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Abstract   
  

The   increasing   availability   of   long-reads   is   revolutionizing   studies   of   structural   variants   (SVs).   However,   
because   SVs   vary   across   individuals   and   are   discovered   through   imprecise   read   technologies   and   methods,   
they   can   be   difficult   to   compare.   Addressing   this,   we   present   Jasmine   ( https://github.com/mkirsche/Jasmine ),   a   
fast   and   accurate   method   for   SV   refinement,   comparison,   and   population   analysis.   Using   an   SV   proximity   
graph,   Jasmine   outperforms   five   widely-used   comparison   methods,   including   reducing   the   rate   of   Mendelian   
discordance   in   trio   datasets   by   more   than   five-fold,   and   reveals   a   set   of   high   confidence    de   novo    SVs   
confirmed   by   multiple   long-read   technologies.   We   also   present   a   harmonized   callset   of   205,192   SVs   from   31   
samples   of   diverse   ancestry   sequenced   with   long   reads.   We   genotype   these   SVs   in   444   short   read   samples   
from   the   1000   Genomes   Project   with   both   DNA   and   RNA   sequencing   data   and   assess   their   widespread   impact   
on   gene   expression,   including   within   several   medically   relevant   genes.     
  

Introduction   
  

Structural   variants   (SVs)   are   defined   as   large-scale   genomic   mutations   affecting   more   than   30   to   50   basepairs,   
and   include   insertions,   deletions,   duplications,   inversions,   and   translocations    (Alonge   et   al.   2020;   Alkan,   Coe,   
and   Eichler   2011) .   Such   variants   are   responsible   for   more   divergent   basepairs   across   human   genomes   than   
any   other   class   of   variation    (Chiang   et   al.   2017) ,   and   have   been   associated   with   many   major   diseases   and   
phenotypes,   including   cancer    (Aganezov   et   al.   2020;   Nattestad   et   al.   2018)    and   autism    (Brandler   et   al.   2018) .   
They   have   also   been   shown   to   have   phenotypic   effects   in   other   species,   such   as   increased   fruit   size   in   tomato   
(Alonge   et   al.   2020)    or   altered   growth   under   stress   in   yeast    (Jeffares   et   al.   2017) .   However,   much   of   the   impact   
of   structural   variants   remains   unknown   because   of   the   inability   of   SVs   in   complex   regions   to   be   accurately   
identified   by   short   reads,   which   make   up   the   majority   of   existing   genomic   sequencing   data    (Sedlazeck,   Lee,   et   
al.   2018;   Mahmoud   et   al.   2019) .    
  

In   recent   years,   the   emergence   of   long-read   genomic   sequencing   technologies    (Korlach   et   al.   2010;   M.   Jain   et   
al.   2016;   Wenger   et   al.   2019;   Goodwin,   McPherson,   and   McCombie   2016)    and   the   development   of   specialized   
software   for   alignment    (C.   Jain   et   al.   2020;   Sedlazeck,   Rescheneder,   et   al.   2018;   Li   2018)    and   variant   calling   
(Sedlazeck,   Rescheneder,   et   al.   2018;   Jiang   et   al.   2020)    have   enabled   the   characterization   of   complex   
structural   variants   which   were   difficult   or   impossible   to   study   from   short   reads   alone    (Sedlazeck,   Lee,   et   al.   
2018) .   For   this   reason,   many   population   variant   inference   studies   include   long-read   sequencing   data   for   
multiple   individuals   instead   of   or   in   addition   to   short-read   data    (Chaisson   et   al.   2019;   Audano   et   al.   2019;   
Beyter   et   al.   2021) .   
  

Because   there   are   multiple   sequencing   technologies,   aligners,   and   SV   callers   that   could   be   used,   
SV-processing   pipelines   for   population-scale   studies   are   frequently   optimized   for   the   particular   dataset   being   
analyzed    (Jeffares   et   al.   2017;   Beyter   et   al.   2021) ,   making   it   difficult   to   compare   SVs   called   in   different   studies   
or   to   accurately   screen   newly   sequenced   samples   for   known   variants.   In   addition,   existing   tools   for   comparing   
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SV   callsets   from   different   samples   have   issues   such   as   collapsing   multiple   variants   in   the   same   individual,   
including   variants   of   different   types,   and   producing   callsets   that   vary   substantially   when   the   order   of   the   input   
samples   is   changed.   As   the   cost   of   long-read   sequencing   continues   to   fall   and   the   number   of   population-scale   
SV   studies   continues   to   rise,   there   is   an   increasingly   apparent   need   for   methods   which   can   accurately   
compare   variants   across   a   range   of   datasets.   
  

