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ing the relative level of each transcript across samples. For each

sub-challenge, an unbiased assessment was conducted by us-

ing a combination of computationally simulated in silico RNA se-

quences as well as experimentally generated in vitro RNAs. All

submissions were run by the challenge administrators so that

contestants never had access to evaluation datasets. Partici-

pants submitted to the administrators their trained model

including their workflows (composed of one or more methods),

parameters, and environments needed for execution using

Docker and Common Workflow Language (CWL) definitions.

The challenge ran for seven months, with 221 participants

comprising of 17 teams that submitted 65 entries for the Isoform

Quantification sub-challenge and 82 for the Fusion Detection

sub-challenge. Participants were able to submit up to three

trained models to include in the evaluation for the leaderboards.

Submissions were run on the Institute for Systems Biology Can-

cer Genomics Cloud with resulting predictions stored and eval-

uated. Performance metrics of the evaluated submissions were

used to generate leaderboards for each round of the challenge.

Notably, because the administrators had access to all of the re-

sults, we were able to investigate possible explanations leading

to algorithm failure.

For the Fusion Detection sub-challenge, twomethods—Arriba

(https://github.com/suhrig/arriba) and STAR-Fusion (Haas et al.,

2017)—outperformed all others submitted. Both of these align

the transcriptome using STAR (Dobin et al., 2013) and use

‘‘chimeric reads’’ as the basis for identifying potential fusion

junction sites. Further, both emphasize the importance of using

filters to detect bona fide fusions from myriad background fu-

sions. In these analyses, junction coverage and abundance

were the most important influences upon false negatives, while

GC content and the total number of alternate gene isoforms

contributed most to false positives. For the Isoform Quantifica-

tion sub-challenge, no submissions outperformed standard ap-

proaches used to initialize the leaderboard. We found methods

that had the most error in distinguishing between isoforms for

a few genes when spiked-in levels differed by 2-fold compared

with 5-fold.

RESULTS

The SMC-RNA challenge included two sub-challenges: Fusion

Detection and Isoform Quantification. For these sub-challenges,

in silico simulated and in vitro-derived spike-in datasets were de-

signed for use in evaluating entries (Figure 1). To generate simu-

lated data, a custom pipeline called rnaseqSim was created to

simulate RNA-seq reads that mimic several realistic aspects of

biology and current technology such as uneven read coverage

across a transcript, the insert size distribution, GC content biases,

and the presence of possibly different haplotypes produced from

a diploid genome (STAR methods, isoform and fusion simulation

pipeline). The final test set contained an in vitro benchmark of 6

cell lines with 5 replicates each, with varying cell line back-

grounds, transcript or fusion construct spiked-ins, and spike-in

concentrations (Table S7 and STAR methods, spike-in fusion

construction, benchmark transcript selection). The data and

various quality estimates are available on Synapse(https://www.

synapse.org/Synapse:syn22344794). The spike-in design varied

in complexity across samples and included multiple isoforms

https://github.com/suhrig/arriba
https://www.synapse.org/
https://www.synapse.org/
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Figure 1. Overview of the challenge

(A–C) The challenge generated simulated (or in silico) and spike-in datasets represented as RNA-seq reads (FastQ files) and ground truth. Challenge participants

could submit entries (i.e., CWL workflows and Docker images) as individuals or teams using Synapse. Submitted entries were run on the FastQ files using cloud-

based compute resources to generate predictions. The resulting predictions were evaluated based on statistical performance measurements. Evaluation of the

Fusion Detection sub-challenge (B) used four types of input datasets to calculate sensitivity and either precision or the total number of fusion calls. Datasets

where the fusion genes are known are represented as red (50 donor) and blue (30 acceptor), and datasets where unknown fusion genes may exist are represented

as light and dark gray. The confusion matrix displays the known (green), unknown (red), and irrelevant (gray) parameters used to calculate the subsequent

statistical metrics. Evaluation of the isoform quantification sub-challenge (C) used two metrics for evaluating the correlation of predictions to the truth. The

transcriptome-wise evaluation compared predictions and truth in a single sample across all transcripts using a Spearman correlation. The sample-wise eval-

uation compared predictions and truth for a single transcript across multiple sample replicates using Kendall’s tau-b.
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from the same gene (from 1 up to 3) as well as different levels of

the transcripts and number of fusion events (Table S8 and

STAR methods, spike-in fusion construction, and benchmark

transcript selection). Participants were required to submit two

components for the challenge: a Docker image encapsulating

their code, executables, and environment, and a CWL workflow

to define the steps and parameters for running their algorithms.

The resulting output of each entry also had to meet the format

specifications published on the challenge website. For both

sub-challenges, participants were allowed to submit any number
of entries but were restricted to selecting up to three entries for

scoring on the official leaderboard. Participants could choose to

have these three entries be based on different algorithms or opti-

mize the same algorithm with different trained parameters. The

performances of entries for both the FusionDetection and the Iso-

form Quantification sub-challenges were benchmarked against

constructs spiked into the cell line-based samples. For the Fusion

Detection sub-challenge, we identified two entries, using the

methods Arriba and StarFusion, that were better than all others.

For the Isoform Quantification sub-challenge, there was no top
Cell Systems 12, 827–838, August 18, 2021 829
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entry and none of the participant submissions outperformed the

challenge organizer based submissions.

Fusion detection sub-challenge results
The Fusion Detection sub-challenge evaluation received 77 en-

tries, of which the organizers were able to execute and evaluate

35 (Table S1). The majority of entries failed due to an ill-formed

submission (submission error, 26 entries), followed by the pack-

aged code running into problems during execution (workflow er-

ror, 13 entries), and lastly, a few cases produced output that was

unable to be properly evaluated (evaluation error, 3 entries). Of

the successful 35 entries, 17 represented valid entries after re-

stricting submissions to allow up to three from any one team

as specified by the challenge rules. Fusion detection entry work-

flows were often composed of two steps to first align sequence

reads followed by fusion detection and calling. Examples of

commonly used alignment methods included STAR and GSNAP

and fusion detection methods included STAR-Fusion, STAR-

SEQR, Arriba, FusionRnadt, and Hera (Table S1 includes the

full list of methods submitted).

Two different datasets were created to evaluate entries, a

computationally simulated dataset and an experimentally gener-

ated set using spike-ins (Figure 1B). The simulated dataset was

used to evaluate entries in the preliminary rounds. The simulated

data were generated with the program rnaseqSim (https://

github.com/Sage-Bionetworks/rnaseqSim) that created reads

from computationally constructed fusions. On average, the

simulated tumor samples contained 39 fusions per transcrip-

tome, ranging from 3 to 100 to test how callers reacted to various

levels of signal. This number is in line with those reported for

several popular cell lines (Picco et al., 2019).

A second evaluation dataset of spiked-in fusions was used for

the final assessment of entries. The spike-in data were created in

the lab using a predefined series of 18 fusion products, formed

between arbitrarily selected gene partners. The RNA from each

of 6 different cell lines was aliquoted into 5 replicates, 4 of which

were spiked with designed quantities of synthetic fusion RNA.

Lung, ALL, prostate, and breast cancer cell lines were used.

