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Summary. The breast tumor microenvironment of primary and metastatic sites is a complex 
milieu of differing cell populations, consisting of tumor cells and the surrounding stroma. 
Despite recent progress in delineating the immune component of the stroma, the genomic 
expression landscape of the non-immune stroma (NIS) population and their role in mediating 
cancer progression and informing effective therapies are not well understood. Here we obtained 
52 cell-sorted NIS and epithelial tissue samples across 37 patients from i) normal breast, ii) 
normal breast adjacent to primary tumor, iii) primary tumor, and iv) metastatic tumor sites. Deep 
RNA-seq revealed diverging gene expression profiles as the NIS evolves from normal to 
metastatic tumor tissue, with intra-patient normal-primary variation comparable to inter-patient 
variation. Significant expression changes between normal and adjacent normal tissue support the 
notion of a cancer field effect, but extended out to the NIS. Most differentially expressed protein-
coding genes and lncRNAs were found to be associated with pattern formation, embryogenesis, 
and the epithelial-mesenchymal transition. We validated the protein expression changes of a 
novel candidate gene, C2orf88, by immunohistochemistry staining of representative tissues. 
Significant mutual information between epithelial ligand and NIS receptor gene expression, 
across primary and metastatic tissue, suggests a unidirectional model of molecular signaling 
between the two tissues. Furthermore, survival analyses of 827 luminal breast tumor samples 
demonstrated the predictive power of the NIS gene expression to inform clinical outcomes. 
Together, these results highlight the evolution of NIS gene expression in breast tumors and 
suggest novel therapeutic strategies targeting the microenvironment. 
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1 Introduction 

Breast cancer is the second most prevalent type of cancer worldwide and accounts for nearly 

25% of total cancer incidence in women [1].  Recent studies have highlighted the importance of 

the breast tumor microenvironment (TME) in mediating and regulating tumor progression with 

respect to the adaptive immune system and therapeutic intervention. TME contains not only 

cancer cells, but a significant fraction of non-cancer cells that collectively is termed stroma [2]. 

Importantly, high tumor stroma percentage (TSP) is associated with worse clinical outcome [2], 

including breast cancer [3]. Tumor stroma consists of multiple different cell types, including 

immune cells, cancer-associated fibroblasts, and endothelial cells. The non-immune stroma 

(NIS) is thought to play an important structural role in the tumor microenvironment, forming the 

connective tissues and regulating production of the extracellular matrix (ECM), while also 

providing functional support for tumor progression/regression via processes such as cell 

proliferation, immune evasion, angiogenesis, apoptosis, and metastasis promotion [4-6]. In the 

case of pancreatic tumors, dense NIS tissues have shown to be the main barrier for immune 

infiltration and have consequently become the biggest challenge in developing pancreatic cancer 

therapies [7]. However, the role of NIS in breast cancer is not well understood.    

 In this study, we hypothesized that changes in NIS gene activity track progression from 

normal breast tissue to primary tumor and metastatic tumor, reflecting functional molecular 

communication between cancer cells and their surrounding NIS. To test this, fresh primary and 

metastatic tumor samples from breast cancer patients were obtained and processed for RNA-seq 

analysis. In order to compare gene expression levels in noncancerous tissue, normal adjacent 

breast tissues from these patients and normal breast tissues from BRCA mutant (BRCA+) subjects 

undergoing prophylactic mastectomy were also collected. Live cells cultured from fresh tissue 
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samples were sorted for NIS and epithelial/cancer cells followed by whole transcriptome bulk 

RNA-sequencing. A pseudoalignment method was used to map and quantify these transcripts 

onto a reference human genome. Prior to any genomic analyses, we performed rigorous 

computational quality control and batch correction to obviate technical artefacts in the RNA-seq 

data (see Methods). 

