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Abstract: The species of Pimpinella, one of the largest genera of the family Apiaceae, are traditionally
cultivated for medicinal purposes. In this study, high-throughput double digest restriction-site
associated DNA sequencing technology (ddRAD-seq) was used to identify single nucleotide poly-
morphisms (SNPs) in eight Pimpinella species from Iran. After double-digestion with the enzymes
HpyCH4IV and HinfI, a total of 334,702,966 paired-end reads were de novo assembled into 1,270,791
loci with an average of 28.8 reads per locus. After stringent filtering, 2440 high-quality SNPs were
identified for downstream analysis. Analysis of genetic relationships and population structure, based
on these retained SNPs, indicated the presence of three major groups. Gene ontology and pathway
analysis were determined by using comparison SNP-associated flanking sequences with a public
non-redundant database. Due to the lack of genomic resources in this genus, our present study
is the first report to provide high-quality SNPs in Pimpinella based on a de novo analysis pipeline
using ddRAD-seq. This data will enhance the molecular knowledge of the genus Pimpinella and will
provide an important source of information for breeders and the research community to enhance
breeding programs and support the management of Pimpinella genomic resources.

Keywords: Pimpinella; ddRAD Sequencing; SNP markers; population structure; de novo analysis;
gene ontology

1. Introduction

The genus Pimpinella belongs to the family Apiaceae, together with 250 other gen-
era [1]. Over 46 species of this genus are distributed in the Eastern Mediterranean Region,
West Asia, the Middle East, Mexico, Iraq, Turkey, Iran, India, Egypt, Spain and many
other warm regions of the world [2]. They are annual or perennial semi-bushy aromatic
plants with bisexual flowers with five stamens and two carpels. Species of the genus
Pimpinella grow under different climatic conditions and types of soil. The Pimpinella species
is known as “Jafari koohi” in Persian, and is commonly used as an aromatic plant and
traditionally as a food flavouring, for relief of gastrointestinal spasms and as a carminative
digestive [3]. Different species of Pimpinella are famous for their antispasmodic, antiox-
idant, antimicrobial, expectorant, estrogenic, acariside, insecticidal, anticonvulsant and
antifungal properties [4,5]. The valuable therapeutic aspects of Pimpinella are mostly corre-
lated with the existence of sesquiterpenes, phenolic compounds, flavonoids, coumarins,
phenylpropanoids and essential oils [6]. The major constituents of the essential oils are
kaempherol, quercetin and anethole [7].
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There are more than 22 Pimpinella species in Persian flora [8]. P. anisum, P. deverroides,
P. eriocarpa, P. aurea, P. tragium, P. affinis and P. tragioides are some of the most common
species, which grow in different regions of Iran. In Iran, Pimpinella had a cultivation
area of approximately 6,125 ha and seed production of approximately 6,381 ha and seed
production of approximately 106.248 tons in 2019 (Food and Agriculture Organization,
http://faostat.fao.org (accessed on 14 September 2019). However, the annual production
of Pimpinella species is considerably affected by many factors including biotic and abiotic
components of the ecosystem and genetic potential of the cultivars [9,10].

Currently, there is limited genomic information available for the Pimpinella genus.
As such, although Pimpinella are highly valuable spice plants with pharmacological benefits,
data about their genetic and genomic relationships, especially among those species native to
Iran, remains limited. Extensive genetic and genomic investigations must be conducted for
comprehensive understanding of the Pimpinella genome to enhance productivity, improve
quality and develop cultivars that are resilient to biotic and abiotic stresses.

DNA based molecular markers are now increasingly being employed to accelerate
plant breeding programs through marker-assisted selection for increasing yield in the
germplasm and to understand the molecular mechanisms underlying genetic traits. Differ-
ent genetic markers, including Inter-simple sequence repeat (ISSR), randomly amplified
polymorphic DNA (RAPD) [11], internal transcribed spacer (ITS) [12,13], nuclear rDNA
ITS [14] and cpDNA rps16 intron and rpl16 intron [15] have been used in the analysis
of genetic diversity, phylogenetic analyses and construction of genetic linkage maps of
Pimpinella germplasm.

