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Summary 8 

Our understanding of cell types has advanced considerably with the publication of single cell atlases. 9 

Marker genes play an essential role for experimental validation and computational analyses such as 10 

physiological characterization through pathway enrichment, annotation, and deconvolution. 11 

However, a framework for quantifying marker replicability and picking replicable markers is currently 12 

lacking. Here, using high quality data from the Brain Initiative Cell Census Network (BICCN), we 13 

systematically investigate marker replicability for 85 neuronal cell types. We show that, due to 14 

dataset-specific noise, we need to combine 5 datasets to obtain robust differentially expressed (DE) 15 

genes, particularly for rare populations and lowly expressed genes.  We estimate that 10 to 200 16 

meta-analytic markers provide optimal performance in downstream computational tasks. Replicable 17 

marker lists condense single cell atlases into interpretable and generalizable information about cell 18 

types, opening avenues for downstream applications, including cell type annotation, selection of 19 

gene panels and bulk data deconvolution. 20 
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Introduction 23 

Recent atlas efforts based on single cell technologies have led to comprehensive cell type 24 

taxonomies that include a multitude of novel cell types (Tasic et al. 2018; Zeisel et al. 2018; Schaum 25 

et al. 2018; Packer et al. 2019; Cao et al. 2020). The discovery of new cell types and novel biological 26 

heterogeneity served as a foundation for promising avenues for the understanding of tissue 27 

homeostasis and disease. However, to develop downstream applications and experiments, an 28 

actionable description of cell types is required that extends beyond taxonomic classification. While 29 

sporadic post-hoc markers are published alongside taxonomies, the replicability of these markers is 30 

rarely assessed. Here, we systematically evaluate marker replicability and propose unprecedented 31 

lists of replicable markers (or meta-markers) for neuronal cell types by selecting an optimal number 32 

of robustly upregulated genes across a compendium of brain datasets. 33 

Given the rapid progression in the number and size of single-cell datasets (Svensson et al. 2018), 34 

making atlases easily accessible is an increasingly difficult challenge. Cell type centroids provide an 35 

efficient summary of active gene expression programs (Zeisel et al. 2018), but they are subject to 36 

batch effects (Tung et al. 2017) and discard expression variability. While integrative methods have 37 

been successful at mitigating batch effects for the joint analysis of a small groups of datasets (Butler 38 

et al. 2018; Haghverdi et al. 2018; Welch et al. 2019; Korsunsky et al. 2019; Lin et al. 2019) and the 39 

transfer of cell type annotations (Kiselev et al. 2018; Stuart et al. 2019), the abstract embedding of 40 

cell types is costly, as well as difficult to interpret and to extract for downstream applications. In 41 

contrast, markers provide an interpretable common denominator that does not involve data re-42 

analysis or complex mathematical transformations; they are commonly used for functional 43 
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characterization (Mancarci et al. 2017), cell type annotation (Poulin et al. 2016; Johnson and Walsh 44 

2017; Pliner et al. 2019; Zhang et al. 2019), deconvolution of bulk data (Wang et al. 2019; Newman 45 

et al. 2019; Patrick et al. 2020) and spatial data (Qian et al. 2020), selection of representative gene 46 

panels (Moffitt et al. 2018), cross-species comparisons (Tosches et al. 2018; Hodge et al. 2019; 47 

Krienen et al. 2019; Bakken et al. 2020), and mapping of organoids to in vivo progenitors (Velasco et 48 

al. 2019; Bhaduri et al. 2020).  For many of these applications, the strength of individual markers is 49 

limited by the lack of conservation (Bakken et al. 2020) and the sporadic expression in individual 50 

cells (Kharchenko et al. 2014; Risso et al. 2018; Hicks et al. 2018; Chen and Zhou 2018). Moving past 51 

individual markers to small lists is done sporadically to capture combinatorial relationships or 52 

improve power, but has not yet exploited the full power of scRNA-seq data.   In specific, because cell 53 

types are encoded in a low-dimensional expression space (Crow and Gillis 2018), we hypothesize 54 

that they can be captured with high resolution and generalizable definitions using redundant and 55 

robust marker lists. These lists can then easily be compared and combined across datasets for 56 

downstream analyses. 57 

The problem of finding generalizable descriptions of cell types has a long history in the brain, 58 

famously illustrated by Ramon y Cajal’s morphology-based descriptions (RAMON Y CAJAL 1904). 59 

More recently, the Petilla convention emphasized the need to describe neurons according to a multi-60 

modal taxonomy, including morphology, electrophysiology, connectivity and transcriptomics (Ascoli 61 

et al. 2008). Single cell data, while only covering one aspect of this multi-modal description, have 62 

enabled unprecedented wide and deep sampling of brain cells, with current taxonomies containing 63 

several hundred cell types (Tasic et al. 2018; Zeisel et al. 2018). They thus offer a chance to assess 64 

the robustness of transcriptomic cell types, but current cell types are usually defined based on data 65 

from a single lab and a single computational method, while an ideal description should be 66 

community-based and method-independent (Yuste et al. 2020). With the recent publication of 67 

several single-cell compendia by the Brain Initiative Cell Census Network (BICCN)(Yao et al. 2020a, 68 

2020b), the brain offers a unique opportunity to characterize marker-based descriptions.  69 
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In this manuscript, we systematically assess the replicability of markers for BICCN cell types.  We 70 

identify robust markers (meta-markers) across a compendium of 7 brain single cell datasets 71 

containing a total of 482,712 cells from the BICCN, one of the most complex and comprehensive cell 72 

type taxonomies to date. The assessment procedure is based on two simple steps: (i) identify 73 

markers from single datasets, (ii) obtain a list of meta-markers by selecting replicable markers. The 74 

compendium samples from 6 single-cell and single-nuclei technologies, resulting in meta-markers 75 

that are robust to the varying sensitivity and contamination levels of these technologies. We further 76 

investigate the ability of markers to recapitulate cell types at various levels of granularity. We define 77 

two simple performance axes, intuitively representing coverage (being expressed in all cells of 78 

interest) and signal-to-noise ratio (being expressed exclusively in cells of interest), that can be 79 

efficiently summarized using standard differential expression statistics. While individual meta-80 

markers only imperfectly capture cell types, we find that aggregating 10 to 200 meta-markers leads 81 

to optimal performance in downstream computational analyses, such as cell type annotation and 82 

deconvolution. Remarkably, these marker-based descriptions, derived from the primary motor 83 

cortex, generalize to other cortical brain regions, enabling accurate annotation of individual cells. 84 

Robust meta-markers thus provide a simple and actionable description of BICCN cell types, which we 85 

make available as high-quality marker lists (Sup. Data 1-3) ranging from the lowest resolution 86 

(excitatory neurons, inhibitory neurons, non-neurons) to the finest resolution defined by the BICCN 87 

(85 neuronal cell types).  88 

Results 89 

The ideal marker gene fulfills two criteria: (1) it is expressed in all cells of the population of interest, 90 

providing high coverage, (2) it is not expressed in background cells, providing a high signal-to-noise 91 

ratio (Fig. 1a). In recently published atlases, it is often unclear how strongly and robustly the 92 

proposed markers fulfill these criteria, particularly at high clustering resolution. To investigate 93 

replicability of marker strength, our basic strategy is to look for simple statistics that can be robustly 94 
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averaged across datasets and correctly capture coverage and signal-to-noise. We focused on a BICCN 95 

neuron atlas containing 7 datasets with 482,712 cells, organized into a hierarchy of 116 cell types in 96 

3 levels of increasing resolution: classes, subclasses and clusters (Yao et al. 2020a)(Table 1). 97 

Dataset Brain 

regions 

Assay Technology # cells # cell 

types 

# genes 

detected 

# UMIs / 

reads 

scSS MOp Cell SmartSeq 6,288 61 9,420 1,750,664 

snSS MOp Nucleus SmartSeq 6,171 46 4,363 613,762 

scCv2 MOp Cell 10X v2 122,641 90 4,594 12,697 

snCv2 MOp Nucleus 10X v2 76,525 43 1,716 3,145 

snCv3M MOp Nucleus 10X v3 159,738 113 4,237 12,060 

scCv3 MOp Cell 10X v3 71,183 78 7,282 46,148 

snCv3Z MOp Nucleus 10X v3 40,166 67 3,445 16,088 

AUD AUD Cell 10X v2 71,670 203 3,969 10,105 

Isocortex-

Hippocampus 

21 Cell SmartSeq 827 to 

16,318 

13 to 

183 

6,099 to 

9,006 

488,099 to 

2,016,775 

Isocortex-

Hippocampus 

19 Cell 10X v2 18,307 to 

216,203 

166 to 

263 

2,874 to 

4,944 

6,102 to 

15,272 
Table 1. List of Brain Initiative Cell Census Network (BICCN) datasets used in this study. All datasets are from 98 
mouse. MOp corresponds to the primary motor cortex, AUD to the auditory cortex. The “# genes detected” 99 
column contains the median number of genes detected per cell. The “# UMI / reads” column contains either the 100 
median number of reads per cell (for SmartSeq datasets) or the median number of UMIs per cell (for 10X 101 
datasets). 102 