To   address   this   need,   we   introduce   an   optimized   software   pipeline   for   accurately   detecting   SVs   and   comparing   
these   variant   calls   across   large   numbers   of   individuals   ( Figure   1 ).   This   pipeline   enhances   existing   methods   for   
alignment    (C.   Jain   et   al.   2020)    and   variant   calling    (Sedlazeck,   Rescheneder,   et   al.   2018)    with   new   methods   for   
refining   the   sequences   and   breakpoints   of   SV   calls,   and   for   comparing   variant   calls   between   different   
individuals   to   achieve   a   unified   callset.   The   first   new   method,   Iris,   refines   variant   calls   by   gathering   the   set   of   
reads   that   support   each   variant’s   presence   and   using   them   to   polish   the   variant   sequence.   The   second   major   
novel   method,   Jasmine,   compares   and   merges   calls   in   different   individuals   corresponding   to   the   same   variant.   
Jasmine   improves   upon   other   SV   merging   methods   by   representing   variants   as   points   in   space   based   on   their   
breakpoints   and   lengths   and   constructing   a   graph   of   SV   proximity,   where   edges   represent   pairs   of   SVs   with   a   
small   Euclidean   distance   between   them.   To   avoid   the   high   time   and   memory   overhead   of   computing   and   
storing   the   entire   graph,   Jasmine   uses   a   KD-Tree    (Bentley   1975)    to   dynamically   locate   nearby   variant   pairs   
and   implicitly   detect   low-weight   edges.   Jasmine   then   treats   the   comparison/merging   problem   as   one   of   finding   
a   minimal-weight   acyclic   subgraph   of   the   proximity   graph   which   satisfies   certain   constraints,   and   solves   this   
problem   with   a   constrained   version   of   Kruskal’s   algorithm   for   minimum   spanning   trees    (Kruskal   1956) .   Both   Iris   
and   Jasmine   are   available   as   stand-alone   software   packages   and   are   available   within   bioconda.   
  

  
  

Figure   1 :    SV   Inference   Pipeline.    This   pipeline   produces   population-level   SV   calls   from   FASTQ   files   using   a   number   of   existing   
methods   as   well   as   two   novel   methods,   Iris   and   Jasmine.   Iris   uses   consensus   methods   to   improve   the   accuracy   of   the   breakpoints   and   
sequence   of   insertion   SVs.   Jasmine   uses   a   graph   of   SV   proximity   and   a   constrained   minimum   spanning   forest   algorithm   to   compare  
and   combine   variants   across   multiple   individuals.   
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Using   a   combination   of   simulated   and   real   datasets,   we   show   that   this   pipeline   produces   more   accurate   SV   
calls   than   several   widely   used   methods   across   a   variety   of   metrics.   First,   by   applying   our   methods   to   a   HiFi   
dataset   from   the   HG002   Genome-In-A-Bottle   (GIAB)   Ashkenazim   trio,   we   illustrate   that   our   approach   achieves   
a   five-fold   reduction   in   the   number   of   Mendelian   discordant   variants,   while   identifying   multiple   high-confidence   
de   novo    variants   in   the   child   supported   by   three   independent   sequencing   platforms.   We   also   analyze   this   trio   to   
identify   signatures   of   variants   specifically   derived   from   each   particular   technology.   This   enables   us   to   establish   
recommended   variant   calling   parameters   for   different   sequencing   technologies   which   minimize   Mendelian   
discordance   as   well   as   false   merges.   
  

We   next   show   that   Jasmine   improves   SV   merging   and   addresses   the   major   issues   that   other   methods   
encounter   when   scaling   up   to   large   cohorts.   We   call   variants   with   our   pipeline   from   publicly   available   long-read   
data   for   31   samples,   and   generate   a   panel   of   long-read   SV   calls   which   can   be   used   for   screening   further   
samples.   Finally,   we   genotype   this   SV   panel   in   444   high   coverage   short-read   samples   from   the   1000   Genomes   
Project    (Byrska-Bishop   et   al.   2021)    and   discover   thousands   of   novel   SV   associations   with   gene   expression.   
Many   of   these   SVs   have   CAVIAR   posterior   probabilities   of   causality   that   exceed   those   of   previously   reported   
SNPs,   indicating   likely   functional   relevance.   This   includes   a   deletion   associated   with   the   expression   of   
SEMA5A,   which   has   been   implicated   as   an   autism   susceptibility   gene    (Melin   et   al.   2006) ,   as   well   as   within   
several   other   genes   of   interest.     
  