 Whole genome transcriptional patterns of NIS, when projected onto low dimensional 

representations, reveal a robust progression from normal to primary tumor to metastatic tumor 

sites. This observation suggests that, rather than acting as an inert structural background to the 

tumor, NIS dynamically interacts with the changing epithelial-derived cancer cells. Surprisingly, 

we observed that normal tissue adjacent to breast tumors have distinct expression profiles to 

noncancerous breast tissues from healthy patients – instead are closer to NIS from its adjacent 

primary tumor. Furthermore, NIS cells from primary tumors were transcriptionally distinct from 

metastatic tumors with significant changes in NIS gene activity. We investigated the Gene 

Ontology of significantly differentially expressed genes and found functional enrichment in 

pattern formation, embryogenesis, epithelial-mesenchymal transition (EMT), and immune 

response functions. Significant differentially expressed genes, exclusively expressed in NIS 

tissue, such as the C2orf88 gene, were found to be downregulated in brain and liver metastatic 

sites as confirmed via IHC antibody validation. Further, we elucidated the NIS-epithelial 

crosstalk via ligand-receptor interactions and identified stronger ligand signaling originating 

from cancerous epithelial cells rather than from NIS cells. Together, these results support the 

concept of a cancer field effect [8, 9], whereby cancerous cells in the primary site exert their 

influence on the gene expression pattern of neighboring normal cells, as well as the crosstalk 

between NIS cells and cancer cells aiding in tumor progression 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2019. ; https://doi.org/10.1101/540112doi: bioRxiv preprint 

https://doi.org/10.1101/540112
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

2 Results 

2.1 Breast tissue samples and bulk RNA-seq 

To investigate the transcriptional landscape of NIS and cancer cells, fresh breast tissue samples 

were obtained from patients at the City of Hope cancer center. Over a two year period, 79 

samples from 52 patients were successfully acquired and analyzed in seven different batches. We 

classified the samples into four types: i) prophylactic normal breast tissue from women without 

breast cancer, ii) normal breast tissue ipsi-/contralateral to primary breast tumor, iii) primary 

tumor, and iv) metastatic tumor. By definition, prophylactic normal samples are tissues that were 

taken from tumor negative patients with BRCA mutations who have undergone a prophylactic 

mastectomy procedure. Ipsilateral normal samples were collected from macroscopically 

noncancerous tissue areas located adjacent to a primary tumor site and confirmed by a 

pathologist to be noncancerous. Contralateral samples were collected similarly to ipsilateral 

normal samples but from the opposite breast, which was prophylactically resected during the 

primary tumor surgery. Primary tumor samples were tumors growing at the primary breast site 

whereas metastatic samples were tumor tissues that metastasized from the primary tumor to 

different locations in the body, specifically brain, liver, lung, skin, and bone. In order to capture a 

representative coverage of every tissue, short-term (1 week) in vitro culturing procedures were 

implemented to expand the cells and isolate sufficient amounts of RNA. This step was essential 

due to the limited number of fibroblasts that could be isolated from each tissue sample.  

We implemented a cell-sorting step, in order to isolate pure NIS cells that consisted 

primarily of cancer-associated fibroblasts (CAF) and endothelial cells from the tumor samples. 

In a previous study, our laboratory [10] showed that NIS could be generally identified by high 

expression of CD44 but low expressions of EPCAM and CD45. Epithelial cells and cancer cells 
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express high levels of EPCAM but low levels of CD44 and CD45. By combining these three 

markers, we sorted cells from each tissue into NIS cells (CD44+, EPCAM-, CD45-) and 

epithelial/cancer cells (EPCAM+, CD44-, CD45-) via flow cytometry. Different cell populations 

found in NIS and epithelial samples are confirmed by expression of several canonical markers 

(Fig. 1b), such as epithelial (EPCAM, CDH1), immune (CD45, CD3E), and fibroblast-pericyte-

endothelial (FAP, RGS5, PECAM1). 

To extract messenger RNA (mRNA) and long noncoding RNA (lncRNA) from the entire 

RNA content produced by the samples, we excluded all significant contaminations such as 

rRNA, tRNA, and miRNA using standard library preparation methods. Once we acquired high 

yields of mRNA and lncRNA, sequencing libraries were produced by cDNA generation, 

fragmentation, size selection, PCR amplification, and barcoding.  

