bioRxiv preprint doi: https://doi.org/10.1101/010884; this version posted October 30, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Enhanced Transcriptome Maps from Multiple Mouse Tissues Reveal Evolutionary Constraint
in Gene Expression for Thousands of Genes

Dmitri D. Pervouchine**®, Sarah Djebali*l, Alessandra Breschi*', Carrie A. Davis*?, Pablo Prieto
Barjal, Alex Dobin?, Andrea Tanzer?, Julien Lagardel, Chris Zaleski?, Lei-Hoon See?, Meagan
Fastuca®, Jorg Drenkow?, Huaien Wangz, Giovanni Bussotti’, Baikang Pei’, Suganthi
Balasubramanian®, Jean Monlongl’G, Arif Harmanci*?, Mark Gerstein*>’, Michael A. Beer’,
Cedric Notredame?, Roderic Guigé*', Thomas R. Gingeras™

* These authors contributed equally to the work
*To whom correspondence should be addressed. Email: gingeras@cshl.edu (T.R.G.);
roderic.guigo@crg.cat (R.G.)

23 authors
Affiliations

Centre for Genomic Regulation and UPF, Doctor Aiguader, 88, Barcelona 08003, Catalonia,
Spain

>Cold Spring Harbor Laboratory, Functional Genomics, 1 Bungtown Road, Cold Spring Harbor,
New York 11742, USA

*Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, 1090 Vienna,
Austria

*Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue,
New Haven, Connecticut 06520, USA

>Department of Molecular Biophysics and Biochemistry, Yale University 266 Whitney Avenue,
New Haven, Connecticut 06520, USA

®Department of Human Genetics, McGill University, Montreal H3A 1B, Canada

7Department of Computer Science, Yale University, 51 Prospect Street, New Haven, CT 06511,
USA

®Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow,
Russia

® Department of Biomedical Engineering and McKusick-Nathans Institute of Genetic Medicine,
Johns Hopkins University, Baltimore, MD 21205


https://doi.org/10.1101/010884
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/010884; this version posted October 30, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Abstract:

We characterized by RNA-seq the transcriptional profiles of a large and heterogeneous
collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel
transcript candidates. Comparison with transcriptome profiles obtained in human cell lines
reveals substantial conservation of transcriptional programs, and uncovers a distinct class of
genes with levels of expression across cell types and species, that have been constrained early
in vertebrate evolution. This core set of genes capture a substantial and constant fraction of the
transcriptional output of mammalian cells, and participates in basic functional and structural
housekeeping processes common to all cell types. Perturbation of these constrained genes is
associated with significant phenotypes including embryonic lethality and cancer. Evolutionary
constraint in gene expression levels is not reflected in the conservation of the genomic
sequences, but is associated with strong and conserved epigenetic marking, as well as to a
characteristic post-transcriptional regulatory program in which sub-cellular localization and
alternative splicing play comparatively large roles.
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Approximately ninety million years of evolution separate the mouse and the human
genomes. During this period, selected and neutral genetic changes have accumulated, resulting
in 60% nucleotide divergence®. Structural and coding organization, however, have been
substantially maintained with approximately 90% of the mouse and human genomes
partitioning into regions of conserved synteny, and more than 15,000 protein-coding orthologs
(about 80% of all protein-coding genes) shared between these two genomes®>. Substantial
information on the functional elements encoded in the human genome has been accumulated
over the years. However, despite considerable effort™, the mouse genome remains, in
comparison, poorly annotated.