Each fusion was introduced at an amount of either 0, 5, 25, or

50 pg. The 5th replicate was spiked only with 20-mL nuclease-

free water to act as a negative control. Three technical replicates

weremade for one of the HCC1143 cell line’s spike-in designs by

splitting the cell line’s RNA into three aliquots prior to adding the

same spike-in mixture to each.

The spike-ins provide a basis for evaluating the methods. On

the one hand, if amethod fails to detect a fusion construct known

to be added at a particular level in a sample, we call this event a

fusion false negative (FFN). On the other hand, methods that

report on a fusion that was not spiked into a sample, but are

nonetheless reported by a method, are labeled as a fusion false

positive (FFP). Notably, FFPs could result from the existence of

transcripts in the cell line’s background. For such naturally

occurring transcripts, we expect many (or all) of the methods

to detect their presence. Thus, we introduced a correction to

the evaluation that extends the truth set (see discussion of i-

Truth below). As far as FFNs, we found that a majority of the fu-

sions included in the spike-in experiment were detected at

similar rates, with only three fusion constructs missed by more

than half of the methods. We also looked into extreme cases
830 Cell Systems 12, 827–838, August 18, 2021
to determine whether any properties influence detection diffi-

culty. One such extreme case is the designed fusion of inter-

leukin-15 (IL-15) and IL-21 that was never detected by any of

the methods. The construct appears to have been synthesized

correctly as we verified by manual inspection the presence of

junction-spanning reads. We suspect that the homology be-

tween IL-15 and IL-21 lead to detection failures. Either the map-

ping stepmisaligned the relevant junction-spanning reads, or the

methods themselves filtered these reads out (ironically, methods

often exclude junctions spanning homologous genes to remove

amajor source ofmappingmisalignment noise). We next discuss

our approach to systematically evaluate the accuracy of the

methods using the spike-in designs that include estimates of

both types of errors, FFNs, and FFPs.

On the one hand, it is straightforward to estimate the sensitivity

of an entry as the fraction of spike-in controls reported. On the

other hand, it is not as obvious how to estimate precision or

specificity due to the possibility that true fusions exist outside

the spike-in set because any naturally occurring fusions present

in the cell lines would also be detected by contesting algorithms.

One approachwould be to use a long-read technology that could

detect the native constructs. We found that current read depths

of a Nanopore-based long-read approach were insufficient to

accurately detect the presence of fusions. Inspired by recent

work in the area (Ahsen et al., 2018), we instead estimated a

set of ‘‘imputed truth’’ (i-Truth) fusions from the calls made by

the entries (STAR methods, imputing an extended truth dataset

for fusion evaluation). Along with spiked-in controls, predicted

fusions were considered as positives for evaluation if several cal-

lers detected them in the replicates of the same cell line back-

ground. To this end, a ‘‘meta caller’’ was created to combine

the submitted predictions into a consensus score, made up of

the proportion of callers voting in favor of the presence of a

particular fusion in a specific sample. If the consensus score ex-

ceeded a critical threshold, then a fusion event was considered

as good as truth and included in the i-Truth set. Assuming the

i-Truth contains bona fide fusions, the recall of the entries should

be similar to when they are run on the actual truth, i.e., on the

spike-ins. Using this reasoning, we set the critical threshold

such that the recall measured using the i-Truth matched the

recall measured using the spike-ins (STAR methods, imputing

an extended truth dataset for fusion evaluation). This produced

an i-Truth set containing 48 predicted fusions, ranging from 2

up to 17 fusions in every cell line (Tables S8 and S12). This set

offered a notable increase in the number of events to gauge entry

performance compared with using the spike-ins alone.

Including even a small proportion of erroneous events as truth

could detrimentally affect the ultimate ranking of entries. We,

therefore, estimated the accuracy of the i-Truth by querying

several cancer-specific fusion databases including the Broad’s

cancer cell line encyclopedia (CCLE) database for the presence

of the i-Truth fusions in cancer cell lines as well as several other

databases documenting fusions in normal tissue including the

GTEx dataset of fusions in normal tissue to confirm their absence

in non-cancerous tissue (Table S8). Remarkably, 28 (61%) of the

i-Truth fusions had evidence for the existence of the exact break-

point in the predicted cell line based on the CCLE collection. Of

the remaining i-Truth fusions, another 10 (22%) had evidence

that the 30 and 50 partner genes participated in a fusion in the

https://github.com/Sage-Bionetworks/rnaseqSim
https://github.com/Sage-Bionetworks/rnaseqSim
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same cell line, albeit with different breakpoints. The remaining 10

(22%) had no evidence of either breakpoint being present in the

CCLE collection. Of these 10, 6 were found to have partial

matches in either the ChimerSeq or TumorFusion guanosine

diphosphate (GDP) collection. Thus, altogether, 44 out of the

original 48 (92%) had either an exact or inexact match in existing

fusion databases. Reassuringly, none of the i-Truth fusions were

found recorded in normal tissue databases, reflecting their can-

cer specificity. Encouraged by the documented existence for all

of the i-Truth fusions, each of the predicted events was com-

bined with the spike-ins to create an extended truth set.

To create the final leaderboard, all submitted entries were

ranked by their F1 scores based on their performance predicting

fusions included in the extended truth benchmark (spike-ins plus

i-Truth; Figure 1B). F1, an average of precision and recall, was

chosen because limiting the number of extraneous predictions

is just as important as predicting known fusions since only a

few options can be considered in cancer treatment due to fac-

tors like time and cost. Two of the submitted entries/methods

emerged as the overall winners of this sub-challenge, Arriba

(F1 = 0.73) followed by STAR-Fusion (F1 = 0.70) (Table S3). These

winners were followed by other lower-ranking entries that were

found to be statistically lower in score based on bootstrap re-

sampling (STAR methods). The third highest ranked entry was

a variation of the STAR-Fusion method (F1 = 0.63), followed by

fusioncatcher (F1 = 0.58) contributed by this challenge’s orga-

nizers, then STAR-SEQR (F1 = 0.47).

Features influencing the accuracy of fusion detection
To determine what factors influence entries to incorrectly call

fusion events, we created a fusion feature importance pipeline,

similar to what was done for the ICGC/TCGA DREAM SMC-

DNA challenge (Lee et al., 2018). We collected 128 genomic fea-

tures related to each predicted fusion event, including gene

length, transcript length, distance from the breakpoint to repeats,

and the abundance for each fusion partner. To identify features

predictive of error across cell lines and entries, the cell line and

submission identifier were also included as features to account

for those covariates. The full list of features is recorded in Table

S9. Next, webuilt a random forest (RF) classificationmodel to pre-

dict FFPs from each submission. In other words, the RF model

was trained to select features that predict when an entry errone-

ously calls a fusion event when no such event was present ac-

cording to the extended truth. We built a second RF model to

select features that predict FFNs; i.e., theRFpredictswhen an en-

try fails to detect a spiked-in fusion construct. To quantify feature

importance for each of our classification models, we applied the

Boruta feature selection algorithm to the RF models (Figures 2A

and 2B) (Degenhardt et al., 2019; Kursa and Rudnicki, 2010). Bor-

uta determines feature relevance by comparing the original

importance with the importance achievable at random, estimated

using permuted versions of a feature, and progressively elimi-

nates insignificant features to stabilize a test statistic. An accurate

FFPmodel was obtained that achieved an out-of-bag error rate of

0.26% (see resource table for links to SMC-RNA-Eval code). The

FFNmodel had lower, but still respectable, accuracy due to fewer

observations, achieving an error rate of 7.64%. The Boruta algo-

rithm revealed that the number of transcripts and GC content

were the most important features for determining FFPs among
all fusion prediction methods whereas submission identifier,

coverage across the junction and abundance were the top fea-

tures for FFNs (Figures 2C and 2D). We speculate that the infor-

mative GC feature could reflect the presence of low complexity

repeats influencing hybridization efficiency or alignment problems

in the area of the predicted fusions. Further analysis for FFNs re-

vealed a marked decrease in coverage and abundance as addi-

tional top features (Figure S1A).