In order to sequence the libraries, each batch was sent to the Cold Spring Harbor 

Laboratory sequencing facility. Attachment of library-specific barcodes allowed for pooling of 

all libraries in the same batch and simultaneously sequencing on an Illumina NextSeq 500 

machine to obtain the reads. The FastQC [11] software was used to review read sequencing 

quality and ensure that low quality sample libraries were excluded in the subsequent processes. 

A schematic summary of the entire sample-processing pipeline is shown in Fig. 1a. Since most 

of the acquired samples were of luminal subtype with positive estrogen and/or progesterone 

receptors status, the analysis exclusively focused on luminal samples for further downstream 

analysis. 
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Figure 1: Framework of RNAseq protocol and analyses. a) Tissue samples were extracted 
from  normal breast and luminal breast tumor biopsies. Cell markers were utilized to sort for 
non-immune stroma (NIS) (EPCAM-, CD44+, CD45-) and epithelial/cancer (EPCAM+, CD44-, 
CD45-). cDNA libraries pooled and randomized to obviate next-gen sequencing batch effects. b) 
Logfold expressions (tpm) of NIS samples (blue) and epithelial samples (red). Tissue cell 
markers for epithelial (EPCAM, CDH1), immune / T-cell (CD45, CD3E), and NIS / fibroblast-
pericyte-endothelial (FAP, RGS5, PECAM1). 

 

2.2 Transcriptional progression of NIS  

Inference of gene expression from sequencing data was implemented using a robust 

pseudoalignment and quantification pipeline, Kallisto [12]. The reads were mapped onto gene 

isoforms included in the human genome reference annotated by ENSEMBL [13]. This pipeline is 

supplemented with bootstrap calculations (see Methods) to estimate the uncertainty of each 

expression value in units of transcript per million (tpm). To ensure accurate estimation and 

enough gene coverage, we further filtered the samples to those containing at least 10 million 

mapped reads. From the remaining 28 NIS and 15 epithelial samples, we corrected the 

normalized gene expression matrix values against prominent batch effects arising from technical 

experimental artefacts using a linear-based pipeline, ComBat [14, 15]. 

 Given the final expression matrix, we performed principal component analysis (PCA) and 

projected onto two principal components (PC1 and PC2) with the largest variance as visualized 

on the 2D plot shown in Fig. 2. Here we label the sample conditions in four different colors. In 

both NIS (Fig. 2a) and epithelial/cancer (Fig. 2b), prophylactic normal (green) samples appear to 

be transcriptionally distinct from the tumor positive samples. Intriguingly, ipsi-/contralateral 

normal (purple) samples (Fig. 2a) are more similar to primary (blue) and metastatic (red) NIS 

samples, despite looking normal/non-cancerous morphologically. This supports the notion of a 

cancer field effect, which describes the existence of a zone of influence radiating from cancer 
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cells to surrounding cells through soluble factors such as proinflammatory signals, exosomes, 

and reactive oxygen species [16, 17].  

 In Figure 2a, the primary tumor NIS show significant expression changes compared to 

ipsi-/contralateral normal tissues. These results support the idea of interactions between NIS cells 

and epithelial cancer cells in a breast tumor leading to transcriptional modification [18]. 

Furthermore, the landscape of metastatic samples indicates a wider radial spread across the 

principal components. Metastatic samples diverge from primary samples nonlinearly due to 

strong dependence on different metastatic sites. We observed a strong diverging pattern in NIS 

samples variance (Fig. 2d) across multiple PCs, implying a consistent increase in heterogeneity 

between individuals from prophylactic normal, to lateral normal, to primary, to metastatic. A 

similar pattern appears less significantly for epithelial samples as shown in Figure 2e. In 

conclusion, the transcriptional trajectories of NIS and epithelial samples are not collinear and 

diverge from normal to primary to metastatic conditions. 