Meta-analytic markers are highly replicable 103 

We started by investigating the replicability of standard differential expression (DE) statistics across 104 

BICCN datasets. Previous experiments in microarray and bulk RNAseq data by the MAQC (Shi et al. 105 

2006) and SEQC (Consortium et al. 2014) consortia established that a fold change (FC) threshold 106 

between 2 and 4 was necessary to obtain replicable DE genes. We wondered if a similar threshold 107 

would hold for single cell RNAseq and how aggregation across datasets would improve the threshold 108 

for fold change (FC) and the area under the receiver-operator curve (AUROC), a statistic routinely 109 

used to compute the statistical significance of DE. 110 

To assess the replicability of FC, we quantified how often one would draw inconsistent conclusions 111 

about a significant DE gene being upregulated (type S error (Gelman and Carlin 2014)). For example, 112 

given that I observed a gene with FC=2 (strongly upregulated), what is the probability that my gene 113 

will have a FC<1 (downregulated) in an independent experiment? When FC was estimated from a 114 
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single dataset, as is routine in published studies, we found that a threshold of FC>4 was necessary to 115 

call a gene reliably upregulated (type S error < 5%, Fig. 1b), in line with MAQC/SEQC conclusions. In 116 

contrast, estimating FC from a higher number of datasets dramatically improved replicability: for 2 117 

datasets the 5% error threshold is reached at FC > 2, for 3 datasets at FC > 1.5. Surprisingly, for more 118 

than 5 datasets, our results suggest that thresholding becomes unnecessary: a gene that was 119 

detected as upregulated in 5 independent datasets was almost always upregulated in the 120 

2Premaining datasets, even at low effect size (FC~1). Moreover, for a single dataset, only the top 10 121 

upregulated genes were replicable, while the top 1000 genes are reliably upregulated when 122 

aggregating across 6 datasets (Sup. Fig. 1b). We observed similar trends for AUROCs. Based on a 123 

single dataset, the replicability threshold was AUROC>0.65, yielding 100 reliably upregulated genes. 124 

Aggregating six datasets, no replicability threshold was needed and we could identify more than 125 

5000 reliably upregulated genes (Sup. Fig. 1a,c). The impact of dataset aggregation was particularly 126 

dramatic for small clusters and lowly expressed genes (Sup. Fig. 1d-g); for 5/85 neuron clusters, 127 

fewer than 5 of the top 10 single dataset markers (based on fold change) were reliably upregulated. 128 

 129 

Figure 1. The meta-analytic Pareto front of markers: a trade-off between coverage and signal-to-noise ratio. a Ideal 130 
markers have high coverage (high expression in cells of interest) and high signal-to-noise ratio (relatively low expression in 131 
background cells). b Fraction of genes inconsistently detected as upregulated (type S error) depending on the fold change in 132 
the training dataset. Colors indicate the number of datasets used to estimate the fold change (geometric mean). c 133 
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Schematic of extraction of meta-analytic markers: differentially expressed (DE) genes are computed independently in each 134 
dataset, meta-markers are selected based on the number of times they were DE across datasets. d Spearman correlation of 135 
standard DE statistics for putative markers (averaged over datasets). We highlight two independent groups of statistics that 136 
can serve as a proxy for coverage and signal-to-noise ratio. e Recurrent DE genes in glutamatergic neurons, using AUROC as 137 
a proxy for coverage and fold change of detection rate as a proxy for signal-to-noise ratio. Gene names and lines highlight 138 
the Pareto front of markers, which offer optimal trade-off between signal-to-noise and coverage. f Pareto fronts for 139 
neuronal classes (glutamatergic neurons, GABAergic neurons and non-neuronal cells) in the coverage/signal-to-noise space. 140 
We subdivide markers as perfect (high coverage and signal-to-noise), specific, sensitive, or weak (low coverage and signal-141 
to-noise). g Illustration of sensitive (high target expression, some background expression), perfect (high target expression, 142 
no background expression) and specific (low target expression, no background expression) markers along the glutamatergic 143 
Pareto front. 144 

No individual marker offers high coverage and signal-to-noise ratio 145 

Having established that DE statistics are replicable in aggregate, we assessed a range of existing 146 

statistics and found they strongly clustered into two groups, corresponding to definitions for 147 

coverage and signal-to-noise ratio (Fig. 1c,d). The first block of statistics contained average gene 148 

expression and intuitively mapped to the notion of coverage; it also included the DE p-value and the 149 

detection rate, which are strongly indicative of genes that are broadly expressed. The second block 150 

contained the fold change and the fold change of detection rate and intuitively mapped to the 151 

notion of signal-to-noise ratio. The lack of correlation between the two blocks indicates that there is 152 

trade-off, genes have a “choice” between favoring coverage or signal-to-noise ratio. Note that this is 153 

broadly consistent with long-standing heuristic practice of considering both p-value and fold change 154 

in bulk DE through volcano plots (Cui and Churchill 2003; Goedhart and Luijsterburg 2020). In the 155 

following, we use the area under the receiver-operator characteristic curve (AUROC) as our proxy for 156 

coverage (as used in Seurat’s ROC test (Stuart et al. 2019) or LIGER’s marker detection (Welch et al. 157 

2019; Liu et al. 2020)), fold change of the detection rate (FCd) as our proxy for signal-to-noise when 158 

we consider individual markers (as used in M3Drop (Andrews and Hemberg 2019)), and fold change 159 

(FC) as our proxy for signal-to-noise when we consider marker lists (as used in the traditional 160 

Volcano plot (Cui and Churchill 2003)). 161 

In a FC/AUROC representation, genes offering a trade-off from best signal-to-noise marker to highest 162 

coverage marker form a Pareto front of markers (Fig. 1e). The Pareto front representation offers a 163 

rapid visualization of the strength of markers that can be associated with any given cell type. Based 164 
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on our exploration of the datasets, we subdivided markers as perfect (high coverage, AUROC > 0.8, 165 

high signal-to-noise, FCd > 8), specific (high signal-to-noise), sensitive (high coverage) or weak (DE, 166 

but low coverage and low signal-to-noise). As expected, the Pareto fronts associated with 167 

Glutamatergic and GABAergic cells contain perfect markers (Fig. 1f) that identify these populations 168 

with high confidence across all technologies sampled, such as Gad1 for GABAergic cells and Neurod2 169 

for Glutamatergic cells. In contrast, there is no perfect marker for non-neuronal cells: their Pareto 170 

front only includes highly sensitive markers such as Qk (highly expressed in non-neurons but also 171 

expressed in neurons) and highly specific markers such as the Slco1c1 transporter (high signal-to-172 

noise, but not covering all non-neurons), consistent with the heterogeneous nature of non-neurons 173 

and the need to use several markers in conjunction (Fig. 1f). Remarkably, the Pareto fronts were 174 

composed of perfectly recurring genes, i.e. genes that are reliably DE across all datasets (Fig. 1e, FC > 175 

4, FDR < 0.05). Conversely, this implies that markers selected based on recurrence (number of 176 

datasets where they are reliably DE) naturally range from highly sensitive to highly specific. In 177 

contrast, high AUROC markers have high sensitivity but low specificity. 178 

To illustrate that the chosen statistics and thresholds offer an intuitive understanding of coverage 179 

and signal-to-noise ratio, we plotted the expression of markers along the Glutamatergic Pareto front 180 

in one of the BICCN datasets (Fig. 1g). Highly sensitive markers (Arpp21 and Sv2b, AUROC > 0.8) are 181 

expressed in all Glutamatergic cells at high levels but are also expressed in background cells (e.g., 182 

high expression of Arpp21 in the Vip, Sncg and Lamp5 cell types). The highly specific marker (Exph5, 183 

FCd > 8) is expressed almost exclusively in glutamatergic cells, but not in all cells, indicating high 184 

drop-out propensity or cell-type specific expression (e.g., it is almost not expressed in L5/6 NP). 185 

Finally, the perfect markers (Satb2 and Neurod2) cover almost all cells of interest and have very 186 

limited background expression. To further investigate if our simple metrics capture known marker 187 

genes, we investigated the Pareto fronts of inhibitory subclasses as defined by the BICCN. We found 188 

that all classical markers were on the Pareto front (Sup. Fig. 1h), classified as perfect markers (Pvalb, 189 

Lamp5) or highly sensitive markers (Sst, Vip), with the notable exception of Sncg, which was only 190 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.04.16.439807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.439807
http://creativecommons.org/licenses/by/4.0/


imperfectly detected in most datasets (low coverage, high signal-to-noise). A look at the Pareto front 191 

of the Sncg population suggests that multiple genes would offer better coverage than Sncg while 192 

preserving a high signal-to-noise ratio, in particular Cadps2, Frem1 and Megf10 (Sup. Fig. 1i), but 193 

that all markers tend to have some background expression in the Vip Serpinf1 cell type. For 194 

