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Summary 
  

Triple negative breast cancer (TNBC) is an aggressive form of breast cancer with poor 

patient outcomes, and an unmet clinical need for targeted therapies and better model systems. 

Here, we developed and comprehensively characterized a diverse biobank of normal and breast 

cancer patient-derived organoids (PDOs) with a focus on TNBCs. PDOs recapitulated patient 

tumor intrinsic properties and a subset of PDOs can be propagated for long-term culture (LT-

TNBCs). Single cell profiling of PDOs identified cell types and gene candidates affiliated with 

different aspects of cancer progression. The LT-TNBC organoids exhibit signatures of aggressive 

MYC-driven basal-like breast cancers and are largely comprised of luminal progenitor (LP)-like 

cells. The TNBC LP-like cells are distinct from normal LPs and exhibit hyperactivation of NOTCH 

and MYC signaling. Overall, our study validates TNBC PDOs as robust models for understanding 

breast cancer biology and progression, paving the way for personalized medicine and better 

treatment options. 
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Introduction 

 Breast cancer is characterized into several histopathological subtypes based on 

the expression of various receptors: estrogen (ER), progesterone (PR) and human 

epidermal growth factor receptor 2 (HER2/ERBB2). Molecular subtyping revealed 

multiple subgroups based on gene expression patterns that have been refined overtime 

and constitute luminal A, luminal B, HER2-enriched, basal-like, and normal-like breast 

cancers (Parker et al., 2009; Perou et al., 2000; Sørlie et al., 2003). Luminal A 

(ER+/PR+/Her2-) is the most prevalent and constitutes ~70% of all breast cancer cases, 

luminal B (ER+/PR+/HER2+) make up ~12% of cases, HER2-amplified (ER-/PR-/HER2+) 

represents ~5% of total cases and the basal or triple negative breast cancer (TNBC, ER-

/PR-/HER2-) makes up ~12% of total breast cancer cases (Prat and Perou, 2011). The 

majority of luminal breast cancers exhibit low proliferation rates while the TNBCs are 

highly aggressive and proliferative in nature. Since TNBCs lack ER/PR and HER2 

receptors, patients are exempt from any targeted endocrine or HER2 therapies resulting 

in non-specific cytotoxic chemotherapy as the standard of care. The majority, but not all, 

TNBCs fall under the basal-like subgroup of breast cancer by gene expression based 

PAM50 profiling and a small subset belong to the highly invasive claudin-low subgroup 

(Herschkowitz et al., 2006; Parker et al., 2009; Prat et al., 2010; Prat and Perou, 2011). 

Further molecular characterization of TNBCs revealed heterogeneity within this subset 

and at least 6 molecular subtypes have been identified that can be used to design more 

targeted therapies (Lehmann et al., 2015, 2011). TNBCs are typically presented as high-

grade carcinomas (Howlader et al., 2014) and show a significantly poor 5-year prognosis 

compared to other subtypes (Curtis et al., 2012; Liedtke et al., 2008; Rueda et al., 2019). 
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Therefore, there is an unmet clinical need to better understand triple-negative disease 

progression and identify more precise druggable targets, and specific therapies for this 

cohort of breast cancer patients.  

3-D organoid models have gained traction over recent years as the next generation 

of models for studying disease and development (reviewed in (Fujii and Sato, 2021; 

Tuveson and Clevers, 2019)). While cell lines, spheroids and mouse model-derived 

organoids have been the primary in vitro model systems for studying cancer biology; 

patient-derived organoid (PDO) models have now been developed for a variety of cancers 

including those originating in the colon (Sato et al., 2011), pancreas (Boj et al., 2015), 

ovary (Hoffmann et al., 2020; Kopper et al., 2019), prostate (Beshiri et al., 2018) and 

breast (Sachs et al., 2018). Sachs et al. developed a methodology for growing human 

breast tumors ex vivo as organoid models that has now been expanded to the growth of 

organoids from normal mammary tissue as well (Dekkers et al., 2020; Rosenbluth et al., 

2020). While cancer cell lines have been a valuable resource for providing insights into 

cancer biology and drug development (Barretina et al., 2012; Garnett et al., 2012; Yu et 

al., 2016), PDO models are not only patient-specific but also provide a three-dimensional 

context which is closer to that of the actual tumor microenvironment. PDOs, therefore, 

represent unique model systems to study disease progression and for the identification 

and validation of better treatment options. However, we do not yet fully understand the 

extent to which these models recapitulate the cellular heterogeneity and complexities of 

triple negative disease. 
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Here, we developed a diverse breast cancer PDO biobank and performed 

comprehensive genomic, transcriptomic and cellular characterization of organoids with 

an emphasis on TNBCs. Using genomic assays we show that our organoid models 

recapitulate pathogenic single nucleotide variants (SNVs) and copy number alterations 

(CNAs) of breast cancers as portrayed in large scale breast cancer genomic datasets 

(Curtis et al., 2012; Koboldt et al., 2012a; Nik-Zainal et al., 2016; Shah et al., 2012) and 

reveal lesser studied cancer driver genes. Transcriptomically, our biobank recapitulates 

the various subtypes and signatures of breast cancers, with a subset of organoids 

exhibiting signature profiles associated with poor patient outcomes. In-vivo transplants of 

these organoids highly recapitulated the patient-tumor morphology, providing strong 

evidence of retention of individual tumor intrinsic properties in long-term organoid 

cultures, even for models derived from rare BCs. In addition, we find that while normal 

PDOs retain the major cell types found within the mammary epithelium, the TNBC PDOs 

have lost this lineage specificity and are predominantly enriched for luminal progenitor 

(LP)-like cells. Single cell RNA-sequencing (scRNA-seq) of TNBC and normal PDOs 

identified differential signatures between the tumor and normal LP cells, providing insights 

into putative mechanisms of tumorigenesis. Lastly, we identified cells with various gene 

expression signatures in TNBC organoids that can be used to model and perturb various 

aspects of cancer biology, including tumorigenesis, hypoxia response, and EMT. Overall, 

our comprehensive characterization of TNBC organoids identified them as valid cancer 

models for studying cancer biology and for applications in precision medicine. 
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Results: 

Establishment and somatic variant profiling of a diverse patient-derived breast 

cancer organoid biobank 

Breast cancer tissues along with paired normal breast tissues were acquired from 

female patients and developed into 3-D organoids. In addition to breast cancer tissues, 

we also collected normal reductive mammoplasty samples from 10 cancer-free patients 

to generate normal PDOs for downstream analyses. The majority of tumor samples were 

from patients with invasive ductal carcinomas (52/83, Fig. 1A), 11/83 were from invasive 

lobular carcinomas, 4/83 were from metastatic lymph nodes and a small percentage from 

other categories (Fig 1A, Table S1). The majority of the tumor samples (43/83) were 

luminal BC as defined by immunohistochemistry (ER/PR+/HER2-), 33/83 were from 

TNBCs (ER-PR-HER2-), 2/83 were from ER/PR+/HER2+ BCs, 2/83 were from ER-/PR-

/HER2+ subtype, and 3/83 samples belonged to post-treatment residual tissue with no 

visible carcinoma (NA) (Fig 1B). Samples were collected from patients of various age 

groups (Fig 1C) and diverse ethnic and racial backgrounds (Fig 1D). An increased 

proportion of TNBC tumor samples was observed from black patients with African or west-

Indian heritage (Fig 1D, Table S1) which recapitulates the higher incidence of TNBCs in 

the African-American community (Perou, 2011; Prakash et al., 2020). Using a DNA-seq 

panel of 143 cancer driver genes, we identified pathogenic single nucleotide variants 

(SNVs) in 45 tumor organoid lines (Fig 1E); PIK3CA was mutated in 33% of the tumor 

organoids, the majority of which were from patients with luminal breast cancer. 24% of 

the organoids (50% of TNBC PDOs 9/18) had a pathogenic TP53 mutation and primarily 

represented the high grade TNBC cohort (Fig 1E). Two of the organoids are derived from 
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a patient with rare breast cancer showing adenoid cystic carcinoma (AdCC) like 

morphology, NH87T (primary tumor) and HCM-CSHL-0655-C50 (lymph node metastasis 

from the same patient) (Table S1). The AdCC organoids show a non-traditional TNBC 

mutation profile with pathogenic mutations in APC, KDM6A and NOTCH1 (Fig 1E), which 

were previously observed in AdCCs of the breast (Fusco et al., 2016).  Mutations in 

KMT2C and GATA3 were also observed in a variety of luminal breast cancer organoids, 

CDH1 mutations were present in 11% of PDOs all of which belonged to invasive lobular 

carcinomas, and ARID1B mutations were found in a few TNBC-derived organoids (Fig 

1E). Overall, the mutation profiles of patient-derived BC organoids are in concordance 

with the mutational landscape of BCs (Curtis et al., 2012; Koboldt et al., 2012a). A 

relatively large subset of tissues (24/83) that resulted in cultured organoids did not have 

pathogenic SNVs (Fig 1F, Table S1), while 10/83 samples dropped off in culture at early 

passages (Fig 1F). The PDOs with pathogenic SNVs showed a range of growth properties 

in vitro with subsets exhibiting long-term continued expansion while others seem to have 

more limited cultures either in terms of maximum passages reached or limited expansion 

abilities (Table S1).  

A comparison of the SNV profile between several pairs of patient tumor and PDOs 

showed high concordance of the pathogenic SNVs between the tumor and tumor derived 

organoids (Fig S1A), except in some cases where the SNVs are present at a much lower 

variant allele frequency (VAF) in the tumor, for instance, NH84TT-P0 showed <25% TP53 

VAF compared to 100% VAF in NH84TT-p10 PDO (Fig S1A) suggesting normal 

contamination in the tumor tissues and a successful outgrowth of cancer cells in organoid 

cultures. Longitudinal analyses for some patient-derived organoids showed the stability 
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of primary driver mutations overtime in culture (Fig S1B). To determine whether the 

amount of tumor material was a limiting step for generation of organoids, we collected 

tumor scrapings (see methods) from a subset of tumor samples. A comparison of tumor 

tissue (labeled TT) and the scrapings (labeled Sc) from three different patients (Fig S1C) 

showed high concordance and indicates that, if necessary, small amounts of tumor 

material can be used to generate organoids. We also examined the pathogenic SNVs in 

TNBC tissue samples (p0) that did not result in a successful generation of organoids 

(establishment or long-term cultures) and 6/10 had TP53 mutations and some samples 

also had BRCA1/2 mutations (Fig S1D), the latter were largely absent in successful 

organoid cultures (Fig 1E). 