Single-nucleotide polymorphisms (SNPs) are considered excellent markers for geno-
typing, with advantages of cost-effectiveness, flexibility, low error rate and suitability
for high throughput screening [16]. SNP markers can also easily and inexpensively be
converted to develop high-quality assays, which could be used to support Pimpinella
breeding programs. In recent years, genome-wide SNP discovery and genotyping have
been accelerated with the aid of next generation sequencing (NGS) technology. Restric-
tion site-associated DNA sequencing (RAD-seq) and genotyping by sequencing (GBS)
have been increasingly used in genetic and genomic studies in various plant taxa such as
onion [17,18], kiwifruit [19], bread wheat [20,21], chickpea [22], soybean [23], carrot [24]
and strawberry [25]. RAD-seq is also an efficient method of large scale de novo SNP dis-
covery and genotyping using high-throughput sequencing of large sample sets in a single
experiment. Recently Peterson et al. [26] established a double-digest restriction-associated
DNA sequencing (ddRAD-seq) method for large scale polymorphism discovery in complex
genomes with higher accuracy than GBS.

In the present study, we performed paired-end (PE) ddRAD-seq to develop a novel
genome-wide SNP resource from Pimpinella species cultivated in Iran. Filtered high-quality
SNPs from eight Pimpinella species were used to identify population structure and genetic
relationships. Further, we functionally annotated SNP flanking sequences to determine
similarity with known genes and biological functions.

2. Materials and Methods
2.1. Plant Material and DNA Extraction

Eight species of Pimpinella (P. aurea L., P. anisum L., P. affinis, P. kotschyana, P. tragioides,
P. eriocarpa, P. tragium and P. barbata) were obtained from the Gene bank of the research
institute of forests and rangelands of Tehran, Iran, as described in Table S1. Before sowing,
the seeds were sterilized for 5 min in 10% sodium hypochlorite solution (Sigma-Aldrich,
Saint Louis, MI, USA) and then in 96% ethanol for 1 min and thoroughly washed with
distilled water thereafter [27]. The seeds were sown in 30 cm× 30 cm plastic pots containing
3 kg of soil mixture composed of 15% silt, 15% clay and 70% sand. The plants were grown
in a glasshouse located in the University of Western Australia (UWA), Perth, Australia,
with 14 h photoperiod, 55–65% humidity and 30/18 ◦C day/night temperature. Young leaf
tissue from one plant of each species was flash frozen in liquid nitrogen, ground to a fine
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powder and stored at −20 ◦C. High quality nuclear DNA was extracted using the DNeasy
Plant Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol.
The resulting DNA was quantified using the Qubit 3.0 Fluorometer (Invitrogen, Carlsbad,
CA, USA) with the Qubit dsDNA BR Assay Kit (Invitrogen, Carlsbad, CA, USA). The DNA
quality was assessed using the LabChip GX Touch 24 (PerkinElmer, Waltham, MA, USA).

2.2. ddRAD Library Preparation

ddRAD libraries were prepared according to the method described by Severn-Ellis
et al. [28] using 200 ng of extracted DNA. The DNA from each sample was restriction-
digested in a total volume of 18 µL, containing 5 units each of HpyCH4IV and HinfI, as well
as NEB 10× CutSmart Buffer (New England Biolabs, Ipswich, MA. USA). The reaction was
incubated at 37 ◦C for 4 h. Barcoded and common adapters were designed as described
by Peterson et al. [26] to complement the restriction overhangs created by HpyCH4IV
and HinfI respectively. Each restriction-digested sample was then ligated to a unique 5′

barcoded adapter and a common 3′ adapter. Ligation reactions were carried out in 40 µL
containing the restriction-digested sample, 0.23 µM of the common adapter and 0.5 µM
barcoded adapter, respectively, 1U T4 DNA ligase (Invitrogen, Carlsbad, CA, USA), 8 µL T4
ligation buffer (Invitrogen, Carlsbad, CA, USA) and 7 µL of nuclease-free water. Ligation
reactions were in-cubated at 22 ◦C for 2 h and then heat inactivated at 65 ◦C for 20 min.

Purification and double size selections of the ligated samples was carried out to
remove un-ligated adapters and simultaneously select fragments be-tween 250 and 800 bp
in size. To remove DNA fragments >800 bp the sample volume was increased to 100 µL
by adding 60 µL of nuclease water and then transferred to a 96-well PCR plate containing
50 µL of a 1:4 (0.5×) mixture of AMPure XP Beads (Beckman Coulter, Brea, CA, USA) to
PEG buffer (20% PEG w/v, 2.5 M NaCl). After incubation, the beads were collected on
a magnetic stand (Invitrogen, Carlsbad, CA, USA). The supernatant was transferred to
20 µL of a 1:1 AMPure XP Beads to PEG buffer (0.7×) mix for the second bead bind to
remove fragments <250 bp. The supernatant was removed and the beads con-taining the
size selected sample DNA were washed using 80% ethanol. The DNA was eluted in 30 µL
nuclease free water.