Glutamatergic subclasses, the Pareto fronts suggested that all subclasses have perfect markers, 195 

except for IT subclasses, consistent with previous observations of gradient-like properties (Tasic et 196 

al. 2018; Yao et al. 2020a, 2020b) (Sup. Fig. 1j,k). 197 

The FC/AUROC plot rapidly informs about the maximal strength of markers that can be expected for 198 

any given cell type. In contrast to the Volcano plot, which is based on one effect size and one 199 

significance statistic (Goedhart and Luijsterburg 2020), it relies on two effect sizes. Because we 200 

obtain replicable statistics by combining values over multiple datasets, we remove the need to 201 

visualize significance and obtain a plot with two interpretable dimensions of marker strength: signal-202 

to-noise ratio and coverage. Typically, for each population, we suggest building the FC/AUROC plot 203 

across at least 5 datasets, identify genes on or next to the Pareto front, visualize their expression 204 

across datasets to appreciate the optimal coverage/signal-to-noise trade-off, then select the best 205 

marker(s) for the application at hand. 206 

The strength of individual markers decreases with finer cell type resolutions 207 

The BICCN defined three levels of cell types: classes (such as glutamatergic neurons), subclasses 208 

(such as PV+ interneurons), and clusters (such as Chandelier cells)(Fig. 2a). While classes and 209 

subclasses had been previously experimentally characterized and showed strong statistical 210 

robustness across datasets, clusters obtained from independent datasets were more elusive (Yao et 211 

al. 2020a). To further characterize how distinct cell types are, we evaluated the number of replicable 212 

markers with increasing clustering resolution. We controlled for the increasing number of cell types 213 

by using a hierarchical approach, for example we compare a cluster to clusters from the same 214 

subclass only (Fig. 2a). 215 
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 216 

Figure 2. Markers are associated with higher cluster replicability, but become rare at finer resolutions. a Schematic of the 217 
BICCN taxonomy. Markers are selected hierarchically: each cluster is only compared to its direct neighbors in the hierarchy 218 
(dashed lines). b Number of reliable markers (FC>4, FDR<0.05) along the BICCN cell type hierarchy, according to marker 219 
type: perfect (AUROC > 0.8 and FCd > 8), specific (AUROC > 0.8), sensitive (FCd > 8) and weak (FDR < 0.05). c Number of 220 
markers of each type for BICCN classes, error bars are interquartile range across datasets. d Same as c for Glutamatergic 221 
subclasses. e Same as c for GABAergic subclasses. f Number of markers of each type for BICCN clusters, with cell types 222 
ordered according to number of markers. Ribbons indicate interquartile range across datasets. g Association between 223 
number of makers and cross-dataset MetaNeighbor replicability score at the cluster level (Spearman correlation, one dot 224 
per BICCN dataset). h Illustration of association of replicability (MetaNeighbor score) and number of markers in the scCv2 225 
dataset. 226 

To investigate how the number and quality of markers depends on the cell type hierarchy, we 227 

extracted all reliable markers (FC>4, FDR<0.05) and classified them as perfect (AUROC > 0.8 and FCd 228 

> 8), specific (AUROC > 0.8), sensitive (FCd > 8) and weak (FDR < 0.05). We observed an overall 229 

decrease in the median number of markers when going from coarse to finer resolution (397 total 230 
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markers at the class level, 108 at the subclass level, 35 at the cluster level), confirming that the signal 231 

that separates neighboring populations becomes increasingly weaker (Fig. 2b). We found that all 232 

classes and subclasses had at least one perfect marker except for non-neurons and IT subclasses (Fig. 233 

2b-e). In contrast, only around 50% of clusters had a perfect marker (Fig. 2f, Sup. Fig. 2a-d). This 234 

proportion dropped to 25% with the additional requirement that the marker should be robust across 235 

all technologies (Sup. Fig. 2a). Strikingly, a handful of clusters had extremely strong support, totaling 236 

close to 50 perfect markers in some of the datasets. Upon closer investigation, these clusters 237 

corresponded to experimentally identified populations, such as the long-projecting interneurons 238 

(Tasic et al. 2018; Paul et al. 2017)(Sst Chodl, up to 43 perfect markers) or Chandelier cells (Paul et al. 239 

2017; Tasic et al. 2018)(Pvalb Vipr2, up to 20 perfect markers), suggesting that for these cell types, 240 

experimentally characterized differences in morphology and physiology are reflected by a high 241 

number of marker genes. Reassuringly, almost all clusters had at least one specific marker, 242 

suggesting the presence of unique characteristics (Fig. 2f, Sup. Fig. 2b). 243 

While more data are needed to experimentally validate cell types, we wondered whether the 244 

number of markers would be predictive of computational replicability. Intuitively, a higher number 245 

of markers indicates unique aspects in a population’s transcriptional program, which should increase 246 

its identifiability across datasets. We assessed cluster replicability using MetaNeighbor, which tests 247 

the consistency of cell types across datasets using a neighbor voting framework: intuitively, if two 248 

clusters represent the same cell type, they will preferentially vote for each other (see Materials and 249 

Methods). We found that cluster replicability was indeed associated with the number of markers 250 

(rho=0.4, Fig 2g). To understand why replicability and number of markers are only partially 251 

associated, we further investigated the relationship in the best-powered datasets. We noted that, 252 

while a high number of markers was associated with higher replicability, a low number of markers 253 

did not imply low replicability (Fig 2h). Some clusters, such as Lamp5 Slc35d3, are found 254 

independently in all BICCN datasets and match with high statistical confidence (MetaNeighbor 255 

replicability > 0.7), despite the absence of strong markers. However, we noted that these clusters 256 
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usually had a high number of specific markers (Sup. Fig. 2e). Conversely, we found some instances of 257 

clusters with low replicability and high number of markers (e.g. Pvalb Nkx2.1, Sup. Fig. 2f) but, upon 258 

further investigation, all identified “markers” were stress-related genes likely to be artefacts of the 259 

extraction protocol. Overall, the imperfect association of markers and replicability suggests that 260 

individual markers only provide a partial view of cell type identity, which is encoded broadly across 261 

the transcriptome. 262 

Meta-marker aggregation enables near-optimal cell type descriptions 263 

Our previous results suggest that, at the finest level of resolution, single markers are not sufficient to 264 

unambiguously identify cell types (only ~10 genes with AUROC > 0.8 at the subclass level, Fig. 3a). 265 

These results are consistent with the ideas that markers are affected by dropout and that clustering 266 

procedures capture information from the full transcriptome. We next tested if cell type identity can 267 

be efficiently characterized by redundant marker lists. In particular, we ask how many markers 268 

contribute to make cell types more unique, and how the selection of replicable markers improves 269 

cell type characterization. 270 
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 271 

Figure 3. Meta-analytic aggregation of markers considerably improves the coverage/signal-to-noise trade-off. a Cell type 272 
classification performance of single markers as a function of marker rank. b Schematic of classification task using cross-273 
dataset validation for markers from single datasets and meta-analytic markers. c Cell type classification performance of 274 
aggregated markers (average expression) with increasing number of markers. Performance is plotted as a parametric curve 275 
in a coverage (AUROC), signal-to-noise (fold change) space similar to Figure 1. The arrow points toward an increasing 276 
number of markers, the numbers next to the dots show the number of genes at which performance was measured (shown 277 
in full as an example for one arrow, otherwise highlighting optimal performance). d Same as c at the subclass level. e Same 278 
as b at the cluster level. f-h Coverage (f), signal-to-noise ratio (g) and average number of genes (h) at optimal coverage as a 279 
function of hierarchy level. Boxplots show median and interquartile range (f,g), bar plot shows mean and standard 280 
deviation (h) across datasets. In all panels, colors indicate whether markers were prioritized according to a single dataset or 281 
using the meta-analytic approach. 282 

To study how the number of markers affects cell type identifiability, we framed gene aggregation as 283 

a classification task (Fig. 3b). How well can we predict cell type identity for the average expression of 284 

an increasing number of markers? We first created ranked marker lists for each dataset by ranking 285 

genes according to their AUROC. To test the effect of meta-analytic marker selection, we used cross-286 
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dataset validation: we computed marker replicability across 6 datasets and predicted cell types on 287 

the held-out dataset. To rank meta-analytic markers, we used two criteria: first, the number of 288 

datasets in which they were reliable DE (FC>4, FDR<0.05), second, the average AUROC. To predict 289 

cells that belong to a given cell type, we ranked cells based on the average expression of the top N 290 

markers for that cell type. We visualized performance in the FC/AUROC space, displaying 291 

classification results as a trade-off between coverage (AUROC) and signal-to-noise ratio (FC). We 292 

found that marker aggregation improved cell type identification at all levels of the hierarchy, 293 

independently of the marker prioritization strategy (Fig. 3c-e). Coverage reached an optimum 294 

between 10 and 200 genes (Fig. 3c-e), at the cost of a slightly lower signal-to-noise ratio (class, FC=6 295 

to 6, subclass, 6 to 5, cluster, 5 to 3). Optimal performance was reached between 50 and 200 genes 296 

for classes, 20 to 100 genes for subclasses, and 10 to 50 genes for clusters. 297 

