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SUMMARY
We systematically compare the contributions of two dopaminergic and two cholinergic ascending popula-
tions to a spatial short-term memory task in rats. In ventral tegmental area dopamine (VTA-DA) and nucleus
basalis cholinergic (NB-ChAT) populations, trial-by-trial fluctuations in activity during the delay period relate
to performance with an inverted-U, despite the fact that both populations have low activity during that time.
Transient manipulations reveal that only VTA-DA neurons, and not the other three populations we examine,
contribute causally and selectively to short-term memory. This contribution is most significant during the
delay period, when both increases and decreases in VTA-DA activity impair short-term memory. Our results
reveal a surprising dissociation between when VTA-DA neurons are most active and when they have the
biggest causal contribution to short-term memory, and they also provide support for classic ideas about
an inverted-U relationship between neuromodulation and cognition.
INTRODUCTION

Short-term memory (Baddeley, 1986; Baddeley and Hitch, 1974;

Erlich et al., 2011; Funahashi et al., 1993; Fuster and Alexander,

1971; Inagaki et al., 2019; Kamigaki and Dan, 2017; Kopec et al.,

2015; Kubota and Niki, 1971; Liu et al., 2014; Miller et al., 2018;

Romo et al., 1999) is a fundamental cognitive process with distinct

temporal components: a ‘‘sample period’’ inwhich new information

is updated into short-term memory, a ‘‘delay period’’ in which the

memory is maintained, and ultimately a behavioral readout based

on the memory (‘‘choice period’’). Although neuromodulators

have been implicated in short-term memory (Brozoski et al.,

1979; Clark and Noudoost, 2014; Croxson et al., 2011; Everitt

and Robbins, 1997; Hasselmo and Stern, 2006; Ott and Nieder,

2019; Sun et al., 2017), it remains unclear which neuromodulators

are most relevant and which temporal component of short-term

memory they support.

For example, dopamine (DA) has been implicated in short-

term memory through pioneering experiments that pharmaco-

logically manipulated DA receptors in prefrontal cortex (PFC) in

monkeys performing short-term memory tasks (Arnsten et al.,

1994; Cai and Arnsten, 1997; Floresco and Phillips, 2001; Mur-

phy et al., 1996; Sawaguchi and Goldman-Rakic, 1991; Vijayra-

ghavan et al., 2007; Williams and Goldman-Rakic, 1995; Zahrt

et al., 1997). This line of work suggested that DA has an ‘‘in-

verted-U’’ influence on short-term memory and on memory-
C
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related activity during the delay period. In other words, too

much or too little DA is detrimental to short-term memory, while

intermediate levels enhance short-termmemory. From these ex-

periments, the idea arose that optimal levels of DA in PFC during

the delay period serve to stabilize memory-related activity (Fig-

ure 1A; Arnsten, 1997; Arnsten et al., 2012; Cools and D’Espo-

sito, 2011; Gibbs and D’Esposito, 2005).

However, integrating these findings with the understanding that

has emerged based on direct recordings of activity in DA neurons

has presented a challenge. DA neurons with cell bodies in the

ventral tegmental area (VTA-DA) and substantia nigra (SNc-DA)

project to thestriatum,PFC,andother forebrain regions.Theseneu-

rons, which are thought to provide the major source of DA to their

forebrain targets, are known to respond transiently to unexpected

rewards and reward-predicting cues (Bayer and Glimcher, 2005;

Cohen et al., 2012; Ellwood et al., 2017; Ljungberg et al., 1991;

Parker et al., 2016;Roeschetal., 2007;Schultz, 1986, 1998;Schultz

et al., 1993). This signal has been interpreted as a reward prediction

error, which is thought to support reinforcement learning (Chang

et al., 2016; Parker et al., 2016; Steinberg et al., 2013). On the other

hand,DAneuronsarenotknowntobeactiveduring thedelayperiod

of tasks with short-term memory components, when rewards and

reward-predicting cues are absent (Cohen et al., 2012; Ljungberg

et al., 1991; Matsumoto and Takada, 2013).

Thus, the ‘‘gating’’ theory of short-termmemory has been pro-

posed to integrate the role of DA in encoding a reward prediction
ell Reports 33, 108492, December 15, 2020 ª 2020 The Authors. 1
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error signal with the idea that it regulates short-term memory

(Figure 1B; Braver and Cohen, 1999, 2000; O’Reilly and Frank,

2006). In this model, phasic bursts of DA at the times of

reward-predicting events serve to open the ‘‘gate’’ and update

relevant items into short-term memory. Low levels of DA during

the delay period allow the gate to remain closed and prevent dis-

tractors from overwriting the memory item.

In particular, the gating theory suggests that phasic DA at the

time of updating is critical to short-termmemory, while the classic

ideas based on pharmacology suggest that tonic levels of DA dur-

ing the delay period are more important (Figures 1A and 1B). In or-

der to directly test these two ideas, wemust understandwhenDA

contributes to short-term memory—does DA affect the updating

of short-term memory with new information during the sample

period, or is it more important during the delay period?

Addressing this question requires first knowing which DA sub-

regions are relevant to short-term memory. The two major

ascending sources of DA to the forebrain arise from the VTA

and SNc. In addition to determining which DA neurons are rele-

vant to short-term memory, and when they contribute, we also

compared the role of DA to that of other neuromodulators. We

focused on ascending cholinergic (ChAT) neurons arising from

the basal forebrain regions—nucleus basalis (NB-ChAT) and

medial septum (MS-ChAT)—given previous work implicating

these populations in short-termmemory and other cognitive pro-

cesses (Croxson et al., 2011; Hasselmo, 2006; Hasselmo and

Sarter, 2011; Hasselmo and Stern, 2006; Sun et al., 2017).
RESULTS

Rats Performed aDNMTPTask duringOptical Recording
of DA and ChAT Neurons
Rats were trained on a rodent spatial short-term memory task

known as delayed non-match to position (DNMTP; Figure 1C;

Akhlaghpour et al., 2016; Dunnett et al., 1988). In the DNMTP
Figure 1. Fiber Photometry Recordings of VTA-DA, SNc-DA, NB-ChA

Memory Task

(A) Schematic of inverted-U hypothesis adapted fromCools and Robbins (2004). I

period.

(B) Schematic of gating hypothesis, adapted from Hazy et al. (2007). In this frame

(C) Schematic of the delayed non-match to position (DNMTP) task. The sample pe

chamber (‘‘sample presentation’’). Pressing the sample lever (‘‘sample press’’) tr

period initiates when the rat makes a nosepoke, which turns off the nosepoke li

illuminated, signaling that the delay period is over (‘‘delay end’’). Upon making an

needed to press the ‘‘non-match’’ lever (‘‘choice press’’) to be rewardedwith a dro

sample, delay, choice, and outcome periods relative to the task events. Note th

choice is necessarily being made.

(D) Performance of trained rats during fiber photometry recordings (n = 34 rats

dependent impairment in accuracy (one-way ANOVA, accuracy explained by de

(E) Cell-type-specific expression of GCaMP6f was obtained using TH::Cre or C

GCaMP6f).

(F) Example recording trace showing simultaneous acquisition of time-varying G

event (middle), and the rat’s speed in the chamber (bottom).

(G) Schematic of midbrain DA system. Two nuclei of interest are the ventral tegm

(H and I) GCaMP6f (green) is specifically expressed in DA neurons (red) in the VT

(J) Schematic of basal forebrain ChAT system. Two nuclei of interest are the nuc

(K and L) GCaMP6f (green) is specifically expressed in ChAT neurons (red) in th

(bottom right) (H and I, K and L).

See also Figure S1.
task, rats are presented with a sample lever in one of two

possible locations on the front wall of the chamber (‘‘sample pre-

sentation’’). Upon pressing the lever (‘‘sample press’’), the lever

retracts and the nosepoke on the back wall of the chamber is illu-

minated. The rat then initiates the delay period by entering the

nosepoke (‘‘delay start’’). After a delay of either 1, 5, or 10 s,

when the rat re-enters the nosepoke, both levers are presented

on the front wall (‘‘choice presentation’’). To obtain a water

reward, the ratmust press the lever that does notmatch the initial

sample lever (‘‘choice press’’). Trained rats performed well

above chance and displayed a delay-dependent decline in per-

formance (Figure 1D; one-way ANOVA, accuracy explained by

delay; p < 0.001 for delay; n = 34 rats).

After training, rats were injected with a Cre-dependent AAV2/5

GCaMP6f virus in the VTA or SNc in the case of TH::Cre rats (Fig-

ures 1G–1I) or in the NB or MS in the case of ChAT::Cre rats (Fig-

ures 1J–1L) and implanted with an optical fiber at the same loca-

tion for fiber photometry recordings (Figure 1E; Figure S1). We

recorded time-varying GCaMP fluorescence during the task,

along with the animal’s head position in the chamber and the

timestamps for each task event (Figure 1F).
VTA-DA, SNc-DA, and NB-ChAT, but Not MS-ChAT,
Populations Primarily Encode Task Events Rather Than
the Rats’ Speed
Before examining in detail the neural correlates of behavioral

events, we determined whether the animals’ movement in the

chamber provided a better explanation of neural activity than

the events themselves. This is a possible confound in interpret-

ing neural correlates of events, given that in an operant task,

an animal’s movement may correlate with the timing of task

events; therefore, apparent neural correlates of task events

may be better explained as neural correlates of movement.

Thus, we compared the predictive power of linear encoding

models (Engelhard et al., 2019; Lovett-Barron et al., 2019;Musall
T, and MS-ChAT Neurons in Rats Performing a Spatial Short-Term

n this framework, DA contributes tomaintaining amemory item during the delay

work, DA contributes to updating of new information during the sample period.

riod starts with the sample lever presentation on either the left or right side of the

iggers the nosepoke on the back of the chamber to be illuminated. The delay

ght (‘‘delay start’’). After the delay period (1, 5, or 10 s), the nosepoke is again

other nosepoke, choice levers are presented (‘‘choice presentation’’). The rat

p of water during the outcome period. Colored bars delineate the duration of the

at choice period denotes the choice readout period, as opposed to when the

; bars and error bars indicate mean ± SEM across rats). Rats showed delay-

lay duration; p < 0.001 for delay; n = 34 rats).

hAT::Cre rats and Cre-dependent GCaMP virus (AAV2/5-CAG-DIO or FLEX-

CaMP6f fluorescence from NB-ChAT neurons (top), timestamps of each task

ental area (VTA-DA) and substantia nigra pars compacta (SNc-DA).

A (H) and SNc (I).

leus basalis (NB-ChAT) and medial septum (MS-ChAT).

e NB (K) and MS (L). Scale bars: 1 mm (top), 500 mm (bottom left), and 25 mm
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Figure 2. VTA-DA, SNc-DA, and NB-ChAT, but Not MS-ChAT, Better Encode Task Events Than Speed

(A) Schematic of the full encoding model, in which GCaMP at each time point was predicted based on both task events and the rat’s speed. For each task event, a

set of 10 predictors was created by convolving that task event’s timestamps with a spline basis set, in order to allow temporally delayed versions of each event to

predict GCaMP fluorescence. Speed predictors include first-, second-, and third-degree polynomials of the animal’s speed at each point in time.