To enrich the ligated and size selected DNA, PCR amplification was per-formed using
10 µL of size selected DNA, 25 µL of Phusion Hot-Start High-Fidelity Master Mix (Thermo
Fisher Scientific, Waltham, MA, USA), 0.5 µM of the PCR1 and 0.5 µM indexed PCR2
primers, respectively. Nucle-ase-free water was added to bring the final volume to 50
µL. The PCR primers used were specific to each adapter and comprised of an Illumina
index se-quence and flow cell annealing complimentary sequences [26]. Amplification was
carried out at 98 ◦C for 2 min, 12–18 cycles of 98 ◦C for 15 s, 62 ◦C for 30 s, 72 ◦C for 30 s,
final extension for 5 min at 72 ◦C and held at 4 ◦C on an Applied Biosystems Veriti Thermal
Cycler (Thermo Fisher Scientific, Waltham, MA, USA).

PCR products were purified to remove residual primers and primer di-mers in a 1.5X
Ampure XP Bead cleanup step. The DNA concentration of each sample was determined
using the Qubit High Sensitivity (HS) assay (Invitro-gen; Waltham, MA, USA). The quality
of individual libraries and median frag-ment size was assessed on the LabChip GX Touch
(PerkinElmer, Waltham, MA, USA) using the HT DNA HiSens Dual Protocol Reagents
(PerkinElmer, Waltham, MA, USA). Equimolar amounts (20–30 nM) of the prepared li-
braries were pooled. The pooled library underwent a final 0.8X Ampure XP bead cleanup
to remove any remaining residual fragments shorter than 200 bp. The concentration of the
final bead-cleaned library was determined in preparation for sequencing. Sequencing was
carried out at the Garvan Institute of Medical research (Darlinghurst, NSW, Australia), on
the Illumina HiSeq XTen (Illu-mina, San Diego, CA, USA) sequencing platform.

2.3. Sequence Quality Analysis and Filtering

Sequence reads were de-multiplexed by using the outer dual index bar-code infor-
mation using STACKS v.2.1 pipeline (Institute of Ecology and Evo-lution, University of
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Oregon, Eugene, OR, USA) [29] and assigned to sequenced spe-cies. Average read quality
and unpaired reads, presence of repetitive sequenc-es and adapter read-through and GC-
content were checked using FastQC v.0.11.4 (Babraham Hall, Babraham Research Campus
Cambridge, UK) [30] and multiQC v.1.7 (Department of Biochemistry and Biophysics,
Stockholm University, Stockholm, Sweden) [31]. Reads containing the correct restric-
tion sites in R1 and R2 were obtained by searching restriction site sequences in the raw
reads respectively. Adapter and sequence trimming were performed us-ing Trimmomatic
v.0.36 [32] with default settings and reads were truncated to a uniform 146 bp (R1) and 151
bp (R2), with all shorter reads being discarded.

2.4. De Novo Assembly, Read Alignment and SNP Identification

De novo mapping and SNP calling was performed using STACKS. De novo assembly
was carried out with a minimum stack size of three reads (m = 3) and a maximum distance
between stacks of three (M = 3). Sam-ple-specific stacks were assembled into homologous
stacks if they had a maximum distance of three nucleotides (n = 3) between samples. To limit
false SNP identification and increase accuracy of downstream analyses, SNPs with a minor
allele frequency (MAF) <0.05 and more than two missing genotype calls were discarded
using VCFtools 0.1.15 (Wellcome Trust Sanger Institute, Cambridge, UK) [33].

2.5. Phylogenetic Tree Construction of Eight Pimpinella Species and Principal Component Analysis

A maximum likelihood (ML) phylogeny was inferred based on the fil-tered SNPs
using RAXML v. 8.2.11 (Department of Informatics, Institute of Theoretical Informatics,
Germany) [34]. Maximum likelihood searches were conducted in RAXML using a model
with ascertainment bias correction (ASC_GTRGAMMA) for sequence data, and a rapid
bootstrapping analysis with 100 bootstraps was conducted. A random SNP was retained
for each ddRAD locus in order to remove physically linked SNPs for Principal com-
ponent analysis (PCA). PCA of filtered SNP data was conducted using the R package
SNPRrelate (Department of Biostatistics, University of Washington, Seattle, WA, USA) [35].
After converting VCF to GDS format, linked SNPs were re-moved based on co-location
using the snpgdsLDpruning function.