Isoform quantification sub-challenge results
For the Isoform Quantification sub-challenge, we received 65

submissions, of which 32 were successfully executed to

completion through the leaderboard evaluation pipeline. Of the

32 that were successful, 16 were included in the final leader-

board (Table S4). Entries failed for several reasons including

submissions of the wrong format (23 Submission Errors), incom-

patibility with the runtime system based on the CWL (8 workflow

errors), and two that were runnable but produced ill-formatted

output for evaluation (Table S2).

A diverse set of algorithms were submitted to the challenge

representing two major classes of isoform quantification ap-

proaches: alignment-based workflows (e.g., STAR and RSEM)

and hashing-based workflows (e.g., Kallisto and Salmon). Com-

mon components of the entries (i.e., workflows) submitted for the

Isoform Quantification sub-challenge included STAR (Dobin

et al., 2013), Kallisto (Bray et al., 2016), Salmon (Patro et al.,

2017), Hera, RSEM (Li and Dewey, 2011), GSNAP(Wu et al.,

2016), eXpress (Roberts and Pachter, 2013), Cufflinks, and Flux-

Capacitor. We considered transcriptome-wise and sample-wise

evaluation of the results (Figure 1C and STAR methods, Evalu-

ating Isoform Quantification). Transcriptome-wise correlation

(TWC) measures the degree to which the levels of a transcript

relative to other transcripts in the same sample match the known

set. On the other hand, sample-wise correlation (SWC)measures

how well the level of a transcript matches relative to the same

transcript across different samples. TWC reflects the ability of

an entry to estimate dominant splice forms from others while

SWC measures the accuracy for use in differential abundance

analysis when sample subgroups are compared. An evaluation

using the computationally simulated data found that the top-per-

forming entrywas based onRSEMusing TWCas ameasure (Fig-

ure S2D). Similar results were obtained when SWC was used

(data not shown). However, since the simulation program itself

invokes RSEM to generate FASTQ reads, this result could indi-

cate a systematic bias and not reflect the accuracy of entries

when run on real tumors.

For this reason, we compared entries using a spike-in dataset

and a non-parametric comparison of submissions (STAR

methods, benchmark transcript selection). Submissions were

evaluated against a set of 20 synthetic tumors and a panel of

six cell lines with 18 native transcripts spiked in at different levels.

As was done for fusions, the same six cell lines were used to

introduce four different spike-in designs plus a negative control

(no spike-in), and a technical replicate was created for one of

the HCC1143 designs. The transcripts were selected from genes

exhibiting expression levels at or below that of background

across a mix of breast cancer cell lines and tumors.

For technical reasons related to manipulating spike-ins, we

used SWC for the evaluation because the relationship between
Cell Systems 12, 827–838, August 18, 2021 831
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Figure 2. Boruta feature importance analysis across by fusion submissions

(A–D) A heatmap showing results from performing the Boruta algorithm on each submission’s false-positive fusion events (A) and false-negative fusion events (B).

Each cell in the heatmap represents the Z score mean decrease in accuracy. Higher Z scores are in red and represent more important features. Rows are the

fusion submission names and columns are the features. Only features that had a mean value greater than Boruta’s shadowmaximum value are shown. Boxplots

showing results from performing the Boruta algorithm on all Fusion Detection sub-challenge submissions. (C) is the importance analysis against false positives

and (D) is against the false negatives. The y axis represents the Z score MDA and features are across the x axis. The red plots are the Z scores of the actual

features and blue are Boruta’s shadow features, which are considered the randomized background features. Only features that performed better (p < 0.05) than

the random features are shown in this plot.
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the abundance spiked into the number of sequenced reads

could differ from one gene to the next, adding an appreciable

amount of noise to a calculation of TWC. For example, two tran-
832 Cell Systems 12, 827–838, August 18, 2021
scripts spiked in at the same concentrations may not show a

comparable number of reads due to sequencing efficiencies

that may vary from transcript to transcript (e.g., potentially,
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though not necessarily, due to causes such as GC content or

differing hybridization efficiencies of the probes). On the other

hand, results from our pilot studies suggest that the relationship

could be much more comparable for a particular transcript from

one sample to the next (data not shown).

To this end, we calculated Kendall’s Tau-b correlation for each

transcript for each submission that measured the agreement of

ranking between the predicted and actual levels across all of

the cell lines. The final Kendall’s Tau-b score (KTBS) for a sub-

mission was then determined by taking an average across all

of these transcript-specific correlation values. Standard devia-

tions for each entry were obtained by creating bootstrap repli-

cates (see STAR methods).

Despite the range of different methods included in the bench-

mark, the spike-in based evaluation failed to identify a clearly

superior entry. The top 14 entries, covering pipelines including

Kallisto, Salmon, RSEM, Hera, and Express, all had statistically

indistinguishable scores within a span of 8310�3 of each other,

with a standard deviation across all submissions of 4.163 10�2.

The two top-performing entries were based on Salmon and sub-

mitted by the challenge organizers followed by another orga-

nizer-submitted version of Kallisto, scoring only slightly worse

(p = 0.043) (Figure 3A). Of the entries submitted by challenge

participants, the best performing entry was based on Kallisto,

followed closely by RSEM and Hera. Entries submitted by the

challenge organizers were not considered for deciding the chal-

lenge winner. However, because of the lack of separation be-

tween the top participant-submitted entries evaluated using

spike-in controls, no winner was declared for the Isoform Quan-

tification sub-challenge.

Features influencing the accuracy of isoform detection
Although no entries emerged as a leading approach for this sub-

challenge, we investigated the influence of various aspects of the

data on calling accuracy, to determine whether particular callers

might be more accurate under certain circumstances. First, we

attempted to identify any genomic features influencing the abun-

dance estimates of the entries. We investigated transcript

length, gene size, number of exons, and GC content, but did

not find any correlation with the rankings of transcripts among

the entries (data not shown). We note that while we expect tran-

script size and exon count to be inversely related to the accu-

racy, the spike-in design used in the challenge was likely too

simplistic to reveal such dependencies.

Next, we analyzed, which spike-in quantities were misordered

as part of the discordant pairs influencing the KTBS (STAR

methods, Evaluating Isoform Quantification). Transcripts were

spiked at 0, 5, 25, and 50 pg (see ‘‘spike-in fusion construction’’

section in STAR methods). Interestingly, there was an over-

whelming majority of incorrectly predicted orderings between

the 25- and 50-pg pairs, not only across transcripts (Figure S2B)

but also across cell line pairs (Figure S2C). The entries may have

more difficulty in quantifying the 25:50 comparison either

because the difference is merely doubled, whereas all of the

other pairs have at least a 5-fold difference, or the spike-in

amount is already saturated at the 25-pg level. For the other rela-

tive pairwise rankings—0:50, 0:25, and 5:50—there were no

incorrect pairs among any of the entries. Since there was an

obvious bias toward the incorrect 25:50 pairs in only a few tran-
scripts, we re-ran the ranking after removing those pairs and we

found the ranking to be even less discerning between submis-

sions. In fact, most submissions tied for first place with only sub-

missions using Kallisto and Cufflinks coming in last.