 

Breast cancer organoids are enriched for copy number alterations 

Having identified pathogenic driver mutations for the tumor-derived organoids, we 

performed copy number analysis using SMASH (short multiply aggregated sequence 

homologies) (Wang et al., 2016) for various PDOs. TP53 mutated TNBC PDOs make up 

the majority of the ER- subset and are highly genomically altered compared to the luminal 

ER+ organoids (Fig 2A, B, Table S2). Some organoids that were deemed to be derived 

from tumor based on pathogenic SNVs (eg. LNS12T, LNS18T, NH06T etc.) showed no 

prominent CNAs. Some TNBC PDOs that showed trace SNVs such as NH58T, NH72T 

and NH66T also showed minimal CNAs (Fig 1E and 2A). In keeping with large scale 

genomic datasets (Curtis et al., 2012; Koboldt et al., 2012a), a consistent gain of 

chromosome 1q (chr1q) and loss of chr16q was observed in the luminal organoids where 

CNAs were detected (Fig 2A). The TP53 mutated TNBC organoids were highly 
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genomically aberrant where multiple lines showed a gain of chromosomes (chrs) 1q, 8q, 

19q and chrs 7, 20 and 21; loss of chrs 3p, 4, 5, 17p and Xp was also observed in multiple 

organoid lines (Fig 2A). These TNBC PDOs also showed copy number loss of chr4q and 

chr5q (Fig 2A) that have been previously reported to be over-represented in basal-like 

breast cancers (Weigman et al., 2012). Of note, the AdCC-like organoids, NH87T 

(primary tumor) and HCM-CSHL-0655-C50 (lymph node metastasis from the same 

patient), were considerably less genomically aberrant as compared to the other TNBC 

organoids and showed focal amplification of chr8q and deletion of chr6p (Fig 2A, C-D). 

Interestingly, the chrX deletion was only observed in the primary tumor (NH87T) sample 

(Fig 2A, C) and a focal deletion was observed in chr2 of the lymph met HCM-CSHL-0655-

C50 (Fig 2C). The AdCC organoid CNA profiles are consistent with the low CNA profiles 

that are typically observed in AdCC-like breast cancers (Fusco et al., 2016).  

For a subset of these samples, we compared the copy number profiles of the 

primary tumor with the paired tumor and normal organoids and observed more 

pronounced CNAs in the organoids compared to the tumors suggesting that the organoid 

culture enriches for tumor cells (Fig 2C-D). As observed in the SNV data (Fig S1) the 

NH84T tumor (p0 with <25% VAF of pathogenic TP53) was likely very heterogenous and 

contained a significant population of normal cells, however, the tumor cells successfully 

outgrew the normal and resulted in a highly pure tumor organoid culture over multiple 

passages (Fig 2C-D). For HCM-CSHL-0366-C50 and NH87T the early passage p1 or 

tumor tissue (p0) respectively, had relatively less normal contamination and maintained 

their copy number profiles over time in culture (Fig 2C-D). While copy number profiles 
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were enriched for in successful tumor PDOs, for some cultures we observed loss of copy 

number alterations in the organoids over-time, suggesting a normal outgrowth (Fig S1E).  

Since tumor organoids are more enriched for tumor cells compared to the p0 tumor 

tissue, we profiled the putative cancer driver gene panel in individual organoid samples. 

TNBC PDOs typically had a higher copy number alteration frequency of these cancer 

driver genes (top bar-graph in Fig 2B). TGFB2, MDM3, AKT3, DDR2 and INSRR showed 

the highest frequency of alteration (Fig 2B) and are all genes present on chr1q that is 

amplified in both luminal and TNBC PDOs (Fig 2A-B). Interestingly, we also found a 

higher frequency of deletion of KDM6A, ARAF and RPS6KA3 tumor suppressors, located 

on chrXp, specifically in the TNBC-derived organoids (arrows in Fig 2B).  Loss of 

PPP2R2A (chr8p), which was previously reported to be a tumor suppressor in breast 

cancer (Curtis et al., 2012), was also identified in 38% of the samples, the majority of 

which are of TNBC subtype (Fig 2B). Furthermore, there is an over-representation of loss 

of chr3p in the TNBC samples, that results in the deletion of potential tumor suppressors: 

ACVR2B, BAP1, CTNNB1, MLH1, MYF88 and PBRM1 (Fig 2B). Copy number loss of 

chr6q is also common in TNBC organoids and results in loss of ARID1B, MAP3K4, and 

PARK2, a master regulator of G1/S cyclins (Gong et al., 2014). ESR1, the gene encoding 

estrogen receptor (ER), present on chr6q is also frequently lost in these TNBC organoids 

(Fig 2A-B). We also identified gains of CALR, JAK3, KEAP1, PIN1 and SMARCA4 that 

are associated the amplification of chr19p and amplification of mismatch repair (MMR) 

genes MSH2 and MSH6 located on chr2p (Fig 2A-B) in subsets of TNBC PDOs. While 

MMR genes are commonly mutated in various cancers, their overexpression was recently 

associated with aggressive prostate cancers (Wilczak et al., 2017) and was shown to 
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promote genomic instability in yeast (Chakraborty et al., 2018) but its role is yet to be 

determined in TNBC disease progression. 

Taken together, the SNV and copy number profiling of PDOs shows robust 

retention of genomic features of various types of breast cancers, including luminal, TNBC, 

and rare AdCC-like carcinomas. While there might be small alterations overtime in PDO 

cultures, the key pathogenic mutations and overall copy number profiles are conserved 

throughout organoid culture (Fig S1, 2C-D) supporting their utilization as valid cancer 

models. Additionally, we find overrepresentation of some lesser studied copy number 

variants in our data such as loss of tumor suppressors RPS6KA3, PPP2R2A and PARK2 

and copy number gains of MMR genes MSH2 and MSH6 that might have important 

unexplored consequences in breast cancer progression.  

 

TNBC organoids recapitulate the transcriptome of basal-like breast cancers 

Next, we performed RNA-seq on various tumor and normal-derived organoids to 

profile their transcriptomes (Table S3). Hierarchical clustering of samples by euclidean 

distance divided them into six groups (Fig 3A). We used supervised clustering using 838 

previously curated gene expression signatures (Fan et al., 2011; Garcia-Recio et al., 

2020; Gatza et al., 2014) (Table S4) and found similar patterns of clustering among the 

various organoid lines (Fig 3B). Group 4 is largely comprised of the true normal organoids 

(labeled with prefix NM) derived from breast tissues obtained from individuals undergoing 

reductive mammoplasty (Normal in Fig 3A-B), paired normal PDOs derived from normal 

tissue adjacent or distal to the tumor and very few tumor-derived organoids; this cluster 

showed an enrichment of normal mammary stem cell (MaSC) signatures and low 
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proliferation related gene expression profiles (Fig 3B-C). Group 1 is comprised of a 

mixture of either paired normal organoids or tumor organoids that did not have a strong 

driver mutation (eg. PIK3CA or TP53) (Fig 3B, 1E). This subgroup had a signature profile 

that was distinct from the true normal group (Group 4) and is most similar to luminal cell 

signatures (Fig 3B). The samples in this group also have a higher proliferation signature 

compared to the true normal Group 4 (Fig 3B). Group 5 mostly contained PDOs derived 

from Luminal BC and showed luminal like gene-expression signatures (Fig 3A-C). 

Signature profiling also uncovered immune and stromal signatures that highly 

corresponded to samples in Group 3 (Fig 3A-B). Interestingly, two of the samples in this 

group NH63T and NH54T exhibited limited propagation in culture due to stromal 

outgrowth leading us to hypothesize that these samples had some fibroblast-like cells. 

We also found a strong interferon (IFN) signature in this group along with some additional 

PDOs from Group 6 (Fig 3B, S2B). 

Groups 2 and 6 are comprised mostly of TNBC organoids and all organoid lines in 

these groups could be propagated to long-term cultures (>passage10, labeled LT-

TNBCs) and showed continued expansion (Fig 3A-B). The only exception is the NH48N 

normal sample, which was confirmed to be mostly tumor by copy number analysis and 

identical to its counterpart NH48T (Fig S2A). The most prominent signatures of Groups 2 

and 6 correspond to basal-like breast cancer gene-sets that are also defined by luminal 

progenitor (LP) like signatures (Fig 3B-C, S2B-C). LP-like gene expression has previously 

been shown to be associated with basal-like breast cancers (Lim et al., 2009). The 

organoids in this group also showed enrichment of proliferation signatures (Fig 3B-C) and 

the majority had a TP53 mutation which was in conjunction with the PIK3CA mutations 
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for three samples (HCM-CSHL-0773-C50, HUB4T and HCM-CSHL-0155-C50) (Fig 3A). 

We also observed a MYC amplification signature in this subgroup (Fig 3D) that was 

accompanied by the copy number amplification of cMYC in many of these PDOs (Fig 

S2D). Additionally, gene sets associated with hypoxia, glycolysis, angiogenesis and fetal 

MaSC (fMaSC) metabolism signatures were also enriched in LT-TNBCs (Fig 3B-C, S2B). 

The VEGF 13-gene signature showed high correlation with basal-like breast cancers 

(Perou, 2011), has prognostic significance and is associated with poor outcome in breast 

and other cancers (Hu et al., 2009). Similarly, fMaSC metabolism signature is a refined 

8-gene signature, which primarily comprises genes associated with glycolysis and fatty 

acid metabolism, and was previously shown to be associated with TNBCs and metastatic 

TNBC lesions (Giraddi et al., 2018). This suggests that the PDOs with these signatures 

are likely associated with tumors linked to poor outcomes. 

 Of note, none of the TNBCs propagated in culture showed expression profiles of 

the more mesenchymal-like claudin-low subgroup (Prat et al., 2010), possibly because 

the culture conditions are more favorable towards the propagation of epithelial cells. 