2.6. Functional Analysis of SNP-Associated Contig

For functional annotation, SNP-associated scaffold sequences that might putatively
encode proteins were searched against the non-redundant protein database at the Na-
tional Center for Biotechnology Information (NCBI) (Be-thesda, Bethesda, MD, USA)
with minimum E-value of < 1.0 × e−6 as the threshold. The most comparable sequence
matches for each SNP-associated contigs was se-lected and used to find Gene Ontology
(GO) terms using EMBL eggnogg mapper (Structural and Computational Biology Unit,
European Molecular Bi-ology Laboratory, Heidelberg, Germany) [36]. The three major
GO terms, cel-lular component (CC), biological process (BP) and molecular function (MF)
were determined with e-value hit filter <1.0 × e−6. In a final step, details of pathway anno-
tated SNP-associated contigs was performed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (http://www.genome.ad.jp/ accessed on 1 January 2000) [37].

3. Results
3.1. Genotyping-by-Sequencing Library Construction and Sequencing

A total of 334,702,966 raw paired-end reads were generated. After cleaning the
raw data, we obtained 311,040,452 reads, which were subjected to further trimming and
demultiplexing. A total of 1,279,850 contigs with an effective per-sample mean coverage of
27.7×, were de novo assembled. The minimum and maximum lengths of the contigs were
146 and 545 bp, respectively, with an average of 247 bp. The GC content was in the range
of 39.5–40.5%. The highest number of SNPs were obtained using a maximum distance
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between RAD stacks of 6 and a maximum mismatch of 6 between sample loci in the catalog
(Table S2).

3.2. SNP Calling and Filtering

We selected 1,279,850 contigs from the de novo assembly with a length of 146–151 bp
for SNP calling based on Illumina maximum read length. In total, 1,270,791 SNPs were
predicted from 625,507 assembled contigs. We then filtered 2440 high-quality SNPs from
625,507 contigs based on a minimum stack size of three reads (m = 3) and a maximum
distance between stacks of three (M = 3) and a maximum distance of three nucleotides
(n = 3) between samples. After the quality and depth filtering, a mean of 7.8% of SNPs
were removed. A statistical summary of data collected about raw reads, cleaned reads are
summarized.

Distributions of each type of SNP were as follows: A/G, 698 (28.6%); C/T, 734 (30%);
A/T, 219 (8.9%); A/C, 332 (13.6%); C/G, 215 (8.8%) and G/T, 242 (9.9%) (Figure 1). Of the
2440 identified SNPs, 1432 (58.7%) were classified as transitions (A/G or C/T) and 1008
(41.3%) were classified as transversions (A/T, A/C, C/G and G/T) (Figure 1).
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Figure 1. Histogram plot showing SNP distribution and transition/transversion from SNPs identified
from de novo ddRAD-sequencing.

3.3. Population Structure and Genetic Relationship Analysis

The heterozygosity and percentage of polymorphic loci showed that the observed
heterozygosity (H0) was higher than the expected heterozygosity (He). The mean H0 and
He of the Pimpinella among the eight species were calculated as 0.67 and 0.49, respectively
(Table S3). In addition, the mean percentage of polymorphic loci observed among the eight
species were found to be 20.05.

PCA was used to assess the diversity in the Pimpinella species using information from
filtered SNP. From 2440 high-quality SNPs detected in Pimpinella species, 774 unlinked SNPs
were used for PCA analysis. The first two principal components (PC1 and PC2) explained
27.9% and 24.5% of the total variance and they were projected in a two-dimensional graphic
(Figure 2). PC1 separated the P. barbata from other species while PC2 separated P. tragium
and P. eriocarpa.
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Pimpinella.