 Analysis of patient-matched samples was performed to understand how the 

transcriptional landscape changes from ipsi-/contralateral normal NIS to primary tumor NIS 

within the same individual. In Figure 2c, we observed that PC2 robustly defines the normal-

primary axis of patient-matched NIS samples.  Furthermore, we quantified the pair distance from 

the mean length of dashed lines in Figure 2f. This distance is relatively similar to the standard 

deviation of samples (see Methods) in each condition, which suggests the degree transcriptional 

shift from lateral normal NIS to primary tumor NIS is comparable to the heterogeneity of NIS 

among different individuals.   
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Figure 2: Expression variation and differential analyses. Principal compnent (PC) analyses of 
genomewide transcription in prophylactic normal, ipsi-/contralateral normal, primary, and 
metastatic tumor (brain, liver, and bone) of a) non-immune stroma (NIS), b) epithelial, and c) 
patient-matched (paired lateral normal and primary tumor) NIS samples. Expression divergence 
(see Methods 4.5) of d) NIS, e) epithelial, and f) paired NIS samples across geographical sites in 
patients. Distribution of p-values from differential gene expression of NIS estimated for g) 
primary vs metastatic tumor and h) prophylactic normal vs primary tumor. For illustration of 
significant enrichment close to p-value equals zero, the figures are truncated. 

 

2.3 Differential expressions of exclusive NIS genes 

Transcription changes of NIS samples were examined by running a differential analysis on the 

expression matrix. We applied a conservative approach, Sleuth [19], by taking the gene 

expressions along with the uncertainties for linear modeling and statistical testing. During the 

analysis, we incorporated patient, condition, and batch information as variable inputs with the 
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corresponding statistical noise. Differential genes were determined from Wald test results with q-

value less than 0.05. 

 Significant differences between prophylactic normal and primary NIS samples are shown 

by p-value distribution in Fig. 2h, which depicts some significant genes with p-value less than 

0.05. There are approximately 80 differential genes (q-value<0.05) that signify the 

transcriptional change between the two conditions. Among others, extracellular matrix genes 

such as TNC [20] appear to be significantly downregulated. We also found immune related genes 

that are involved in inflammatory responses such as IL11, RN7SL1, SERPINB9, and ALOX5AP 

[21-24]. Long noncoding and histone genes were also significantly modified from prophylactic 

normal to primary conditions. These results indicate signaling interactions of NIS cells with 

cancer and immune cells in the tumor microenvironment. Furthermore, the significant genes 

collectively suggest their involvements in pattern formation, tissue development, and 

embryogenesis. 

 Comparisons between primary and metastatic tumor NIS were similarly described by 

significant p-value peak shown in Fig. 2g.  We identified 108 differentially expressed genes with 

q-values less than 0.05, which have no overlap with the differential genes from normal versus 

primary. Among them, we can find multiple HOX genes and STRIP2 that are important in 

developmental and morphogenesis [25, 26]. Many growth factors and extracellular genes 

revealed in the list such as PGF, FGFR2 and NOG are significant in metastatic processes [27-

29]. We also found CD36 and CD14, which are genes relevant to certain CAF functions such as 

cell adhesion, collagen binding, and immune response [30, 31]. Some noncoding genes that are 

well-known cancer markers such as HOTAIR and HAGLR [32, 33] were downregulated in breast 

NIS progression. On the other hand, WNT5B may be related directly to oncogenesis through the 
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WNT signaling pathway [34]. To summarize, we provide the complete list of differential genes in 

both comparisons and paired analysis in the supplementary material (Table 1, Table 2, and Table 

3). 

 

2. 4. Putative interactions between epithelial/cancer cells and NIS cells 

To infer putative crosstalk between cancer cells and NIS cells, the gene expression dataset was 

cross-referenced to known ligand-receptor pairs. Only genes that were previously identified as 

significantly differentially regulated between normal versus primary tumor and primary tumor 

versus metastases were considered. A comparison of gene expression from normal to primary 

tumor showed the upregulation of the ligand-receptor pairs GDF5 and activin A receptor 

(ACVR1, ACVR2A) in both NIS cells and cancer cells. This pair belongs to the TGF-beta super 

family and is involved in epithelial-mesenchymal transition (EMT) [35, 36]. 