Here we characterized the transcriptional profiles from a diverse and heterogeneous
collection of fetal and adult mouse tissues by RNA-seq. Using this data in conjunction with
other data recently published®, we extended the mouse gene and transcript candidate set, and
enhanced the current set of orthologous genes between these genomes to include long non-
coding RNAs (IncRNAs) and pseudogenes. We also compared the mouse expression profiles
with expression profiles in human cell lines, obtained in the framework of the ENCODE project,
using identical sequencing and analysis protocols”®. While the compared profiles do not
correspond to matched biological conditions, preventing the investigation of the evolutionary
conservation of cell type versus species-specific transcriptional patterns, they allow for an
investigation of the conservation of transcriptional features that are independent of the cell
types specifically monitored. In particular, we have identified a well-defined subset of genes,
the expression of which remains relatively constant across the disparate mouse tissues and
human cell lines investigated here. Comparison with transcriptional profiles in multiple tissues
of other vertebrate species”'° reveals that the constraint in expression has likely been
established early in vertebrate evolution. Genes with constrained expression capture a
relatively large and constant proportion of the RNA output of differentiated cells but not of
undifferentiated cells, and is the main driver of the notable conservation of transcriptional
profiles reported between human and mouse®**? and other mammals*>. Our analysis further
shows that these genes are under specific conserved transcriptional and post-transcriptional
regulatory programs.

Expanded mouse transcriptional annotations

A total of 30 mouse embryonic and adult tissue samples and 18 human cell lines
(generated as part of the human ENCODE project7) were used as sources for the isolation of
polyadenylated (poly A+) long (>200 nucleotides [nt]) RNAs (Table S1), which were sequenced
in two biological replicates to an average depth of 450 million reads per sample. Sequence
reads were mapped and post-processed to quantify annotated elements in GENCODE™ (human
v10, hg19) and ENSEMBL" (mouse ens65, mm9), and to produce de novo transcriptional
elements as previously described®. Reproducibility between replicates was assessed using a
non-parametric version of the Irreproducible Discovery Rate (IDR) statistical test®
(Supplementary information, Tables S2 and S3A,B).
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Reflecting the less developed state of the annotation of the mouse genome, GENCODE
(v10) includes 164,174 long human transcripts, compared to 90,100 long mouse transcripts
included in ENSEMBL (v65). By combining transcript predictions obtained using Cufflinks'® in
our sequenced RNA samples with CAGE tag clusters recently produced by the FANTOM
project5, we have identified about 150,000 novel transcripts in human?, and 200,000 in mouse
(Table S3B), leading to similar numbers of transcripts in the two species, as illustrated by a few
examples in Figure 1 (Supplementary information, Table S3C). Additionally, the mapping of the
novel mouse transcripts back to the human genome lead to the discovery of 38 novel human
genes not included in the models derived from human RNA-seq data, but supported by CAGE
clusters. This underlines the importance of comparative approaches in completing genome
annotations. By directly using the split RNA-seq reads at a stringent entropy threshold
(Supplementary Information), we identified a set of about 400,000 highly confident splice
junctions in the mouse genome, of which about half are novel. In contrast to annotated
junctions, novel junctions are highly tissue-specific (Figure S1, Table S4A). By comparing to
splice junctions in human, and using one-to-one whole genome maps'’, we have assembled a
set of 204,887 orthologous splice junctions (Table S4B). Moreover, we combined genome
annotations and RNA-seq evidence and identified 3,641 mouse genes with antisense
transcription (Supplementary Information)—a proportion of which, larger than expected by
chance, are orthologous to human genes with antisense transcription (p-val < 10™*°) (Table S5),
indicating conservation in the occurrence of antisense transcription at human mouse
orthologous loci® (Figure 1B). Examples in Figure S2 and Table S6 show potential novel cases of
a regulatory mechanism recently described involving antisense IncRNAs that contain a SINE
element™.

Using one-to-one whole-genome maps and sequence homology, we identified a set of
851 human-mouse orthologous long non coding RNA (IncRNA) genes (Figure 1, Supplementary
Data Files and Information). Of these, only 189 overlap with the set of 2,736 one-to-one
human-mouse IncRNAs recently described?®, reflecting the yet incomplete characterization of
mammalian IncRNAs, and of IncRNA orthology. Using localization data in human cell lines® we
found these genes to segregate in two clearly distinct nuclear vs. cytosolic populations (Figure
S3A). Expression levels of orthologous IncRNAs correlate weakly with phylogenetic depth (i.e.
the number of mammalian species in which a given IncRNA can be detected, Figure S3B). While
IncRNAs show distinct tissue- and species-specific expression patterns, we identified twelve
IncRNAs expressed in at least 50% of the samples in each species. This small set of conserved
broadly expressed genes may play important functions in mammalian cells (see Figure 1C for an
example). We found these genes to be highly enriched among nuclear IncRNAs (Figure S3A).
Additionally, we identified a set of 129 orthologous pseudogenes, of which 32% are expressed
in one species and 4% in both (Supplementary Information).