3.4. Functional Analysis of SNP-Associated Scaffolds

A total of 642 contigs were searched against the nr (BLASTX) (NCBI non-redundant
protein sequences) via BLAST 2.5.0 (NCBI, Bethesda, MD, USA). with a minimum E-value
of < 1.0 × e−6 as a similarity threshold (Table S4). Similarity results were obtained from 98
of the 642 contigs corresponding to known protein sequences. The remaining 544 contigs
did not match with any known protein sequences (Figure 3A,B).
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The 98 BLAST hits mainly matched with Daucus carota genes. Seventeen unknown
carrot genes with aligned RAD contigs were character-ized using eggNOG 5.0. (Structural
and Computational Biology Unit, Euro-pean Molecular Biology Laboratory, Heidelberg,
Germany). In total, from 642 RAD contigs 66.4% (426) and 61.5% (395) were intersected
genes and intersected exons, respectively. In addition, functional annotations resulted in
496 GO terms (Table S5). These 496 GO terms were further classified into three functional
categories such as cellular component (CC, 198 GO terms), molecular function (MF, 88 GO
terms) and biological process (BP, 210 GO terms) [38]. Some contigs matched with more
than one GO term, whereas a few matched only one GO term. Cellular component annota-
tions were further sub-classified into five main levels of predominant GO subcategories:
(1) cell (category I; GO: 0005623) and cell parts (category II; GO: 0044464) were associated
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with 25 contigs; organelle (category III; GO: 0043226) was associated with 15 contigs and
the organelle part category (category IV; GO: 0044422) was associated with 8 contigs; the
membrane category (category V; GO: 0016020) was associated with 6 contigs. Most contigs
in the MF category were associated with three main GO subcategories: structural molecule
(category I, GO: 0005198) with 6 contigs, binding (category II, GO: 0005488) with 25 contigs
and catalytic activity (category III, GO: 0003824) with 14 contigs. Biological processes
were also categorized into five subcategories: metabolic process (category I; GO: 0008152)
with 22 contigs; cellular process (category II, GO: 0009987) with 18 contigs; response to
stimulus (category III, GO: 0050896) with 8 contigs; biological regulation (category IV, GO:
0065007) with 5 contigs and regulation of biological process (category VI, GO: 0050789)
with 4 contigs (Figure 4A). The level of 3 GO terms with 32 functional groups are plotted
in Figure 4B. More than half of the genes were not annotated in this study, likely due to
the sequence lengths and depth SNP or scaffold coverage mean, as is common in studies
performing de novo analysis [39,40]. In addition, some of these genes might be unique to
Pimpinella species.
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Analysis of pathway details from annotation results shows that seven contigs are
involved in seven different pathways (Table 1). Based on the greatest number of contigs
identified in each functional category, the categories detected most often were energy
metabolism.

Table 1. Pathway details of annotated SNP-associated contigs.

Pathway ID KEGG Pathway Number of Sequences Enzyme

map03030 DNA replication 1 DNA ligase [EC:6.5.1.1]

map03020 RNA polymerase 1
RNA

nucleotidyltransferase
[EC:2.7.7.6]

map00270 Cysteine and methionine
metabolism 1 Adenosylhomocysteinase

[EC:3.3.1.1]

map00190 Oxidative phosphorylation 1
Ubiquinone reductase

[EC:7.1.1.2], ATP synthase
[EC:3.6.3.14]

map00195 Photosynthesis 1 Photosystem II [EC:1.10.3.9]

map00143 Metabolic pathways 1 NADH dehydrogenase
[EC:7.1.1.2]

A phylogenetic tree using maximum likelihood method was constructed on the basis
of identified SNPs. The result revealed that eight Pimpinella species are clearly separated
into three clusters. The first cluster is comprised of P. tragium, the second cluster of P.
eriocarpa and the third cluster of P. barbata, P. tragioides, P. kotschyana, P. tragium, P. aurea and
P. anisum (Figure 5).
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4. Discussion

Detailed characterization of the genetic structure of species is one of the most im-
portant prerequisites in the application of breeding programs and efficient protection
and use of plant genetic resources [41,42]. Thus, ddRAD is considered as one of most
reliable and powerful approaches to provide more effective SNP genotyping. To date,
relatively few studies have examined the genetic structure and relationships between
Pimpinella species using a PCR-based approach [4,12,13,43]. Furthermore, only two studies,
by Wang et al. [15] and Fereidounfar et al. [44], examined the phylogenetic relationships
and these used nrDNA ITS and cpDNA intron sequence data. In this study, we set out
to use ddRAD-seq to discover genome-wide SNPs in Iranian endemic Pimpinella species
in a cost- and time-efficient manner. To achieve this purpose, we selected the HinfI and
HpyCH4IV enzyme combination which led to a sufficient read depth to perform SNP
calling across different species in the absence of a reference genome. Only 39.0% of the
trimmed contigs were aligned using the reads, possibly due to the stringent parameters
used by the STACKS de novo to minimize multiple mapping. A similar limitation was also
reported for genome-wide SNP discovery in Capsicum annuum germplasm [45].