Further progression from primary tumor to metastatic tumor resulted in increased 

expression of several more ligand-receptor pairs, including the interaction between cell surface 

integrin (ITGA2) and collagen (COL7A1) as well as growth factors (PGF, FGF) and their 

respective receptors. Further, direct cell-cell interactions involved in tumorigenesis, 

angiogenesis, and cancer stem cell generation were also identified (EPHA and EPHB with 

EFNB1) [37, 38]. Upregulation of these pairs points towards a putative interaction and necessary 

role between the NIS cells and cancer cells. The list of ligand-receptor pairs with significant NIS 

q-value less than 0.1 is provided in supplementary material (Table 4 and Table 5). 

The role of p53 in tumor progression has been widely studied and accepted. Mutation and 

dysregulation of the corresponding TP53 as a tumor suppressor gene can alter several biological 

functions that are important in tumor growth such as cell cycle arrest, DNA repair, apoptosis, 
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angiogenesis, and metastasis [39]. Among the genes involved in p53-induced metastasis and 

angiogenesis [40], Thrombospondin-1 (THBS1/TSP1) is downregulated in metastatic 

epithelial/cancer and NIS samples as depicted in Fig. 3a.  To understand the crosstalk between 

cancer and NIS, we estimated the expression change of certain receptors and their ligands that 

emerged from p53 downstream pathways. An antiangiogenic receptor CD36 [41] is also found to 

be downregulated in metastatic samples, which suggests a possible signal from the 

epithelial/cancer ligand THBS1 towards the NIS receptor CD36 promoting metastasis. 

Furthermore, opposite interactions are also indicated by the co-regulation between NIS ligand 

THBS1 and epithelial/cancer receptors ITGB3 and LRP1. The loss of cell adhesion caused by low 

expression of ITGB3 may drive cancer cells to detach [42] and metastasize from the primary site. 

Together, these results signify the importance of cancer-NIS crosstalk in the progression of 

breast tumor.  

 Another way to approximate the interaction between NIS and epithelial/cancer cells is to 

quantify the mutual information between ligand and receptor pairs, which were listed in a 

previous study [43]. Mutual information, representing the strength of association for 

ligand/receptor pairs, was calculated from the t-test significant (p-value<0.1) expression changes 

between primary and metastatic conditions (see Methods). The advantage of using mutual 

information rather than any correlation coefficients is its ability to measure association in 

nonlinear and non-monotonic relationships [44]. We calculated the joint probability by counting 

the number of ligand-receptor pairs where the primary-metastatic expression changes increased 

or decreased.  In Fig. 3b, we show the mutual information values in bits (corrected for finite 

number of samples) for random pairs of genes, NIS ligands/epithelial receptors, epithelial 

ligands/NIS receptors, and overall ligands/receptors. We found that there is a significant increase 
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in the epithelial ligands/NIS receptors mutual information at about 0.021 bits. This is relatively 

high compared to random and NIS ligands/epithelial receptors which were close to zero. This 

discrepancy indicates a tendency towards uni-directional communication from epithelial/cancer 

ligands towards NIS receptors as the tumor progresses from primary to metastatic. Consequently, 

this supports the interaction between cancer cells and NIS as a part of EMT mechanism and the 

concept of cancer field effect. The list of ligand-receptor pairs with significant p-value less than 

0.1 from primary to metastatic is provided in supplementary material (Table 6 and Table 7). 

 

 

Figure 3. Inference of cancer and non-immune stroma (NIS) crosstalk from RNA-seq data. 
a). Crosstalk between epithelial/cancer and NIS cells through p53 downstream ligand THBS1 
and its receptors (CD36, ITGB3, and LRP1), which are downregulated in metastatic samples. b) 
Mutual information of expression changes with standard error from primary to metastatic 
between (left to right): random pairs of genes, NIS ligands/epithelial receptors, epithelial 
ligands/NIS receptors, and ligands/receptors (**p-value < 2×10-16). 