Overall, the gene expression signatures of the normal and tumor-derived organoids depict 

the expression profiles of luminal and basal-like breast cancers. The TNBC organoids 

that can be propagated to long-term cultures (LT-TNBCs), Groups 2 and 6, had very 

classic basal-like breast cancer signatures and were associated with proliferation, 

hypoxia and c-MYC amplification gene expression signatures (Fig 3B-D, S2C-D). 

Furthermore, about 40% of basal-breast cancers exhibit c-MYC amplification (Koboldt et 

al., 2012a) and the majority of our LT-TNBC organoids show an enrichment of c-MYC 
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(Fig S2D) signature suggesting that our organoid system results in long-term expansion 

of TNBCs that are c-MYC driven and have a LP-like basal breast cancer signature.  

 

TNBC organoids exhibit heterogenous growth properties in culture 

In order to understand the complexity of organoid cultures we profiled the growth 

properties of various TNBC and normal organoids. TNBC organoids appear as densely 

filled balls of cells which is in stark contrast to the normal organoids that have a 

predominant acinar structure with a central lumen and some organoids that were filled 

(NM04N in Fig 4A). The TNBC-organoids showed varying degrees of propagation in 

culture where some lines could be propagated for over 10 passages (LT-TNBCs) with 

continued expansion while many short-term culture lines dropped out of culture at various 

points (Fig 4B, S3A) and had limited material to assay. Low starting material, limited 

proliferation, normal and stromal outgrowths were among the primary reasons for short 

term culture growth (Fig S3A). We focused on the LT-TNBCs for all downstream 

analyses. IHC for the proliferation marker, Ki-67, in confluent PDO cultures showed large 

variability of expression amongst the various organoid lines and also within each culture 

(Fig 4A- lower panels, C). The LT-TNBC organoids were highly proliferative compared to 

normal and luminal organoids (Fig 4A, C). There was a lot of heterogeneity within 

organoid cultures with some organoids being mostly comprised of proliferating cells, for 

instance NH85TSc and NH95T, while other cultures were more mixed (Fig 4C). Normal-

derived organoids typically had <10% of proliferating cells per organoid and showed 

luminal-basal organization with a hollow lumen, while TNBC-derived organoids tend to be 

highly proliferative and undifferentiated with little to no observed cellular organization (Fig 
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4A). When seeded as single cells, we observed a range of organoid formation amongst 

the various lines (Fig 4D) which did not always correlate with the proliferative index of the 

PDOs. 

 

TNBC organoids can recapitulate tumor morphology in-vivo 

 Next, we examined the in-vivo tumor forming abilities of these patient-derived 

cultures. We transplanted organoids from eight different TNBC (LT-TNBCs) lines into the 

mammary-fat pads of NOD-SCID mice and assayed their tumor formation and metastatic 

potential over time (Fig 5A). We found striking differences in the tumor forming ability 

between the different organoid lines (Fig 5B) despite having highly aberrant genomic 

profiles (Fig 5C). TNBC organoids HCM-CSHL-0366-C50, NH85TSc and NH87T resulted 

in palpable masses around 30 days and steady tumor formation in 100% of injection sites 

(Fig 5B, S4A). NH85TSc-derived tumors grew rapidly and resulted in visibly necrotic 

masses that needed to be resected at ~100 days. HCM-CSHL-0366-C50 resulted in 

primary tumors that also developed fluid filled cysts on top of the tumors that drained on 

their own. NH87T and HCM-CSHL-0655-C50 are the AdCC-like primary tumor and 

lymph-node metastasis from the same patient. Interestingly, while NH87T formed tumors 

rapidly, HCM-CSHL-0655-C50 did not and the tumors remained small (Fig 5B, S4A), 

despite both of these lines having equivalent growth properties in vitro (Fig 4). This 

observation was consistent for the two independent transplant experiments done with 

different passage organoids (Fig S4A). NH95T resulted in small tumor masses at multiple 

injection sites that were slow to grow while NH84T and NH93T had small tumors 

observable only in fat-pad histology sections of some sites and NH64T did not result in 
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any primary tumors (Fig 5B, S4A-B) despite being highly genomically aberrant (Figs 5C, 

1-2) and having high proliferation and organoid formation rates in-vitro (Fig 4C-D).  

Remarkably, the xenograft tumors resulting from HCM-CSHL-0366-C50, 

NH85TSc, NH87T and NH95T organoids recapitulated the morphology of the patient 

tumor despite previously being in culture for up to 18 passages. The tumor and the 

organoid-xenograft from patient HCM-CSHL-0366-C50 were the most distinct and 

showed squamous differentiation with pleomorphic cells that were variable in size and 

had cells with either oval or pale nuclei with prominent nucleoli (Fig 5C). We also observed 

cells that had thin spinous connections with adjacent tumor cells which were also present 

in the organoids (black arrows Fig 5C). NH85TSc tumor and organoid-xenografts both 

showed highly undifferentiated morphology with large necrotic areas and stromal 

compartments infiltrating in between the tumors (Fig 5C). Lastly, NH87T tumor was a 

TNBC type with AdCC like features that are characterized by cribriform architectural 

patterns and pseudo-lumens (Fusco et al., 2016; Marchiò et al., 2010). While the 

organoid-derived xenograft had a lower stromal composition compared to the patient 

tumor it still recapitulated the key features of the original tumor, including the presence of 

cuboidal cells, cribriform architecture and pseudo-lumens (yellow arrows Fig 5C). While 

NH95T formed tumors at a much lower efficiency (Fig 5A, B), the tumors that did form 

had morphological similarities to the original patient tumor (Fig 5C). The patient tumor 

cells showed an organization pattern which was recapitulated in the organoid-derived 

xenografts and to some extent in the NH95T organoids (Fig 5C). 

 Of note, patients from whom the fast-growing organoids were derived, i.e., HCM-

CSHL-0366-C50, NH85 and NH87, presented with poor outcomes and diagnosis (TMN 
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staging in Fig 5B). Patient HCM-CSHL-0366-C50 had rapid metastasis to the brain and 

succumbed from the disease, patient NH85 had local recurrence in the lymph node and 

patient NH87 presented with a positive lymph node at initial diagnosis (Table S1). Using 

IHC with a human mitochondrial antibody we only observed micro-metastasis and single-

cell metastasis in our experiments (Fig S4A, C), however, altering the experimental 

conditions such as: prolonging the end-point, using a more immunocompromised 

NOD/SCID gamma (NSG) mouse model or tail-vein injections might result in more 

metastatic lesions and will be examined in future studies. Thus far, our data shows that 

TNBC PDOs recapitulate the tumor intrinsic properties of the original tumors at genomic, 

transcriptomic and morphological levels.  

 

TNBC derived organoids are enriched for luminal-progenitor-like cells 

To fully assess the utility of PDOs as cancer models, we next asked what were the 

cell types represented within these organoids and how did they differ from the normal 

derived PDOs. In order to profile the cell-types present within the normal and TNBC 

organoids, we used a combination of flow cytometry and single cell RNA-seq (scRNA-

seq). We assayed for mammary epithelial lineages using EPCAM and CD49f as luminal 

and basal cell markers respectively (Dekkers et al., 2020; Lim et al., 2009; Raouf et al., 

2008; Rosenbluth et al., 2020). As previously shown (Rosenbluth et al., 2020), the normal 

derived organoids recapitulate the EPCAM+ luminal lineage, EPCAM+/CD49f+ luminal 

progenitor cells and EPCAM-/CD49f+ basal cell lineages (NM07NL in Fig 6A). The 

populations slightly fluctuated between the different normal lines and passages but 

overall, the different lineages were observed in all normal organoids (Fig 6A-C, S5A, 
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Table S6). TNBC organoids were less heterogeneous in the expression of these markers, 

and as observed by RNA-seq signatures (Fig 3B, S2C), showed an enrichment of luminal 

progenitor-like cells (Fig 6A-B) which had co-expression of EPCAM and CD49f but 

showed slightly different and patient-specific expression patterns of these markers (Fig 

6A, S5A). TNBC organoids also showed a higher gene expression of EPCAM and CD49f 

(gene ITGA6) compared to the normal organoids (Fig S5B). Some TNBC PDOs, for 

example NH84T, had a more luminal cell flow-cytometry profile, despite clustering with 

the other LT-TNBCs at the transcriptome level. Interestingly, metastatic TNBC lines HCM-

CSHL-0773-C50 and HUB4T also had an enrichment of more luminal-like cells (Fig 6B, 

S5D).  NH85TSc which was derived from a patient that later relapsed and HCM-CSHL-

0366-C50, which showed rapid progression in the patient, also had a more luminal cell 

profile with higher percentage of EPCAM only cells (Fig 6A-B) despite showing gene 

signatures of the basal-like BCs. The EPCAM/CD49f profile of the individual lines was 

stable overtime at different passages (Fig S5C). Additionally, while always observed in 

the normal-organoids, we rarely observed CD49f only cells in the TNBC-organoids (Fig 

6A-B, S5A, D). We performed longitudinal analysis for one of the patient-derived organoid 

lines and observed an enrichment of the tumor LPs in culture over time in early passages 

(Fig 6C) which coincided with a more pronounced copy number profile of the TNBC 

organoids (Fig 6D) suggesting LP-like cells being the predominant cancer cell population 

in TNBCs and potentially the cell of origin of these cancers. 

 In order to better understand the cellular composition of these organoids, we 

performed scRNA-seq analysis on three normal and seven TNBC organoid lines. The 

study was done in three experimental batches (Fig S5E) and processed where each of 
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the samples was quality controlled and filtered to remove cells with high mitochondrial 

gene content and low gene identification (i.e. dead cells). The filtered matrix was SC-

transformed using Seurat (Stuart et al., 2019) and the samples were integrated to account 

for the different batches (Fig 6E). Clustering of data identified 19 clusters (Fig 6E) with 

some clusters being highly representative of the normal organoids (clusters 0, 3, 5, 6, 9, 

11 in Fig 6F) while other clusters were largely comprised of tumor cells. Tumor organoids 

were distinct from normal, with some overlap in clusters 0, 3 and 9 (Fig 6F-H). Expression 

profiles of EPCAM and ITGA6 (gene encoding CD49f) (Fig 6H) recapitulated the data 

from flow cytometry (Fig 6A-B) where tumor organoids are predominantly of the luminal 

progenitor nature as measured by co-expression of EPCAM and ITGA6 (CD49f) while the 

normal organoids recapitulate the three broad mammary epithelial lineages: mature 

luminal (EPCAM+), luminal progenitors (LPs, EPCAM+/CD49f+) and myoepithelial/basal-

like cells (Epcam-low/CD49f+). Unlike the normal organoids, all tumor cells were 

EPCAM+ and a subset of those had low ITGA6 (Fig 6H). In concordance with the flow 

cytometry data (Fig 6A), the ITGA6-low cells were largely present in HCM-CSHL-0366-

C50 and NH85TSc. NH93T and the NH95T organoid line had similar profiles and 

occupied similar space as the normal LP cells (Fig 6H). Lines NH87T and HCM-CSHL-

0655-C50 are paired primary and lymph node metastasis samples from the same patient 

and occupied very similar spaces with some overlap with normal LP cells (Fig 6H), while 

NH64T, NH85TSc and HCM-CSHL-0366-C50 are very distinct from the normal lines. 