DISCUSSION

The winning submissions for the Fusion Detection sub-chal-

lenge, based on Arriba and STAR-Fusion, implement several

strategies that may contribute to their superior performance

over other approaches. Both entries make use of filtering strate-

gies to eliminate potentially thousands of artifacts from true fu-

sions among the chimeric reads found in RNA-seq alignments.

Arriba identifies three types of false positives: alignment arti-

facts, in vitro-generated artifacts, and benign transcripts, which

are erroneously classified as aberrant due to the incomplete

annotation of genes. Alignment artifacts are mediated by

sequence homology in the genome, causing reads to bemapped

to thewrong locus, or by regions posing challenges to short-read

aligners, such as homopolymers, tandem repeats, and loci sub-

ject to somatic hypermutation. By discarding reads with low

sequence complexity, an excessive number of mismatches, or

segments aligning to homologous genes, Arriba eliminates

such spurious alignments. A substantial amount of artifactual

chimeric fragments are produced in vitro during reverse tran-

scription (Houseley and Tollervey, 2010) and amplified by the

PCR step of library preparation. These artifacts are effectively

reduced by ignoring PCR duplicates and by requiring a higher

number of supporting reads with an increasing level of a gene’s

background noise, estimated as the total number of fusion can-

didates involving that gene. Many benign transcripts are not an-

notated by available gene models, including circular RNAs,

trans-splicing, read-through fusions, and alternative promoters.

Such transcripts give rise to chimeric reads, which are hard to

distinguish from reads originating from aberrant transcripts and

may thus lead to false-positive fusion predictions. Such benign

transcripts are discarded by Arriba with the help of a blacklist

trained on samples from normal tissue. While false-positive

filtering certainly helped top-performing entries, we found that

maintaining sensitivity was just as important to maintain accu-

racy. STAR-Fusion applies similar ideas, but with some small dif-

ferences. For dealing with likely mismappings, reads with low

complexity and paralogous sequences are excluded. To deal

with the PCR artifact issue, STAR-Fusion requires more evi-

dence, quantified by the number of supporting reads, for break-

points that fail to match reference annotation splice sites. In the

version of STAR-Fusion used for the competition, read map-

pings that anchored to regions of transcripts that matched the

repbase repeat library (Bao et al., 2015) were excluded. STAR-

Fusion uses a filter to remove ‘‘promiscuous’’ fusion calls. These

calls are characterized when a fusion gene partner ‘‘A’’ has mul-

tiple partners, e.g., ‘‘A–B’’, ‘‘A–C’’, and ‘‘A–D’’. Finally, STAR-

Fusion utilizes a blacklist of ‘‘red herrings,’’ including fusions

recurrently seen in normal data sets, which could be the result

of trans-splicing or other artifact-producing processes. Various

additional elements are considered for removal as part of filtering

steps for these top two methods (see Table S10).

If filtering out false positives is truly what separates the

performance of entries, then one would expect the variability in
Cell Systems 12, 827–838, August 18, 2021 833
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Figure 3. Isoform abundance Kendall Tau-b correlation coefficient bootstrap

(A–C) Ranking of methods based on their performance in predicting isoform levels as measured by 1,000 bootstrap replicates of the Kendall Tau-b score (KTBS)

(see STAR methods). The x axis represents the submissions and the y axis the KTBS. Each boxplot represents the 1,000 mean Tau-b scores for each bootstrap.

Results of the Student’s t test for closely ranked submissions shown between boxplots. Values greater than 0.05 were considered as ties between submissions.

(B and C) Kendall’s tau-b correlation by transcript and submission method. Plots show Kendall’s tau-b correlation coefficient for each transcript with Submission

ID across the x axis (B) or transcript across the x axis (C). The color corresponds to the feature in the legend.
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false-positive calls across these entries to be higher than for

true-positive calls. For example, in the extreme case that all en-

tries find the same fusions but differ in the number of false pos-

itives, they would have the same sensitivity, i.e., zero standard

deviation in the true positive rate (TPR) but a non-zero standard

deviation in the false discovery rate (FDR). In fact, we do find this

trend among the top-performing entries—where top entries are

defined as the nine submissions with F1 at least 0.25—in which

the standard deviation of the TPR is 0.106 and nearly twice as

high for the FDR, 0.201 (Table S3). For example, the ninth versus

the first report a similar number of true positives (448 versus 423,

respectively) while the ninth called four times as many total fu-

sions (2,465 versus 619). However, when considering all of the
834 Cell Systems 12, 827–838, August 18, 2021
submissions, the variability is much more comparable and the

relationship reversed, with the TPR standard deviation was

calculated to be 0.310 and the FDR standard deviation was

calculated to be 0.265. This suggests that the top-performing

entries distinguish themselves from poorer-performing entries

by maintaining both high sensitivity and precision. Whereas,

when considering the top-performers among themselves, addi-

tional improvements were obtained by controlling the FDR

possibly due to the benefits of the employed filtering strategies.

The challenge utilized the ‘‘Model to Data’’ approach (Ellrott

et al., 2019; Guinney and Saez-Rodriguez, 2018), where partici-

pants produced and shipped a functional predictionmodel to the

challenge organizers that could be run on held-out data. There
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are many advantages to this setup beyond avoiding the transfer

of large data files. Notably, participants never saw the final

testing data set. Instead, the organizers provided simulated

training datasets to allow participants to run their model, check

their compatibility of output, estimate performance, and make

adjustments as needed. Administrators ran containerized work-

flows on behalf of participants that specified all parameters

needed for execution and thus all data remained protected.

For example, the same set up could be used to preserve patient

privacy in those cases where the evaluation data contain such

sensitive information. All entries ranked on leaderboards are

reproducible, rerunnable, and able to be distributed to the com-

munity for further analysis. For example, we expect subsequent

efforts to create better fusion detectors may come from the

investigation of ‘‘wisdom of crowds’’ ensembles (Marbach

et al., 2012) that combine the strengths of the methods. The

portability has allowed the top-performing fusion methods to

be adapted into the NCI’s genomic data commons (GDC) work-

flow system and deployed across several large datasets.

Methods profiled by this benchmarking effort were used to

generate fusion calls on the NCI’s TARGET dataset and were

included in release 25.0 of the GDC dataset. Future work data-

sets profiled with these methods will also include the BeatAML

and CPTAC cohorts.

Recent systematic comparisons have been performed to eval-

uate RNA-seq analysis methods (Kanitz et al., 2015; Teng et al.,

2016; Zhang et al., 2017). Kumar et al. (2016) conducted an

impartial survey of 12 different methods based on their accuracy,

length of execution time, andmemory requirements. Zhang et al.