(B) Three encoding models (x axis) were generated and compared on held-out data: (1) a model with only speed predictors, (2) a model with only task event

predictors, and (3) the full model with both task event and speed predictors. In the VTA-DA, SNc-DA, and NB-ChAT populations, the task eventsmodel performed

better than the speed model, while in the MS-ChAT population, the speedmodel and the task events model were comparable (one-way ANOVA, R2 explained by

each encoding model: p < 0.001 for VTA-DA, p < 0.001 for SNc-DA, p < 0.001 for NB-ChAT, p < 0.001 for MS-ChAT; post hoc pairwise t test comparing difference

between speed model and task events model, with Bonferroni correction: p < 0.001 for VTA-DA, p < 0.001 for SNc-DA, p < 0.001 for NB-ChAT, p = 0.86 for MS-

ChAT; n = 10 VTA-DA, 13 SNc-DA, 18 NB-ChAT, 8 MS-ChAT sites). Bars and error bars indicate mean ± SEM across recording sites. Each dot represents a

recording site. R2 for each recording site was obtained by averaging over 3-fold cross-validations.

See also Figure S2.
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et al., 2019) in which the GCaMP signal was predicted based on

different sets of predictors: either only speed (‘‘speed model’’),

only task events (‘‘event model’’), or a full model based on both

task events and speed (‘‘event and speed model,’’ model sche-

matic in Figure 2A; see STAR Methods for details on encoding

models). This revealed that the time-varying GCaMP signal in

VTA-DA, SNc-DA, and NB-ChAT was better explained by the

task events than speed, whereas speed explained GCaMP in

MS-ChAT as well as task events (Figure 2B; one-way ANOVA,

R2 over 3-fold cross-validation for different encoding models:

p < 0.001 for VTA-DA, p < 0.001 for SNc-DA, p < 0.001 for NB-

ChAT, p < 0.001 for MS-ChAT; post hoc pairwise t test between
4 Cell Reports 33, 108492, December 15, 2020
speed model and task events model, with Bonferroni correction:

p < 0.001 for VTA-DA, p < 0.001 for SNc-DA, p < 0.001 for NB =

ChAT, p = 0.86 for MS-ChAT; n = 10 sites for VTA-DA, n = 13 for

SNc-DA, n = 18 NB-ChAT, n = 8 for MS-ChAT; Figures S2A–S2F

for the speed encoding of MS-ChAT; Figures S2G–S2L for the

visualization of task event kernels learned from the full model).

VTA-DA, SNc-DA, and NB-ChAT Neurons Have Elevated
Activity during the Sample, Choice, and Outcome
Periods, but Not during the Delay Period
Given that task events were good predictors of the variance of

GCaMP fluorescence in VTA-DA, SNc-DA, and NB-ChAT
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neurons, we further examined how neural activity correlated with

each event in those populations by time-locking the GCaMP

signal to each event (Figures 3A–3I; Figures S3A–S3I). We

observed some commonalities in the activity profiles across

these task-encoding populations. For example, transient eleva-

tion of GCaMP fluorescence in relation to task events was

evident across the sample, choice, and reward period in all three

populations (Figures 3J, 3L, and 3N; one-way ANOVA, average

GCaMP explained by sample, delay, choice, or outcome epoch;

p < 0.001 for VTA-DA, p < 0.003 for SNc-DA, p = 0.002 for NB-

ChAT; n = 10 sites for VTA-DA, n = 13 for SNc-DA, n = 18 for

NB-ChAT).

We did not observe elevation of GCaMP fluorescence during

the delay period in these populations. In VTA-DA, fluorescence

during the delay period was significantly lower than during the

sample or choice periods (Figure 3J; post hoc pairwise t test

with Bonferroni correction; p < 0.001 between delay and sample,

p < 0.001 between delay and choice; n = 10 VTA-DA sites). In

SNc-DA and NB-ChAT recordings, the delay period fluores-

cence was not significantly different from that of the sample

period but was significantly lower than that of the choice period

(Figures 3L and 3N; post hoc pairwise t test with Bonferroni

correction; p = 1.00 for SNc-DA, p = 1.00 for NB-ChAT between

delay and sample; p < 0.001 for SNc-DA, p = 0.03 for NB-ChAT

between delay and choice; n = 13 SNc-DA, 18 NB-ChAT sites).

Finally, in both VTA-DA and SNc-DA populations, activity was

higher during the choice period than during the sample period

(Figures 3J and 3L; post hoc pairwise t test with Bonferroni
Figure 3. During the Delay Period, GCaMP Fluorescence in VTA-DA

Relatively Low Fluorescence at That Time

(A) Schematic of fiber photometry recordings from VTA-DA.

(B) Z-scoredGCaMP fluorescence from VTA-DA recordings, time-locked to each t

all 10 s delay trials.

(C) Z-scored GCaMP fluorescence from VTA-DA recordings during the outcome p

10 s delay trials.

(D–F) Same as in (A)–(C) but for SNc-DA recordings (n = 13 sites).

(G–I) Same as (A)–(C) but for NB-ChAT recordings (n = 18 sites).

(J) Average Z-scored GCaMP fluorescence during the sample, delay, choice, a

Average GCaMP activity was significantly lower in the delay period than in the

correction; p < 0.001 between delay and sample, p < 0.001 between delay and c

choice; n = 10 sites).

(K) Left: accuracy relative to delay period fluorescence in VTA-DA. To relate delay

delay period fluorescence for each recording site (n = 10 sites) and delay period d

duration, we plotted the average accuracy versus the fluorescence quintile, averag

GCaMP fluorescence quintiles separately for each delay accounted for delay-d

independent relationship between fluorescence and accuracy. Right: accuracy re

the left (mixed-effect linear regression, accuracy predicted based on first- and

random effect of individual recording site; p = 0.005 for the second-degree pol

inverted-U relationship.

(L) same as (J) but for SNc-DA recordings (n = 13 sites). Average GCaMP fluoresce

different from the sample or outcome periods (post hoc pairwise t test with Bonfe

and choice, p = 0.28 between delay and outcome, p = 0.002 between sample an

(M) Same as (K) but for SNc-DA recording sites (mixed-effect linear regression, acc

fluorescence quintile, delay, and random effect of individual recording site; p = 0

(N) Same as (J) but from NB-ChAT recordings (n = 18 sites). Average GCaMP act

periods, but not different from the sample periods (post hoc pairwise t test with Bo

and choice, p = 0.002 between delay and outcome, p = 0.09 between sample an

(O) Same as (K) but in NB-ChAT recording sites (mixed-effect linear regression, ac

fluorescence quintile, delay duration, and random effect of individual recording si

shaded regions denote SEM.

See also Figures S3, S4, S5, and S6.
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correction; p < 0.001 for VTA-DA, p = 0.002 for SNc-DA between

sample and choice; n = 10 VTA-DA, 13 SNc-DA sites). The higher

activity during the choice period can be interpreted as modula-

tion by a temporally discounted reward expectation function

(Fiorillo et al., 2008; Kobayashi and Schultz, 2008; Mazur,

1987; Richards et al., 1997; Roesch et al., 2007; Starkweather

et al., 2017) and therefore consistent with reward prediction er-

ror. This is because the sample and the choice periods involved

the same stimulus and action, but the choice period was more

proximal to the reward period than the sample period. Choice

period activity was not correlated with delay duration, after ac-

counting for the baseline offset at the end of the delay (Figures

S3M and S3N).

By comparison, in the NB-ChAT population, choice period

activity was not significantly higher than that of the sample

period (Figure 3N; post hoc pairwise t test with Bonferroni

correction; p = 0.09 between sample and choice; n = 18 NB-

ChAT sites). Another distinction between the NB-ChAT and

the VTA-DA populations was that NB-ChAT responded prefer-

entially to the lever press action, while VTA-DA responded to

the lever presentation (SNc-DA had mixed selectivity; Figures

S3O–S3Q).

As a control, we recorded from animals in which GFP and not

GCaMP was expressed. In that case, we did not observe a

similar pattern of modulation of fluorescence relative to task

events (Figures S3J–S3L).

Finally, we examined the spatial distribution of response pro-

files within each region based on anatomical reconstruction of
and NB-ChAT Relates to Performance with an Inverted-U, Despite

ask event during the sample, delay, and choice periods (n = 10 sites). Data from

eriod, separated by rewarded and unrewarded trials (n = 10 sites). Data from all

nd outcome periods from VTA-DA recordings (10 s delay trials, n = 10 sites).

sample, choice, or outcome periods (post hoc pairwise t test with Bonferroni

hoice, p = 0.001 between delay and outcome, p < 0.001 between sample and

period fluorescence to accuracy, we ranked all trials according to their average

uration (n = 3 delay durations). For trials in each quintile for each delay period

ing across delay period duration and then recording sites. Note that calculating

ependent differences in fluorescence and allowed visualization of the delay-

lative to delay period fluorescence predicted from the model fit to the data on

second-degree polynomial of delay period fluorescence quintile, delay, and

ynomial; n = 10 sites). See Figure S6 for additional statistical analyses of the

nce was significantly lower in the delay period than in the choice period, but not

rroni correction; p = 1.00 between delay and sample, p < 0.001 between delay

d choice, p < 0.05 between sample and outcome; n = 13 SNc-DA sites).

uracy predicted based on first- and second-degree polynomial of delay period

.45 for the second-degree polynomial, n = 13 sites).

ivity was significantly lower in the delay period than in the choice and outcome

nferroni correction; p = 1.00 between delay and sample, p = 0.03 between delay

d choice, p = 0.003 between sample and outcome; n = 18 NB-ChAT sites).

curacy predicted based on first- and second-degree polynomial of delay period

te; p = 0.008 for the second-degree polynomial, n = 18 sites). All error bars and



Article
ll

OPEN ACCESS
recording fiber placement. Pairwise correlations between

recording sites revealed that GCaMP recordings were highly ho-

mogeneous in VTA-DA andMS-ChAT populations and heteroge-

neous in SNc-DA and NB-ChAT populations (Figures S4A and

S4B). Interestingly, NB-ChAT responses were spatially orga-

nized along the medio-lateral axis (Figures S4C–S4E). Further-

more, the medial and lateral subregions of NB-ChAT received

topographic input from the medial and lateral subregions of the

striatum, respectively (Figure S5).

In summary, neural correlates in VTA-DA neurons during this

taskwere consistentwith the gating theory (Figure 1B) in that there

was elevated activity during the sample period and suppressed

activityduring thedelayperiod.Activitywas furtherelevatedduring

the choice period, which can be considered as consistent with

reward prediction error and therefore with the gating theory.

During the Delay Period, VTA-DA and NB-ChAT Activity
Relates to Performance with an Inverted-U Relationship
Although delay period activity was relatively low in VTA-DA and

NB-ChAT, we found an interesting relationship between activity

during the delay period and task accuracy in both populations.

Specifically, task accuracy as a function of the trial-averaged

delay period fluorescence followed an inverted-U relationship

(Figures 3K, 3M, and 3O). Statistically, this was confirmed

with a mixed-effect linear regression in which accuracy was

predicted based on the first- and second-degree polynomial

of delay period fluorescence quintile (as well as delay period

duration and a random effect of individual recording site). For

both VTA-DA and NB-ChAT, but not SNc-DA, the second-de-

gree polynomial of delay period fluorescence was statistically

significant, indicative of an inverted-U shape (p = 0.005 for

VTA-DA, p = 0.008 for NB-ChAT, p = 0.45 for SNc-DA for sec-

ond-degree polynomial of delay period fluorescence quintile;

n = 10 VTA-DA, 13 SNc-DA, 18 NB-ChAT sites). Additionally,

the Sasabuchi-Lind-Mehlum tests for inverted-U further vali-

dated the inverted-U relationship between accuracy and delay

period fluorescence in VTA-DA and NB-ChAT populations (Fig-

ure S6A; for detail on tests, see STAR Methods, Inverted-U

quantification). In contrast to the delay period, fluorescence

was not related to accuracy with an inverted-U according to

the same sets of tests in any of these regions during the sample

and choice periods.