Genome-wide conservation of gene expression and splicing

There is overall, substantial genome-wide conservation of expression levels between
human and mouse irrespective of the cell or tissue type of the sample. We computed genome-
wide expression profiles, measured as average read density, for all orthologous 100-nt bins
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spaced equally along the human and mouse genomes (Figure S4A,B, Supplementary
Information). We found substantial correlation in average read density at orthologous bins
(cc=0.67, Figure 2A). This correlation is significant not only for exonic regions® (Figure S4C), but
also for alignable intronic (Figure S4D) and intergenic regions (Figure 2B). However, most of this
intergenic transcription is proximal to annotated genes (41% less than 10kb from the closest
annotated gene termini, Figure 2C). This is partially the consequence of the decreasing number
of intergenic bins with distance to the closest gene (Figure S5). In any case, the murine-human
expression correlation decays with distance to the closest annotated gene (Figure 2D).
Permissive transcription close to protein coding genes could be the origin of many IncRNAs.
However, when computing the distance between annotated IncRNAs and the closest neighbor
annotated gene we found this distance to be larger than for protein coding genes (means of
approximately 66Kb and 35Kb respectively). Expression levels correlate with phylogenetic
conservation, as measured by phastCons*" scores®* (Figure 2E). However, a fraction of
orthologous bins having low sequence conservation are still densely transcribed (5% of the least
conserved bins have read density greater than 10) and the bins that correspond to higher
expression include a wide range of sequence conservation values (Figure 2F). Highly expressed
intergenic bins are slightly enriched for GWAS hits (p-val=0.055), and strongly enriched for cis-
eQTLs (p-val<2.2e-16, Supplementary Information), the latter suggesting an important role for
enhancer transcription in the regulation of gene expression. There is also substantial
conservation of antisense transcriptionlg. For each sense/antisense orthologous gene pair we
computed the ratio of antisense-to-total gene expression averaged over all conditions, and
found strong correlation of average antisense-to-total gene expression ratio in orthologous
genes (cc=0.68) as well of its variation among samples (cc=0.52) (Figures 3A and S6). Antisense
transcription has been suggested as an important regulatory mechanism??, and our results
indicate that it may have been conserved over large evolutionary distances.

Conservation of the exonic structure of human-mouse orthologous genes, as well as of
the splice site sequences has also been reported®. RNA-seq further allows the investigation of
the patterns of usage of exons and splice junctions. We computed the average inclusion,
measured as percent-spliced-in (PSI, Y), and found strong correlation of inclusion at
orthologous splice junctions (cc=0.59, Figure 3B). The correlation is mostly driven by relatively
low average inclusion levels of junctions annotated as alternative in both human and mouse.
These junctions constitute a large part of the orthologous set (45%) and are used more variably
in both species (Figure 3C). In addition, we computed average splicing processivity, measured
using the completeness of splicing index (coSl, 8>%°), and found also significant correlation,
albeit lower (cc=0.35, Figure S7A,B). This is expected, since the inclusion level of an exon in the
final RNA product is likely to be physiologically more relevant than the efficiency with which the
exon is included.