2.5 C2orf88 expression predicts patient survival 

To analyze specific NIS progression in a tumor, we filtered the differential gene expressions with 

a conditional threshold. The estimation of transcriptional noise becomes very relevant when 

distinguishing expression that is genuinely caused by active transcriptions. Based on the work by 

Wagner et al [45], we implemented a threshold value of 2 tpm, which represents the baseline for 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2019. ; https://doi.org/10.1101/540112doi: bioRxiv preprint 

https://doi.org/10.1101/540112
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

background/noise transcription. Among the differential genes, we prioritized exclusive NIS 

genes with an average NIS expression above 2 tpm in at least one tissue condition, but lower 

than 2 tpm for epithelial samples in every tissue condition. 

  We investigated the functional role of a novel candidate NIS gene in our list of 

significant genes, namely C2orf88. The function of this protein-coding gene is largely unknown 

in cancer and only reported to be involved in protein kinase A binding and cell-cell interactions 

[46]. A previous study identified low expression of C2orf88 in tumor tissue compared to normal 

breast tissue using a cDNA microarray assay [47]. This study focused exclusively on the bulk 

tumor, aggregating the epithelial and stromal tissue, thereby losing information about the cellular 

source of the gene expression. In our differential analysis, C2orf88 had significant change in 

expressions from primary NIS to metastatic NIS with (q-value = 0.019). The expression value 

was decreased by about 6 fold from 4.5 tpm to 0.7 tpm, as shown in Fig. 4a. Despite being 

expressed moderately in NIS, the expression values stayed under 2 tpm in epithelial, suggesting 

that the low residual expression might come from a non-active gene transcription. To investigate 

the clinical impact of NIS gene expression, we analyzed survival data of luminal breast cancer 

patients. We analyzed the TCGA expression database with 827 breast cancer patients and 

grouped them into: ‘high’ expression with values above the third quartile, or ‘low’ expression 

with values below the first quartile. By implementing Kaplan-Meier [48] analysis (see Methods), 

as shown in Fig. 4b, we found that the high expressor patients provide better prognosis and 

survival compared to low expressors with a significantly low (p-value = 3.5×10-3). The relative 

level of C2orf88 expression is phenotypically reflected clinical outcome.  

Representative gene expressions, which correlate with C2orf88 were clustered and 

mapped in a heatmap plot (see Methods) of Fig. 4f. Collective genes enrichment estimated the 
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significant role of these differential genes in epithelial-mesenchymal transition (EMT) in primary 

and metastatic comparisons. These correlative gene expression signatures suggest that NIS cells 

from primary tumor are expressing EMT-related genes. The EMT genes are further 

downregulated as the tumor metastasizes and essentially undergoes mesenchymal-epithelial 

transition (MET) in order to colonize the metastatic site [49].  
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Figure 4: Expression and survival profile of C2orf88 in non-immune stroma (NIS) and 
epithelial. a) Expression values (tpm) in prophylactic normal, primary, and metastatic tumor 
samples (**p < 2.13×10-5; *p < 6.69×10-4). b) Survival analysis of luminal breast cancer from 
TCGA database with Kaplan-Meier plot featuring log-rank p-value between high (>3rd quartile) 
and low (<1st quartile) expressions. IHC validation (purple: C2orf88, brown: EPCAM, teal: 
CD45) on c) breast prophylactic normal, d) breast primary, and e) brain metastases. f) Heatmap 
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plot with hierarchical clustering showing significant gene expressions in primary (left group) and 
metastatic (right group) samples which correlate strongly with C2orf88 (|ρ|pearson < 0.6) 

  

2.6 IHC validates C2orf88 expression levels and NIS heterogeneity 

Based on the differential and survival analysis results, we further validated the expression of 

C2orf88, which has shown to be a good candidate for identifying NIS progression in tumors. To 

investigate C2orf88 expression change in tumors, we examined the intensity and population of 

cells that were stained with the antibody in luminal breast tumor tissues. In Fig. 4c, we see 

distinct C2orf88 protein expression (purple) in prophylactic normal breast tissue with relatively 

high intensity in NIS compartments compared to the background counterstaining in blue. We 

also differentiate between epithelial/cancer and immune cells by staining EPCAM (brown) and 