In the present study, a total of 334,702,966 raw paired-end reads were produced. This
high number of raw sequencing reads among the eight Pimpinella species reflected reduced
levels of contamination and unexpectedly low sequence repeats. We applied STACKS de
novo for SNP calling, which filled the specifications required for SNP discovery from the
trimmed reads in the absence of a reference genome sequence [46]. Using this tool, we
eliminated low-quality and contaminated reads using efficient filtering criteria. Regardless
of the complexities included, 2440 SNPs were identified in this investigation after the
initial quality check. The average SNP frequency, 1.5 SNP per 100 bp of filtered ddRAD
loci, was higher than the SNP frequency in Apiaceae family [24]. Identification of SNPs
obtained from this study maximizes the probability of finding efficient molecular markers
in Pimpinella. Such moderate frequency of SNPs retained after the initial quality check
in Pimpinella species indicates the importance of generating genome-wide SNPs, which,
critically, include markers from transcribed regions and regulatory regions [17].

A major challenge encountered by all genotyping methods has been the difficulty of
aligning true alleles of each single locus in plants for which whole-genome sequences and
reference genome are not available, such as the Pimpinella genus. In addition, information
on the levels of heterozygosity within a selected species would be of value for elucidating
the underlying population structure, for calculating minimum population sizes required



Agronomy 2021, 11, 1342 9 of 13

for maintaining genetic diversity and also for future estimations of genetic gain [17,47].
Our method and selected tools have effectively calculated the heterozygosity and excluded
only 175 SNPs, or 7.2% of the quality filtered SNPs. This value is lower and higher than
has been previously reported by Duangjit et al. [48] and Jo et al. [17] which consisted of
12.7% and 5.9% heterozygous SNPs. The lower frequency of heterozygous calls could be
attributed to the bias arising from our relatively small sample size [49]. The number of
SNPs identified in this study was restricted by the capture of a reduced portion of the
genome following the combination of the HinfI and HpyCH4IV enzymes and stringent
SNP calling by stacks. Although, additional SNPs could have been identified by increasing
the value of M and n in species with higher level of polymorphism [50,51].

The C/T allele (734, 30%) occurred most frequently between SNP alleles. Similar
results were also observed in other species including Allium cepa [18,39], Brassica napus [52],
Cucumis melo [53] and oil palm [54]. The transition/transversion ratio in this study was
1.42, which is lower than has been previously reported in Triticum aestivum L. (1.75) [20],
Oryza sativa (2.3) [55], Arachis hypogaea (3.2) [54] and Allium cepa (2.53) [18]. This is the
first study in Pimpinella to develop genome-wide SNPs using the GBS method without a
reference genome. However, de novo assembly was successfully used to design a SNP
array, construct linkage maps, high density genetic and transcriptome analyses in Allium
cepa [39], Cicer arietinum L. [22] and Hordeum vulgare [56]. Thus, the identified SNPs with
associated flanking sequences can be usable for high-throughput validation assays in
Pimpinella breeding programs.

The relatively higher frequency of observed heterozygosity than expected for this
study suggests that this species may have recently experienced a genetic bottleneck [57].
In Eucalyptus populations, a similar effect was reported with H0 > He [58]. The low
percentage of polymorphic loci among species indicates significant heterogeneity of genetic
architecture among species as well as gene-by-environment effects [59,60].