Interestingly, there was a significant overlap between the clusters identified between 

NH85TSc and HCM-CSHL-0366-C50 samples (Fig 6H) in keeping with their 

transcriptome similarity (Fig 3A) and rapid tumor progression in vivo (Fig 5A). 
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 This data builds on previous studies that have correlated an LP-like expression 

signature with basal-like breast cancers (Lim et al., 2009) and have shown that LP cells 

are the cell of origin of BRCA-mutated basal breast cancers (Molyneux et al., 2010). We 

suggest that LP-like cells are the possible cell of origin for a broader subset of TNBCs. 

Interestingly, a higher percent of EPCAM+ only cells seems to be associated with a 

greater degree of disease progression, however, this needs to be further investigated. 

 

Tumor LP-like cells exhibit altered expression and have an upregulation of NOTCH 

and MYC downstream pathways 

 Since TNBC organoids had a large proportion of LP-like cells that seemed distinct 

from the normal LP cells (Figs 6, S5) we performed integrated single cell analysis by SC-

transforming individual samples and performing an anchor-dependent integration for all 

individual samples. We identified thirteen clusters between the tumor and normal cells 

(Fig 7A) out of which clusters 6, 8, 10 and 9 represented cell cycle clusters (Fig S6A) with 

cluster 6 representing a population of G1-S phase cells, cluster 8 representing S-phase 

cells, cluster 9 S-G2M transition cells and cluster 10 marking G2M cells while the 

remaining clusters represented G1 cells (Fig S6A-C). The cell clusters identified 

represented biologically meaningful cell-types recently annotated by single cell 

sequencing of adult human breast epithelium (Nguyen et al., 2018).  Cell types identified 

included: XBP1, AGR2 expressing mature luminal cells (Mat lum, cluster 1), APOE, 

KRT6A expressing basal stem-like cells (basal SC, cluster 4), TAGLN, TIMP1 expressing 

myoepithelial cells (Myo), SLPI expressing luminal progenitor cells (LP, cluster 7) and 

LTF expressing secretory cells (LP sec, cluster 2) (Fig 7B, S6C). To further validate the 
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lineage specification in organoids we overlaid the published mammary epithelial gene-

sets (Lim et al., 2009) and computed a score for each of the three mammary epithelial 

cells. The normal cell clusters showed a much stronger cell type enrichment score while 

the tumor cells despite being predominantly EPCAM+/CD49f+ showed a more diffused 

enrichment of these signatures, suggesting some cell type heterogeneity within these 

tumor organoids (Fig 7C). In normal organoids, Clusters 2,7 and 11 had a higher 

enrichment for luminal progenitor (LP) cell score, while cluster 1 showed an enrichment 

for mature luminal (mature Lum) cells and cluster 3 was predominantly of the basal 

mammary stem cell (Basal SC) compartment (Fig 7C, S6C). The tumor organoids showed 

varied expression profiles of various luminal/basal markers (Fig S6D) and a diffused 

cluster specific enrichment of lineage scores (Fig 7C, S6E), suggesting that while they 

have lost proper cell type specification, the clusters identified using this integration 

approach have some similarity to the normal cell lineages.  

 With the aim to identify mechanisms that underlie the tumor luminal progenitor (LP) 

cells in TNBCs, we performed a differential expression analysis between tumor and 

normal cells of clusters 2, 7 and 11. We identified 1103 significantly differentially 

expressed genes (p_val_adj<0.05) between the tumor LPs vs normal LPs (Table S7). 

GSEA on the differentially expressed genes showed an enrichment of NOTCH signaling 

related genes in the tumor LPs versus an enrichment of BMP2 targets in the normal LPs 

(Fig 7D). Leading edge genes from these gene sets showed a consistent downregulation 

of NOTCH signaling related genes, RPS27A, YBX1, JAG1, MDK, MYC and SEM1, and 

an upregulation of BMP2 target genes, LTF, MGP, KRT16, KRT7, PLAAT3 and NTRK2 

in normal LPs from all three patients (Fig 7E). MDK, JAG1, YBX1 are ligands of NOTCH1, 
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while MYC and RSP27A are downstream targets. While NOTCH activity was present in 

normal LP cells, it was more pronounced in the TNBC organoids (Fig S6F).  

A further investigation into differentially regulated pathways showed upregulation 

of genes involved in ribosomal biogenesis and translation in the tumor LPs. We performed 

motif enrichment analysis on the differentially expressed LP genes and found a significant 

enrichment of MYC binding sites in the tumor LP expressed genes (Fig S6G). We used 

published MYC signatures to assess MYC activity in tumor and normal organoids and 

found a higher ubiquitous enrichment of MYC activation in tumor organoid cells, while in 

normal organoids it seemed to be higher in the proliferating cell clusters (Fig S6F). 

Similarly, while the NOTCH pathway was hyper-active in tumor LPs it was ubiquitously 

active across all tumor cells (Fig S6F). We tested whether NOTCH and MYC activation 

was required for organoid formation and seeded NH95T, NH85TSc and HCM-CSHL-

0366-C50 as single cells in regular organoid growth medium in the presence of DAPT 

(NOTCH inhibitor) and MYCi975 (MYC inhibitor) (Han et al., 2019) and allowed for 

organoids to form for 12 days. We saw a significant reduction in organoid formation in the 

presence of both MYC and NOTCH inhibitors for NH85TSc and NH95T but not for HCM-

CSHL-0366-C50 (Fig 7F). While HCM-CSHL-0366-C50 did not show reduction in the 

number of organoids formed, we did observe a significant difference in organoid size with 

DAPT and MYCi975 suggesting growth defects on inhibition of these pathways in all lines 

(Fig S6H). 

Thus, our data shows that TNBC organoids have an underlying LP expression 

signature which is driven by LP-like cells that exhibit altered expression from normal LPs 

by hyperactivation of NOTCH and MYC signaling. These pathways are necessary for the 
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formation of some, but not all, TNBC organoids and when perturbed result in proliferation 

defects in all lines examined. 

 

TNBC organoids are comprised of heterogenous cancer cell populations 

 Since normal organoids have clearly defined lineages, the clustering of the 

integrated dataset (Fig 7) was largely driven by the normal organoids. To assess the 

heterogeneity that exists within TNBC organoid cultures we performed a similar integrated 

analysis on the TNBC organoids only and identified 12 different cell clusters (Fig 8A, 

S7A). Clusters 3,9,6,8 and 5 correspond to the different cell cycle phases (Fig 8A) and 

the remaining clusters are G1 cells (Fig 8A-B). We identified the markers that uniquely 

define each of the clusters (Fig 8C, Table S8) and performed GSEA on the marker genes 

to identify the phenotypes associated with each cell cluster (Fig 8D). Cluster 0 

represented a mixed cell cluster with some enrichment of mature luminal-like cells. 

Cluster 1 was defined as Basal-like 1 as it showed a positive enrichment of basal breast 

cancer gene-set including specific markers SAT1, GABRP, TM4SF1, TTYH1, KRT16 and 

KRT6A genes (Table S8). Cluster 2 is mesenchymal-like due to the selective expression 

of mesenchyme genes including CCN2, TPM1 and LAMB1. Cluster 7, MGP-high cluster, 

is a relatively distinct cluster with a very specific high expression of MGP (Matrix Gla 

Protein) in all TNBC organoid lines (Fig 8C, S7E). MGP is normally expressed in smooth 

muscle cells perhaps suggesting that these cells might have contractile abilities. Cluster 

12 had a very high expression of ribosomal and translation related genes (Fig 8C-D). 

Clusters 4,10 and 11 are the most distinct of the tumor cell clusters and are identified by 

the unique expression of certain genes. Cluster 10 represents an NFKB-active cluster 
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that was also found in normal organoids (Fig S6C), albeit with some differences in gene 

expression. As in normal organoids (Fig 7A, S6B, 8C). this cluster shows the expression 

of CXCL1, CXCL3, NFKBIA etc. Cluster 11 is also defined by a basal breast cancer 

signature (Fig 8C-D), is labeled Basal-like 2 and shows a selective expression of KRT17. 

Cluster 4 is a hypoxia cell cluster that shows selective high expression of EGLN3, 

NDRG1, VEGFA and likely represents cells at the center of these organoids (Fig 8C-D). 

This cluster is represented by a higher hypoxia score (Fig 8C-D), which interestingly 

correlates with basal stem cell (Basal SC) signatures and shows comparatively low 

activity of MYC and NOTCH pathways (Fig 8E and S7D-E). We also noted that the cluster 

specific genes for all clusters were fairly well conserved between the different PDO lines 

(Fig S7F). Overall, this data suggests that while the TNBC organoids retain patient 

intrinsic properties (Fig 1-5) there are common cell signatures that define the cell types 

within these organoids.  

The distinct gene expression patterns within these cell clusters also suggests that 

the TNBC organoids are comprised of multiple cell types that are known to be involved in 

tumorigenesis, tumor progression and metastasis, and can therefore be used as models 

to study the various aspects of breast cancer progression.  

 

Discussion: 

 We developed a patient-derived biobank of normal and breast cancer organoids 

from a diverse group of patients with a focus on the highly aggressive TNBC subtype. 