Meta-analytic markers systematically outperformed single dataset marker genes in terms of 298 

coverage (Fig. 3f, class, AUROC=0.92 to 0.99, subclass, 0.9 to 0.99, cluster 0.85 to 0.95), signal-to-299 

noise ratio (Fig. 3g) and number of relevant genes (Fig. 3h). In other words, the best candidates in a 300 

single dataset by a single metric are “too good to be true”.  The gain in signal-to-noise ratio is 301 

particularly apparent at the cluster and subclass levels (Fig 3d-e), suggesting that the meta-analytic 302 

approach successfully extracts and combines lowly expressed markers. We checked that all results 303 

were robust to another marker prioritization strategy, where we ranked genes by fold change 304 

instead of AUROC (Sup. Fig. 3a-c). 305 

We further investigated how the performance was distributed within hierarchy levels and across 306 

datasets (Sup. Fig. 3d-o). The overall classification performance (AUROC) increased with dataset 307 

depth (Sup. Fig. 3d). More surprisingly, the signal-to-noise ratio was approximately constant across 308 

datasets (Sup. Fig. 3h) and the number of relevant markers was slightly lower for high depth 309 

datasets (Sup. Fig. 3l). Classification performance was high for all classes and subclasses (median 310 

AUROC > 0.99, median FC > 3, Sup. Fig. 3e,f,i,j), with the notable exception of L5 IT and L6 IT (AUROC 311 
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< 0.99, FC < 3). The classification performance had a wide variance at the cluster level (AUROC 312 

ranging from 0.9 to 1, FC ranging from 1.5 to 8, Sup. Fig. 3g,k), 32/85 cell types had a low signal-to-313 

noise ratio (median FC < 2, Sup. Fig. 3g). Finally, we found that the ideal number of markers ranged 314 

from 10 to 200 and was remarkably consistent within each hierarchy level (Sup. Fig. 3l-o). 315 

Meta-marker enrichment is robust across datasets 316 

Automatic annotation of cell types typically involves two steps: (a) prioritize cells that are most likely 317 

to belong to a given cell type, (b) annotate cells that exceed a pre-specified threshold condition. The 318 

threshold indicates that there is enough evidence to proceed with the annotation, for example 319 

preventing misannotation when a cell type is missing in the reference dataset. In the previous 320 

assessment,  we showed that meta-analytic marker lists successfully prioritize cells, without explicit 321 

consideration for correct thresholding. We wondered whether marker expression was sufficiently 322 

consistent to be compatible with a simple thresholding method: a cell belongs to a given cell type 323 

when its marker expression exceeds the same pre-specified value for each test dataset. 324 

For each dataset in the compendium, we computed the annotation performance at various 325 

threshold values (Fig. 4a). For example, in the Pvalb subclass, meta-analytic markers had a high 326 

maximal performance (F1opt>0.9) across all datasets (Fig. 4c). Additionally, the maximal 327 

performance had a distinctive plateau, indicating that a large range of thresholds had almost 328 

equivalent performance, as expected from the meta-markers’ tendency to preserve a high signal-to-329 

noise ratio. To visualize how well optimal thresholds aligned across datasets, we defined the 330 

plateauing region as the thresholds that had at least 90% of the maximal performance (Fig. 4b). 331 

While there was a large plateau in all datasets, the plateaus did not align well, suggesting 332 

normalization issues (Fig. 4c). As a result, a meta-analytic threshold leads to good performance in 333 

most datasets, but fails in dataset with extreme properties, such as snCv2 (nuclei, 10X v2, low depth) 334 

or scCv3 (cells, 10X v3, high depth). 335 
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 336 

Figure 4. Aggregated expression of meta-analytic markers enables robust identification of cell types. a Schematic of 337 
threshold-based classification. The initial steps of the procedure are identical to Figure 3. b Illustration of statistics 338 
measuring cell type annotation performance at various thresholds. For a given dataset, cell type and number of genes (scSS 339 
dataset, Pvalb subclass, 100 genes in the illustration), F1opt is the score obtained by picking the single best threshold, 340 
indicated by a dot. The line indicates the range of near-optimal thresholds (leading to a performance higher than 341 
0.9*F1opt). c Comparison of near-optimal expression thresholds across datasets (for Pvalb subclass and 100 genes). The 342 
position of the dotted line (F1meta) is obtained by averaging optimal expression thresholds across datasets. d Similar to b, 343 
but defining optimal thresholds based on proportion of marker expression instead of expression. e For each cell type, we 344 
show how much performance is lost by switching from a dataset-specific threshold (F1opt) to a single meta-analytic 345 
threshold (F1meta) for the two types of thresholds (CPM expression, marker expression proportion). Colors indicate 346 
hierarchy level, the dashed line is the identity line (performance loss is identical for the two types of thresholds). f For each 347 
hierarchy level, heatmap detailing classification performance for each cell type as a function of the number of genes. g-h 348 
Average performance as a function of the number of genes using the optimal meta-analytic expression threshold (g) or 349 
optimal marker expression proportion threshold (h). Ribbons show interquartile range across populations and test datasets. 350 

To overcome the normalization discordance, we reasoned that the normalization issues are mainly 351 

driven by non-marker genes. Instead of considering marker expression for each cell type 352 
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independently, we divided marker expression by the total marker expression (across all putative cell 353 

types). After this change, plateaus of optimal thresholds aligned across all datasets (Fig. 4d), 354 

suggesting that marker lists have preserved relative contributions in all datasets. To assess the utility 355 

of marker-wide renormalization, we directly compare how much performance is lost by switching 356 

from dataset-specific thresholds (optimal threshold per dataset) to a consensus threshold. The 357 

decrease in performance was systematically lower with marker-wide renormalization for classes and 358 

subclasses and was generally lower for clusters (Fig. 4e). 359 

We compared the performance achieved for transcriptome-wide and marker-wide normalization as 360 

a function of the number of markers (Fig. 4g-h, Sup. Fig. 4a-b) and within each hierarchical level (Fig. 361 

4f, Sup. Fig. 4c-e). Both methods reached high classification performance at the class and subclass 362 

level (optimal average F1 > 0.75, Fig. 4g-h), but the average performance was considerably lower at 363 

the cluster level. Marker-wide normalization yielded substantially higher classification performance 364 

(ΔF1 ~ 0.1) and reached peak performance by successfully integrating a higher number of genes (50-365 

500 markers, Fig. 4g-h).  Performance was distributed unequally within hierarchy level, in particular 366 

for subclasses and clusters (Fig. 4f). Almost all subclasses reached optimal performance around 100-367 

200 markers with a high performance (F1 > 0.75), with the exception of L5 IT, L6 IT and Sncg. At the 368 

cluster level, the performance degraded substantially: peak performance was attained around 50-369 

100 markers, with only 43/85 of cell types reaching high performance (F1 > 0.75). All these trends 370 

were consistent with results obtained using transcriptome-wide normalization, with overall higher 371 

annotation performance (Sup. Fig. 4c-e). 372 

Meta-markers are enriched for genes involved in synaptic regulation and 373 

development 374 

We next wondered if top meta-markers were enriched for specific biological processes. We 375 

performed gene set enrichment analysis for the top markers in each cell type against Gene Ontology 376 
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(GO) terms from the Biological Process (BP) ontology. To focus on specific processes, we only 377 

queried terms containing between 20 and 100 genes. For each cell type, we extracted the top 3 378 

enriched terms based on the False Discovery Rate (FDR) from the hypergeometric test. The best 379 

balance between number of enriched terms and cell type specificity was achieved for the top 100 380 

markers for both classes and subclasses (Fig. 5a, Sup. Fig. 5a). 381 

 382 

Figure 5. The top 100 meta-markers are enriched for specific synaptic processes. a Total number of significantly enriched 383 
GO terms (orange) and fraction of significant GO terms that are enriched in a unique cell type (blue) for BICCN subclasses 384 
when an increasing number of meta-markers are considered. b Top 3 enriched Gene Ontology (GO) terms for the top 100 385 
meta-markers for each BICCN class. For each dot, the size reflects the False Discovery Rate (FDR), the color reflects the Odds 386 
Ratio (OR) of the enrichment test (hypergeometric test). c Same as b for the top 100>meta-markers for BICCN GABAergic 387 
subclasses. d Same as b for the top 100>meta-markers for BICCN Glutamatergic subclasses (only top 2 terms per cell type 388 
are shown). 389 
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We found strong enrichment for synaptic properties for all cell types. At the class level, non-390 

neuronal markers were enriched for synaptic support functions, such as “Regulation of neuronal 391 

synaptic plasticity” (Fig. 5b). Glutamatergic neurons were enriched for synaptic regulation (such as 392 

the regulation of GABAergic transport), while GABAergic neurons were enriched for gene sets 393 

related to the regulation of spine and dendrite formation. At the subclass level (Fig. 5c,d), GABAergic 394 

neurons were most distinguishable based on synaptic sub-properties, such as localization to synapse 395 