(2017) and Kanitz et al. compare several methods on isoform

detection and find accuracy dependent on gene complexity

(e.g., the number of transcripts or exons), read depth, and align-

mentmethod. Similar to our findings, both reviews report that the

majority of methods perform similarly well and that a difference in

accuracy across methods was only seen at higher transcript

complexities when genes had more than 1–5 transcripts. Krantiz

et al., then goes on to explore different memory and computa-

tional efficiency considerations, which was not a focus of our

study. Teng et al. (2016) investigate data preprocessing andmet-

rics for method comparison. They advise against using correla-

tions on raw levels due to non-normality, which inspired our

use of the non-parametric tau-beta correlations in this study.

Several methods were not included in the challenge because

they were not submitted by competing teams. The challenge ad-

ministrators augmented the submissions with additional

methods, however, a number of programs were excluded due

to being either outdated or failing to pass sanity checks, produc-

ing thousands of fusion calls per sample. Additionally, a number

of methods have been developed since the time of running the

competition (see Table S1). Even so, recent reviews suggest

our survey of methods here reflect those that are most compet-

itive (Haas et al., 2019).

Our review here has included several tools, the use of spike-

ins for an unbiased assessment of sensitivity, an objective eval-

uation framework in which the administrators have run submitted

methods to generate all predictions, and a statistical procedure

to infer background fusions to accurately measure precision. In

addition to providing an evaluation ofmethods, our work contrib-

utes a tool for simulating RNA isoforms and fusions, a new
benchmark dataset against which forthcoming methods can

be compared, and all of the tested methods in standardized

workflows for re-execution, which should facilitate further

progress in this area of study. As part of our benchmark, we

employed a computational simulation that can create a cancer

transcriptome that includes alternative isoform levels as well as

novel fusions. The simulator is available as an open-source

repository and the full details of its design are described in a

companion manuscript (unpublished data). However, while the

in silico benchmarking provides a valuable assessment, an

in vitro analysis was also used to avoid any evaluation biases

among methods that use overlapping computational strategies

with the simulator as well as to assess any issues in detecting

RNA species stemming from laboratory and sequencing effects.

For this reason, we synthetically constructed isoforms and fusion

transcripts that were introduced into cell line backgrounds. The

constructs were added at pre-specified quantities of 0, 5, 25,

and 50 pg. While the spike-in design provided valuable informa-

tion to rank fusion detection entries, we failed to elucidate a

meaningful ranking of entries for the Isoform Quantification

sub-challenge. All entries were able to perfectly identify higher

from lower transcript levels between all comparisons except

the two highest levels (e.g., 25 pg compared with 50 pg). We

speculate that either the tested methods were not accurate

enough to predict the 2-fold relative difference between the 25

and 50-pg quantities or the transcripts that were ultimately

sequenced did not reflect the input quantities either due to

saturation or internal cellular degradation that both effectively

equalized the concentrations of these two spike-in levels. An

important follow-up investigation could include an additional

spike-in level among the array of levels tested here. For example,

the use of an additional 10 pg could have helped assess

methods in their ability to distinguish in the 2- to 2.5-fold range

of resolution. It is our theory that the methodology to estimate

transcript abundance may have plateaued or that the challenge

design itself lacked critical resolution to discriminate among

methods. Additional experiments including higher quantities of

spike-ins (25 to 50 pg range) also would help further elucidate

the issue.

For the Fusion Detection sub-challenge, the spike-ins were

effective for assessing the sensitivity of the submitted entries.

However, there is an issue in estimating the precision of the en-

tries because fusions were added to cell lines that may express

their own background fusions. Thus, methods predicting the

presence of such background fusions would be improperly

penalized in a precision assessment. We, therefore, attempted

to estimate the background fusions in a number of ways, first us-

ing long-read sequencing approaches that each failed for

different reasons (STAR methods, attempts to assess back-

ground transcripts with long read sequencing). To compensate,

we introduced a computational strategy to infer fusions present

in the background from submitted predictions.We reasoned that

in such cases the fusions would be predicted in multiple designs

that included the same cell line (i.e., the background set of

fusions should be the same or very similar), multiple submitted

entries would predict such cases, and they would also be de-

tected by more accurate entries. We computationally deter-

mined a set of fusions called the imputed truth (i-Truth) that

were added to the spike-in truth set (see resource table for links
Cell Systems 12, 827–838, August 18, 2021 835



ll
OPEN ACCESS Report
to SMC-RNA-Eval code). The i-Truth contributed an additional

48 high-confidence fusion calls for the final evaluation. Follow-

up validation revealed that 43 out of 48 of the i-Truth constructs

were supported by one or more sources of external evidence.

Thus, even in the absence of a ground truth orthogonal set, the

procedure and results of this challenge establish a computa-

tional strategy highly effective for unbiased assessment of

methods that could be applied more broadly to an additional

set of problems beyond RNA-seq analysis.

The detection of RNA species is becoming an increasingly

important diagnostic tool in the analysis of cancer samples,

with multi-gene transcript abundance panels used for prognosis

and prediction of response to therapy, and fusion transcripts

used for diagnosis and prediction of treatment efficacy. These

applications continue to expand, and an improved understand-

ing of the ways in which the cancer transcriptome is dysregu-

lated has the potential for basic, translational, and clinical

applications in essentially every cancer type. Key applications

will include refining tumor subtypes and their differentiation sta-

tus, mapping clonal complexity, illuminating the role of the

microenvironment, pinpointing the state and function of immune

cells, linking transcriptomic biomarkers to targeted treatments,

and understanding the differential activity of specific driver mu-

tations. It remains unclear what sequencing and computational

approaches will have sufficient accuracy to identify transcript

variants and estimate their abundances for routine clinical use.

Our results suggest that additional work is needed to identify fu-

sions in complex samples. For example, the sensitivity for de-

tecting the smallest quantities of a fusion in this challenge (5

pg) were 82% ± 8% compared with 88.0 ± 9% for 25 pgand

88.7 ± 12% for 50 pg (see Table S11). The top caller suffered

the same drop in sensitivity for the lowest spike-in level,

achieving 93.6% for the 5-pg spike-in compared with 98.9%

(for 25 pg) and 100% (for 50 pg). If we assume that the 25 pg

levels reflect the typical expression level of a fusion in a relatively

pure tumor sample, then the 5-pg quantities reflect fusions ex-

pressed at 5-fold lower levels or those expressed at the same

level in only one out of the five cells sequenced due to normal

contamination or tumor subclonal heterogeneity. While suitable

for routine cases, current methods would lead to a large number

of missed calls for subclonal variants or in samples with large

amounts of normal tissue admixture. For example, at these esti-

mated sensitivity levels, the best method is expected to miss 1

out of every 15 to 16 cases of a driving fusion if present in one

out of every five subclones or if it is expressed at lower levels.

On the other hand, for applications in which relative transcript

abundances are used to calculate signature scores, such as

the well-known PAM50 breast cancer subtypes, methods pro-

vide accurate quantitation. In conclusion, we identified, bench-

marked, and made available in a standardized containerized

format a suite of tools for estimating key features of the altered

cancer transcriptome that should further the applicability of

RNA’s use in patient care.

CONSORTIA
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Yifan Wang, Yuanfang Guan, Cu Nguyen, Christopher Sugai,

Alokkumar Jha, Jing Woei LI, and Alexander Dobin.
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FEATURE IMPORTANCE ANALYSIS

Random forest models were created using R’s randomForest

function, version 4.6-14, which implements Breiman’s random

forest algorithm (based on Breiman and Cutler’s original Fortran

code) (https://cran.r-project.org/web/packages/randomForest/

randomForest.pdf).All parameters were left as default except

for the number of trees which was set to 100. The feature impor-

tance analysis was performed using the the Boruta R package

with default parameters, version 6.0.0 (https://www.jstatsoft.

org/article/view/v036i11).