To control for the possibility that the rat’s position during the

delay period could contribute to the inverted-U relationship be-

tween fluorescence and accuracy, we repeated the same anal-

ysis using the subset of the delay period data during which the

animal’s head was near the nosepoke (Figures S6B–S6D). The

significant inverted-U relationship between the delay period

GCaMP fluorescence and accuracy in VTA-DA and NB-ChAT

populations was maintained in this subset of the data (mixed-ef-

fect linear regression in which accuracy was predicted based on

the first- and second-degree polynomial of delay period fluores-

cence quintile, delay period duration, and a random effect of in-

dividual recording site; p = 0.003 for VTA-DA, p = 0.09 for SNc-

DA, p = 0.002 NB-ChAT).

Thus, we observed a neural correlate of the inverted-U rela-

tionship between neuromodulation and short-term memory per-

formance, specifically during the delay period.
Optogenetic Inhibition of VTA-DA Neurons Selectively
Impairs Short-Term Memory, While Inhibition of SNc-
DA, NB-ChAT, and MS-ChAT Neurons Does Not
To determine whether the activity we measured in neuromodula-

tory populations contributes causally to task performance, we op-

togenetically inhibited each population throughout a trial, on a

subset of trials. To this end, we injected Cre-dependent NpHR

into the VTA or SNc of TH::Cre rats and implanted bilateral

fibers above the injection site (Figures 4A and 4B; Figures S7

and S8).

Full-trial inhibition of DA neurons in the VTA significantly

impaired rats’ performance in the memory-guided DNMTP task

(Figures 4C and 4D; mixed-effect logistic regression, correct/

incorrect choice predicted based on fixed effects of light, delay,

and random effect of individual rat; p < 0.001 for light; n = 13

NpHR rats). The level of opsin expression (as assessed by fluo-

rescence intensity in histology) was significantly correlated with

the optogenetic impairment (Figure 4F; two-way ANOVA light

impairment explained by fluorescence level and delay; p =

0.002 for fluorescence, p = 0.07 for delay; R2 = 0.32; n = 13

NpHR rats). There was no significant light-induced impairment

in the YFP control animals (mixed-effect logistic regression, cor-

rect/incorrect choice predicted based on fixed effects of light,

delay, and random effect of individual rat; p = 0.23 for light; n =

7 YFP rats; Figure 4E; Figure S7B), and there was a significant

light 3 group interaction between the NpHR and YFP groups

(Figures 4D and 4E, mixed-effect logistic regression, correct/

incorrect choice predicted based on fixed effects of light, delay,

NpHR/YFP opsin group, and random effect of individual rat; p <

0.001 for light 3 group; n = 13 NpHR, 7 YFP rats). In contrast to

the effect on accuracy, choice omission rate did not show signif-

icant light-induced change (Figure S7E; mixed-effect logistic

regression, choice omission/completion predicted based on

fixed effects of light, delay, NpHR/YFP opsin group, memory-

guided/cue-guided task type, and random effect of individual

rat; p = 0.23 for light; n = 13 rats for memory-guided NpHR,

n = 7 rats for memory-guided YFP, n = 7 rats for cue-guided

NpHR).

To determine whether the impairment induced by VTA-DA in-

hibition was specifically attributable to the short-term memory

component of the task, we compared performance to a control

variant of the task in which rats did not have to use short-term

memory (Figure 4G). In the cue-guided task, the motor require-

ments were identical, but a light cue directly above the correct

choice lever was illuminated during the choice period to signal

which lever was correct. Optogenetic inhibition of DA neurons

in VTA did not affect performance in the cue-guided task

(mixed-effect logistic regression, correct/incorrect choice pre-

dicted based on fixed effects of light, delay, and random effect

of individual rat; p = 0.14 for light; n = 7 NpHR rats; Figure 4G;

Figure S7C). Thus, the effect of optogenetic inhibition of VTA-

DA appeared to be dependent on the task having a short-term

memory component.

Next, we investigated whether SNc-DA neurons also contrib-

uted causally to short-term memory. We performed an identical

set of inhibition experiments in the SNc aswe had in the VTA. Op-

togenetic inhibition of SNc-DA neurons impaired accuracy in the

memory-guided task (mixed-effect logistic regression, correct/
Cell Reports 33, 108492, December 15, 2020 7
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B Figure 4. Optogenetic Inhibition of VTA-DA, but Not SNc-DA,

Selectively Impairs Short-Term Memory

(A) Schematic of VTA-DA and SNc-DA targeting strategy using TH::Cre

rats and Cre-dependent AAV2/5 DIO-NpHR-YFP (or DIO-YFP for the

control group) virus injected into the VTA (top) or SNc (bottom),

respectively.

(B) Example histology from the VTA (top) and SNc (bottom), showing the

co-localization of TH (red) and NpHR (green). Scale bars: 50 mm (top)

and 75 mm (bottom).

(C) Schematic of experimental design for the entire-trial inhibition

experiment. Continuous illumination (532 nm, �5-6 mW light power)

was presented throughout the entirety of a trial, on a randomly selected

20% of trials, every other day.

(D) Inhibition of VTA-DA neurons during the memory-guided DNMTP

task impaired accuracy (mixed-effect logistic regression, correct/

incorrect choice predicted based on fixed effects of light, delay dura-

tion, and random effect of individual rat; p < 0.001 for light, n = 13 NpHR

rats).

(E) In YFP control animals, the effect of light was not significant (mixed-

effect logistic regression, correct/incorrect choice predicted based on

fixed effects of light, delay duration, and random effect of individual rat;

p = 0.23 for light; n = 7 YFP rats), and there was a significant interaction

between laser 3 group (D and E combined: mixed-effect logistic

regression, correct/incorrect choice predicted based on fixed effects of

group, light, delay duration, and random effect of individual rat; p <

0.001 for light 3 group, n = 13 NpHR + 7 YFP rats).

(F) In the VTA-DA NpHR group, virus expression level as measured by

fluorescence intensity correlates with the behavioral effect size as

measured by change in accuracy between light-on and light-off trials for

each rat (y axis, two-way ANOVA, light impairment in accuracy ex-

plained by opsin expression level and delay duration; p = 0.002 for opsin

expression, p = 0.07 for delay duration; R2 = 0.32; n = 13 NpHR rats).

(G) Optogenetic inhibition of VTA-DA neurons during the cue-guided

DNMTP task. Accuracy (y axis) was not impaired in light-on trials (green

bar) compared with light-off trials (gray bar; mixed-effect logistic

regression, correct/incorrect choice predicted based on fixed effects of

light, delay duration, and random effect of individual rat; p = 0.14 for

light; n = 7 NpHR rats).

(H–K) Same as (D)–(G) but in the SNc-DA group. Unlike VTA-DA, the

accuracy was impaired in both the memory-guided (mixed-effect lo-

gistic regression, correct/incorrect choice predicted based on fixed

effects of light, delay duration, and random effect of individual rat; p <

0.001 for light; n = 12 NpHR rats) and cue-guided DNMTP task (mixed-

effect logistic regression, correct/incorrect choice predicted based on

fixed effects of light, delay duration, and random effect of individual rat;

p < 0.001 for light; n = 6 NpHR rats). All error bars denote SEM.

See also Figures S7 and S8.
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A

C D

B Figure 5. Optogenetic Inhibition of NB-

ChAT and MS-ChAT Does Not Impair

Short-Term Memory

(A) Schematic of NB-ChAT and MS-ChAT target-

ing strategy using ChAT::Cre rats and AAV2/5

DIO-NpHR-YFP virus injected into the NB (top) or

MS (bottom).

(B) Example histology from the NB (top) and MS

(bottom), showing co-localization of ChAT (red)

and NpHR (green). Scale bar, 50 mm.

(C) Optogenetic inhibition of NB-ChAT does not

affect performance in the DNMTP task (mixed-

effect logistic regression, correct/incorrect choice

predicted based on fixed effects of light, delay

duration, and random effect of individual rat, p =

0.9 for light; n = 5 NpHR rats; continuous illumi-

nation, 532 nm, �5–6 mW light power).

(D) Optogenetic inhibition of MS-ChAT does not

affect short-term memory (mixed-effect logistic

regression, correct/incorrect choice predicted

based on fixed effects of light, delay duration and

random effect of individual rat; p = 0.17 for light;

n = 3 NpHR rats; continuous illumination, 532 nm,

�5–6 mW light power). All error bars denote SEM.

See also Figure S9.
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incorrect choice predicted based on fixed effects of light, delay

and random effect of individual rat; p < 0.001 for light; n = 12

NpHR rats; Figure 4H; Figure S8A). This effect was not present

in control rats expressing YFP in SNc-DA (mixed-effect logistic

regression, correct/incorrect choice predicted based on fixed ef-

fects of light, delay and random effect of individual rat; p = 0.12

for light; n = 7 YFP rats; Figure 4I; Figure S8B). However, unlike

VTA-DA, there was no significant interaction between light on/

off and opsin/yfp group (Figures 4H and 4I; mixed-effect logistic

regression, correct/incorrect choice predicted based on fixed ef-

fects of light, delay, NpHR/YFP opsin group, and random effect

of individual rat; p = 0.27 for light 3 group; n = 12 NpHR, 7 YFP

rats), and the level of opsin expression did not correlate with

the optogenetic impairment (Figure 4J; two-way ANOVA,

light impairment explained by fluorescence level and delay; p =

0.99 for fluorescence, p = 0.69 for delay; R2 = 0.02; n = 12

NpHR rats).

Moreover, unlike VTA-DA neurons, optogenetic inhibition of

SNc-DA neurons during the control cue-guided task signifi-

cantly impaired accuracy (mixed-effect logistic regression, cor-

rect/incorrect choice predicted based on fixed effects of light,

delay, and random effect of individual rat; p < 0.001 for light;

n = 6 NpHR rats; Figure 4K; Figure S8C). The presence of light

effect in both the memory-guided and cue-guided tasks sug-

gests that the effect of SNc-DA inhibition is different from that

of VTA-DA and cannot be specifically attributed as a short-

term memory deficit.

We next asked whether ascending ChAT neurons in the NB

and MS contributed causally to short-term memory (Figure 5).

To address this, throughout the trial on a subset of trials, we in-

hibited ChAT neurons in the MS and NB in ChAT::Cre rats

performing the DNMTP task (Figures 5A and 5B; Figure S9).
Cel
We found that the inhibition of neither

ChAT population affected short-term

memory performance (Figure 5C, NB-
ChAT group, mixed-effect logistic regression, correct/incorrect

choice predicted based on fixed effects of light, delay, and

random effect of individual rat; p = 0.9 for light; n = 5 NpHR

rats; Figure 5D, MS-ChAT group, mixed-effect logistic regres-

sion, correct/incorrect choice predicted based on fixed effects

of light, delay, and random effect of individual rat; p = 0.17 for

light; n = 3 NpHR rats).

Taken together, this suggests that the causal contribution of

VTA-DA to short-termmemory is unique relative to the other neu-

romodulatory populations that we examined.