(Vip), synapse assembly (Sst, Lamp5), or glutamate transmission regulation (Sncg). Glutamatergic 396 

subclasses showed a similar enrichment of synaptic sub-properties, including various aspects of 397 

potential regulation and synaptic transmission (L6b, L6 IT, L2/3PIT, L5/6 NP), as well as synaptic 398 

development (L6 CT, L5 IT, L5 ET). We further confirmed that these findings were consistent with the 399 

enrichment of the top 200 markers, which also highlighted gene sets involved in synaptic regulation 400 

and development (Sup. Fig. 5b-d). These results suggest that meta-markers define a plausible 401 

biological subspace revealing cell type differences in terms of synaptic properties. 402 

Meta-markers improve deconvolution performance 403 

One of the primary purposes to which cell atlas data may eventually be put is deconvolution of bulk 404 

data where cell composition is likely related to the condition of interest (e.g., disease). Single cell 405 

data have been routinely used to increase deconvolution performance in recently developed tools 406 

(Tsoucas et al. 2019; Wang et al. 2019; Newman et al. 2019; Dong et al.), but performance remains 407 

plagued by batch effects and cell type similarity (Newman et al. 2019; Huang et al. 2020; Cobos et al. 408 

2020). The role of marker genes in deconvolution remains particularly unclear: a recent benchmark 409 

suggests that the quality of markers is more important than the deconvolution method (Cobos et al. 410 

2020), in most studies the influence of the number of markers is only partially assessed (Newman et 411 

al. 2019; Hunt and Gagnon-Bartsch 2019). Our annotation assessment suggested that cell types are 412 

best captured with 10 to 200 meta-analytic markers; deconvolution is a natural place to test this 413 

heuristic. 414 
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To measure the number of genes that yield maximal deconvolution performance, we generated 415 

thousands of pseudo-bulk datasets with known mixing proportions from each of the BICCN datasets 416 

(Sup. Fig. 6a). As in previous experiments, we directly compared the performance of markers 417 

extracted from single datasets and performance of meta-analytic markers. We initially compared 418 

two tasks: (a) within-dataset cross-validation, where cell type profiles are learned from a training 419 

fold and tested on a held-out set from the same dataset, (b) cross-dataset-validation, where profiles 420 

are learned on one dataset and tested in another dataset. Within-dataset cross-validation proved to 421 

be a simple task, yielding extremely high performance (Pearson ~ 1, not shown). In contrast, cross-422 

dataset-validation showed only modest performance (Pearson ranging from 0 to 1, Sup. Fig. 6b), 423 

highlighting the difficulty of the deconvolution task. Because deconvolution applications typically 424 

involve different datasets, we focused our analyses on cross-dataset validation. 425 

Deconvolution performance rapidly degraded along the neuron hierarchy (Sup. Fig. 6b), ranging 426 

from almost perfect performance for classes (Pearson ~ 1) to low performance for clusters (Pearson 427 

< 0.5). Classes were easily learnable across all tasks (Sup. Fig. 6c), even using random genes, 428 

suggesting that at this level of the hierarchy, cell types are strongly uncorrelated and can easily be 429 

separated along the first principal component. At the subclass level, the performance of random 430 

genes remained close to 0, suggesting stronger covariation compared to classes (Sup. Fig. 6d). Meta-431 

analytic markers yielded more robust deconvolution performance, with performance increasing up 432 

to 100 genes, while markers from single datasets prioritized only around 10 informative genes. The 433 

trend was similar at the cluster level, but with lower overall performance (Sup. Fig. 6e). Meta-434 

analytic markers again proved to be more robust, prioritizing around 50 informative genes compared 435 

to 10-20 from single datasets. Overall, our results suggest that, in conjunction with batch effects, the 436 

increasing covariation of cell types at finer resolution significantly complicates the deconvolution 437 

task. The prioritization of a large number of robust marker genes is an important first step towards 438 

successful deconvolution. 439 
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Meta-markers reveal a generalizable description of cell types 440 

We have previously shown that meta-marker signatures generalize across laboratories and 441 

technologies. We next asked how well they generalize across the cortex by predicting cell types in a 442 

BICCN dataset combining multiple cortical and hippocampal brain regions (Yao et al. 2020b). To 443 

understand how easily meta-markers generalize, we used a straightforward annotation method: 444 

assign cells to the cell type with the highest average meta-marker expression. For simplicity, we 445 

considered the same number of meta-markers for all cell types: 100 at the class and subclass level, 446 

50 at the cluster level. 447 

We started by predicting cell types in the auditory cortex sub-dataset, containing 71,670 cells 448 

annotated to 203 cell types. We chose to focus on the auditory cortex because of its large number of 449 

cells, and to investigate the generalizability of cell types derived from a motor area (MOp) to a 450 

sensory area. While inhibitory cell types are expected to generalize, excitatory cell types have been 451 

shown to have divergent patterns (Tasic et al. 2018). At the class level, top meta-markers enabled 452 

perfect classification down to every single cell (Fig. 6a). Assignments can be traced back to meta-453 

marker scores, as well as individual genes (Fig. 6b). Consistent with our previous points, the 454 

GABAergic score is uniformly high across all cells labeled as GABAergic. In contrast, the expression of 455 

the single best marker, Gad1, is more variable in GABAergic cells and displays sporadic expression in 456 

non-GABAergic cells. 457 
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 458 

Figure 6. Meta-analytic markers from the primary motor cortex (MOp) generalize to other cortical regions. a Example of 459 
class-level predictions in the auditory cortex (AUD), where cells are embedded in UMAP space and colored according to 460 
predictions based on the top 100 meta-markers for MOp classes. Cells are assessed independently and remain unassigned 461 
(NA) if the marker enrichment score is lower than 1.5 for all classes. b Marker scores (re-normalized between 0 and 1) used 462 
to determine cell type assignments. The first subpanel shows the score obtained from a single GABAergic marker, the three 463 
other panels show the scores obtained by combining the top 100 meta-markers for each class. c Subclass-level predictions in 464 
the auditory cortex based on the top 100 MOp meta-markers (left) and reference labels (right). Cells remain unassigned 465 
(NA) if the marker enrichment score is lower than 1.5 for all subclasses. See panel d for color legend (some reference cell 466 
types are absent from AUD). d Confusion matrix showing the concordance of subclass-level predictions based on the top 467 
100 meta-markers with reference cell types across 40 brain areas. Cells are unassigned if the marker enrichment is lower 468 
than 1.5 for all subclasses. 469 

Remarkably, at the subclass level, meta-markers enabled similarly strong cell type assignments, as 470 

suggested by the uniform coloring of clusters in UMAP space (Fig. 6c). Note that the assignments 471 

occur in each cell independently, without knowledge about clusters or expression profiles of 472 

neighboring cells, highlighting the consistency of meta-marker expression. This procedure allowed 473 

the identification of rare cell types, even when only one or two cells were present in the dataset (e.g. 474 

smooth muscle cells and pericytes, Sup. Fig. 7b). The predicted assignments corresponded almost 475 

perfectly to the reference cell types (Fig. 6c). The main exception were deep layers IT cell types, in 476 

particular one group of L5 IT cells tended to be assigned as L4/5 IT or L6 IT (Sup. Fig. 7c). Finally, 477 

cluster-level predictions also proved extraordinarily consistent, with smooth transitions between cell 478 

types that mapped with auditory cortex reference annotations (Sup. Fig. 8). 479 
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To further highlight high-quality predictions, we quantified assignment confidence using meta-480 

marker enrichment (observed expression over expected expression) as a “QC” metric. In the 481 

auditory cortex, we found that a threshold of 1.5 offered an optimal trade-off between annotation 482 

recall and precision (Sup. Fig. 9a-c). Raising the threshold to 2 further selected high-confidence calls, 483 

yielding higher precision for slightly lower recall. Interestingly, cells that became unassigned were 484 

mostly located in regions where predictions and reference disagreed: deep IT layers, and inhibitory 485 

neurons bridging medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) 486 

subclasses (Sup. Fig. 7a). Meta-marker enrichment thus offers a good proxy for prediction quality, 487 

enabling to identify cells with a high-confidence cell type assignment. 488 

Next, we systematically quantified the agreement of meta-marker based predictions and reference 489 

annotations across all brain regions and 43 consensus subclasses. We found exceptionally good 490 

agreement, with all reference subclasses mapping to exactly one predicted MOp subclass (Fig. 6d). 491 