Evolutionary conserved constraint in gene expression

As previously reported®?’, we found that within a given cell population the levels of
gene expression may vary up to six orders of magnitude (Figure S8). In contrast however, the
expression of a given gene across cell types varies relatively little. Using a two-factor ANOVA,
with gene and cell type as two factors, we found that the variance across genes accounts for
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76% and 71% of the total variance of gene expression across human and mouse cell types,
respectively, while the fraction of the variance that can be directly attributed to cell type is less
than 1% (Supplementary Information). Indeed, we found a large fraction of genes, the
expression of which varies relatively little across tissues and species. In Figure 4A we computed
the distribution of the dynamic range of gene expression (DNR) in orthologous genes across the
entire set of human and mouse samples. For each gene expressed in at least two samples both
in human and mouse, we computed the logy, ratio between the highest and lowest measured
expression. The distribution is bimodal, uncovering two broad gene classes. This is not an effect
of comparing mouse tissues with human cell lines, since the same pattern is obtained when
using RNA-seq obtained in human tissues by the Illumina Body Map project (Figure S9). We
decompose the distribution assuming two underlying Gaussians, and we took DNR=2 at the
approximate intersection point (Figure S10, Supplementary Information). In this way, we
obtained a set of 6,636 genes (~40% of all 15,736 orthologous genes, Figure 4B), the expression
of which remains relatively constant (i.e. within two orders of magnitude) across species and
cell types. Genes with constrained expression show wider expression breadth (Figure S11A) and
less tissue specificity than the rest of the orthologs (less than 10% of tissue specific orthologs
are included in this set, Supplementary Information). However, they can be eventually detected
as differentially expressed at a rate similar to the rest of the orthologs (82% vs. 89%). They also
show higher expression levels (Figure S11B). Therefore, although they represent only about
17% of all annotated genes, they capture a high proportion of the poly A+ transcription in the
cell (39% on average in human and 41% in mouse), a proportion that remains remarkably
constant across all tested human and mouse cell types (Figure 4C). Mouse embryonic cell lines
are an exception, constrained genes generating only about 20% of the cell’s transcriptional
output. We also found a negative association between minimal expression and DNR (Figure
S12). Thus, genes with constrained expression tend to have also higher minimal expression,
suggesting that these genes in their default state may already be primed for transcription. To
eliminate gene expression as a potential confounding factor, most downstream analyses have
been carried out in a subset of 5,519 genes with constrained expression, and in a subset of
identical size from the rest of the orthologous genes for which we could compute DNR, with
matched expression in human and mouse (the unconstrained set, Figure S11C, Supplementary
Information).

Using transcriptome data recently published in multiple tissues across a number of
vertebrate species™', we found that the expression of these genes is actually constrained
beyond human and mouse, and seems to have been established early in vertebrate evolution.
About 94-98% of genes with constrained expression in human and mouse, have DNR across
tissues less than two in other vertebrate species (Figure 4D,E). We further identified a collection
of 2,591 genes whose expression levels show relatively little variation across different cell types
and species within vertebrates (out of the 5,971 orthologous across these species that are
expressed in both mouse and human®® (Figure 4B). Gene Ontology analysis reveals that genes
with constrained expression participate in basic functional and architectural housekeeping
processes common to all cell types (Supplementary data archive 5). These genes are the main
drivers of the substantial conservation of expression reported in orthologous human and

mouse genes”®°. Indeed, the correlation of average gene expression between human and
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mouse measured in the set of constrained genes is 0.82, compared to only 0.32 for the
unconstrained gene set (Figure 4F).

Constraint of gene expression is not reflected in sequence conservation of either the
gene body or the proximal promoter regions31 (p-val=0.11 for the difference in phastCons
scores; Figure 4G). In contrast, we found that constrained genes exhibit characteristic patterns
of histone modifications, quite divergent from that of unconstrained genes. Using the data
collected in these and the human ENCODE studies>’ (Table S7A, B, Supplementary
Information), we computed genic profiles of normalized histone modification signals, averaging
them over all studied cell types (Figure 5A). We found much stronger signal for active histone
modifications (H3K4me3, H3K27ac, and H3K36me3) in constrained compared to unconstrained
genes. Since the set of genes in which we performed the analysis are controlled for differences
in gene expression, this is not the result of constrained genes exhibiting higher expression
levels. Furthermore, we controlled by gene expression within each sample separately, and
found the same effect (Figure S13). While the association between gene expression and
chromatin structure is well known, and models have been developed able to predict gene
expression from levels of histone modifications with high accuracy®**?, our results suggest that
strong chromatin marking is not only associated to high expression levels, but also to high
transcription stability across cell types and tissues. This association has been apparently
conserved during evolution, since we found that the conservation of the active epigenetic
signals is stronger in constrained compared to unconstrained genes (Figure 5B). These results
suggest that constrained and unconstrained genes may be under globally different epigenetic
programs. Further supporting this, we found that constrained genes are regulated by broad
promoters (as defined by the FANTOM consortium®3*) more often than unconstrained genes
(67% vs 52%, p-val=0), that their promoters host more transcription factor (TF) ChIP-seq peaks
(using data collected in the ENCODE project’, Supplementary Information), than unconstrained
genes (Figure 5C), and are slightly depleted in repeat elements at their TSS (density of repeat
elements in the promoter region 0.82 vs. 0.87, p-val=0.03, Supplementary Information).
Moreover, when performing principal component analysis to classify the promoters of human
mouse orthologous genes based on ChIP-seq measured binding strength of TFs, we found a
separation between promoters of constrained and unconstrained genes, although the
components capture only a small fraction of the whole variance (Figure 5D).