Optogenetic Inhibition of VTA-DA Neurons during the
Delay Period Impairs Short-Term Memory, Despite the
Suppressed Activity during That Time
After determining that VTA-DA neurons contribute to short-term

memory, we next asked when they do so: during the sample,

delay, or choice period of the task. To address this, on a subset

of trials, and in a randomly interleavedmanner, we inhibited VTA-

DA neurons during one of the three epochs (Figure 6A;

Figure S7A).

Optogenetic inhibition of VTA-DA neurons during the sample

and delay period, but not the choice period, impaired short-

term memory (Figures 6B–6D; mixed-effect logistic regression,

correct/incorrect choice predicted based on fixed effects of

light epoch, delay, and random effect of individual rat; p =

0.002 for light on sample, p < 0.001 for light on delay, p = 0.3

for light on choice; n = 13 NpHR rats). The effect size for delay

period inhibition was larger than that for the sample period

(regression coefficient for delay: b = �0.45 ± 0.076; for sample:

b = �0.25 ± 0.081), which is surprising given the suppressed

activity in this population during the delay period (Figures 3B

and 3J).
l Reports 33, 108492, December 15, 2020 9
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Figure 6. Optogenetic Inhibition of VTA-DA during the Delay Produces Impairments in Short-TermMemory, Despite the Suppressed Activity

during That Time

(A) Schematic of experimental design for sub-trial inhibition. Continuous light was presented during either the sample, delay or choice periods of a trial in an

interleaved manner, with each manipulation occurring on 10% of trials (532 nm, �5-–6 mW light power).

(B–D) Accuracy for light-on (green bar) versus light-off (gray bar) trials for the sample (B), delay (C), and choice (D) period. Mixed-effect logistic regression (n = 13

NpHR rats) to predict correct/incorrect choice based on fixed effects of light (light off, light during sample, light during delay, light during choice), delay duration,

and random effect of individual rat reveals a significant effect of light during sample (p = 0.002) and delay (p < 0.001), but not choice (p = 0.3). All error bars denote

SEM.

See also Figure S7.
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Optogenetic Activation of VTA-DA Neurons during the
Delay, but Not the Sample, Period Impairs Short-Term
Memory
The inverted-U hypothesis posits that too much or too little DA

would impair short-term memory. This would suggest that not

only inhibition but also activation of VTA-DA neurons would

impair short-term memory. On the other hand, the gating theory

would suggest that more DA during the sample period could

enhance short-term memory.

Thus, we next injected an AAV2/5 expressing Cre-dependent

ChR2 into the VTA of TH::Cre rats (Figures 7A and 7B; Fig-

ure S7D). We briefly activated VTA-DA neurons at the time of

the sample presentation to simulate the phasic response

observed with fiber photometry (Figure 7C; 5 ms pulse duration,

5 pulses of 20 Hz stimulation, �13–15 mW). Optogenetic activa-

tion did not improve short-term memory, which was not consis-

tent with predictions from the gating theory (Figure 7D, mixed-ef-

fect logistic regression, correct/incorrect choice predicted

based on fixed effects of light, delay, and random effect of indi-

vidual rat; p = 0.13 for light; n = 9 ChR2 rats).

Next, we activated VTA-DA neurons during the delay period,

which is when we observed the most impairment of short-term

memory from the optogenetic inhibition (Figure 7E; 5 pulses at
10 Cell Reports 33, 108492, December 15, 2020
20 Hz per burst, 1 burst/s, 5 ms pulse duration,�13–15 mW light

power). We found that the optogenetic activation of VTA-DA

neurons resulted in significant impairment of task performance,

similar to our results from inhibition of this population (Figure 7F,

mixed-effect logistic regression, correct/incorrect choice pre-

dicted based on fixed effects of light, delay, and random effect

of individual rat; p < 0.001 for light; n = 10ChR2 rats, Figure S7D).

In fact, even mild optogenetic activation (1 pulse/s, 5 ms pulse

duration) of VTA-DA neurons during the delay period resulted

in a significant impairment in performance (Figures 7G and 7H;

mixed-effect logistic regression, correct/incorrect choice pre-

dicted based on fixed effects of light, delay, and random effect

of individual rat; p < 0.001 for light; n = 10 ChR2 rats).
DISCUSSION

In summary, we found that VTA-DA neurons, and not the other

three neuromodulatory populations we examined (SNc-DA,

NB-ChAT, and MS-ChAT), contribute to short-term memory.

Specifically, VTA-DA neurons do so preferentially during the

delay period, despite the low activity in that population during

that time. Both neural correlates and neural manipulations of
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Figure 7. Optogenetic Activation of VTA-DA Neurons during the Delay, but Not Sample, Impairs Short-Term Memory

(A) Schematic of VTA-DA targeting strategy using TH::Cre rats and AAV2/5 DIO-ChR2-YFP virus.

(B) Histology of ChR2 expression in VTA-DA neurons. Scale bar, 50mm.

(C) Schematic of experimental design for optogenetic activation at sample lever presentation. VTA-DA was activated at sample lever presentation (5 pulses at

20 Hz, 5 ms pulse duration, 447 nm, �13–15 mW light power).

(D) Performance in DNMTP task for light-on (blue bar) versus light-off (gray bar) trials for VTA-DA activation using the protocol described in (C). VTA-DA activation

at sample presentation did not modulate accuracy (mixed-effect logistic regression, correct/incorrect choice predicted based on fixed effects of light, delay

duration, and random effect of individual rat; p = 0.13 for light; n = 9 ChR2 rats).

(E) Schematic of experimental design for burst activation of VTA-DA during the delay period (5 pulses at 20 Hz per burst, 1 burst/s, 5 ms pulse duration, 447nm,

�13–15 mW light power).

(F) Performance in the DNMTP task for light-on (blue bar) versus light-off (gray bar) trials for VTA-DA activation during the delay period using the protocol

described in (E). VTA-DA activation in bursts during the delay period significantly impaired accuracy (mixed-effect logistic regression, correct/incorrect choice

predicted based on fixed effects of light, delay duration, and random effect of individual rat; p < 0.001 for light; n = 10 ChR2 rats).

(G) Schematic of experimental design for tonic optogenetic activation of VTA-DA during the delay period (1 pulse/s, 5ms pulse duration, 447nm,�13–15mW light

power).

(H) Performance in the DNMTP task for light-on (blue bar) versus light-off (gray bar) trials for VTA-DA activation during the delay period using the protocol

described in (G). VTA-DA tonic activation during the delay period significantly impaired accuracy (mixed-effect logistic regression, correct/incorrect choice

predicted based on fixed effects of light, delay, and random effect of individual rat; p < 0.001 for light; n = 10 ChR2 rats). All error bars denote SEM.

See also Figure S7.
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VTA-DA neurons are consistent with an inverted-U relationship

between population-level activity and accuracy.

Support for an Inverted-U Relationship between DA and
Short-Term Memory Maintenance
Midbrain DA neurons are known to respond to reward-predicting

cues and unexpected rewards; in other words, they encode er-
rors in the prediction of reward (Bayer and Glimcher, 2005; Co-

hen et al., 2012; Roesch et al., 2007; Schultz, 1986, 1998; Schultz

et al., 1997). In addition, DA has been implicated in short-term

memory, primarily through pharmacological manipulations in

monkeys (Arnsten et al., 1994; Cai and Arnsten, 1997; Sawagu-

chi and Goldman-Rakic, 1991; Williams and Goldman-Rakic,

1995). However, it has been unclear whether and how to
Cell Reports 33, 108492, December 15, 2020 11
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integrate these literatures. In particular, pharmacological exper-

iments had suggested that DA is most important to short-term

memory during the delay period (Figure 1A; Vijayraghavan

et al., 2007; Williams and Goldman-Rakic, 1995). Because there

are usually no reward-predicting cues or rewards during the

delay period, it is not obvious whether and why there would be

DA activity at that time.

Thus, to reconcile the role of DA in reinforcement learning with

one in short-termmemory, it was proposed that DA contributes to

the updating of short-term memory with new information (Fig-

ure 1B; Braver and Cohen, 1999, 2000; O’Reilly and Frank,

2006), which should occur at the time of reward-predicting stimuli,

rather than to the maintenance of short-term memory during the

delay period, which was the original hypothesis from pharmaco-

logical experiments. Because pharmacology is too slow to distin-

guish between a role in updating versus maintaining short-term

memory, these hypotheses have remained untested. Thus, a ma-

jor goal of this study was to directly measure and manipulate DA

neuron activity during a short-term memory task with a distinct

‘‘sample period’’ in which short-term memory is updated as well

as a ‘‘delay period’’ in which short-term memory is maintained,

to determine which aspect of memory DA supports.

Our recordings revealed activity in DA neurons that was

consistent with reward prediction error and therefore the ‘‘gating

theory.’’ We observed relatively low activity in VTA-DA neurons

during the delay period and elevated activity during the sample,

choice, and outcome periods. This is consistent with VTA-DA re-

sponses primarily being explained by reward prediction error:

reward-predicting cues appear during the sample and choice

periods (the lever presentation), and reward occurs during the

outcome period. Furthermore, the choice lever presentation eli-

cited higher activity than the sample lever presentation, which is

also consistent with a reward prediction error, assuming a

temporally discounted reward expectation function (Fiorillo

et al., 2008; Kobayashi and Schultz, 2008; Mazur, 1987; Ri-

chards et al., 1997; Roesch et al., 2007; Starkweather et al.,

2017). Similar to VTA-DA, SNc-DA neurons also did not have

elevated activity during the delay period, although the activity

was not as low as VTA-DA.

Based on these neural correlates, we expected that DA might

be causally involved in the sample period of short-term memory,

consistent with the gating theory. In fact, we did observe a mild

impairment in short-term memory as a result of inhibiting during

the sample period, providing some causal support for that hy-

pothesis. However, this effect was relatively small, and we

observed no effect of activation during this period.

In addition, our recordings provided insight into the relation-

ship between endogenous VTA-DA activity and short-term

memory performance: we observed an ‘‘inverted-U’’ relationship

between the delay period activity and performance. This correla-

tional evidence provides a different form of support of classic

ideas that had emerged from pharmacological manipulations,

which had artificially manipulated receptor activation but pro-

vided no insight into the natural activity patterns.

Furthermore, bi-directional optogenetic manipulations re-

vealed that the delay period was most relevant to short-term

memory, as inhibition or activation led to relatively large impair-

ments in performance, despite the low activity at that time. Thus,
12 Cell Reports 33, 108492, December 15, 2020
our manipulation of cell bodies very much resembled the dose-

dependent ‘‘inverted-U’’ effects of D1 receptor agonist treat-

ment in monkey PFC during spatial short-term memory (Cai

and Arnsten, 1997; Murphy et al., 1996; Sawaguchi and Gold-

man-Rakic, 1991; Vijayraghavan et al., 2007; Williams and Gold-

man-Rakic, 1995; Zahrt et al., 1997). These findings highlight a

dissociation between when DA neurons are most active (sam-

ple/choice period) and when their activity most affects short-

term memory (delay period) and reveal new correlational and

causal support that are consistent with classic ideas of an ‘‘in-

verted-U’’ relationship between DA and cognition.