All MOp subclasses matched strongly with their “natural” counterparts in the reference dataset, 492 

such as “L2/3 IT” with “L2/3 IT CTX-1”. Remarkably, reference cell types absent in MOp (such as 493 

hippocampal cell types) were mostly labeled as “unassigned”, suggesting that meta-marker 494 

signatures correctly avoid labeling unseen cell types. This trend became particularly obvious for cells 495 

with marker enrichment > 2 (Sup. Fig. 9d), where all unseen cell types became “unassigned”, while 496 

conserving high matching scores between shared cell types. 497 

Discussion 498 

By assessing marker replicability across 7 datasets, we selected robust markers and identified the 499 

optimal number of markers to define a cell type. We identified highly replicable markers for 85 cell 500 

types from the mouse primary motor cortex (Sup. Data 1-3). This meta-analytic strategy proved 501 

particularly important for rare populations and lowly expressing genes (Fig. 1). Compared to 502 

previous efforts (Tasic et al. 2018; Mancarci et al. 2017; Yao et al. 2020a), we identified a high 503 
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number of robust markers at high cell type resolution: at the BICCN cluster level, cell types were best 504 

characterized by 10-200 meta-analytic markers, a two-fold increase of reliable markers compared to 505 

markers selected from single datasets (Fig. 3). Interestingly, we found that only 50% of clusters had 506 

strong markers (Fig. 2), but that some of the clusters lacking strong markers (e.g. Lamp5 Slc35d3) 507 

were consistently identified in all BICCN datasets, suggesting broad encoding of their identity and 508 

highlighting the need of extended marker signatures. 509 

We found that the simple aggregation of marker expression enabled the annotation of individual 510 

cells (Fig. 4), suggesting that careful feature selection is enough to provide a rough definition of cell 511 

types. Remarkably, marker lists derived from a single cortical region generalized with high accuracy 512 

to other cortical regions without any methodological fine-tuning (Fig. 5).  By introducing redundant 513 

information about cell types, meta-analytic markers dramatically increased cell type separability (Fig. 514 

3). However, adding more markers is only beneficial if they are cell type-specific. As a result, we 515 

established that the ideal number of markers decreases with cell type resolution: 200 genes to 516 

separate classes (lowest resolution, e.g. GABAergic neurons), 100 genes for subclasses (e.g., Pvalb 517 

interneurons) and 50 genes for clusters (highest resolution, e.g., Chandelier cells). 518 

By combining datasets that were generated using different technologies, the markers we propose 519 

are likely to generalize well with respect to this axis of variation. Moreover, we show that our 520 

marker descriptions generalize to other cortical regions, despite all “training” datasets sampling 521 

from the same cortical region. However, the data used in this study were obtained from adult mice 522 

with limited genetic background and grown in lab conditions. As a result, it remains unclear how well 523 

the marker descriptions would generalize across development or biological conditions. On the other 524 

hand, as our approach relies on a simple procedure, marker lists can easily be extended to 525 

incorporate new sources of variation, such as additional brain regions, species or biological 526 

conditions. On a similar note, markers depend on one particular annotation effort, but we can 527 

expect the neuron taxonomy to evolve with additional data, in particular the fine-resolution clusters. 528 
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Our framework, available as an R package, allows to rapidly evaluate the consistency of marker 529 

expression for new cell type annotations. 530 

To highlight the replicability of marker descriptions, the manuscript relies on simple methods, but 531 

marker lists can easily be combined with more sophisticated methods for marker selection or cell 532 

type assignment. For example, experimental applications routinely require either a few specific 533 

markers to target one cell type (Huang 2014) or a panel of hundreds of markers to jointly separate 534 

all cell types (Moffitt et al. 2018). Marker lists can be combined with methods to select concise sets 535 

of markers (Asp et al. 2019; Zhang et al. 2020; Dumitrascu et al. 2019)  by filtering candidates that 536 

are likely to generalize. Similarly, development studies (Hobert 2008; Huang 2014; Kessaris et al. 537 

2014; Lodato and Arlotta 2015; Mayer et al. 2018; Tosches et al. 2018) indicate that neural lineages 538 

are marked by the specific onset and offset of key transcription factors (TFs), but the expression of 539 

these key TFs may not be maintained at later stages or only at low levels. Since our approach is 540 

powered to identify lowly expressed markers, it can be combined with time series data to help 541 

identify replicable lineage-specific genes. 542 

This study focused on the neuron hierarchy, but our strategy generalizes to other tissues.  In order to 543 

encourage broader adoption, we have made our code available as a package and in the vignette we 544 

show how our analyses and guidelines can be similarly applied to a pancreas compendium. We 545 

chose to focus on the BICCN dataset because of its complexity (85 neuronal cell types), 546 

comprehensiveness (~500,000 cells with latest sequencing technologies) and diversity (6 547 

technologies used). Our results suggest that, in the brain, there is a clear separation at the top two 548 

levels of the hierarchy (3 classes, 13 subclasses), but that the molecular signature of half the clusters 549 

remains unclear. We expect that similar conclusions can be drawn for other tissues, such as blood, 550 

where there is a similar hierarchical organization of cell types. The main difficulty is to identify 551 

replicable cell types across datasets, which may be challenging during development or complex 552 

differentiation processes, such as hematopoiesis. 553 
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The selection of replicable markers from single cell atlases is a promising avenue for several 554 

applications, including cell type annotation, selection of gene panels and bulk data deconvolution. It 555 

reduces rich information to a prioritized list that is simple to use and to refine. New computational 556 

methods will benefit from highly condensed prior information about genes in the cell type space, 557 

without having to train on large reference datasets. Finally, as new datasets are generated, marker 558 

lists will become increasingly robust to new sources of variation, leading to higher downstream 559 

performance across a diverse array of tasks.  560 

Materials and Methods 561 

Datasets 562 

We downloaded the mouse primary cortex (MOp) BICCN datasets and cell type annotations from the 563 

NeMO archive (http://data.nemoarchive.org) according to preprint instructions (Yao et al. 2020a). 564 

We considered the 7 transcriptomic datasets from the mouse primary cortex: single cell Smart-Seq 565 

(scSS), single nucleus Smart-Seq (snSS), single cell Chromium v2 (scCv2), single nucleus Chromium v2 566 

(snCv2), single cell Chromium v3 (scCv3), single nucleus Chromium v3 from the Macosko and Zeng 567 

labs (scCv3M and scCv3Z, respectively)(Table 1). We kept all cells with “class” annotated as 568 

“Glutamatergic”, “GABAergic” or “Non-Neuronal” and kept genes that were common to all datasets, 569 

arriving at a total of 482,712 cells and 24,140 genes. We normalized counts to counts per millions 570 

(CPM). For cell types, we considered five levels of annotations provided by the BICCN: “class”, 571 

“subclass”, “cluster”, “joint_subclass” and “joint_cluster”. “subclass” and “cluster” labels were 572 

obtained by clustering and annotating the datasets independently, while “joint_subclass” and 573 

“joint_cluster” labels were obtained through joint clustering and annotation. Throughout the 574 

manuscript, we use “joint_cluster” labels when we need common annotations across datasets, 575 

otherwise, we use “cluster” labels. To map “subclass” labels across datasets, we used the 576 

independent clustering, but mapped all clusters to one of the following names: “L2/3 IT”, “L5 ET”, 577 
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“L5 IT”, “L5/6 NP”, “L6 CT”, “L6 IT”, “L6 IT Car3”, “L6b”, “Lamp5”, “Pvalb”, “Sncg”, “Sst”, “Vip”. In the 578 

last section (generalizability of meta-markers), we use the “joint_subclass” annotation instead, 579 

because it explicitly includes the distinction between L4/5 IT and L5 IT cells. 580 

The BICCN isocortex and hippocampus dataset was downloaded from the NeMO archive 581 

(http://data.nemoarchive.org)(Yao et al. 2020b). The full dataset contains 1,646,439 cells annotated 582 

to 379 cell types. Due its size, it was separated into sub-datasets corresponding to individually 583 

sequenced brain regions (as annotated in the “region_label” metadata column), resulting in 19 brain 584 

regions sequenced with 10X v3, 21 brain regions sequenced with SmartSeq (Table 1). We subset all 585 

datasets to a common set of 24,140 genes. Preprocessing was similar to the MOp datasets: we kept 586 

all cells with “class” annotated as “Glutamatergic”, “GABAergic” or “Non-Neuronal” and normalized 587 

counts to counts per million (CPM) for SmartSeq datasets or counts per 10,000 (CP10K) for 10X 588 

datasets. 589 

Meta-analytic hierarchical differential expression statistics 590 

For each cell type, we computed DE statistics independently in each dataset using MetaMarkers’ 591 

“compute_markers” function. We compared a cell type to neighboring cell types in the BICCN 592 

taxonomy by setting the “group_labels” parameter. For example, the “GABAergic” class contains the 593 

“Pvalb”, “Sst”, “Sncg”, “Lamp5” and “Vip” subclasses. By stratifying analysis by classes, DE statistics 594 

for “Pvalb” were obtained by comparing “Pvalb” cells to all cells that are either “Sst”, “Sncg”, 595 