Our biobank is heterogenous in terms of ethnic/racial backgrounds, patient age and 

breast cancer subtypes. A comprehensive genomic, transcriptomic, and cellular 
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characterization of these PDO models demonstrate their faithful recapitulation of the 

patient tumor intrinsic properties and hence validates them as cancer models to study 

various aspects of breast cancer progression and treatment. 

Patient-derived organoids are an exciting step towards personalized medicine with 

a promise to be used for real-time drug screens for guiding patient treatment (Tuveson 

and Clevers, 2019). When successfully established, breast cancer PDOs retain the 

genomic and transcriptomic features of breast cancers and their parent tissues. We found 

that, the TNBC organoids that showed long-term robust growth had activated MYC 

signaling, an LP-like gene expression signature and were overwhelmingly composed of 

LP-like cells. As these are among the most aggressive forms of breast cancers, organoid 

models appear to be an exciting avenue for their study. In addition to replicating the tumor 

specific features in-vitro, TNBC PDOs when transplanted into NOD/SCID mice generated 

tumors with remarkable morphological similarity to that of the original patient tumors, 

despite being in long-term organoid culture for up-to 18 passages. Long-term cultured 

organoids, thus, maintain the intrinsic ability to represent the tumor from which they were 

derived when placed in an in vivo environment. Interestingly, in our study not all PDOs 

readily generated primary tumors despite being highly proliferative and genomically 

aberrant organoids. The association of PDOs that generated tumors rapidly, with worse 

outcomes and diagnosis, suggests that there might be a biologically relevant explanation 

for this observed difference and must be investigated further along with long-term patient 

follow up information. Patient-derived xenograft (PDX) models also retain the 

histopathology of the original patient tumors (Bruna et al., 2016; DeRose et al., 2011) and 

a recent pre-print study showed successful derivation of breast cancer organoids from 
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PDX models (Guillen et al., 2021). Our models are complementary to this system and 

represent an opportunity to derive PDOs first, perform in-vitro assays and drug screens, 

followed by PDOX derivation for in-vivo validation studies. 

While successfully established PDOs faithfully recapitulate the patient tumor 

properties, the efficiency of establishment of these cultures is currently less than ideal. 

The common challenges we faced during establishing organoid cultures included normal 

outgrowth in some tumor organoid cultures, stromal outgrowth, non-proliferating or 

dormant tumor cells, or limited growth potential ex-vivo. Since the medium composition 

for tumor organoid growth also support the culture of normal mammary organoids 

(Rosenbluth et al., 2020) the purity of the starting tumor tissue might govern the time to 

generation of tumor-only organoid cultures and early passages should be meticulously 

tested at a genomic level before any pharmacological studies are carried out with these 

models. Furthermore, some subtypes of breast cancers might be challenging to culture 

including the less proliferative Luminal A subtype or the more mesenchymal claudin-low 

group of TNBCs. Efforts to culture tumor-organoids in reduced complexity medium might 

alleviate some of these challenges and needs to be examined in future studies. However, 

the simultaneous growth of normal and TNBC organoids in the same culture conditions 

allows for comparison of similar cell types within these organoids.  

We used an integrated scRNA-seq approach to compare normal LP cells with the 

tumor LP-like cells and identified hyperactivation of NOTCH and MYC signaling in the 

tumor compared to normal LPs. LP cells were previously shown to be the cell of origin of 

BRCA1 mutated basal-like BCs (Lim et al., 2009; Molyneux et al., 2010) and are 

speculated to be involved in tumorigenesis of all basal-like BCs due to similarity of gene 
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expression profiles (Lim et al., 2009). Our data provides strong support for this hypothesis 

by showing that TNBC PDOs are largely comprised of LP-like cells and suggests that 

hyperactivation of NOTCH and MYC signaling might be relevant in tumorigenesis from 

LP-cells (Fig 8F). Mouse studies have shown that Notch signaling is important in the 

maintenance of luminal lineage of the normal mammary gland (Bouras et al., 2008; Lilja 

et al., 2018; Rodilla et al., 2015; Yalcin-Ozuysal et al., 2010) and overactivation of Notch 

in luminal progenitors resulted in hyperplasia and acquisition of self-renewal properties 

(Bouras et al., 2008). Notch activation drives the luminal fate specificity in normal 

mammary gland and can reprogram committed basal mammary cells to an ER- luminal 

cell fate via multipotent embryonic cell states (Bland and Howard, 2018; Lilja et al., 2018), 

suggesting a role for Notch in fate specification and cellular plasticity. While our data 

provides strong support for hyperactivation of NOTCH signaling in LP-like cells in TNBCs 

it remains to be tested whether these cells arose from activation of NOTCH in normal LP 

cells or from reprograming of normal basal cells. Our data suggest that activation of MYC 

along with NOTCH might also have a role in this transformation. Given the 

complementarity of the NOTCH and MYC pathways, further studies are needed to gain 

better resolution of this mechanism. The PDO system, thus, can be exploited for 

identification of dysregulated pathways in cancers which can then be perturbed in the 

normal PDOs to understand the origins of cancers. 

A detailed analysis of the cell type heterogeneity of TNBC organoids also revealed 

the presence of MYC/NOTCH-activity low and hypoxia high cells amongst various other 

cancer relevant cell types. Recent studies have shown that cancer cells can enter a MYC-

low diapause-like state of dormancy upon chemotherapy treatment and result in therapy 
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escape (Dhimolea et al., 2021; Rehman et al., 2021). Furthermore, single cell analysis 

from TNBC tumors with residual disease after chemotherapy treatment showed an 

enrichment of hypoxia, angiogenesis, EMT and ECM degradation related genes in the 

persistent tumors (Kim et al., 2018). We hypothesize that in PDOs with these expression 

signatures, the cells that exhibit a MYC-low/hypoxia-high profile are the likely candidates 

for chemotherapy escape (Fig 8F). Additionally, fate mapping and other studies have 

shown that tumor cells exposed to hypoxia have a higher tendency to result in metastasis 

(Godet et al., 2019; Zhao et al., 2021). It remains to be tested to what extent these MYC-

low/hypoxia-high cells contribute towards metastasis and/or chemotherapy resistance, 

and these patient-derived organoids will be an invaluable tool to answer these questions. 

In summary, we developed a diverse biobank of BC organoids with a focus on 

TNBC-derived organoids. We have thoroughly characterized these models as valid 

systems that mimic the various aspects of patients’ tumors, including genomic 

alternations, transcriptomic signatures, cell type specificity and morphological 

characteristics. Comparison of TNBC and normal-derived organoids provides important 

insights into the mechanisms regulating tumorigenesis that can then be validated by 

perturbation in normal PDOs (Dekkers et al., 2020). This comparison can also be used to 

identify novel tumor specific targets that may play an important role in tumor growth and 

progression (Chang et al., 2020). These next generation cancer models and the data 

derived from them offer vast utilities and can be used for drug-screens, co-culture 

experiments, metabolomics, and fate mapping studies to better understand the 

mechanisms driving cancers and for identifying more specific treatment options. 
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Figure Legends: 

Figure 1. Establishment and somatic variant profiling of the breast cancer organoid 

biobank. A.) Summary of cancer type of the various tumor tissues that were used to 

generate organoids. IDC: Invasive ductal carcinoma, ILC: Invasive lobular carcinoma, 

Met-Lym: lymph node metastasis, IMC: Invasive mucinous carcinoma, NR: no residual 

tumor seen, DCIS: Ductal carcinoma in-situ, other: see Table S1 B.) Histopathological 

subtypes of the tumor tissues, ER/PR: Estrogen receptor (ER) and/or Progesterone 

receptor (PR), NA: not assessed C.) Age at diagnosis of the various subgroups of patient 

tumor tissues D.) Subtype specific, self-identified racial and ethnic breakdown of the 

patients represented in this biobank E.) Pathogenic single nucleotide variants (SNVs) 

identified in putative cancer driver genes in patient-derived organoids. F.) Proportion of 

organoids with pathogenic SNVs identified. Pathogenic SNVs: SNVs called pathogenic 

by Clinvar, COSMIC or REVEL and MCAP scores from targeted gene-panel sequence 

(45 samples) or whole exome sequencing (1 sample) (see Table S1), limited cultures: 

cultures where organoids were established at early passages (p0-p1) but could not be 

propagated, NA: not assessed 

 

Figure 2. Copy number alterations (CNAs) enriched in the organoid models. A.) 

Copy number profiles, from IGV, of the various ER+ and ER- tumor derived organoids, 

along with the summary of overall copy number alterations across all samples. Side panel 

shows the pathogenic SNVs identified in that sample from Fig 1E. B.) Copy number 

amplifications or deletions identified in putative cancer driver genes (from Fig 1E). C.) 
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Copy number across different passages of three different sets of patient-derived 

organoids. D.) Magnified view of the chromosome regions in the red box in C. 

 

Figure 3. TNBC organoids recapitulate the transcriptome of basal-like breast 

cancers. A.) Heatmap of sample-by-sample distance matrix showing Euclidean 

distances between the different PDOs. Samples were clustered using hierarchical 

clustering with Ward linkage. type: Normal= reductive mammoplasty derived normal 

organoids, Paired Normal= Adjacent or Distal to the tumor paired normal, Normal 

outgrowth= no pathogenic mutations were found, Luminal= ER/PR+ organoids; driver 

mutation: Other= trace mutations (see Fig 1E), None= no pathogenic mutations were 

found, NA= not assessed B.) Molecular signatures associated with the different organoid 

lines. The sample legends are as in 3A. C & D.) Box-plots showing the C.) breast cancer 

related and D.) TNBC-specific scores for various gene signatures associated with poor 

outcomes. Each dot represents a different PDO; Luminal N=12, Normal N= 7, TNBC N= 

16, TNBC met= 3. Differences in experimental groups were compared using Kruskal-

Wallis test followed by pairwise comparisons using Wilcoxon rank-sum test. Bonferroni-

Holm method was used to adjust the family-wise error (** adjusted p-value < 0.005, * 

adjusted p-value < 0.05). 

 

Figure 4. TNBC organoids show heterogenous growth properties in culture. A.) 

Light microscopy images of the various TNBC- and normal (NM04N) derived organoid 

lines, along with Ki67-IHC, scale bars=100µm B.) Distribution of maximum passage 

numbers tested for the various TNBC PDOs. Long-term cultures (long) are defined by 
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p>10 with continued expansion C.) Distribution of percent Ki67 positive cells per organoid 

for the various normal and tumor-derived organoids. The numbers on top of violin points 

indicate the number of organoids counted. The black line in the violin represents median. 