Previous Work Measuring DA Neural Activity or DA
Efflux during Short-Term Memory
Matsumoto and Takada (2013) recorded from VTA-DA and SNc-

DA in non-humanprimates in a short-termmemory task and found

that SNc-DA responded to the sample stimulus only when the

subject was required to store it in short-termmemory. From these

neural correlates, they concluded that only SNc-DA, but not VTA-

DA, activity reflects short-term memory demand. However, they

did not manipulate neural activity in these populations to assess

causality, and in fact our finding that VTA-DA and not SNc-DA

contributes to short-termmemory, and does so preferentially dur-

ing the delay period, provides another potential interpretation of

their results. Specifically, our results suggest that the SNc-DA

response to the sample stimulus observed in their study may

only be correlational and not causal to short-term memory. An

important caveat in connecting our study with this previous

work is that that study was performed in primates, and there

may be species differences in the contribution of VTA-DA and

SNc-DA to short-term memory (Williams and Goldman-Rakic,

1998; Beckstead et al., 1979; Fallon and Moore, 1978).

Although we compared effects of VTA-DA and SNc-DA inhibi-

tion in a short-term memory task and a cue-guided task (Fig-

ure 4), we did not directly compare neural correlates in the DA

system of these two tasks. Watanabe et al. (1997) used in vivo

microdialysis to demonstrate an increase in DA in the principal

sulcus in primates after performance of a short-term memory

task, but not a cue-guided task. Whether such differences exist

in the fast dynamics of VTA-DA activity within a trial remains to be

established.

Another issue left unaddressed in the present study is the po-

tential functional difference in distinct VTA-DA subpopulations.

There is increased appreciation that VTA-DA neurons have het-

erogeneous and non-canonical signals during certain tasks

(Bromberg-Martin et al., 2010; Cai et al., 2020; Coddington

and Dudman, 2018; Engelhard et al., 2019; Howe and Dombeck,

2016; Howe et al., 2013; Lee et al., 2019; Lerner et al., 2015; Me-

negas et al., 2018; Parker et al., 2016; da Silva et al., 2018). For

example, there might be a population of neurons with elevated

activity during the delay period, and it is specifically those neu-

rons that are contributing causally to short-term memory perfor-

mance, but not the population as a whole.

Distinctions and Similarities in Neural Correlates of
Short-Term Memory across DA and ChAT Populations
Aside from clarifying the temporal contribution of DA to short-

term memory, another goal of this work was to directly compare
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the dopaminergic and cholinergic contribution to short-term

memory. Perhaps the most prominent difference between the

populations was observed in the MS-ChAT neurons, which en-

coded speed much more than the other populations. Addition-

ally, VTA-DA preferentially responded to lever presentation

cue, whereas NB-ChAT preferentially responded to lever press

action during the sample and choice periods.

The most striking similarity we observed was across the

three task-encoding populations (NB-ChAT, VTA-DA, SNc-

DA), all of which had reward responses and elevated activity

during the sample and choice periods. This is consistent

with previous reports of reward responses not only in DA neu-

rons but also in NB-ChAT neurons (Hangya et al., 2015; Teles-

Grilo Ruivo et al., 2017). Another similarity was between the

NB-ChAT and VTA-DA population; both had an inverted-U

shaped relationship between delay period activity and

performance.

SNc-DA, NB-CHAT, and MS-ChAT Neurons Do Not
Contribute Causally and Selectively to Short-Term
Memory
In contrast to some of the similarities we observed in the neural

correlates of the task across neuromodulatory populations, the

causal contributions were more distinct. Only VTA-DA neurons

contributed selectively to the short-term memory task, as SNc-

DA inhibition affected both the short-term memory task and a

control task. In addition, NB-ChAT and MS-ChAT populations

were not causally involved in short-term memory. To ascertain

effective inhibition of NB-ChAT and MS-ChAT neurons, we per-

formed in vitro electrophysiological validation and also examined

targeting and expression (Figure S9).

The lack of involvement of the NB-ChAT populations is not

aligned with classic lesion studies that used non-specific excito-

toxins to lesion NB (i.e., ibotenic acid, quisqualic acid) and re-

ported deficits in a battery of spatial memory tests such as the

Morris water maze (Connor et al., 1991; Mandel and Thal,

1988; Mandel et al., 1989) and radial maze (Hodges et al.,

1989; Lerer and Warner, 1986; Turner et al., 1992). However,

our negative result with the NB-ChAT population is consistent

with subsequent and more specific studies with cholinergic

neuron-selective neurotoxin IgG-saporin (Baxter and Bucci,

2013; Baxter et al., 1995; Torres et al., 1994; Wenk et al., 1994).

In contrast to NB-ChAT neurons, MS-ChAT neurons have

been implicated in certain spatial short-term memory tasks

with IgG-saporin (Torres et al., 1994). However, our neural corre-

late demonstrated that MS-ChAT population primarily encodes

the animal’s movement rather than task events, providing little

reason to believe that these neurons would be selectively

involved in short-term memory. One possibility may be that the

septo-hippocampal ChAT pathway is only selectively involved

in short-term memory in the case of novel stimuli (Hasselmo

and Sarter, 2011; Hasselmo and Stern, 2006), perhaps by

contributing to the generation of exploratory behavior.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Chicken monoclonal anti-TH Aves lab Cat# TYH; RRID: AB_10013440

Goat monoclonal anti-ChAT Millipore Cat# AB144P; RRID: AB_2079751

Rabbit monoclonal anti-GFP Thermo Fisher Scientific Cat# G10362; RRID: AB_2536526

Donkey anti-Chicken conjugated to Cy3 Jackson Immuno Research Cat# 703-165-155; RRID: AB_2340363

Donkey anti-Goat conjugated to

Alexa Fluor 647

Jackson Immuno Research Cat# 705-605-147; RRID: AB_2340437

Donkey anti-Rabbit conjugated to

Alexa Fluor 488

Jackson Immuno Research Cat# 711-545-152; RRID: AB_2313584

Bacterial and Virus Strains

AAV2/5-CAG-Flex-GCamP6f U Penn Vector Core https://www.addgene.org/100835/ ; RRID: Addgene_100835

AAV2/5-CAG-DIO-RatOpt-GCaMP6f PNI Viral Core, Princeton Cat# AAV-VC58

AAV2/5-CAG-Flex-eGFP U Penn Vector Core https://www.addgene.org/51502/; RRID: Addgene_51502

AAV2/5-EF1a-DIO-eNpHR3.0-eYFP U Penn Vector Core https://www.addgene.org/26966/; RRID: Addgene_26966

AAV2/5-EF1a-DIO-ChR2-eYFP U Penn Vector Core https://www.addgene.org/20298/; RRID: Addgene_20298

AAV2/5-EF1a-DIO-eNpHR3.0-eYFP PNI Viral Core, Princeton Cat# AAV-VC24

AAV2/5-EF1a-DIO-ChR2-eYFP PNI Viral Core, Princeton Cat# AAV-VC53

AAV2/5-EF1a-DIO-eYFP PNI Viral Core, Princeton Cat# AAV-VC93

AAV2/5-CMV-DIO-TVA66T-HA-P2A-N2cDG PNI Viral Core, Princeton Cat# AAV-VC178

RabV-CVS-N2cDG-mCherry/EnvA Obtained by PNI Viral Core

from The Center for

Neuroanatomy with

Neurotropic Viruses (CNNV)

https://www.addgene.org/73464/; RRID: Addgene_73464

Experimental Models: Organisms/Strains

Rat: TH::Cre Long Evans Horizon Cat# TGRA8400

Rat: ChAT::Cre Long Evans RRRC Cat# 658

Software and Algorithms

U test stata module Lind and Mehlum, 2010 https://econpapers.repec.org/

software/bocbocode/s456874.htm

Wholebrain R package F€urth et al., 2018 http://www.wholebrainsoftware.org/

Other

Fibers for optogenetics Thor labs Cat# FT300UMT

Ferrules for optogenetics Precision Fiber Products Cat# MM-FER-2006SS-3300

Patch cord for fiberphotometry Doric Lenses Cat# MFP_400/430/1100-0.57_0.45m_

FCM-MF2.5_LAF

Ferrules for fiberphotometry Doric Lenses Cat# MFC_400/430-0.48_10mm_MF2.5_FLT
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ilana B.

Witten (iwitten@princeton.edu).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
The datasets and code supporting the current study are available from the Lead Contact, I.B.W., upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were conducted in accordance with the National Institute of Health guidelines andwere approved by the

Princeton University Institutional Animal Care and Use Committee.

TH::Cre (Horizon TGRA8400) or ChAT::Cre rats (RRRC 658) were maintained on a Long Evans background (Brown et al., 2013; Liu

et al., 2016;Witten et al., 2011). A total of 109 rats (108male and 1 female rats; 36 rats for fiber photometry, 62 rats for optogenetics, 5

rats for slice physiology, and 6 rats for rabies retrograde tracing) weighing >300 g/rat were used for experimentation. At the time of

surgery, rats used for fiber photometry experiments were 19 ± 1.01 weeks old, for optogenetics experiments were 18.0 ± 0.77 weeks

old, for slice physiology experiments were 14.34 ± 0.03 weeks old, and for rabies retrograde tracing experiments were 12.05 ±

0.39 weeks old. Rats were double-housed, unless they weighed over 500 g or had health-related concerns (e.g., fighting). Rats

were maintained on a 12-hour light on – 12-hour light off schedule. All surgical and behavioral procedures were performed during

the light off cycle.

METHOD DETAILS

Delayed non-match to sample task
Rats were water-restricted to 80%–85% of their ad-libitum weight and trained on a delayed non-match to position (DNMTP) spatial

short-termmemory task in operant chambers (Med-associates; Akhlaghpour et al., 2016; Dunnett et al., 1988). The operant chamber

had two retractable levers on the front wall and a nose port on the opposite back wall (Figure 1C). In the DNMTP task, rats were

trained to remember the position of the presented sample lever (either right or left) for a delay duration, and report the memory by

pressing the ‘‘non-match’’ lever during the choice period. At the beginning of each trial, the sample periodwas initiated once the sam-

ple lever was presented (emerged from thewall) from one of two possible locations - either the right or left position. Upon pressing the

sample lever, the lever retracted back into thewall, and the light in the back nose port was illuminated. The delay period started as the

rat went to the back wall to poke its nose into the illuminated nose port. The delay period lasted for 1, 5, or 10 s (10, 20, 30 s or 5, 10,

15 s in a subset of experiments shown in Figures 4I and 7) in a randomly interleaved manner, so that the rat did not know when the

delay period would end. At the end of the delay period, the nose port lighted up again, and the rats must then make the second nose-

poke for both levers to extend from the front wall and to begin the choice period. A correct responsewas to press the lever that did not

match the sample lever. A small light in the reward receptacle lit up immediately following the correct lever press, providing a feed-

back to the rat’s choice as well as signaling the presence of the water reward in the receptacle. Following the feedback light, rats

entered the reward receptacle and consumed the water reward. The rats were given up to 15 s to press the sample lever and up

to 5 s to perform a nosepoke in the illuminated nose port and to press the choice lever. All trials were followed by 5 s inter-trial interval

if the previous trial was correct, and 8 s inter-trial interval for previously incorrect or omitted trials.