“Lamp5” or “Vip”, but ignoring cells from other classes (excitatory neurons and glia). At the cluster 596 

level, analysis is stratified by subclasses, e.g., Pvalb subtypes are compared to other Pvalb subtypes 597 

only. 598 

For each dataset, “compute_markers” returns a table of standard statistics. Let ���be the expression 599 

of gene � in cell � (normalized to CPM in all the manuscript), let � be the cells belonging to the cell 600 

type of interest, and � be all background cells. All statistics are computed for each gene 601 
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independently, so we will drop the subscript � in the following. The fold change (FC) is computed as 602 

the ratio of average expression between the cell type of interest and background cells, �� �603 

�������/�������  . Statistical significance is based on the ROC test. First we compute the AUROC 604 

according to the following formula (derived from the Mann-Whitney U statistic): 605 

���� � �

��
�∑ �� � ���	�


���� �, 606 

where � � |�| are the number of positives (cells from the cell type of interest), � � ��� are the 607 

number of negatives (background cells), and ��  are the ranks of positives (obtained after ranking all 608 

cells according to the gene’s expression value). P-values are computed under a normal 609 

approximation of the AUROC with continuity and tie correction according to the following formulas: 610 

� � ����� �  0.5� / �;   � � ���

��
��  1 � "� ;   " � ∑ ��

���

��	�
��	�	�


�
��� ; 611 

where � follows a standard normal distribution under the null hypothesis that positives and 612 

negatives are from the same population, � is the analytical standard deviation of AUROC, " is a tie 613 

correction formula where # is the number of distinct expression values and $�  is the number of cells 614 

that share the same expression value with index �. P-values are converted to False Discovery Rates 615 

(FDR) according to the Benjamini-Hochberg procedure. For exhaustivity, we considered four 616 

additional statistics related to binarized gene expression: gene detection rate, fold change of 617 

detection rate (FCd), recall and precision. Gene detection rate is the fraction of cells in the 618 

population of interest that express the gene of interest, %�� � |��� & 0����| / |�|. FCd� %��/%��  is 619 

the ratio of gene detection rates in the population of interest over the background population. 620 

Recall is identical to gene detection rate (seen from a classification perspective). Precision� |��� &621 

0����| / |��� & 0������| is the fraction of cells expressing the gene of interest that belong to the 622 

population of interest. All operations are vectorized across genes and cell types to allow rapid 623 

marker extraction and aggregation across datasets. 624 
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We combined statistics across datasets using MetaMarkers’ “make_meta_markers” function, which 625 

averages the above statistics across datasets for all cell types. “make_meta_markers” uses the 626 

arithmetic mean by default, and uses the geometric mean for the following statistics: FC, FCd, 627 

expression. To define DE recurrence, we used the number of datasets where a gene is reliably DE 628 

(“fdr_threshold=0.05”, “fc_threshold=4”). Throughout the manuscript, we considered a gene to be 629 

DE if it had a FC>1 and an FDR<0.05, and reliably DE if FC>4 and FDR<0.05.  630 

Reliable fold change and AUROC thresholds 631 

To establish the reliability of FC, we picked all combinations of training datasets and extracted genes 632 

that were significantly upregulated in all training datasets (AUROC>0.5, FDR<0.05, average FC>1). 633 

Then, for each gene, we looked up the held out datasets and counted how often the gene remained 634 

upregulated (FC>1) or was detected as downregulated (FC<=1). We summarized the results as a type 635 

S error, the fraction of held out datasets where the gene was detected as downregulated. Formally, 636 

let'be the set of genes that are consistently upregulated across training datasets %�, …, %� . Let %(�, 637 

…, %(�be the held-out test datasets. For a given cell type, the average type S error is defined as: 638 

) � �

�|�|
*�����’�

+ 1����,����..�� *, 639 

where ����’�
is the fold change of gene , in test dataset %(� . We computed the type S error across all 640 

combinations of cell types and training datasets. To establish the reliability of AUROC, we followed a 641 

similar procedure, replacing the FC<1 condition by AUROC>0.5. 642 

MetaNeighbor cell type replicability score 643 

To compute the association between the number of markers and cell type replicability, we 644 

computed cell type similarity using MetaNeighbor by following the procedure described in (Yao et al. 645 

2020a). Briefly, MetaNeighbor uses a neighbor voting framework to match cell types from a train 646 

dataset to a test dataset, where the matching strength is quantified as an AUROC. First, we use the 647 
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“MetaNeighborUS” function to create a graph where each node is a cell type and each edge is the 648 

matching strength (directed from train dataset to test dataset). By applying the 649 

“extractMetaClusters” function, we keep only edges that correspond to high confidence reciprocal 650 

matches (1-vs-best AUROC > 0.7 both ways). After this step, we are left with groups of connected 651 

cell types that we call “meta-clusters”. The replicability score is the number of datasets spanned by 652 

the meta-cluster, e.g. a cell type has a score of 6 if it is connected to cell types from 5 other datasets. 653 

For visualization purposes, we created jittering by adding the average AUROC across the meta-654 

cluster to the replicability score. To avoid overfitting, we considered the “cluster” annotations from 655 

the BICCN, which were obtained by clustering and annotating the datasets independently. 656 

Marker-based cell type classification 657 

To quantify the ability of a list of markers to identify a cell type, we framed the problem as a 658 

hierarchical classification task where we predict cell type labels from gene expression. First, for each 659 

cell, we computed a prediction score by averaging expression profiles across markers. Let ���  be the 660 

CPM-normalized expression of gene �in cell �, and -�  be a set of marker genes for cell type .. For 661 

each cell �, we compute the marker score is: 662 

/��.�  � 1
|-�| 0 12,2����  1�

����

 

This score is efficiently implemented by MetaMarker’s “score_cells” function. To obtain marker-wide 663 

renormalized scores, we compute the above score for a series of cell types .�, . . , .� then, for each 664 

cell type, we compute: 665 

/’��.�  � /��.� / 16 0 /��.��
�

���

 

To compute classification performance, we labeled cells from the cell type of interest as positives 666 

and cells from cell types sharing the same parent class or subclass as negatives (similar to DE 667 
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statistics computation, see “Meta-analytic hierarchical differential expression statistics”). Intuitively, 668 

we are looking whether positives (cells from the cell type of interest) have high prediction scores 669 

(marker scores). We summarized the prediction accuracy as an AUROC (in the threshold-free case) 670 

and F1 (harmonic mean of precision and recall, in the thresholding case). To avoid circularity, we 671 

always made predictions on held out datasets. For markers from a single dataset, predictions were 672 

averaged across the 6 remaining datasets; for meta-analytic markers, we picked markers on all 673 

combinations of 6 datasets and predicted cell types in the remaining dataset. We obtained 674 

classification scores for individual populations of neurons by averaging over every combination of 675 

train and test datasets. 676 

Gene ontology enrichment of meta-markers 677 

Gene ontology terms and mouse annotations were downloaded using the org.Mm.eg.db and GO.db 678 

R packages. To focus on specific cell processes, we further selected terms from the “Biological 679 

Process” ontology containing between 20Pand 100 gene annotations. Gene set enrichment was 680 

computed using the hypergeometric test, based on R’s “phyper” function and the Maximum 681 

Likelihood Estimate (MLE) of the sample odds ratio (OR). 682 

Marker-based deconvolution 683 

To investigate the impact of marker selection on deconvolution, we applied deconvolution in a 684 

hierarchical framework similar to DE computation and cell type classification. We applied Non-685 

Negative Least Square (NNLS) deconvolution (Abbas et al. 2009) using the nnls R package, which was 686 

shown to be both efficient and accurate according to multiple recent benchmarks (Patrick et al. 687 

2020; Cobos et al. 2020). Briefly, we inferred cell type proportions from the following equation: 688 

" � �. � 

where T is a bulk expression matrix (genes x sample), in our case pseudo-bulk matrices extracted 689 

from each test dataset, C is a cell type signature matrix (genes x cell type), P is the estimated cell 690 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.04.16.439807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.439807
http://creativecommons.org/licenses/by/4.0/


type proportion matrix (cell type x sample). To test all combinations of train and test datasets, we 691 

split each dataset in half by assigning each cell randomly to a test or train fold. From each train fold, 692 

we built signature matrices by averaging unnormalized expression profiles for each cell type. From 693 

each test fold, we built 1000 pseudo-bulks containing 1000 cells. To generate pseudo-bulks with 694 

highly variable cell type proportions, we started by drawing target cell type proportions for each 695 

pseudo-bulk, in a procedure similar to (Cobos et al. 2020). We sampled target proportions for each 696 

cell type from a uniform distribution, normalized proportions to 1, then converted to a target 697 

number of cells which we sampled with replacement, then averaged the unnormalized counts. 698 

Given a set of markers (obtained from a single dataset or meta-analytically across all datasets except 699 

the test dataset), a train dataset (signature matrix) and a test dataset (1000 pseudo-bulks), we 700 

performed NNLS deconvolution by subsetting the signature matrix C and pseudo-bulks T to the set of 701 

markers. We computed deconvolution performance as the Pearson correlation between theoretical 702 

cell type proportions and the predicted cell type proportions (one value per pseudo-bulk). For 703 

computational efficiency, we only tested one group of populations at the “joint cluster” level. We 704 

chose to focus on the Lamp5 populations, as it contained 8 populations that were well represented 705 

across all datasets (range 14 to 3016 cells per single population, 257 cells on average). 706 