CD45 (teal), respectively. A strong C2orf88 intensity was observed in the NIS of a breast tumor 

(Fig. 4d). However, this intensity varied significantly among NIS cells, which indicates the 

existence of heterogeneity within the tumor NIS, which has been a major challenge for many 

cancer therapies. Furthermore, a consistent expression change was successfully shown by similar 

results on brain and liver metastatic tissues. Low C2orf88 expression level in Fig. 4e supports the 

differential analysis of this gene, which suggests significant down-regulation from primary to 

metastatic tumor NIS. The expression change in epithelial also indicates EMT as shown in 

supplementary material (Figure S1). Mesenchymal cells that emerge from dense cancer islands 

and have lost their epithelial marker (EPCAM) have increased C2orf88 expression. Together, 

these results reveal a novel gene C2orf88 expressed in NIS cells that may regulate breast tumor 

development and progression.     
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3 Discussion 

The role of stroma in the progression of breast cancer remains a subject of ongoing research. 

From expression profiles of NIS cells, previous studies have implied that several genes are 

involved in promoting tumor growth, invasion, and metastasis. Deep-RNAseq and subsequent 

analysis on short-term cultured patient tissues allowed us to obtain transcriptional landscapes of 

NIS from primary and metastatic tumors as well as non-cancerous breast tissues. Accurate 

computational methods for expression quantification and differential analysis were implemented 

to capture the expression changes between tumor conditions and then correlate it with patient 

survival. 

Here we show that NIS cells in macroscopically normal breast tissues, adjacent to the 

tumor, are transcriptionally different from non-cancerous breast tissues obtained from 

prophylactic mastectomy patients with BRCA mutation. These findings support the concept of a 

cancer field effect [16]. NIS from primary and metastatic tumors undergo further significant 

expression changes from adjacent normal tissues, involving different sets of genes. As breast 

cancer progresses into metastatic sites, the transcriptional landscapes of both cancer and NIS 

cells diverge due to the distinct environment within the different tissue sites. As shown in Fig. 

3b, our novel crosstalk analysis suggests that metastatic cancer cells actively modulate NIS cells 

to condition its microenvironment for survival. These results lend further support to the idea that 

breast cancers dynamically interact with their microenvironment.  

 In summary, this work unravels significant transcriptional changes of NIS between 

different tumor conditions in luminal breast cancer. Several coding and long noncoding genes 

that are known to be involved in embryonic morphogenesis, immune responses, and epithelial-

mesenchymal transition, such as HOX family, Histone family, C2orf88, ALOX5AP, IL11, CD36, 
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TNC, VDR, and HOTAIR were found to be differentially expressed. Supplemented by TCGA 

survival analysis, expression of the downregulated C2orf88 gene was validated with IHC 

staining. These results provide a new understanding of NIS transcriptional progression and its 

corresponding genes involved in the evolution of breast cancer, suggesting potential therapies to 

directly target the tumor NIS. 

 

4 Materials and Methods 

4.1 Tissue and culturing 

Normal breast tissue from BRCA+ patients undergoing a prophylactic mastectomy, primary 

breast tumor, and tumors from metastatic sites were obtained from patients treated at City of 

Hope according to guidelines approved by City of Hope Institutional Review Board. Tissues 

were dissected into small pieces (1-2 mm diameter), and 5- 6 pieces per well were cultured in a 

6-well culture plate (Fisher Scientific). For up to two weeks tissue pieces were cultured in 

Advanced Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 6.5% FBS, 0.5% 

MEGS and 1% penicillin streptomycin. If longer culturing was required to grow sufficient cells, 

media was switched to Advanced DMEM with 10% FBS and 1% penicillin streptomycin for an 

additional week.  