Data is plotted using GraphPad Prism. D.) Growth rate of organoid formation as measure 

by 3D Cell Titre Glo assay d6 post seeding, bars represent average with standard error 

and individual data points are measurements at different passages per PDO. Data is 

plotted using GraphPad Prism. 

 

Figure 5. TNBC Organoids can recapitulate tumor morphology and progression in-

vivo. A.) Overview of PDO xenotransplant experiment using TNBC PDOs. B.) Box plots 

showing the end point tumor volume for the various organoid lines transplanted into the 

fat-pads of NOD-SCID mice. Each dot represents tumor volume from one injection, N1= 

experiment 1, N2= experiment 2. ## For NH84T microscopic primary tumors observed in 

histology sections from 1/10 sites ** For NH93T microscopic primary tumors observed in 

histology sections from 6/10 sites. TMN staging: pathologic TMN staging from patient 

pathology report (Table S1) C.) H&E images of the paired patient tumor tissue, TNBC 

patient-derived organoids (PDO) and xenografts generated form patient-derived 

organoids (PDO-X). S= Stroma, T= tumor, N=necrosis. Black arrows point to the cells 

with spinous connections with adjacent tumor cells. Yellow arrows point to the pseudo-

lumen observed within AdCC-like breast cancers.  

 

Figure 6. TNBC organoids are enriched in luminal progenitor-like cells. A.) 

Representative flow-cytometry plots for normal derived organoid (NM07NL) and various 
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TNBC organoids stained for CD49f-PE on the x-axis and EPCAM-AF647 on the y-axis. 

The gates are subsets of live single cells within each organoid line and represent various 

cell types of the mammary epithelium. L=EPCAM-high mature luminal cells, LP= 

EPCAM+CD49f+ luminal progenitors, B= CD49f+ basal cells, S= stromal compartment. 

B.) Quantitation of the L, LP and B gates in panel B for multiple TNBC and normal 

organoid lines over multiple passages (see Table S6). Data is plotted as mean±SEM 

using GraphPad Prism. NM0s: comprises multiple normal mammoplasty derived 

organoids from different patients C.) Flux of the epithelial cells during the early passages 

of organoid derivation for normal distal (DS97ND) and TNBC tumor (DS97T) samples 

from the same patient D.) Copy number plots of the TNBC organoids DS97T over multiple 

passages E.) UMAP plot of batch corrected scRNA-seq data from 3 normal and 7 TNBC 

organoids. Numbers on the plot represent cluster IDs. F. & G.) UMAP plot in A but F.) 

separated by the normal and tumor samples and G.) colored by cell cycle. H.) UMAP plot 

in A split by individual tumor and normal samples and showing normalized expression of 

EPCAM and ITGA6 (gene encoding CD49f) expression patterns in individual cells. 

 

Figure 7. Tumor LP cells exhibit altered gene expression and have an upregulation 

of NOTCH and MYC downstream pathways. A.) UMAP plots for Integrated scRNA-seq 

data for all samples. The numbers indicate cluster IDs. B.) Marker expression of various 

cell type specific genes in the adult human breast epithelium (Nguyen et al., 2018). C.) 

Plots showing combined scores for the three mammary epithelial lineages: LP score: 

Luminal Progenitor score, Mature Lum score: Mature luminal score, MaSC score: 

Mammary stem cell score (Lim et al., 2009). Dashed region indicates LP clusters 2,7 and 
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11 that were used to perform differential expression analysis between normal and tumor 

LPs. D.) GSEA plots showing enrichment of the differentially expressed genes between 

normal and tumor LPs. E.) Violin plots showing combined expression in clusters 2,7 and 

11 of the leading-edge NOTCH signaling genes and BMP2 target genes as identified in 

E. F.) Organoid formation from single cells. Significance was assessed by two-way 

ANOVA ns= not significant, ** pvalue<0.005, * pvalue<0.05 

 

Figure 8. TNBC Organoids are comprised of heterogenous cell populations. A.) 

UMAP plot of TNBC only integrated scRNA-seq data showing clusters identified and cell 

cycle phases. B.) Distribution of cells in each of the G1 clusters identified per organoid 

line. C.) Dot-plot showing the marker genes for each of the G1 clusters and the associated 

phenotypic identity of that cell cluster. D.) Enrichment scores from GSEA of each of the 

G1 clusters that showed strong enrichment of some specific pathways or phenotypes. 

Enrichment score is represented by -10*NES*padj.value. E.) Combined gene set scores 

for the various phenotypes. Top panel: green= MYC signature, pink= Hypoxia signature. 

Bottom panel: green= Basal mammary stem cell (SC) signature, pink= Hypoxia signature. 

White represents positive correlation of the two signatures. F.) Schematic (created using 

BioRender.com) showing the cellular composition and heterogeneity observed in normal 

vs TNBC PDOs when cultured in matrigel. TNBC PDOs retain the tumor SNV/CNA 

profiles, are largely comprised of LP-like cells that might have originated for normal LP 

cells by the hyperactivation of NOTCH/MYC pathways. TNBC PDOs also have cells with 

signatures of hypoxia which is anti-correlated with NOTCH/MYC and positively 

associated with basal mammary stem cell signatures. 
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METHODS 
 
Animals  

Six-week-old female NOD scid mice (NOD.Cg-Prkdcscid/J) were obtained from the 

Jackson laboratory (JAX stock #001303) and acclimated at the Cold Spring Harbor 

Laboratory Animal Shared Resource for a minimum of 1week. All animal experiments 

were performed in accordance with the Institutional Animal Care and Use Committee. 

 

Patient Material 

Tumor resections from breast cancer patients along with the distal and adjacent normal 

tissue were obtained from Northwell Health in accordance with Institutional Review Board 

protocol IRB-03-012 and IRB 20-0150. Specific information for all samples is available in 

Table S1. The collection of genomic and phenotypic data was consistent with 45 CFR 

Part 46 (Protection of Human Subjects) and the NIH Genomic Data Sharing (GDS) 

Policy.  Informed consent ensured that the de-identified materials collected, the models 

created, and data generated from them can be shared without exceptions with 

researchers in the scientific community. 

 
METHOD DETAILS 
 
Patient-derived organoid culture: Patient-derived organoids were established and 

propagated using a previously published protocol (Sachs et al., 2018). In summary, the 

tissues were manually cut into smaller pieces and treated with 2mg/ml collagenase IV in 

base media (ADF+++: Advanced DMEM-F12 (Invitrogen 12634-034) with 1x Glutamax 

(Invitrogen 12634-034), 10mM Hepes (Invitrogen 15630-056), 100U/ml Pen-Strep 

(Invitrogen 15140-122)) at 37oC for 45-90mins with gentle agitation to break the tissue 
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into small clusters of cells. The suspension was intermittently resuspended by pipetting 

multiple times to ensure proper digestion of the tissue. The cell suspension was 

centrifuged at 300g for 5mins and the pellet was treated with red blood cell lysis buffer 

(Cat # 11814389001, Sigma) for 5mins at room temperature if it appeared bloody. The 

suspension was washed 2x with ADF+++ and plated in a matrigel (lot test for 

concentration of 8-10mg/ml, Cat # 356231, Corning) dome on pre-warmed tissue culture 

plates. The dome was incubated at 37oC for 15mins and supplemented with completed 

medium: 10% R-Spondin1 conditioned medium, 5nM Neuregulin 1 (Peprotech 100-03), 

5ng/ml FGF7 (Peprotech 100-19), 20ng/ml FGF10 (Peprotech 100-26), 5ng/ml EGF 

(Peprotech AF-100-15), 100ng/ml Noggin (Peprotech 120-10C), 500nM A83-01 (Tocris 

2939), 5uM Y-27632 (Abmole Y-27632), 1.2uM SB202190 (Sigma S7067), 1x B27 

supplement (Gibco 17504-44), 1.25mM N-Acetylcysteine (Sigma A9165), 5mM 

Nicotinamide (Sigma N0636), 50ug/ml Primocin (Invitrogen ant-pm-1) in ADF+++. The 

organoids were passaged every 15-30 days using TrypLETM (Thermo Fischer 12605028) 

to break down the organoids into smaller clusters of cells and re-plating them in matrigel 

domes as described above. For tumor scrapings, the tumor surface was shaved on 

multiple sides to collect material which was subsequently manually broken down, treated 

with red blood cell lysis buffer and seeded in matrigel followed by regular PDO culture. 

Organoid models labelled with the prefix HCM-CSHL were acquired as part of the 

Human Cancer Model Initiative (HCMI) https://ocg.cancer.gov/programs/HCMI and a 

subset of those models are or will be available for access from ATCC. The data for these 

models can or will be accessed here: dbGaP accession number phs001486. Organoid 

nomenclature: prefixes LNS, NH, DS, HCM-CSHL are de-identified patient IDs and are 
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not distinct in any features other than protocols used for sample acquisition; prefix NM 

designates true normal samples collected from patients undergoing reductive 

mammoplasty (NM: Normal Mammoplasty); suffixes: T=tumor, N=normal, ND=normal 

distal, NAdj=normal adjacent, and TSc= tumor scraping. Organoid freeze thaws are 

indicated in parenthesis: (passage frozen down)passage after thaw eg. NH85TSc (p4)p4. 

 

Organoid DNA and RNA extraction: Organoid RNA was extracted using TRIzol® 

(Thermo Fischer 15596018) RNA extraction protocol. DNA was extracted by removing 

matrigel from organoids using ice cold PBS or TrypLE following by DNA extraction using 

Qiagen DNeasy Blood and Tissue kit (Qiagen 69504) with elution in nuclease free water 

(Thermo Fischer/Ambion 4387936). 

 

Targeted gene panel sequencing: We performed capture based targeted gene panel 

sequencing (Chen et al., 2015) for a panel of potential cancer driver genes. Briefly, we 

used a panel of 143 cancer genes with a total of ~4000 probes for capture. The captured 

DNA was paired-end sequenced with 150bp reads and a coverage of about 300-500x. 