Note that, because of the difficulty of matching UMI counts with full-length read counts (Newman et 707 

al. 2019), we only considered train-test combinations within similar technologies (one pair of Smart-708 

seq datasets, 10 pairs of 10X datasets). To control for globally encoded differences in expression 709 

profiles (correlating with the first principal component), we created random marker sets by picking 710 

genes that were expression-matched with meta-analytic markers (decile-matched). 711 

Generation of robust meta-marker sets 712 

We generated meta-marker sets for each cell type in the MOp hierarchy (Sup. Data 1-3), using the 713 

“class”, “joint_subclass” and “joint_cluster” annotation levels (see “Meta-analytic hierarchical 714 
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differential expression statistics”). We kept meta-markers that were either strongly DE (FC>4, 715 

FDR<0.05) in at least one dataset or had a meta-analytic FC > 2. We ranked the remaining markers 716 

by recurrence, then by AUROC, and selected the top 100 genes (top 50 genes for clusters). If fewer 717 

than 100Pmarkers remained, we selected all remaining markers. 718 

Cell type annotation of the BICCN isocortex and hippocampus datasets 719 

We annotated cells in the isocortex and hippocampus datasets using our robust marker lists (see 720 

“Generation of robust marker lists for all BICCN MOp cell types”). To annotate cell types, we adopted 721 

a hierarchical cell type annotation procedure. We classified each brain region independently, 722 

starting from the log-normalized count matrix. First, we obtained marker scores (average meta-723 

marker expression, see “Marker-based cell type classification”) for all cells by running MetaMarker’s 724 

“score_cells” function. Then, marker scores were converted into cell type predictions using 725 

MetaMarker’s “assign_cell” function, which finds the marker set with the highest score and returns 726 

several QC metric, including the highest score and the marker enrichment (observed score divided 727 

by expected score, under the assumption that all marker sets have equal expression). The 728 

“assign_cell” function takes two parameters: marker scores and group-level assignments. For 729 

subclasses, we provided class-level predictions as the group assignments; for clusters, we provided 730 

subclass-level predictions as the group assignments. To filter out cells with unclear assignments, we 731 

labeled cells that had a marker enrichment below 1.5 (unless otherwise indicated in the text) as 732 

“unassigned”. 733 

Data and code availability 734 

The datasets analyzed during the current study are available in the NeMO archive 735 

(https://nemoarchive.org/) at https://assets.nemoarchive.org/dat-ch1nqb7. The full meta-marker 736 

lists for the BICCN cell types and optimal number of markers are available on FigShare at 737 
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https://doi.org/10.6084/m9.figshare.13348064. The code for MetaMarkers is freely available as an R 738 

package on Github at https://github.com/gillislab/MetaMarkers.  739 
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Supplemental Material 748 

Supplemental Figure 1. a-c Type S error as a function of AUROC in train datasets (a), marker rank by 749 

fold change (b) and marker rank by AUROC (c). The dashed line indicates a type S error of 5%, 750 

ribbons around lines indicate variability across cell types and test datasets. d-g Type S error as a 751 

function of AUROC (d) or FC (e-g) in train dataset, with facets showing variability across hierarchy 752 

level (d,e), average cell type size (f) and average gene expression (g). h Pareto fronts in FC/AUROC 753 

space for inhibitory subclasses. Arrows point to the main historical marker for each subclass. i 754 

Expression of genes on the Sncg Pareto front across BICCN inhibitory clusters. j Pareto fronts in 755 

FC/AUROC space for excitatory subclasses. k Expression of genes on the L5 ET Pareto front across 756 

BICCN excitatory clusters. 757 
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Supplemental Figure 2. a-d Number of perfect markers (a), specific markers (b), sensitive markers 758 

(c), and weak markers (d) for BICCN clusters, with cell types ordered according to number of 759 

markers, colored according to the dataset used to compute markers. e-f MetaNeighbor replicability 760 

as a function of the number of specific markers in the scCv2 dataset (e) and the number of perfect 761 

markers in the snCv3M dataset (f). 762 

Supplemental Figure 3. a-c Parametric curve in FC/AUROC space showing evolution of classification 763 

performance with an increasing number of marker genes at the class (a), subclass (b) and joint 764 

cluster (c) level. d-g Breakdown of optimal AUROC performance (meta-analytic markers) as a 765 

function of dataset depth, colored by hierarchy level (d), for individual classes, showing variability 766 

across test datasets (e), for individual subclasses, showing variability across test datasets (f), for 767 

individual clusters, showing variability across test datasets (g).  h-k Same as d-g with signal-to-noise 768 

ratio (FC) at optimal performance instead of AUROC. l-o Same as d-g with number of genes at 769 

optimal performance instead of AUROC. 770 

Supplemental Figure 4. a-b Summary of optimal classification performance (F1) across hierarchy 771 

levels with transcriptome-wide normalization (a) and marker-wide renormalization (b). Variability is 772 

shown across cell types and test datasets. c-e Heatmap detailing classification performance for each 773 

cell type as a function of the number of genes at the class (c), subclass (d) and cluster (e) level. 774 

Supplemental Figure 5. Top 200 meta-markers show strong, but less specific, enrichment for 775 

synaptic processes. a Total number of significantly enriched GO terms (orange) and fraction of 776 

significant GO terms that are enriched in a unique cell type (blue) for BICCN classes when an 777 

increasing number of meta-markers are considered. b Top 3 enriched Gene Ontology (GO) terms for 778 

the top 200 meta-markers for each BICCN class. For each dot, the size reflects the False Discovery 779 

Rate (FDR), the color reflects the Odds Ratio (OR) of the enrichment test (hypergeometric test). c 780 

Same as b for the top 200Pmeta-markers for BICCN GABAergic subclasses. d Same as b for the top 781 

200Pmeta-markers for BICCN Glutamatergic subclasses (only top 2 terms are shown). 782 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.04.16.439807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.439807
http://creativecommons.org/licenses/by/4.0/


Supplemental Figure 6. Meta-analytic markers improve deconvolution performance at every level 783 

of the hierarchy. a Schematic of deconvolution task. b Summary of deconvolution performance 784 

(Pearson’s r) at each hierarchy level with 100 markers per cell type. Colors show 3 marker 785 

prioritization strategies (single dataset markers, meta-analytic markers or expression-level matched 786 

random genes). c-e Deconvolution performance (Pearson correlation of true and estimated cell type 787 

proportions) for 3 marker prioritization strategies at the class level (c), the subclass level (d), and the 788 

cluster level (e). Colors as b. 789 

Supplemental Figure 7. Focus on subclass-level predictions in the auditory cortex. a Subclass-level 790 

predictions in the auditory cortex based on the top 100 meta-markers. Cells remain unassigned (NA) 791 

if the enrichment score is lower than 2 for all subclasses. b Subclass-level predictions for non-792 

neurons in the auditory cortex based on the top 100 meta-markers (left) and reference labels (right). 793 

c Subclass-level predictions for Intra-Telencephalic (IT) excitatory neurons in the auditory cortex 794 

based on the top 100 meta-markers (left) and reference labels (right). 795 

Supplemental Figure 8. Cluster-level predictions in the auditory cortex. a-c Cluster-level predictions 796 

for Lamp5 inhibitory neurons (a), Near-Projecting (NP) excitatory neurons (b) and layer 2/3 Intra-797 

Telencephalic (IT) excitatory neurons (c) in the auditory cortex based on the top 100 meta-markers 798 

(left) and reference labels (right). In all panels, cells remain unassigned (NA) if the enrichment score 799 

is lower than 1.5 for all clusters. 800 

Supplemental Figure 9. The marker enrichment score provides robust separability of cell types in 801 

other cortical regions. a Marker enrichment scores based on the top 100Pmeta-markers for the 802 

3PBICCN classes in the auditory cortex. The facets are organized according to reference cell types 803 

(from the auditory cortex), the x-axis according to meta-markers sets (for the motor cortex). b Same 804 

as a for BICCN inhbitory subclasses. c Same as a for BICCN excitatory subclasses. d Confusion matrix 805 

showing the concordance of subclass-level predictions based on the top 100 meta-markers with 806 
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reference cell types across 40 brain areas. Cells are unassigned if the marker enrichment is lower 807 

than 2 for all subclasses. 808 

Supplemental Data 1. Class-level markers. Top 100 robust markers for BICCN cell types at the class 809 

level in CSV format (.csv). 810 

Supplemental Data 2. Subclass-level markers. Top 100 robust markers for BICCN cell types at the 811 

subclass level in CSV format (.csv). 812 

Supplemental Data 3. Cluster-level markers. Top 50 robust markers for BICCN cell types at the 813 

cluster level in CSV format (.csv). 814 
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