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Isoform and fusion simulation pipeline

B Simulated tumor workflow deployment

B Spike-in fusion construction

B Benchmark transcript selection

B RNA preparation and sequencing

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Attempts to assess background transcripts with long

read sequencing

B Imputing an extended truth dataset for fusion eval-

uation

B Imputed truth fusion validation

B Evaluating Isoform Quantification
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kyle Ell-

rott (ellrott@ohsu.edu)

Materials availability
This study did not generate new materials.

Data and code availability
SpikeIn SequencingData has been deposited at Synapse.org and is publicly available under the accession numbers: syn22344794.

Challenge workflows have been deposited at Github.org and is available under https://github.com/smc-rna-challenge

rnaseqSim original code is publicly available at https://github.com/Sage-Bionetworks/rnaseqSim

The scripts used to generate the figures reported in this paper are available at https://github.com/smc-rna-challenge/SMC-

RNA-Eval

Any additional information required to reproduce this work is available from the Lead Contact.

METHOD DETAILS

Isoform and fusion simulation pipeline
The simulated benchmark was constructed using 32 training and 20 test datasets (Table S5). The datasets varied in the number of

simulated fusion events ranging between 3 and 111 events. Other parameters that varied between datasets included read depth (50-

100 million reads), insert size (150 or 200 base pairs), coverage bias, and the abundance of individual transcripts.

These genomes were created using a new simulator called rnaseqSim (the source code can be found at https://github.com/Sage-

Bionetworks/rnaseqSim ).

Fusion transcripts were simulated by randomly selecting two protein coding transcripts (using Ensembl v75 annotation). For each

of the selected transcripts, a random number of exons are used to generate the fusion. If the transcript was selected as the donor,

then the number of exons incorporated are counted from the beginning of the transcript. Conversely, if the transcript was selected as

the acceptor, then the number of exons incorporated are counted from the end of the transcript. Selected transcripts are fused only at

the exon-intron boundaries. Using the exon coordinates for each selected transcript, a synthetic fusion sequence is generated using

the GRCh37.75 genome and biopython. A reference index is generated for the synthetic fusion sequence using RSEM v1.2.31 with

the STAR 2.4.2a aligner.
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For simulating isoform abundance, a diploid genome was synthetically designed to capture allele-specific SNPs and haplotypes

during read generation. First, the GRCh37 genome build (Homo sapiens GRCh37.75) and GTF annotation (Homo sapiens Ensembl

v75) were duplicated and chromosomes were labeled to distinguish the two sets of haploid chromosomes. bcftools consensus was

then used to introduce phased SNPs found in the Genome in a Bottle into each set of haploid chromosomes. The diploid genome

sequence and annotations were then used to generate a reference index with STAR v2.4.2a. Isoform abundancewas simulated using

abundance data originating from prostate cancer samples (Chen et al., 2019) and select TCGA samples including:

d TCGA-GBM: TCGA-26-5139-01A-01R-1850-01

d TCGA-LUAD: TCGA-44-6775-01A-11R-1858-07

d TCGA-LUSC: TCGA-21-1082-01A-01R-0692-07

d TCGA-OV: TCGA-24-1467-01A-01R-1566-13

d TCGA-BRCA: TCGA-BH-A1F8-11B-21R-A13Q-07

d TCGA-BLCA: TCGA-H4-A2HQ-01A-11R-A180-07

Abundance profiles were estimated for each sample using RSEM v1.2.31. Each profile was adjusted by adding noise, modeled

using a gamma distribution, to a subset of transcript selected using a binomial distribution. Synthetic fusion transcripts were incor-

porated into the expression. An abundance is randomly assigned to the fusion transcript, such that its value was greater than the

overall median transcript abundance. Abundances are then normalized to sum to 1 million, i.e. TPMs (Li and Dewey, 2011; Wagner

et al., 2012). During this normalization step, donor transcripts were removed. The abundance assigned to the fusion transcript was

then divided (randomly following a uniform distribution) between the original donor transcript and the fusion transcript. Abundances

were then allocated to one of two alleles in the diploid GTF annotation (previously described) using a uniform distribution to model

allelic expression. Finally, RSEM v1.2.31 was used to simulate the generation of the FASTQ sequence reads.

Simulated tumor workflow deployment
Each entry was submitted as a defined workflow written using the Common Workflow Language (CWL v1.0). Source code for the

algorithm and any dependencies needed for installing or running the algorithm were built into a Docker image by the participant.

Workflow descriptions for all entries are available at: https://github.com/smc-rna-challenge and Docker images are available from

https://quay.io/organization/smc-rna-challenge. All workflows were provided the GRCh37.75 genome assembly and annotation

as reference files. If additional reference files were required for the workflow, participants were allowed to upload files to synapse

and link to those files using a synapse ID.

Deployment of workflows was done using ISB cloud resources (Google Compute Engine). Most entries for the Isoform Quantifi-

cation sub-challenge were provided a virtual machine with 4 vCPUs and 15 GB of RAM (n1-standard-4) while most entries for the

Fusion Detection sub-challenge were provided a virtual machine with 16 vCPUs and 60 GB of RAM (n1-standard-16). For some en-

tries, the default resources were not sufficient to run, in which case, a virtual machine with more resources was provided (maximum

16 vCPUS and 104 GBRAM, n1-highmem-16). All entries were provided a 400 GB persistent disk and a time limit of 35 hours to com-

plete running of the workflow.

A virtual machine was created for each workflow being run on a given test dataset. The CWLworkflow, docker image, default refer-

ence files, participant-provided reference files, and test datasets were pulled down onto the VM. A JSON file was generated to point

to all necessary input files for the workflow. The CWL workflows were run with cwltool v1.0.20161007181528. Output files generated

by the CWL workflows were stored in a Google Bucket for evaluation.

Spike-in fusion construction
For the fusion constructs, genes were randomly selected, with an eye only toward the likelihood of successful PCR during library

preparation and a total length of less than 1kb. The Invitrogen GeneArt Gene Synthesis service built DNA constructs from our pro-

vided sequences, and the RNA spike-in material was generated using the NEB HiScribe T7 Quick high Yield RNA Synthesis Kit. Low

abundances of these geneswere observed post sequencing (Figure S3E). Additionally, to verify the presence of the spike-in products

in the short read sequencing, we inspected the alignment of the reads using IGV to confirm reads mapped as expected across the

junctions. We did this by including the constructed fusion sequences in the reference genome. This allowed the alignment algorithm

to easily identify reads from the fusion constructs and verify that indeed hundreds of reads exist in the cell line files.

The spike-in constructs were programmed according to the design in Table S8. Some genes had multiple isoforms (up to 3). The

transcript complexity (from 1 up to 3 per gene) varied across the samples. In addition, a range of fusions, from 7 up to 18, were

included in the samples.