Library preparation and sequencing of the targeted gene panel was performed by the 

CSHL Next Generation Sequencing Core Facility. We developed an analysis pipeline to 

prioritize identification of driver mutations.  The sequencing reads are aligned to the hg19 

reference genome using BWA (Li and Durbin, 2009), followed by conversion to BAM 

format and sorting with Samtools (Li et al., 2009), removal of PCR duplicates with Picard 

(https://broadinstitute.github.io/picard/ ), and filtering with Bamtools (Barnett et al., 2011) 

for mapping quality and proper read pairing.  Coverage of the target regions is assessed 
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for breadth and depth using Picard HSmetrics to ensure adequate coverage for confident 

variant detection.  Variants are then called using VarScan2 (Koboldt et al., 2012b) in 

somatic mode to stratify germline versus somatic variants, and are annotated with 

Annovar (Wang et al., 2010) to cover a broad range of variant assessment tools.  We 

then select rare loss of function variants (nonsense, frameshift, splice site) with frequency 

less than 1% in the Gnomad, ExAC, EVS and 1000 Genomes databases.  Missense and 

in-frame indel variants are selected if they are noted as pathogenic by ClinVar (Landrum 

et al., 2018), or if they are both rare and annotated as pathogenic by COSMIC (Tate et 

al., 2019), or if they are both rare and found to be present in the TCGA cohorts.  Finally, 

missense variants are selected if they are annotated as potentially deleterious by the 

ensemble tools REVEL (Ioannidis et al., 2016) and MCAP (Jagadeesh et al., 2016). 

Variants that were deleterious by REVEL and MCAP but did not have population level 

data were discarded from the final oncoplot. Oncoplots are generated from these 

candidate variants using Maftools (Mayakonda et al., 2018). 

 

RNA-seq: All RNA samples were quality controlled using a nanodrop followed by a 

bioanalyzer (RNA nano-kit Cat # 5067-1511) and only samples with RIN >7 were used 

for RNA sequencing. 750ng of RNA was used to prepared un-stranded RNA-seq libraries 

using Illumina TruSeq RNA Library prep kit v2 (RS-122-2001) and sequenced as 75bp 

paired-end reads.   

 

RNA-seq analysis: The sequencing fastq files were quality checked using fastQC to 

make sure the reads were of consistent quality between different runs. The reads were 
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aligned using STAR-aligner STAR-2.5.3a (Dobin et al., 2013) using the following 

parameters:  

--outFilterMismatchNmax 8 --alignIntronMax 1000000 --alignMatesGapMax 
1000000 --outSAMstrandField intronMotif --outFilterIntronMotifs 
RemoveNoncanonicalUnannotated 
against the gencode v27 gtf reference file. Any PCR duplicates were marked in the 

aligned files using STAR with the following parameters:  

--runMode inputAlignmentsFromBAM --bamRemoveDuplicatesType 
UniqueIdenticalNotMulti --runThreadN $thread --inputBAMfile $input_bam 
--outSAMtype BAM SortedByCoordinate 
 
followed by removing duplicated reads using samtools view -bF 0x400. HTseq-count 

was used to count the reads per gene using the gencode v27 gtf file. The counts files 

were exported into R 4.1.0 and analyzed for differential expression using DeSeq2 1.32.0 

(Love et al., 2014). Concordance between technical replicates was ensured using PCA 

and sample distance matrix before summing them together for downstream analysis. 

Sample distance matrix was generated using euclidean distances between the samples 

and hierarchical clustering was performed using “ward.D2” linkage method followed by 

cutree with kmeans=6 with the R package “stats” (v4.1.0). For signature correlation, all 

the samples were used and an unsupervised clustering was performed for 838 previously 

curated gene expression signatures (Fan et al., Gatza et al., Garcia-Recio et al.) and 

visualized using Java TreeView v1.2.0. For individual signature comparisons signature 

scores in experimental groups were compared using Kruskal-Wallis test followed by 

pairwise comparisons using Wilcoxon rank-sum test. Family-wise error rate was adjusted 

using Bonferroni-Holm method. 
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SMASH copy number: SMASH was performed as per the published protocol (Wang et 

al., 2016) starting with 750ng of genomic DNA. SMASH was performed in batches of 10 

samples and sequenced on a MiSeq PE150bp run.  The SMASH analysis is based on 

identification of Maximal Unique Matches (MUMs) to the human genome in all read pairs 

(Wang et al., 2016). These MUMs were filtered to remove matches <20 bp, matches with 

<4 bp of excess unique sequence, and matches on read 2 that are within 1000 bases of 

the matches from read 1. Raw copy number profiles are then generated from the 

remaining 3–4 matches per read pair which are then added to empirically sized bins 

spanning the genome. Regions with identical copy are expected to yield similar bin counts 

using these empirical bins. We next perform GC correction by normalizing counts based 

on LOWESS smoothing of count vs. GC content data in each bin. Final copy number 

profiles are normalized so that the autosome has an average copy number of 2. Plots 

were generated with G-Graph MUMdex software (https://mumdex.com/) and IGV browser 

v2.9.2 (Robinson et al., 2011).  

 

Organoid Histology: Organoid domes in complete medium were scraped from the tissue 

culture plate and collected in falcon tube precoated with BSA. The organoids were 

collected and washed 1x with PBS by spinning at 300g for 5mins. Organoid harvesting 

solution (Cat # 3700-100-01, Trevigen) was added to the organoids (3x the volume of 

matrigel) and incubated at 4oC on ice for 30minutes to ensure that matrigel was removed 

and the organoids were concentrated at the bottom. The organoids were washed 1x with 

ample PBS and fixed with fresh 4% PFA at room temperature for 10minutes. 1:1 (v/v) 

BSA was added to the tube and spun at 300g for 5mins to remove the PFA. The organoids 
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were washed 2X with ample amounts of PBS and embedded in 2% agarose in dH2O). 

The agarose organoid molds were then paraffin embedded and cut into 5um sections.  

Organoid Hematoxylin & Eosin (H&E) staining and Immunohistochemistry (IHC): 

H&E and IHC staining were performed at the CSHL Histology Core Facility. PFA fixed 

organoids in agarose were processed in Thermo Excelsior ES processor and embedded 

with Thermo HistoStar embedding system following manufacturer’s protocols. Paraffin 

blocks were cut into 5um sections and mounted onto positively charged slides (VWR 

superfrost plus micro slide). 

For H&E staining, slides were stained in a Leica Multistainer (ST5020). Briefly, 

slides were deparaffinized and rehydrated and then stained in hematoxylin (Hematoxylin 

560 MX, Leica) for 1 min, followed by destaining in Define MX-aq (Leica) for 30 sec, bluing 

in Blue Buffer 8 (Leica) for 1min and subsequently stained in eosin (EOSIN 515 LT, Leica) 

for 30sec. After dehydration, coverslips were placed onto glass slides using a robotic 

coversliper (Leica CV5030).  

IHC slides were stained in Discovery Ultra automatic IHC stainer (Roche) following 

standard protocols.  Briefly, slides were subjected to antigen retrieval (Benchmark Ultra 

CC1, Roche) at 96˚C for 1hr; primary antibodies were incubated at 37˚C for 1hr and 

Discovery multimer detection system (Discovery OmniMap HRP, Discovery DAB and 

Purple, Roche) was used to detect and amplify immuno-signals. Antibodies used: Ki67 

(Spring Bioscience, #M3062, 1:500). 

 

Organoid formation assay: Organoids were processed using TrypLE and 1500 single 

cells per well of a 96 well plate were seeded in 10% matrigel + complete growth medium. 
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Cell viability was assessed using Cell Titre Glo 3D luminescence assay (Promega G9683 

CellTiter-Glo 3D Cell Viability Assay). Baseline cells were measured using Cell Titre Glo 

3D assay at 24 hrs (d1) post seeding and growth was measured at 6 days after seeding 

(d6). Each organoid line was evaluated for multiple passages n=2 or n=3 per PDO. 

 For MYCi and DAPT experiments: Organoids were processed to single cells using 

TrypLE and seeded in 50ul matrigel domes as 10,000 cells per well of a 24 well-plate. 

Complete medium or medium supplemented with DMSO, DAPT (Selleckchem S2215 

DAPT) and MYC-inhibitor (Selleckchem S8906 MYCi975) were added to the respective 

wells. Organoids were allowed to form for 12 days, images were acquired using 

microscope and organoids were manually counted for each condition. Statistical analysis 

was performed using one-way ANOVA test followed by pairwise comparisons using two-

sample t-test. Family-wise error rate was adjusted using Bonferroni-Hold method. 

 

Organoid proliferation index analysis: Paraffin embedded organoid sections were IHC 

stained for Ki67. Slides were scanned and viewed using Aperio ImageScope 12.3.3. 

Images were analyzed in FIJI (Schindelin et al., 2012). Briefly, the images were 

deconvolved using Colour Deconvolution for hematoxylin and DAB, converted to 8-bit 

binary images and analyzed using the BioVoxxel Toolbox plugin 

(https://www.biovoxxel.de/#/ ) to evalute %Ki67 positive cells per organoid. Multiple 

passages for each organoid line were evaluated, n=2 or n=3 per PDO. 

 

In-vivo transplant experiments: TNBC organoids were harvested using the organoid 

harvesting solution (Trevigen Cat# 3700-100-01) and manually counted. Organoids were 
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resuspended in a 1:1 mixture of PBS:matrigel and 50K organoids were injected into the 

bilateral mammary fat pads by the fourth nipple of female NOD scid mice (NOD.Cg-

Prkdcscid/J). Mice were anesthetized with 1.5-2% isoflurane and weighed before the 

injections. The animals were regularly monitored for their weight, tumor size and any other 

discrepancies. Mice were sacrificed when the tumors reached any of the following end-

points: 2cm tumors, ulceration, visible necrosis, blistering of tumors or deteriorating health 

of the mice. At end-point, dissections were performed and the tumors along with lungs, 

liver, lymph nodes and the femur were fixed in 4% PFA overnight at 4oC. If the tumors 

were not observed the mammary fat pads were collected instead. The transplant 

experiments were done with 2 independent passages of PDOs, with 4-6 injections per 

PDO per passage. 

 Fixed tumors and tissues were processed for histology as above. Metastases and 

micro-metastases were assessed using IHC with a human mitochondria antibody 

(Millipore MAB1273 Anti-Mitochondria clone 113-1).  