 

4.2 Cell sorting and RNA extraction 

After the culture well reached confluency, cells were trypsinzed (0.25%) and stained for 

fluorescent cells sorting using BD FACSARIA III. The cells were stained labeled with  

CD45 PE (Leukocytes) to minimize immune contamination (Biolegend #BL304008, 1:200),  
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EPCAM/CD326 APC (Biolegend #324208, 1:100) CD44 FITC (Biolegend #BL338804, 1:200) 

for 15 min at room temperature. All cells were gated for CD45- expression and then further 

gated for CD44+ (fibroblasts) and EPCAM+ (cancer cell) expression. Cells were centrifuged at 

300g for 5 min and RNA extracted using Qiagen RNeasy Plus Micro kit (#74034) according to 

manufacturer’s protocol. Illumina sequencer compatible library was generated with Kapa mRNA 

Hyper kit (Roche, Basel Switzerland) for polyA library preparation according to manufacturer’s 

protocol. 

 

 4.3 Deep RNA sequencing 

Libraries were pooled with equal moles based on qubit mass measurements and expected 

fragment length. The libraries were sequenced on NextSeq 500 using a 75-cycle v2 SBS kit. 

There was a 5% PhiX used as a control sample and the sequencing was done as a single-end 76 

length with an index read. Reads were demultiplexed by barcode via the bcl2fastq2 tool. 

 

4.4 Data and source code availablity 
 
The raw sequence fastq data have been deposited in Sequence Read Archive (SRA) repository 

with accession code: SRP157590. The source code written in R for the bulk RNA-Seq analyses 

are available on https://github.com/AtwalLab/BulkRNAseq 

 

4.5 Pseudoalignment and quantification 

The RNA-seq sequence reads were pseudoaligned to coding and long noncoding regions in 

ENSEMBL Human genome (GRCh38 rel85) using an open-source package, Kallisto. The gene 

expression was quantified by “kallisto quant” with option attachments as follows: single end 
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reads, first read reverse, bias correction, seed 42, fragment length 200 ± 20 bp, and bootstraps 

100, and number of threads 4. 

Principal component analysis and plotting was performed with the R function, “prcomp”, and 

package, ggbiplot. Expression divergences were calculated by the cumulative sum of the i-th PC 

eigenvalues (ei) that correspond to the variance, as follows: 

����. �����	�
�� � 
  � � ��

� � ��

  

The eigenvalues correspond to the variance of the samples in principal components space. 

 

4.6 Differential analysis with batch correction and heatmap clustering 

Differentially expressed genes were estimated using an open-source package Sleuth. We fit the 

tissue condition, patient ID, and batch as covariates in the full model and only set the batch in the 

reduced model. Aggregation was made on ENSEMBL gene ID and we implemented Wald test 

on tissue conditions for the full model. Similar settings were applied for batch correction pipeline 

using an open-source package, ComBat on log2 normalized expression matrix. Heatmap 

visualization of the expressions was generated using heatmap3 package with default setting, as 

follows: standardized expression (tpm) across samples, hierarchical clustering, complete linkage, 

and distance (1 - pearson correlation). 

 

4.7 Mutual information and survival analysis 

The mutual information (I), in bits, between ligands expression change, L, and their associated 

receptors R expression change from primary to metastatic was calculated as: 
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��� ;  ��  
  � � ��� , �� ��	� � ��� , �����������
� � 	
 � �

 

The joint probability was calculated by counting the number of ligand-receptor pairs that were 

transcriptionally upregulated or downregulated. In order to correct for biases in our MI estimate 

arising from our limited sample sizes, we then applied a bootstrapping based finite-sampling 

correction previously described [44, 50]. The survival analysis was based on Kaplan-Meier plots 

from an open-source package, RTCGA. The TCGA expression database was filtered for luminal 

breast cancer patients and grouped into patients with expressions above 3rd quartile and below 1st 

quartile. The p-value was estimated by log-rank test between the two groups. 

 

4.8 Immunohistochemistry staining 

Triple chromogenic IHC was performed on Ventana Discovery Ultra platform at CSHL 

Histology Core, with OmniMap HRP, ChromoMap DAB, Discovery Purple, and Discovery Teal 

detection systems according to manufacturer’s protocols (Roche). Antibodies: C2orf88 

(Thermofisher, dilution 1:50), CD45 (Abcam, 1:500), and EPCAM (Ptglab, 1:200) 
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