The maintenance of constrained RNA production levels appears to have also impacted
post-transcriptional regulation. First, genes with constrained gene expression tend to be
constrained also in their cellular localization. That is, their ratio of cytosolic versus nuclear
abundance across human cell lines is much less variable that for unconstrained genes (Figure
6A). Moreover, transcripts from constrained genes tend to be enriched in the cytosol compared
to transcripts from unconstrained genes (70% of the constrained genes are mostly found in
cytosol compared to 60% of unconstrained ones (p-val=0, Supplementary Information). Second,
we found that splicing plays a comparatively more important role determining the cellular
abundance of transcript isoforms in constrained than in unconstrained genes. Gonzalez-Porta et
al.>® developed a method to estimate the fraction of the variance in transcript abundance that
can be explained by variance in gene expression, when measured across a number of samples
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(cell types). Here we found that this fraction is on average 0.81 in human cell lines, and 0.82 in
mouse tissues—indicating that overall regulation of gene expression plays the major role in
defining cell type specificity. This is consistent with tissue dominated clustering of gene
expression profiles compared with the species dominated clustering of splicing profiles°. We
have found, however, substantial differences between constrained and unconstrained genes.
The average fraction of the variance in transcript abundance explained by gene expression is
0.76 and 0.79 for constrained genes, in human and mouse respectively, while these values are
0.91 for both species for unconstrained genes (p-val=0, Figure 6B). Thus, regulation through
splicing appears to play comparatively a more important role in constrained than unconstrained
genes.

Consistent with the relatively minor role of splicing in defining cell type specificity,
compared to expression, we found that about 83% or orthologous splice junctions (65,485 out
of 78,602 in our set of constrained and unconstrained genes matched by expression) are
systematically included at inclusion levels Y larger than 0.85 in all human and mouse samples.
We have also found a small set of 123 junctions with extremely low inclusion levels ({ < 0.15) in
all human and mouse samples. Among the remaining ~20,000 junctions we used an approach
parallel to that for gene expression, to identify junctions the inclusion of which is constrained
across cell types and species. By setting a threshold on the variance of { to be 20% of the
maximum possible variance for a Bernoulli distribution with the given mean, we have identified
a set of 1,430 orthologous splice junctions with inclusion constrained at intermediate levels (0.1
< <0.9, Figure 6C, S14) across all human and mouse samples. That is, these are junctions with
similar inclusion levels in all human and mouse samples investigated here. A majority (59%) of
these junctions constrained in splicing belong to genes that are also constrained in expression,
consistent with the comparatively more important role of splicing in the regulation of these
genes.

Conclusion

“Housekeeping” genes are characterized as genes involved in the maintenance of a cell’s
basic functioning and are expressed in a ubiquitous and uniform fashion in different biological
conditions®. Numerous collections of housekeeping genes have been proposed®*>?, but the
membership overlap is only moderate (Table S8). Here, by probing gene expression
simultaneously across biological conditions and species — and therefore by introducing an
evolutionary component — we found a principled way to identify a set of genes with
constrained gene expression. While not identical, this set of genes has considerable overlap
with two of the largest housekeeping gene sets recently reported: 43% of our genes are
included in the set of 3,664 housekeeping genes reported by Eisenberg and Levanon (E-L)*°, and
69% in the set of 6,560 stably expressed that we have derived from the data reported by
FANTOMS (F5)° (Supplementary information and Figure S15).