Maximum likelihood phylogenetic construction based on 2440 filtered SNPs generally
grouped the eight species of Pimpinella into three main clusters. Cluster 3 had the most
species including P. barbata, P. kotschyana, P. tragioides, P. affinis, P. anisum and P. aurea.
The species of P. tragium and P. eriocarpa created a separate cluster. The results of this study
suggest that the species within one cluster have the most homology in SNP loci. Iranian
Pimpinella has been rarely studied from molecular viewpoint. Consistent with previous
data [44], a close correlation was observed between geography and the phylogenetic tree
in our analysis. P. tragium is south of the East European native and constituted an early
diverging cluster and formed a sister cluster to Southwest Asia Pimpinella. It has been
suggested that P. tragium is is the origin of the predominantly herbaceous Apiaceae subfam-
ily Apioideae, and chromosome base number of x = 8. However, all species of Pimpinella
from Southwest Asia origin fall within a cluster. Based on nuclear region IITS and cpDNA
within the context of the genus Pimpinella, Fereidounfar et al. [44] placed some Iranian
species in one tribe. Recently, molecular studies grouped P. affinis, P. aurea, P. tragioides, P.
barbata and P. kotschyana based on nuclear region IITS and cpDNA [44]. Our phylogenetic
trees were consistent with those previously reported, such that P. tragium and P. eriocarpa
are considered a separate group within Pimpinella [44]. One of the greatest advantages of
using ddRAD-seq for phylogenetic reconstruction, as opposed to the traditional methods
of using one to several genes, is that the ddRAD approach samples data from many loci
among the entire genome. This suggests that ddRAD-seq data could be profitably applied
to methods for multi-locus species tree estimation. RAD-seq are usually considered appli-
cable for phylogenetic reconstruction in species in which sufficient numbers of orthologous
restriction sites are retained among species [61].

Estimation of genetic distance between species is one of useful tools for species
registration and protection and parental selection in Pimpinella hybridization programs.
Cluster and PCA analysis are appropriate methods in genetic diversity identification,
tracing the pathway of the evolution of species, parental selection and center of origin and
diversity [62]. In this study, we performed PCA on the SNPs data using different species.
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PCA result illustrated three main groups of Pimpinella species. This technique has been
used with great success in a number of recent population genetic studies [63–65]. The result
of ML and PCA may have relative differences from each other due to the use of the only
first two components in the PCA. When the two first principal components account for
high variation percentage, clustering according to these two components can be a useful
method to find the clusters. However, cluster analysis based on PCA is a more explicit
indicator of differences among species than cluster analysis without PCA based [66].

Within the detected SNPs, the 58.7% of transition (A/G, C/T) type were found in
Pimpinella species. Transversions (A/T, A/C, C/G and G/T) SNP ratios in Pimpinella
species can be used to measure the genetic distance between the species. Transitions
polymorphism occurred more frequently than transversions, consistent with the nature of
these changes [67].

In total, BLASTX searches against the non-redundant protein database identified 98
of the 642 contigs corresponding to known protein sequences, whereas 544 contigs did
not match with any known protein sequence, suggesting that our Illumina paired-end
sequencing were unique to Iranian Pimpinella species.

Analysis of metabolic pathway from annotation results showed that seven different
pathways, including amino acids metabolism, DNA replication, RNA replication and en-
ergy metabolism, were identified. Overall, these pathway details from ddRAD-sequencing
will provide valuable information for understanding more about Iranian Pimpinella species.

Plant breeders have always been interested in selecting plant materials based on
their germplasm collections, long-term consistent assistance and relatedness limitations to
support breeding programs. Relatedness analysis helps plant breeders to understand the
backgrounds of their plant materials [18]. In studies on Vigna unguiculata [68] and Allium
sativum [69], this model was used in genomic selection and association-related studies.

In this study, the data collection and analysis process provided a novel step forward
in the use of ddRAD data to address questions in Pimpinella species genomic structure.
We show that the reduced representation genotyping approach is an alternative method
to whole-genome resequencing with using restriction site associated DNA sequencing
(RAD-Seq).

5. Conclusions

In this study, we identified highly valuable SNP resources from Iranian Pimpinella
species using ddRAD-seq analysis. In our literature review, this is the first report of de
novo analysis pipeline being used for the discovery of SNPs in Iranian Pimpinella species.
Our investigation provides high-quality SNPs, with details of their genetic structure and
their annotated functions, and will be useful for deepening our understanding of Pimpinella
genomic resource for genetic diversity and relatedness among species, marker-assisted
selection programs, trait dissection, breeding and high-density map development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11071342/s1, Table S1: List of the eight Pimpinella species, latitude, longitude,
altitude, mean temperature, mean rain-fall and locations assigned in this study, Table S2: Population
statistics calculated using populations, Table S3: Population statistics calculated using populations
(STACKS) for de novo mapping (-M 3 -n 3)., Table S4: BLAST results of SNP-associated sequences
from Korean onion accessions compared with the non-redundant (nr) protein database., Table S5:
Gene Ontology (GO) annotations of Korean onion accessions.
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