In the beginning of training, water-deprived rats learned the behavioral sequence of the task to get a reward. Initially, rats spent 1-

2 weeks learning a simpler ‘‘nosepoke-nosepoke-lever press’’ sequence. In the simpler sequence, rats had to make two nosepokes

in the back of the chamber, which triggered a random lever to be presented. The pressing of the presented lever led to a drop of water

reward. When the rats repeated 100 sequences within an hour of training, they moved onto the more difficult, full sequence, which

consisted of ‘‘lever press-nosepoke-nosepoke-lever press.’’ In this stage, the behavioral sequence was the same as the DNMTP

task, but the choice period wasmodified such that rats needed to simply press the presented lever, instead ofmaking an overt choice

between the two levers, as only one choice lever emerged from the wall. At the end of the full sequence, rats were rewarded with a

drop of water. The rats learned the full sequence in a few days. Then, the rats were finally introduced to the DNMTP task, in which the

two nosepokeswere separated by a short time delay (1, 2, 3 s), two choice levers were presented, and pressing of the ‘‘non-match’’ to

sample lever was rewarded. For the following 3-6 weeks, delays were lengthened (1, 3, 5 s, and then 1, 5, 10 s) and rats learned the

‘‘non-match’’ to sample rule, improving their performance accuracy (> 80%). In total, the rats received 1-2 months of training.

The cue-guided task served as a control task for DNMTP, as it does not require short-term memory. The task structure was the

same as DNMTPwith only one difference: the rats were ‘‘guided’’ to the correct choice lever with a cue light directly above the correct

lever when the choice levers were presented.

Surgery
For all surgical procedures, rats were deeply anesthetized in 4%–5% isoflurane and placed in a stereotactic setup (Kopf Instruments,

Tujunga, CA, USA). After the rats were deeply anesthetized, rats were maintained on 1%–2% isoflurane throughout the surgery. The

rats received baytril (5mg/kg, i.m.) before surgery and meloxicam (2mg/kg, s.c.) before and 24h after surgery. Rats were allowed a

5 day postoperative recovery period.

Fiber photometry experiment

Data in Figures 2 and 3 are from a series of fiber photometry experiments, which consisted of VTA-DA, SNc-DA, NB-ChAT, MS-ChAT

(n = 34 rats, 50 recording sites) and control GFP groups (n = 2 rats, 4 recording sites).
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For the VTA-DA group (n = 7 rats, 10 recording sites), 1mL of Cre-dependent GCaMP6f (AAV2/5-CAG-Flex-GCamP6f, Upenn Vec-

tor Core, titer: 1:17 31013 GC/mL or AAV2/5-CAG-DIO-RatOpt-GCaMP6f, PNI Vector Core, titer: 2:30 31013 GC/mL, (Cameron

et al., 2019) was injected into the VTA (A/P: �6.0 mm, M/L: ±0.8 mm, D/V: �8.0 mm) of TH::Cre rats.

For the SNc-DA group (n = 8 rats, 13 recording sites), 1mL of Cre-dependent GCaMP6f (AAV2/5-CAG-Flex-GCamP6f, Upenn Vec-

tor Core, titer: 3:90 31012 GC/mL or AAV2/5-CAG-DIO-RatOpt-GCaMP6f, PNI Vector Core, titer: 2:30 31013 GC/mL) was injected

into the SNc (A/P: �5.6 mm, M/L: ±1.7- 2.25 mm, D/V: �7.7 - �8.2 mm) of TH::Cre rats.

For the NB-ChAT group (n = 17 rats, 19 recording sites, note that one recording site was removed from the analysis, see ‘‘Encoding

models’’ for details), 1mL of Cre-dependent GCaMP6f (AAV2/5-CAG-Flex-GCamP6f, Upenn Vector Core, titer: 2:34 31012 GC/mL or

AAV2/5-CAG-DIO-RatOpt-GCaMP6f, PNI Vector Core, titer: 2:30 31013 GC/mL) was injected into the NB (A/P:�1.5 mm,M/L: ±2.8 -

3.3 mm, D/V: �7.0 mm) of ChAT::Cre rats.

For the MS-ChAT group (n = 7 rats, 8 recording sites), 0.75mL of Cre-dependent GCaMP6f (AAV2/5-CAG-Flex-GCamP6f, Upenn

Vector Core, titer: 2:34 31012 GC/mL) was injected into the MS of ChAT::Cre rats (A/P: +0.5 mm, M/L: 0mm, D/V: �7.0 mm, 10�

angle).

For the control GFP group (n = 2 rats, 4 recording sites), 0.75 - 1 mL of Cre-dependent GFP virus (AAV2/5-CAG-Flex-eGFP, Upenn

Vector Core, titer: 1:81 31012 GC/mL) was injected to theNB (A/P:�1.5mm,M/L: 3.0mm, D/V:�7.0mm) andMS (A/P: +0.5mm,M/L:

0mm, D/V: �7.0 mm) of ChAT::Cre rats.

After the virus injection, a fiber optic cannula (400 mm core diameter, low-autofluorescence, MFC_400/430-

0.48_10mm_MF2.5_FLT, Doric Lenses) was implanted 0-0.7 mm above the injection site. Note that fiber optic cannula implantation

into MS and VTA, and virus injection into MS was at 10� angle to divert the superior sagittal sinus.

18 rats contributed two recording sites each (bilaterally or from two different regions), and 18 rats contributed a single recording site

each, resulting in a total 54 recording sites from 36 animals.

Optogenetics experiment

For the optogenetic inhibition experiment, 1mL of Cre-dependent NpHR (AAV2/5-EF1a-DIO-eNpHR3.0-eYFP, Upenn Vector Core,

titer: 1:29 31013 GC/mL or PNI Vector Core, titer: 1:00 31014 GC/mL) was injected into the SNc and VTA of TH::Cre rats, and NB

and MS of ChAT::Cre rats.

For the optogenetic activation experiment, 1mL of cre-dependent ChR2 (AAV2/5-EF1a-DIO-ChR2-eYFP, Upenn Vector Core, titer:

7:70 31012 GC/mL or PNI Vector Core, titer: 7:0 31014 GC/mL) was injected into the SNc and VTA of TH::Cre rats.

For the control illumination experiment, 1mL of Cre-dependent YFP virus (AAV2/5-EF1a-DIO-eYFP, PNI Vector Core, titer: 6:0 3

1013 GC/ml) was injected into the VTA of TH::Cre rats and SNc of ChAT::Cre rats.

After the virus injection, a fiber optic cannula (300mm core diameter, custommade with MM-FER-2006SS-3300 from Precision fiber

products and FT300UMT from Thor labs) was implanted 0-0.7 mm above the injection sites. The optogenetic manipulations of VTA,

SNc, and NB were bilateral (A/P: �6.0 mm, M/L: ± 0.8 mm, D/V: �8.0 mm for VTA; A/P: �5.6 mm, M/L: ± 1.7 to 2.25 mm, D/V:

�7.7 - �8.2 mm for SNc; A/P: �1.5 mm, M/L: ± 2.8 to 3.3 mm, D/V: �7.0 mm for NB), and the optogenetic manipulation of MS was

unilateral (A/P: +0.5 mm, M/L: 0 mm, D/V: �7.0 mm), since the structure was centrally located in the midline. Also note that the fiber

optic cannula implantation into the MS and VTA, and virus injection into the MS was at 10� angle to divert the superior sagittal sinus.

Rabies retrograde tracing experiment

In 6 ChAT::Cre rats, 1.5 mL of helper virus (AAV2/5-CMV-DIO-TVA66T-HA-P2A-N2cDG, PNI Vector Core, titer: 2:0 31014 GC/mL)

was injected into the NB (A/P: �1.5 mm, M/L: 0.75 mL at 2.8 mm, 0.75 ml at 3.5 mm, D/V: �7.2 mm). 4 weeks later, 3 of them

were assigned to the medial NB group and received 50, 100, or 200nL of rabies virus injection (RabV-CVS-N2cDG-mCherry/

EnvA, The Center for Neuroanatomy with Neurotropic Viruses, CNNV, titer: 2:0 3108 ffu/mL) into the medial NB (A/P: �1.5 mm,

M/L: 2.8 mm, D/V: �7.2 mm). The remaining 3 rats were assigned to the lateral NB group and received 50, 100, or 200nL of rabies

virus injection into the lateral NB (A/P: �1.5 mm, M/L: 3.5 mm, D/V: �7.2 mm).

Ex-vivo slice physiology experiment

In 5 ChAT::Cre rats, 1 mL of Cre-dependent NpHR virus (AAV2/5-EF1a-DIO-eNpHR3.0-eYFP, PNI Vector Core, titer: 2:20 3 1014 GC/

mL) was injected bilaterally into the NB (A/P: �1.5 mm, M/L: ±3.0 mm, D/V: �7.2 mm). Additionally, 0.75 mL of the same virus was

injected into the MS (A/P: +0.5 mm, M/L: 0 mm, D/V: �7.0 mm) at 10� angle to divert the superior sagittal sinus.

Fiber photometry
We recorded fluorescence through an implanted fiber (ferrule, Doric Lenses, MFC_400/430-0.48_10mm_MF2.5_FLT, patch cord,

Doric Lenses, MFP_400/430/1100-0.57_0.45m_FCM-MF2.5_LAF) while the rats were performing the DNMTP task. We excited

GCaMP (or GFP in case of control rats) with two different wavelengths: 405nm (intensity at fiber tip: 5-10 mW, sinusoidal frequency

modulation: 531 Hz) and 488 nm (intensity at fiber tip: 15-25 mW, sinusoidal frequency modulation: 211 Hz) using an LED driver (Thor-

labs DC4104). Emission light from GCaMP was collected through the same fiber using a photodetector (Newport, Femtowatt 215),

and the analog data were digitized by the TDT system (RZ5D) which served both as a A-D converter and lock-in amplifier. A small

head-mounted LED was used to track the rat’s position in the chamber while recording. The position data were simultaneously ac-

quired through the TDT video tracking system (RV2). The timestamps for task events were registered as TTL pulses from the operant
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chamber into the TDT fiber photometry system through the Med-associates interface connection. Thus, the TDT acquisition system

synchronously acquired event time stamps through the Med-associates interface, GCaMP signal through the photodetector, and

animal’s head position through the TDT RV2.

GCaMP signal preprocessing
With 488 nm excitation, the fluorescence of GCaMP is relatively calcium-dependent, but with 405 nm excitation, its fluorescence is

largely calcium-independent (Akerboom et al., 2012; Tian et al., 2009). When calculating dF/F, we therefore utilized the 405 nm chan-

nel to calculate the baseline fluorescence in order to account for calcium-independent changes in fluorescence that may be caused

by the rats’ movement in our freely moving operant task (Lerner et al., 2015).

The fluorescence signals were acquired at 381 Hz and then downsampled to 10 Hz using ‘‘resample’’ function in MATLAB. These

downsampled signals were processed according to the following steps:

First, control 405 nm signal ScontrolðtÞ was fit to 488 nm GCaMP signal SGCaMPðtÞ using least-squares regression to calculate the

fitted control signalS fittedðtÞ:
SGCaMPðtÞ = b0 + b1ðScontrolðtÞÞ+ ε
SfittedðtÞ = bb0 + bb1ðScontrolðtÞÞ
Second, the relative change in fluorescence signal, DF=FðtÞ, was calculated using SGCaMPðtÞ andSfittedðtÞ.

DF=FðtÞ = SGCaMPðtÞ � SfittedðtÞ
SfittedðtÞ

Lastly, DF=FðtÞwas z-scored to facilitate comparison across recording sessions and rats. The mean ðmeanðDF =FðtÞÞÞ and the stan-

dard deviation ðstdðDF =FðtÞÞ was calculated over each recording session.