Here we have found that genes with evolutionary constrained levels of expression
account for the bulk of transcription in differentiated mammalian cells, meaning that a
substantial fraction of the RNA content in mammalian cells remains remarkably constant across
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large biological and evolutionary scales. While the evolutionary forces responsible for this
transcriptional stability have not left an obvious imprint in the sequence of mammalian
genomes®’, we have found, in contrast, a remarkable epigenetic signature. Our results show
that the evolutionary stability in gene expression is associated with strong and consistent
marking by active histone modifications. This indicates that chromatin marking is not only a
reflection of transcriptional levels, but also of transcriptional stability. This marking, moreover,
is conserved across the evolutionary distance separating human and mouse. Genes with
constrained expression seem to have evolved, in addition, a characteristic program of post-
transcriptional regulation, in which sub-cellular localization and alternative splicing play a more
prominent regulatory role than in genes with unconstrained expression. These results are
consistent with an evolutionary interplay between transcriptional regulation and regulation by
splicing, in which the maintenance of tight expression levels would enhance the role of splicing
as a mechanism to modulate the abundance of individual transcript isoforms. They also suggest
that lack of sequence constraint (which is detectable over less than 10% of the mammalian
genomes, according to recent estimates®) cannot be naively equated to lack of biological
function.

The essential role of genes with constrained expression in basic cellular architecture and
function suggests that disruption of their functions is likely to have dramatic phenotypic
consequences, including cell survival. While the relationship between housekeeping genes and
disease remains controversial**?, we indeed found that mutations in genes with constrained
levels of expression are most often associated with embryonic lethality, and that somatic
mutations in these genes are associated to a broad spectrum of cancerous phenotypes43 (Figure
6D). In contrast, mutations in unconstrained genes are more likely to be associated with other
diseases (as reported in OMIM** and the NHGRI GWAS catalog45, Figure 6D), as expected, since
mutations lethal during development are unlikely to cause detectable diseases. The larger
number of GWAS hits associated to unconstrained genes underscores the complexities involved
in identifying disease causative genetic variations when these affect gene. We found that the
expression of unconstrained genes is also more variable across individuals compared to the
expression of constrained genes (Figure S16). Large expression variability decreases the power
to identify expression QTLs (eQTLs), and indeed we observed that unconstrained genes, which
are more often associated to diseases, are substantially depleted for eQTLs compared to genes
with constrained levels of expression“'47 (Figure 6D).

In summary, by introducing an evolutionary dimension, we identified in a principled way,
a set of genes with constrained expression across cell types and species. These genes contribute
to a core invariable component of mammalian transcriptomes, contributing thus little to cell
type specificity and species differentiation. They are the main drivers of many transcriptional
features that have been reported as conserved across mammalian transcriptomes.
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Figure captions

Figure 1. Exemples of extensions to the mouse annotation (left: human; right: mouse). (A) The
novel intergenic transcript model CUFF.8454.1 has been inferred from mouse RNA-seq data in a
region of the mouse genome without gene annotations. Mapping of this transcript model to the
human genome reveals that it is the homologue of the IncRNA RP11-739N20.1 annotated in the
human genome. (B) Two transcript models, CUFF.721.1 and CUFF.2195.1 have predicted
antisense to two neighboring protein-coding loci (Npas2 and RPL31). RNA-seq shows that their
expression is restricted to testis. CUFF.721.1 is the likely homologue of the annotated human
ACO016738.4, which is antisense and overlaps the human ortholog of Npas2 and RPL31. In
human, ACO16738.4 appears to be also expressed specifically in testis, although this is not
conclusive, since we lack stranded RNA-seq data. (C) The mapping of the human AC0703046.25
IncRNA to the mouse genome identified a potential mouse transcript in the syntenic region
between the DGUOK and the TET3 genes (piper_mm9_AC073046.25). This transcript was not
included in our predicted models, but it has strong support by RNA-seq data, specifically in
cerebellum, kidney and liver. Tissue RNA-seq data in human is from llumina Body Map (HBM,
Refs). Plots are UCSC browser screenshots where novel mouse models are indicated in black,
human Gencode annotation in blue, green and red, and mouse CSHL and human HBM RNA-seq
signal in different colors at the bottom. Annotated genes are represented by the longest
transcript.