Benchmark transcript selection
To ensure the accuracy of our technical spike-in approach, we elected to assemble a list of transcripts known to be non-expressors in

a suitable cell line. To this end, we assembled a cohort of normal breast tissue RNA-seq data from GTEx (GTEx Consortium, 2013),

Fantom5 (Abugessaisa et al., 2017), Illumina Body Map (Petryszak et al., 2016) and TCGA (Nawy, 2018) to establish a baseline for all

transcripts. To be considered a non-expressing transcript in normal breast tissue, transcripts were filtered to include only those with

FPKM <= 0.5 and total expression of the corresponding gene with FPKM<= 0.9, where data was available for >= 80%of the samples
e2 Cell Systems 12, 827–838.e1–e5, August 18, 2021
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(lincRNAs were excluded from consideration). Transcripts retained following this filtration of the normal data were confirmed to also

be non-expressing in both the JWGray Breast Cancer Cell Line Panel (Neve et al., 2006) and in the TCGA BRCA RNA-seq data (Neve

et al., 2006).

Criteria for transcript selection:

d We selected non-expressing genes in breast cancer cell lines, with individual transcript expression of FPKM <=0.5 and overall

gene expression of with FPKM < 0.9

d We selected genes with 3-5 transcripts, of which one ormore of the following structural variations were present in at least one of

those transcripts:
B Alternate 5’ UTR

B Alternate 3’ UTR

B Cassette exon

B Retained intron

B Alternate transcription start site

B Alternate stop codon

d Transcripts with length >0.5kbp and < 1kbp

Isoforms selected for benchmarking were converted to spike-in RNA in identical fashion to that of the synthetic fusion set dis-

cussed above.

Final benchmark collection: 20 transcripts from 6 different genes, 3-5 transcripts/gene, plus 40 additional transcripts selected for

construction of the 20 synthetic fusions (alternate splicing not taken into account for fusion).

As proof-of-concept we could accurately detect proportional increases in ‘‘expression’’ between different spike amounts, 5 rep-

licates of MDA-MB-415 (breast adenocarcinoma metastasis) RNAwas spiked with 5pg, 25pg, and 125pg and sequenced. Following

this test run, we were satisfied with our ability to measure proportional ‘‘differential expression’’ between the spike amounts. Further

examination of this BCCL exploratory analysis indicated 5pg to be closest to endogenous expression of most transcripts in these cell

lines while 125pg was excessively high, so the spike amounts were adjusted to 5pg, 25pg, and 50pg.

For the benchmark experiment, we chose six cell lines for use in the challenge. These include A549 (lung carcinoma), HCC1143

(breast primary ductal carcinoma), Jurkat I 9.2 (acute T-lymphoblastic leukemia), LNCaP clone FGC (prostate carcinomametastasis),

PC-3 (prostate adenocarcinoma metastasis), and PC9 (non-small cell lung carcinoma). Cell lines were grown to subconfluency in

RPMI media supplemented with 10% FBS.

From the original 40 selected transcripts and synthetic fusions, we selected 36 by removing the two highest and the two lowest

expressing transcripts/fusions (including one failed construct), then randomly assigning each to one of six evenly populated

spike-in groups. . Minor modifications to the random assignment were made to ensure no group contained more than one transcript

from the same gene. The six cell lines were each divided into five aliquots. Four of thesewere each spiked with the transcripts/fusions

from two of the six spike-in groups (12 constructs per replicate), attempting to randomize the groups per cell line asmuch as possible

in order to minimize the pairing of any two groups within the same replicate. (Table S6). The fifth aliquot remained unadulterated.

Finally, each sample aliquot underwent RNA sequencing.

RNA preparation and sequencing
RNA was isolated from cell lines using a Zymo Research Quick-RNA Kit following manufacturer’s instructions. Extracted RNA sam-

ples were divided into 5 aliquots (1 ug each) per cell line and spiked with different amounts of transcript and fusion constructs (Table

S7). Library preparation for RNA-Seq was performed using the Agilent SureSelect Strand-Specific RNA Library Prep Kit. Samples

were sequenced at the OHSUMassively Parallel Sequencing Shared Resource (MPSSR) core facility using the Illumina NextSeq500

for 2x100 cycles. The results of the sequencing have been uploaded to Synapse under syn22344794.

QUANTIFICATION AND STATISTICAL ANALYSIS

Attempts to assess background transcripts with long read sequencing
Because spike-ins were added to established cell lines that contained their own background transcripts, we attempted to estimate

the fusions present in the background by sequencing the cell lines using three different approaches based on long read sequencing

data. First, we attempted direct long-read sequencing on the LNCaP and A549 cell lines, using MinION nanopore sequencing. We

performed direct sequencing of poly-A RNA from A549 cell line which yielded 293,813 reads. We also performed nanopore

sequencing of cDNA from A549 poly-A RNA, which yielded 281,319 reads. While there were fusions detected in the existing reads,

the read depth was insufficient to conclusively rule out background or technical artifacts, and the large amount of sample RNA that

would be required prevented further analysis of the matched samples used for spike-in studies. Second, we performed indirect long

read sequencing to estimate the background. We obtained long-read sequencing of the LNCap cell line using the IsoSeq protocol,

paired to matched short-read sequencing. Integrated analysis of both the long- and short-read data to call fusions using IDP-Fusion

(Weirather et al., 2015), resulted in one high confidence (supported by both short/long reads) fusion (chr5:95234564-/

chr5:135587632+; KIAA0825-PCBD2). We compared the results of the hybrid short/long read fusion detection results with our

own short read paired-end sequencing data for the LNCap cell and found no fusion calls for this exact fusion (same breakpoints
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or same donor/acceptor genes). We did observe 2 entries call 2 different fusions involving PCBD2 as the donor gene. This sample

provided a comparison point, but would not take into account any fusion events that could have occurred in the passages that sepa-

rated the two aliquots. Finally, we attempted to estimate false-positive rates using the Genome in a Bottle (GIAB) sample as a null

model. To our knowledge, given the available transcriptomic data, no fusions have been detected for the SRR5665260 GIAB sample.

Consistent with this expectation, we ran the IDP-Fusion caller (Weirather et al., 2015) using both the short reads and long reads from

the sample and indeed found no identifiable fusions. Therefore, if any entries predicted fusions in this sample we could assume they

represented false positives. We ran contestant entries using the short reads of the GIAB sample. A number of the entries failed to run

on these new samples. In total, 19 of the entries were able to run on the GIAB short read data. The number of fusions predicted by

entries ranged from 0 to 208 with an average of 56 (median 22) fusions called. In summary, the results on long read sequencing either

provided too little sequencing depth to base fusion predictions or the results were inconclusive due to issues with entries failing

to run.

Imputing an extended truth dataset for fusion evaluation
From the design of the experiment, three factors enabled deeper analysis of these potential native fusions. First, contestants had

contributed a wide distribution of workflows composed of different detection methods and filtering options. Second, the same

cell lines had been used multiple times across separate spike-in experiments that created a set of biological replicates. Third, the

spike-in panel provided an estimate of the sensitivity of different entries as well as any potential meta-calling entry.

Given these factors, we created an imputed truth set (i-Truth) for each cell linemade up of the known spike-ins and those predicted

to be in the background based on a meta-caller created from the consensus of submitted entries. The first step in creating the meta-

caller was to eliminate entries that were too similar, to remove the bias of havingmultiple, near identical methods over-influence what

is interpreted as truth. Second, we removed entries that fell below a sensitivity cutoff, in this case a true positive rate of 0.6, which is

the approximate sensitivity found when running callers on the spike-ins. This meta-calling was done at the cell line level, aggregating

the calls across multiple spike-in experiments. This means the meta-calling approach would be unable to detect the spike-ins, which

would only occur in a fraction of the biological replicates, but the background native fusions would be common across the replicates.