Z� scored ðDF=FðtÞÞ = ðDF =FðtÞÞ �meanðDF =FðtÞÞ= stdðDF =FðtÞÞ
Immunohistochemistry
Rats were deeply anesthetized using euthasol (2 mg/kg, i.p) and transcardially perfused first with phosphate-buffered saline (PBS),

and then with 4% paraformaldehyde (PFA) in PBS. Brains were collected and post-fixed in 4% PFA overnight. The brains were then

placed in 30% sucrose in PBS solution for 2-5 days at 4�C. Frozen brains were cut into 40-50mm thick coronal sections using a

cryostat.

One-third of the coronal sections near the target location were directly mounted from the cryostat and coverslipped with a

mounting solution (fluoromount-G with DAPI, Southern Biotech) to obtain accurate fiber location and to confirm virus expression

without any staining. These images were taken using a microscope (Nikon Ti2000E or Leica M205FA) or whole slide scanner (Hama-

matsu Nanozoomer S60).

Another one-third of sections were stained for TH or ChAT, to observe co-localization with GCaMP, NpHR, or ChR2. These sec-

tions were placed in a blocking buffer (2% normal donkey serum and 1% bovine serum albumin in PBST; Sigma A7906-100G) for

30min. Then for TH staining, sections were incubated overnight at 4�C in solution containing the primary antibody for tyrosine hydrox-

ylase (Chicken-TH, 1:500 or 1:1000 dilutions, Aves lab TYH). For ChAT staining, sections were incubated for two days at 4�C in so-

lution containing the primary antibody for choline acetyltransferase (Goat-ChAT, 1:100 dilution, Millipore AB144P). When enhance-

ment of GCaMP, NpHR, and ChR2 signals was necessary, primary antibody for GFPwas used (Rabbit-GFP, 1:1000 dilution, Thermo

Fisher Scientific G10362). Sections were then washed with PBS for 30min, and incubated overnight at 4�C in Alexa Fluor 647 or Cy3

(Donkey anti-Chicken-Cy3, 1:1000 dilution, Jackson ImmunoResearch, 703-165-155 or Donkey anti-Goat-647, 1:1000 dilution,

Jackson ImmunoResearch, 705-605-147) and Alexa Fluor 488 (Donkey anti-Rabbit-488, 1:1000 dilution, Jackson ImmunoResearch,

711-545-152). After PBS washes, sections were mounted in a mounting solution (fluoromount-G with DAPI, Southern Biotech). To

confirm colocalization, cellular resolution images were taken using a confocal microscope (Leica TCS SP8).

Reconstruction of fiber placements
Fiber tip locations of the fiber photometry recording (Figure S1) and optogenetics manipulation sites (Figures S7, S8, and S9) were

reconstructed from the histology of coronal brain sections referencing the Paxinos Rat Atlas (Paxinos and Watson, 6th edition). A/P

position of the fiber tip was approximated from the section with the deepest fiber track.

In the section with the deepest fiber tip location, M/L position of the fiber tip was carefully reconstructed by normalizing the

measured M/L distance of the fiber tip to the reference M/L distance, and scaling that ratio to match the Paxinos Rat Atlas. These

normalization-scaling steps effectively registered the measured M/L position into the Paxinos atlas, accounting for individual tissue

shrinkage in each brain during histology. Reference distance utilized well-defined ‘‘landmarks’’ in the tissue, such as the distance

from the midline to the outermost edge of the tissue (i.e., longest M/L). Then, we derived the atlas-referenced M/L distance of the
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fiber tip by equating the ratio of measuredM/L distances of fiber tip and referencemark to the ratio of atlas-referencedM/L distances

of the fiber tip and the reference landmark, and solving for the atlas-referenced M/L distance of the fiber tip.

atlas ML distancefiber tip =
measured ML distancefiber tip � atlas ML distancereference

measured ML distancereference

The D/V position of the fiber tip was also derived similarly by referencing the distance of well-known ‘‘landmarks’’ along the D/V (e.g.,

D/V distance from the top to bottom of the tissue along the midline).

Quantification of opsin expression levels
We quantified the fluorescence intensity as a measure of opsin expression level and correlated it with light-induced accuracy impair-

ment (Figures 4F and 4J). To do so, we collected the tissuewith the deepest fiber track and imaged themunder the same setting using

a Leica M205FA microscope. Using Leica LAS X software, we manually drew the outline of fluorescent areas (around VTA/SNc re-

gion). The fluorescence intensity inside the fluorescent areawasmeasured and then the fluorescence intensity of a region of the same

size within the same brain slice but above the fluorescent area was subtracted.

Optogenetics experiments
About 6-7 weeks post virus injection (AAV2/5-EF1a-DIO-NpHR-eYFP in experimental group, AAV2/5-EF1a-DIO-eYFP in control

group, for detail, see Methods, Surgery, Optogenetics experiment), rats were tested in the entire-trial inhibition experiment (Figures

4D, 4E, 4H, and 4I). In randomly selected 20% of all trials, rats received green light bilaterally throughout the sample, delay, and

choice periods (532 nm continuous illumination, �5-6 mW light power) in SNc and VTA for 5 sessions. Rats in the VTA and SNc

groups performed �242 trials/session and �212 trials/session on average respectively.

For entire-trial inhibition experiment in the NB andMS (Figures 5C and 5D), rats received green light bilaterally throughout the sam-

ple, delay, and choice periods (532 nm continuous illumination,�5–6mW light power) onNB andMS for 2 sessions in 15%of all trials.

Each test session was 1.5 h long and interleaved with a day where rats performed the task without illumination in order to reduce

behavioral adaptation to the manipulation. Rats in the NB and MS groups performed �294 trials/session and �308 trials/session

on average respectively.

Rats expressing NpHR in VTAwere then used for the sub-trial inhibition experiment (Figures 6B–6D). Rats received green light (532

nm continuous illumination,�5–6 mW light power) in SNc or VTA in a randomly selected 30% of all trials for 10 testing sessions, with

each test session interleaved with a day where rats performed the task without testing. The laser-on trials were randomly and equally

distributed into sample light-on trials (10% of total), delay light-on trials (10% of total), and choice light-on trials (10% of total). Rats

performed an average of �238 trials/session.

A subset of rats from the aforementioned entire-trial inhibition experiments (n = 5 for VTA, n = 3 for SNc) and additional rats (n = 2 for

VTA, n = 3 for SNc) were trained on the cue-guided task to use cue light to guide their choice (Figures 4G and 4K). As they quickly

learned the new rule (in�2 weeks), they reached >95% average accuracy in all delays (and delay-dependence accuracy impairment

dissipated in re-trained rats). These rats received entire-trial inhibition using the same parameter (20% 532nm continuous illumina-

tion,�5–6mW, 5 sessions) from the DNMTP entire-trial inhibition experiment. Rats in the VTA and SNc groups performed�240 trials/

session and �225 trials/session on average respectively.

For the ChR2 experiments, a separate cohort of rats were injected with DIO-ChR2-eYFP in the VTA and tested 6-7 weeks post-

injection. For sample period activation experiment (Figure 7D), rats received pulsed blue light in VTA when the sample lever was pre-

sented (447 nm, 5 ms pulse duration, 1 burst of 5 pulses at the sample presentation, �13–15mW light power). For delay period acti-

vation experiment (Figures 7F and 7H), rats received pulsed blue light in the VTA during the delay period (447 nm, 5ms pulse duration

20Hz burst per second of 5 pulses or 1pulse per second, �13–15mW light power). Stimulation took place on a randomly selected

20% of all trials for a total of 5 stimulation sessions, interleaved with nonstimulation sessions. Rats performed on average 187 tri-

als/session.

Ex vivo electrophysiology recordings
To test the efficacy of optogenetic inhibition in NB-ChAT and MS-ChAT cells, we performed ex vivo electrophysiology in ChAT::Cre

rats (Figure S9). Coronal slices containing theMS or NBwere prepared from 5-month-old male ChAT::Cre rats 4 weeks after injecting

with DIO-NpHR virus. Rats were deeply anesthetized with an intraperitoneal injection of euthasol (2 mg/kg, ip) and decapitated. After

extraction, the brain was immersed in ice-cold carbogenated N-methyl-D-glucamine (NMDG) artificial cerebrospinal fluid (ACSF)

(92 mMNMDG, 2.5 mMKCl, 1.25 mMNaH2PO4, 30 mMNaHCO3, 20 mMHEPES, 25 mM glucose, 2 mM thiourea, 5 mMNa-ascor-

bate, 3 mMNa-pyruvate, 0.5 mMCaCl2$4H2O, 10 mMMgSO4$7H2O and 12 mMN-acetyl-L-cysteine) for 3 min. Afterward, coronal

slices (300 mm) were sectioned using a vibratome (VT1200s, Leica) and then incubated in NMDG ACSF at 34�C for 12-14 min. Slices

were then transferred into a holding solution of HEPESACSF (92mMNaCl, 2.5mMKCl, 1.25mMNaH2PO4, 30mMNaHCO3, 20mM

HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 2 mM CaCl2$4H2O, 2 mMMgSO4$7H2O and 12

mM N-acetyl-L-cysteine, bubbled at room temperature with 95% O2, 5% CO2) for at least 45 min until recordings were performed.

Whole cell recordings were performed using a Multiclamp 700B (Molecular Devices, Sunnyvale, CA) using pipettes with a resistance

of 4-7MOhm filled with a potassium-based internal solution containing 120mMpotassium gluconate, 0.2mMEGTA, 10mMHEPES,
Cell Reports 33, 108492, December 15, 2020 e5



Article
ll

OPEN ACCESS
5 mM NaCl, 1 mMMgCl2, 2 mMMg-ATP and 0.3 mM NA-GTP, with the pH adjusted to 7.2 with KOH. ChAT neurons were identified

for recordings based on YFP expression. Photostimulation parameters were 586 nm and 0.034-0.053 mW/mm2. Neurons were held

at�70mV during photocurrent measurements. Baseline potential was calculated as the mean potential over a 1 s period just prior to

stimulation. Peak hyperpolarization was calculated as the largest hyperpolarization relative to baseline potential. Steady-state hyper-

polarization was calculated as the mean hyperpolarization during the last 1 s of stimulation. Peak and steady-state photocurrents

were calculated using the same time intervals. To confirm the ability of photocurrents to eliminate action potentials in MS-ChAT cells,

action potentials were induced by a positive current injection (200 pA, 25ms pulse duration, 1 Hz). Action potentials in NB-ChAT cells

were induced by a positive current injection (150 pA, 50 ms pulse duration, 4 Hz). Stimulation frequencies were chosen based on

published in vivo firing frequencies of either cell population (Hedrick and Waters, 2010; Simon et al., 2006).

QUANTIFICATION AND STATISTICAL ANALYSIS

Encoding models
To distinguish the relative contribution of locomotion and task events in predicting the GCaMP signal, we built and compared three

encoding models, as shown in Figure 2B. The three models were based on linear regressions, in which the measured GCaMP signal

was predicted by the weighted sum of predictors based on task events, animals’ speed in the chamber or the combination of task

events and speed.