Figure 2. Genome wide conservation of expression profile. (A) The joint distribution of logio
average read density in orthologous 100-nt bins in human (x-axis) and in mouse (y-axis);
cc=0.67. (B) The distribution in (A) limited to intergenic regions; cc=0.37. (C) The distribution of
logi1o average read density in intergenic regions (average between human and mouse) as a
function of distance from the nearest gene. (D) Correlation of logyo average read density in
human and mouse as a function of distance from the nearest gene. (E) The distribution of logio
average read density in 100-nt bins as a function of phastCons score (conservation score across
45 vertebrate species). (F) The distribution of phastCons score of a 100-nt bin as a function of
the average read density.

Figure 3. (A) The joint distribution of the average antisense-to-total expression ratio (the
number of reads mapped to the opposite strand as a fraction of the number of reads mapped
to both strands) in pairs of orthologous protein-coding genes; cc=0.68. (B and C) Contour plots
of the joint probability distribution of the average usage (U, percent-spliced-in) of Splice
Junctions (SJs) (B), and of the standard deviation of SJ usage (C) in orthologous SJs pairs. Logistic
transformation (/logit) was used in (B). SJ with constant complete inclusion or exclusion are not
shown. “Alternative” denotes SJs that are annotated alternative in both species.
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Figure 4. (A) The distribution of the dynamic range (DNR, log;o of the ratio of the largest and
the lowest non-zero observation) of gene expression level in orthologous genes across human
and mouse samples. (B) Venn diagram of the relationship between orthologous and
constrained genes. (C) Proportion of nucleotides in expressed genes, as assessed by PolyA+
RNA-seq, that originates from constrained genes in human cell lines and mouse tissues. The
labeled outliers correspond to mouse embryonic samples. (D and E) The distribution of DNR in
human/mouse constrained and unconstrained genes in Merkin et al.° (D) and Barbosa-Morais
et al.’ (E). (F) The joint distribution of log;o average gene RPKM in pairs of orthologous protein-
coding genes; constrained genes are shown in red. (G) The distribution of promoter, transcript,
and protein pairwise sequence identity between human and mouse in constrained and
unconstrained genes.

Figure 5. (A) Normalized histone modification profiles 1Kb around Transcription Start Site (TSS)
for H3K4me3 and H3K27ac, and around the Transcription Termination Site (TTS) for H3K36me3
in constrained and unconstrained genes. (B) The difference in normalized average histone
modification signals 1Kb around TSS (| Alog Signal|) in constrained and unconstrained genes (C)
The cumulative distribution of the number of TF ChIP-seq peaks in promoter regions of human
constrained and unconstrained genes. (D) Principal component analysis of ChIP-seq measured
binding strength of TFs in constrained and unconstrained genes.

Figure 6. (A) Contour plots of the joint probability distribution of the average vs. standard
deviation (SD) of log;o nuclear-to-cytosolic ratio in constrained and unconstrained genes. (B)
Distribution of the proportion of the variance in transcript abundance across human and mouse
samples that can be explained by the overall variance in gene expression. Values close to 1
indicate that changes in abundance of transcript isoforms originate mostly from changes in
gene expression, values close to 0 suggest that most of these changes are due to splicing
changes in the relative proportion of transcript isoforms. (C) Mean versus Variance of splice
junction inclusion () in constrained and unconstrained genes. To identify junctions with
constrained inclusion at intermediate levels we set a threshold (inner parabola) of 20% of the
maximum variance for the given mean in a Bernoulli distribution (outer parabola) in the interval
of mean inclusion [0.15, 0.85]. (D) The percent of all and of the 1000 most constrained and
unconstrained genes (right) that are lethal in mice according to the Jax mice embryonic lethality
database®, have hits in OMIM*, the NHGRI GWAS catalog®, COSMIC*, and that have
eQTLs***. On the left, the number of significant traits/diseases associated to constrained and
unconstrained genes in OMIM, the NHGRI GWAS catalog and COSMIC.
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