Each i-Truth was based on an agreement cutoff, with the total number of agreeing calls across all the entries and all the biological

replicates. Fifty percent agreement could come from half of the entries agreeing on a call across all the biological replicates, or all the

entries agreeing across half of the replicates. Across the six cell lines, we used a threshold of two ormore entries or replicates being in

agreement, which would yield a total of 30,031 potential fusion junction breakpoints. With five replicates per cell line and ten repre-

sentative callers, there were 50 potential callsets.

We expect background fusions to be consistently predicted across these callsets but do not know a good agreement level across

the callsets to set for a priori detection. Higher levels of required agreement decrease the total number of calls and increase the

requirement that the calls be based on a wide variety of supporting methods and evidence. To identify an agreement threshold,

we utilized the determined rate of recall seen in the spike-in set using the representative set of callers, which was 0.726. By using

various agreement levels, we could create a new i-Truth set and evaluate both sensitivity and specificity. The total number predicted

i-Truth sites vary as a function of the confidence level, measures as k out of the 50 callsets that predicted a site’s existence (Fig-

ure S1B). Conversely, as more low confidence sites are added to the i-Truth the average recall rate of entries decreases. At its lowest

setting, an agreement level of 4%, the recall rate of the meta-caller is 5%, as the agreement rate increases, the total number of new

sites added to the i-Truth decreases and the recall rate increases. For example, out of the 30,031 breakpoints, 289 of them were

predicted by at least 10 out of 50 call sets (20%). By increasing the agreement rate to 50%, the recall rate of the meta-caller ap-

proached a recall rate of 0.736, similar to the recall rate seen in the spike-in data set. Using this threshold of agreement, 48 additional

possible RNA fusions were predicted across the cell lines and used as the i-Truth set and added to the synthetic constructs. We used

this extended set for evaluating the sensitivity and precision of individual entries.

Imputed truth fusion validation
We collected database reports and literature support for the 48 i-Truth fusions to determine prior predictions or validation for each. In

searching for previous observations of these 48 fusions, 44 had some level of breakpoint support. Of these, 28 were exact matches in

both the donor and acceptor breakpoints as well as occurring in the correct cell line or tumor type, as per either the Broad Cancer Cell

Line Encyclopedia (Ghandi et al., 2019; Panigrahi et al., 2018), a unique database which accumulates and reports fusion support data

frommultiple databases at once. At least 3 fusions have been experimentally validated in previous literature (Guo et al., 2016; Maher

et al., 2009; Winters et al., 2018). While the contents of these databases would have been generated using source material parallel to

the sequencing used in the benchmark, these databases are likely generated using the same algorithm. The summary of this analysis

can be found in Table S9. The spreadsheet covers results from both the CCLE and from FusionHub, which compiled reports from the

following databases and/or methods for predicting and reporting fusions:

d 18Cancers [EC] - FusionCatcher

d Babiceanu Dataset [BD] - SOAPfuse

d ChimerKB [KB] - Fusion database with FISH, SangerSeq, or RT-PCR validation

d ChimerSeq [CS] - PRADA, FusionScan, TopHat-Fusion, ChiTaRS

d ChimerPub [CP] - PubMed text mining
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d ChiTaRS-2.1 [CH] - Database of chimeric transcripts

d FusionCancer [FC] - Tophat2, FusionMap, SOAPfuse, chimerascan

d Klijn Database [KD] - GSNAP

d Known Fusions [KF] - FusionCatcher fusions from literature

d Literature [LT] - Known fusions compiled from literature

d Prostate Dataset [PD] - Tophat2

d Tumor Fusions GDP [TF] - PRADA

d 1000 Genomes [TG] - FusionCatcher for 1000 Genome project

d GTEx [GX] - FusionAnnotator & FusionCatcher on normal tissue

d Non Tumor Cells [NT] - FusionCatcher for non-tumor cell
Evaluating Isoform Quantification
The IsoformQuantification sub-challengewas evaluated using the Kendall’s Tau-b correlation coefficient. Simulated datawas initially

evaluated using Spearman correlation coefficient as the input model data for the simulator was TPMquantities, fully described and in

the same dimension as the results data being produced by the submissions. However, the spike-in data wasmuchmore sparse, with

18 separate isoforms spiked in at three different concentrations. Additionally the truth data from the experiment involved picograms

of spike-in material, a much different metric than the results. For this reason, the scoring against the spike-in set was done using

Kendall’s tau coefficient to evaluate rank based correlation.

For synthetically generated samples, in the Isoform Quantification sub-challenge, the abundance, in the form of Transcripts Per

Million (TPM) is a known input into the simulator. Calculation of a Spearman correlation coefficient of the TPM outputs for the entries

could be fully calculated. However, evaluation of the isoform abundance in the spike-ins is confounded by two factors: 1) the input

quantities are much more sparse and 2) the units of measurement are not linearly associated to the output units. The full spike-in

experiment was developed by spiking in pairs of transcripts across 6 different cell lines, which causes a much more sparse set of

possible points for evaluation. Secondly, the inputs to the spike-in system were in picograms of material spiked into the system.

We have demonstrated correlation of spike-in quantity to TPM (shown in Figure S2E), but this is for the same transcript across mul-

tiple samples. Each transcript will have a different coefficient that connects the spike-in amount in picograms to the output TPMs.

This means that direct comparison between different transcripts in a single sample in the TPM space could be distorted by this

mix of coefficients. Thus, for evaluating isoform quantity in the spike-in set, we evaluated the predicted abundance level of a single

transcript across multiple samples.

In order to evaluate an entry’s ability to determine isoform abundance in the spike-in samples, we calculated a Kendall’s Tau-b

Score (KTBS), by first calculating separate Kendall Tau-beta correlations for each transcript (across replicates and cell lines). The

Kendall’s Tau-b correlation thus compares the agreement of the abundance ordering between the predictions and the truth for

one transcript. Importantly, the Kendall Tau-b statistic makes adjustment for ties, which do exist in our truth set.

The KTBS for each entry was then defined as the mean of the Kendall Tau-b correlations computed for each of the 18 transcripts.

(Figure 3B).We then ranked the submissions by KTBS (Figure 3C). Because this ranking resulted in close scores amongmany entries,

we performed a leave-one-out cross-validation and bootstrap ranking (Figure 3A). The leave-one-out procedure was performed by

setting aside one transcript from the KTBS calculation to ensure that any one transcript did not unduly influence the ranking of any

given method. The final ranking of the leave-one-out procedure was based on the average rank of the method across 18 folds. In

order to more finely compare methods with similar accuracies, we performed a bootstrap procedure. To do this, for each method,

, we drew bootstrap samples from the 18 transcript Kendall Tau-b correlations 1000 times. We then ranked the methods by the mean

of each Tau-b score distribution. This allowed us to estimate and significantly compare the mean and variance of the closely ranked

methods. We also confirmed that there was no bias between genes by calculating a Tau-b correlation score within the 3 transcripts

per gene and the 5 replicates among cell lines (Figure S2A).
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