 

Flowcytometry: Organoids were scraped in the culture medium and washed 1X with 

PBS. TrypLETM was used to fully digest the organoids into single cells. The cells were 

counted, diluted to 200,000 cells/100ul and stained in 100ul of ADF+++ using anti-Epcam 

(1:50), anti-CD49f (1:50), 7AAD (1:50). The following antibodies were used: PE Mouse 

IgG2a, κ Isotype Control (BD 555574), APC Mouse IgG2b κ Isotype Control RUO (BD 

555745), Alexa Fluor® 647 anti-human CD326 (EpCAM) Antibody (Biolegend 324212), 

PE anti-human/mouse CD49f Antibody (Biolegend 313612). The cells were read using a 

BD Fortessa and analyzed using the FACS DIVA and FlowJo v10 software. 
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Single cell RNA-seq: Organoids were digested into single cells using TrypLETM, 

resuspended in 0.04% BSA in PBS as 1 million cells/ml. ~12,000 cells were loaded into 

one well of a 10x Chromium microfluidics chip. Single cell barcoding and libraries were 

prepared using the 10x Chromium v3 chemistry (Cat # V3 reagents 1000075, V3 chips - 

1000153 or NextGEM reagents- 1000121, chips 1000120). Libraries were quality 

checked using a Bioanalyzer HS kit for cDNA yield and final library size and qubit to 

quantify.  

Single cell analysis was performed in three different batches (Fig S5E). Batch 3 

was a multiplexed pool of 4 samples, which were demultipexed using a custom genotype-

aware pipeline.   At the time of 10X Genomics library preparation, ~20,000 cells from each 

of the four organoids were set aside to prepare low-input bulk RNA-seq libraries tagged 

with unique i7 barcodes. These bulk libraries share the same adapter structure as 10X 

Genomics libraries, and were spiked into the Illumina NextSeq500 flow cell at a 5% molar 

ratio to obtain ~5M reads per organoid.  These barcoded bulk libraries were then used to 

create reference VCF files using cellSNP v0.3.2 by searching a list of 7.4M common 

human SNPs from the 1000 Genomes Project 

(http://ufpr.dl.sourceforge.net/project/cellsnp/SNPlist/genome1K.phase3.SNP_AF5e2.ch

r1toX.hg38.vcf.gz).  Genotype profiles were filtered to include only positions with < 10% 

minor allele frequency and >20 UMI counts.  In parallel, per-cell VCF files were generated 

from the multiplexed single cell library using the cellSNP with the same parameters.  Cells 

from the single-cell pool were assigned to their respective donors using Vireo v0.4.2 

(Huang et al., 2019). 
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Genotyping low-input bulk RNAseq library prep: 

RT Primer Design:

 CTACACGACGCTCTTCCGATCTSSSSSSSSNNNNNNNNNNVVVVVTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTVN 

where: 

SSSSSSSS = 8bp sample barcode, with following multi-plexing key: 

 GACAGTGC=HCM-CSHL-0366-C50 

 GAGTTAGC=NH85TSc 

 GATGAATC=NH95T 

 GCCAAGAC=NH93T 

  

NNNNNNNNNNVVVVV = 15bp UMI with 5 non-T residues at 3' end 

Template Switch Oligo: AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG 

cDNA_amplification_Forward: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG 

cDNA_amplification_Reverse: AAGCAGTGGTATCAACGCAGAGT 

 

RT was performed using the SuperScript IV (Life Technologies #18091050) according to 

the manufacturer’s instructions except for the addition of 1uM Template Switch Oligo 

during first strand synthesis.  All custom oligos were synthesized by IDT. After cDNA 

amplification, molar concentration was estimated using the Agilent Bioanalyzer 2100, 

libraries were pooled at an equimolar ratio, and prepared for Illumina sequencing using 

the Nextera XT DNA Library Prep Kit (Illumina) according to the manufacturer's 
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instructions. Final fragmented libraries were again checked and quantified by Bioanalyzer 

prior to mixing at a 1:20 molar ratio with 10X Genomics libraries for sequencing. 

Sequencing and Mapping: The libraries were sequenced on Illumina NextSeq 500 High 

Output 75 cycle kits using the read format: 8bp (i7 index) x 28bp (Read 1) x 56bp 

(Read2).  10X Genomics libraries were mapped using Cell Ranger version 4.0.0 (10X 

Genomics) with default settings and a custom genome reference based on the 

comprehensive gene annotation set from Gencode Release 32 (GRCh38.p13) 

(http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/gencode.v32.

annotation.gtf.gz).  For the multiplexed pool, sample identities for each cell were assigned 

using Vireo as described above, such that each sample could be subset from the pooled 

matrix during analysis.   

Filtering, feature selection, clustering, and other secondary analyses were carried 

out in R using Seurat v4.0.3 (https://satijalab.org/seurat/) (Butler et al., 2018; Stuart et al., 

2019). Gene set enrichment analyses were performed using GSEA v4.1.0 (Subramanian 

et al., 2005). Following gene sets were used for the various signature scores: adult human 

breast epithelium markers from (Nguyen et al., 2018), Mammary epithelial lineage scores 

from (Lim et al., 2009), NOTCH signaling: REACTOME_SIGNALING_BY_NOTCH, 

BMP2 targets: LEE_BMP2_TARGETS_UP, MYC signature from (Chandriani et al., 

2009), Hypoxia signature: HALLMARK_HYPOXIA, Basal mammary stem cell signature 

from (Lim et al., 2009). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
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Statistical analyses were performed using R (version 4.1.0) on RStudio and GraphPad 

Prism software (v9.1.2, GraphPad Software, San Diego, California USA, 

www.graphpad.com). Specific tests are indicated in the figure legends along with the 

statistical significance. 

 

 

 

Supplementary Materials 

Supplemental Figure Legends 

Figure S1. related to Figure 1,2 A. & B.) Variant allele frequencies comparisons on a 

patient-wise manner for the various SNVs identified in A.) tumor and/or PDOs B.) different 

passage PDOs. R represents Pearson correlation. C.) Oncoplot for pathogenic variants 

in tumor vs scraping derived organoids. D.) Oncoplot for tumor tissue (p0 organoids) for 

samples that did not result in successful organoid cultures. E.) Loss of copy number 

alterations in one PDO model overtime in culture. 

 

Figure S2. related to Figure 3 A.) Copy number profiles of NH48N and NH48T B.) Gene 

expression signatures for selected modules. Pink box highlights the samples defined a 

LT-TNBCs C.) Gene expression signatures for luminal-progenitor gene sets and c-MYC 

amplification. Each dot represents a different PDO; Luminal N=12, Normal N= 7, TNBC 

N= 16, TNBC met= 3. D.) Copy number data for selected MYC genes 
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Figure S3. related to Figure 4 A.) Selected culture images for organoids that did not result 

in successful cultures. B.) Ki67 IHC and H&E images for PDOs derived from normal and 

tumor pairs of the same patient, scale bars= 100µm. 

 

Figure S4. related to Figure 5 A.) Overview of the PDO xenotransplant experiments N1 

and N2 B.) Visualization of micro-metastasis and single cell metastasis using IHC for 

human mitochondria staining in lung, liver and lymph nodes of the NOD/SCID mice 

transplanted with various PDOs.  Pink arrows point to human mitochondria stained micro- 

or single cell-metastasis. 

 

Figure S5. related to Figure 6 A.) Flow-cytometry contour plots for EPCAM and CD49f 

for selected tumor PDOs (in red contours) overlayed onto normal-derived organoids (in 

blue contours). D.) Expression of ITGA6 and EPCAM from RNA-seq data for the different 

PDOs. Dark pink dots: true normal PDOs, light pink dots: paired normal PDOs and black 

dots: tumors. Circled region represents long term propagating organoids. E.) Different 

passage flow-cytometry plots for NH95T, NH85TSc and HCM-CSHL-0366-C50 showing 

stability of the cell populations over time in culture. F.) Flow-cytometry plots for some 

more TNBC and lymph-met derived organoids.  

 

Figure S6. related to Figure 7 A. & B.) Cell cycle related A.) UMAP-plot and B.) gene 

expression in the cycling clusters C.) Cluster specific markers associated with each G1 

cluster identified D.) Expression patterns of the various luminal/basal markers in normal 

and TNBC PDOs. HC-0366 is PDO HCM-CSHL-0366-C50 and HC-0655 is PDO HCM-
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CSHL-0655-C50 E.) Mammary lineage scores for each of the PDOs in specific clusters 

F.) Gene-set scores for each of the specified gene-set between the tumor and normal 

samples. G.) Motif enrichment for differentially expressed genes that were significantly 

upregulated in tumor LPs compared to normal LPs (clusters 2, 7 and 11). Score= -

10*NES*padj.value H.) Representative culture images for three different PDOs treated 

with DAPT and MYCi 

Figure S7. related to Figure 8 A.) Cluster distribution for each of the TNBC PDOs tested. 

B.) EPCAM and ITGA6 expression for all the TNBC samples C.) Feature plots showing 

mammary lineage scores for each of the PDOs in specific clusters D.) Boxplots showing 

scores for the different gene-sets tested E.) Feature plots showing the gene-set score 

distribution among the different TNBC PDOs. The first panel is the combined score 

distribution for all samples and provides the legend for the whole row. F.) Marker 

expression for one gene per cluster for the combined tumor organoids (first panel) and 

for individual TNBC organoids. 

 

Supplementary Table details: 

Table S1. Clinical and culture properties of the 84 patient tumor tissues used in this study. 

Highlighted green and yellow samples are paired samples from two different patients. 

Table S2. Final copy number segment file from SMASH data for all samples 

Table S3. Sample details for samples used in transcriptomic profiling  

Table S4. Gene expression signatures analysis for the various PDOs 

Table S5.  Percent Ki67 per organoid analysis for various normal and tumor PDOs 
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Table S6. Summary of EPCAM/CD49f flow cytometry data for the various lines. N= 

multiple passages for the tumor PDOs, and multiple different patient-derived normal 

organoid lines for the normal (NM0s) PDOs 

Table S7. Table of differential gene expression for comparing tumor LPs vs normal LPs 

Table S8. Cluster specific markers for each of the clusters identified in TNBC PDOs 
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