Event predictors

Task event predictors ðEi;jÞ were generated for each type of task event by convolving a time series of event times (Ti, 1 when event

occurred, or 0 otherwise) with a 10 degrees-of-freedom spline basis set of 3s duration (Bj , where j = [1..10])see Engelhard et al., 2019;

Park et al., 2014). For the ith task events and jth spline basis function, the task event predictor ðEi;jÞ is defined as follows:

Ei;jðtÞ = ðTi �BjÞðtÞ=
ZN
�N

Tiðt� tÞBjðtÞdt

The 10 types of task events consisted of sample lever presentation, sample lever press, delay start, delay end, choice lever presen-

tation, choice lever press, correct reward port entry, correct reward port exit, incorrect reward port entry, and incorrect reward port

exit (therefore, i = [1..10]). Note the duration of the spline basis set for the reward responsewas longer than the others (10 s) to capture

the prolonged reward consumption responses observed in some animals. To allow predictors to capture response kernels starting 1

s before each event, the event time series were shifted acausally by 1 s before performing the convolution (with the exception of the

reward event, which was not shifted acausally).

The advantage of convolving each event with the spline basis set to generate our predictors is that it allows for a temporal delay in

the relationship between neural activity and behavior, while minimizing the number of predictors by assuming smoothness in the

response profiles (Engelhard et al., 2019; Park et al., 2014). A 10 degrees-of-freedom spline basis set was selected to preserve

the shape of time-locked GCaMP signal in the response kernels learned from the model, while minimizing the number of total

predictors.

Speed predictors

Animals’ movement speed was calculated from the tracked x, y position of the rats’ head using a small LED light attached to the fiber

photometry tether, close to the rats’ head. The x, y positions were tracked and acquired at 102 Hz. Tracking was lost if the LED light

was hidden by the chamber objects (i.e., underneath the lever or too far into the reward consumption inlet) or its reflection on the wall

was captured. Missing tracking points were treated as NaN in MATLAB and R. The tracked x, y position in pixels was converted to

centimeters bymanually defining the outer edges of the tracked arena, whose dimension was 32.5cm x 24.5cm. The position vectors

were iteratively median-filtered three times (with 100ms window) to reduce noise and interpolate missing data from the tracking loss.

The Euclidean distance, derived from the change in x, y position, was multiplied by the acquisition frequency to calculate instanta-

neous speed. The instantaneous speed was then downsampled to 10Hz, using the ‘‘resample’’ function in MATLAB, to generate the

speed predictor.

Speed predictors ðSkÞwere continuous variables which included first, second, and third-degree polynomials of the animal’s speed,

to allow flexibility in the relationship between speed and GCaMP.

Encoding Models

The full encoding model to predict GCaMP (1), a reduced model with only the task event predictors (2), and an alternative reduced

model with only the speed predictors (3) are expressed as follows:

gðtÞ = b0 +
XNevent

i = 1

XNbs

j = 1

bi;jEi;jðtÞ+
XNpoly

k = 1

bk ½SðtÞ�k + ε (1)
N

gðtÞ = b0 +
Xevent
i = 1

XNbs

j = 1

bi;jEi;jðtÞ+ ε (2)
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XN

gðtÞ = b0 +

poly

k =1

bk ½SðtÞ�k + ε (3)

where gðtÞ is the predicted GCaMP signal predicted based on task event predictors ðEi;jÞ and/or animal’s speed ðSkÞ. Through the

linear regression, the model learned bweights (b0, bi;j, and bk ) for the predictors (Ei;j and Sk ). Parameters were: Nevent, or the number

of task events, whichwas 10;Nbs, degrees of freedomof the spline basis set, whichwas 10; andNpoly, the degree of polynomials used

to model speed, which was 3.

Model evaluation using cross-validation

To examine the relative contribution of animal’s movement versus task events predictors, R2of the three models, as a measure of

model’s predictive power, were calculated and compared (Figure 2B). To generate R2 of the model, data from each recording site

was divided into three folds, in which 2/3 of the data were used to train the model (using the ‘‘lm’’ function in R), and the 1/3 of the

data were held-out to test the trained model. After the model was trained, predicted GCaMP from the model was generated using

the ‘‘predict’’ function on the predictor matrix of the held-out data. R2 was calculated on the held-out data. This training-testing pro-

cess was repeated until each fold was used as the held-out data for testing (3-fold cross-validation). The resulting three R2 for each

fold was averaged to create an average R2for each recording site. Note that rank-deficient fit was not used to calculate average R2,

since it suggested the data were not sufficient. This resulted in eliminating one NB recording site (1 out of 50 recording sites) from

further analysis.

To fit the model with a linear regression, ‘‘lm’’ function in R was used (Figure 2; Figures S2G–S2L). To validate that our model is not

overfitting, we also fit the same model using a lasso regression (‘‘glmnet’’ function in R), which uses regularization to select relevant

predictors. The kernels generated from the lasso regression were similar to the kernels from the linear regression.

Generating event kernels from the model

The response kernel for a type of task event is the component of the neural response that can be specifically attributed to the type of

task events in the encodingmodel. These response kernels learned from themodel are reported in Figures S2G–S2L. To generate the

response kernels, beta weights ðbi;jÞ for the task event predictors ðEi;jÞ were learned from regression described above.

For ith type of task events, response kernels is the weighted ðbi;jÞ sum of spline basis function BjðtÞ for the task event as follows:

XNbs

j = 1

bi;jBjðtÞ
Inverted-U quantification
To statistically test if there is an inverted-U relationship between fluorescence and accuracy (Figures 4K, 4M, and 4O; Figure S6), the

average accuracy was predicted by a mixed-effect linear regression based on the following predictors: 1st and 2nd degree polyno-

mial of delay period fluorescence quintile, delay period duration, and random effect of individual recording site (implemented with

‘‘lmer’’ function in R). Note that the random effect of individual recording sites allows the model to account for individual differences

in average accuracy, while identifying the curve that best fits the entire dataset. The inverted-U was supported by the negative and

statistically significant coefficient of the 2nd degree polynomial of delay period fluorescence quintile.

To justify our model selection process, we compared two mixed-effect linear regression models. In the first full model, accuracy

was predicted by both the first and second degree polynomial of delay period fluorescence quintile, delay duration, and random ef-

fect of individual recording sites. In the second reducedmodel, everythingwas the same as the firstmodel, except the second degree

polynomial of delay period fluorescence quintile was omitted. Since the second model is nested within the first model, we performed

a chi-square test of the two models to determine if the addition of the second degree polynomial term is justified. In fact, the addition

of the second degree polynomial significantly improved the model fit only in the VTA-DA and NB-ChAT group (X2
6,7 = 8.22, p < 0.001

for VTA-DA, X2
6,7 = 7.18, p < 0.001 for NB-ChAT), but not in the SNc-DA group (X2

6,7 = 0.58, p = 0.45 for SNc-DA). The goodness of fit

of the selected, full model were 0.58 for VTA-DA, 0.36 for SNc-DA, and 0.45 for NB-ChAT.

We further validated the inverted-U by incorporating an additional set of statistical tests, based on (Lind and Mehlum, 2010). These

results are summarized in Figure S6A. They recommend that in addition to the 2nd degree polynomial p value described above, an in-

verted-U should be confirmed through: i) significance of the positive slope on the lower data range, ii) significance of negative slope on

the upper data range, iii) joint significance of the left and right side slope, and iv) checking that the maximum of the inverted-U and its

confidence interval fall within the x-range of the data. Given the inverted-U equation (y = a+bx+lx2), the significance of positive and

negative slopes was computed from one-sided t test for inequalities b+2lxl < 0 and b+2lxh > 0, where xl and xh were the minimum

andmaximumof the data range (in this case, the 1st and 5th quintile of fluorescence). The joint significance of the two slopeswas tested

from the composite hypotheses of the inequalities (b+2lxl < 0 W b+2lxh > 0, intersection-union test). These statistics were computed

using the Stata module provided with the paper (https://econpapers.repec.org/software/bocbocode/s456874.htm)

Contribution of lever presentation versus press
To compare the relative contribution of reward-predicting cues and reward-motivated actions in predicting GCaMP fluorescence (Fig-

uresS3O–S3Q), wequantified the reduction in variance explainedwhen the predictor of interestwas removed from the encodingmodel.
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First, we compared the full model (as described earlier in the ‘‘Encoding models’’ section) with a cue-reduced model. The cue-

reduced model was the same as the full model, except the ‘‘sample lever presentation’’ predictors (10 basis set predictors for the

‘‘sample lever presentation’’ event) were removed from the predictor matrix. The data were fit again to the cue-reduced model, using

the ‘‘lm’’ function and 3-fold cross-validation. The contribution of the sample cue predictors ðCcueÞwas defined as the reduction in the

explained variance, R2, of the reduced model compared to the full model (Engelhard et al., 2019; Lovett-Barron et al., 2019; Musall

et al., 2019):

Ccue = 1� R2
cue reduced

R2
full

We similarly compared the full model with an action-reduced model by removing the ‘‘sample lever press’’ predictors from the pre-

dictor matrix and calculating the contribution of sample lever press predictors ðCactionÞ:

Caction = 1� R2
action reduced

R2
full

Note that we removed sample presentation and sample press (and not choice presentation or choice lever press) to derive the cue-

reduced and action-reducedmodels. This is because choice press coincided with the light cue for reward in our task design, thus we

were unable to cleanly dissociate the reward cue from choice lever press action.

Finally, the relative contribution of the predictor for each recording site was calculated as a percentage over the combined contri-

bution of cue and action.

Relative Ccue =
Ccue

Ccue +Caction
Relative Caction =
Caction

Ccue +Caction

To statistically compare the relative contribution of cues and actions to the explained variance, we performed pairwise t tests across

the VTA-DA, SNc-DA, and NB-ChAT recording sites.

Rabies tracing and wholebrain quantification
To analyze input cells tomedial and lateral subregions of theNB-ChAT population, we injectedCre-dependent helper virus and rabies

virus into the NB of ChAT::Cre rats (for detail, seeMethods, Surgery, Rabies retrograde tracing experiment; Figure S5; Reardon et al.,

2016). 3 weeks post surgery, rats (n = 6 rats, 3 rats in each medial and lateral NB-ChAT groups) were perfused and their brains were

extracted for histology (for detail, see Immunohistochemistry). Brain sections covering the entire brain (approximate AP range

from +4 to �9mm) in 100mm spacing were mounted and coverslipped with a mounting solution, then imaged using a whole slide

scanner (Hamamatsu Nanozoomer S60). These images (Raw 16-bit TIFF) of brain sections were analyzed using a published platform,

‘‘WholeBrain’’ (F€urth et al., 2018).

The analysis of the brain sections consisted of three steps - registration to Allen brain atlas, detection of input cells, and final regis-

tration to Waxholm Space atlas of the Sprague Dawley rat brain (Papp et al., 2014). First, we visually identified the corresponding

mouse A/P coordinate of all rat brain sections, referencing Openbrainmap (http://openbrainmap.org). Then each imaged section

of the rat brain were registered into the Allen brain atlas of the same A/P coordinate, using the ‘‘registration’’ function from ‘‘Whole-

brain’’ package in R. Once the imaged section was registered, mCherry-labeled cells (input cells infected with RabV-CVS-N2cDG-

mCherry/EnvA virus) in the images were automatically detected using the ‘‘segment’’ function from ‘‘Wholebrain’’ package in R, with

visual inspection to detect outliers and manually correct when deemed necessary. When the registration and detection steps are

over, ‘‘Wholebrain’’ creates a data frame containing information on all counted mCherry-labeled cells, their location (A/P, M/L, D/

V) in Allen brain atlas, and the brain ontology they belong. Finally, an additional registration process converted the mouse brain co-

ordinates of the detected input cells into the rat brain coordinates using the new ‘‘map.to.rat’’ function (WholeBrain v. version 0.1.36).
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