Results   
  

Reduced   Mendelian   Discordance   in   an   Ashkenazim   Trio     
  

A   common   application   of   SV   and   other   variant   inference   methods   is   the   identification   of    de   novo    variants,   or   
variants   which   are   present   in   an   individual   but   neither   of   their   parents.   Such   variants   have   been   associated   
with   autism    (Iossifov   et   al.   2014)    and   cancer    (Renaux-Petel   et   al.   2018) ,   and    de   novo    variant   analysis   is   
frequently   used   as   a   starting   point   for   identifying   the   cause   of   genetic   diseases   or   other   phenotypes   of   interest   
(Veltman   and   Brunner   2012) .   However,   because   of   shortcomings   in   SV   inference   and   comparison   methods,   
identifying    de   novo    SVs   remains   a   difficult   problem.   For   example,   one   widely   used   pipeline   consisting   of   ngmlr,   
sniffles    (Sedlazeck,   Rescheneder,   et   al.   2018) ,   and   SURVIVOR    (Jeffares   et   al.   2017)    gives   thousands   of   
candidate    de   novo    variants   when   applied   to   high-accuracy   HiFi   sequencing   data   from   the   HG002   Ashkenazim   
trio   ( Figure   2a ).   Because   the   number   of    de   novo    SVs   is   typically   estimated   to   be   less   than   ten   per   generation   
on   average    (Belyeu   et   al.   2021) ,   almost   all   of   these   variant   calls   are   either   false   positives   in   the   child,   false   
negatives   in   one   or   both   parents,   or   errors   in   merging   the   callsets.   Collectively,   we   refer   to   these   false   
outcomes   as   Mendelian   discordant   variants.    
  

To   address   the   large   number   of   discordant   variants,   our   optimized   pipeline   offers   a   number   of   improvements   
which   reduce   the   rate   of   Mendelian   discordance   by   more   than   a   factor   of   five   ( Figure   2b )   while   discovering   
significantly   more   SVs   ( Figure   2c ).   These   improvements   include   the   mitigation   of   threshold   effects   ( Figure   
2d ),   improved   variant   calling   parameters   ( Figure   2e ),   and   using   Jasmine   for   SV   merging   ( Figure   2f ).   
Furthermore,   we   compared   Jasmine   to   five   existing   methods    (Shi   et   al.   2021;   Jeffares   et   al.   2017;   Ebert   et   al.   
2021;   Larson   et   al.   2019;   Beyter   et   al.   2021)    for   SV   comparison   between   samples,   and   Jasmine   achieves   the   
lowest   rate   of   discordance   and   correctly   avoids   merging   variants   of   different   types   or   variants   from   the   same   
sample.   In   addition,   Jasmine   avoids   merging   variants   of   the   same   type   which   correspond   to   unique   breakpoint   
adjacencies,   which   is   particularly   important   when   resolving   complex   nested   SVs   ( Supplementary   Figure   21 ).   
The   resulting   reduction   in   Mendelian   discordant   variants   enables    de   novo    variants   to   be   identified   more   easily,   
as   it   is   typically   necessary   to   screen   all   discordant   variants   manually   when   searching   for   true    de   novo    variants.   
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Figure   2.   Mendelian   Discordance   in   the   HG002   Ashkenazim   Trio .   We   called   SVs   from   HiFi   data   for   the   Ashkenazim   trio   consisting  
of   HG002   (son   -   46,XY),   HG003   (father   -   46,XY),   and   HG004   (mother   -   46,XX)   using   several   prior   methods   as   well   as   our   pipeline.    a.)   
The   number   of   samples   called   in   each   subset   of   individuals   when   using   prior   methods:   ngmlr   for   alignment,   sniffles   for   SV   calling,   and   
SURVIVOR   for   consolidating   SVs   between   samples.    b.)    The   number   of   samples   called   in   each   subset   of   individuals   when   using   our   
optimized   pipeline.    c.)    The   distribution   of   SV   types   and   lengths   in   HG002   with   our   pipeline.    d.)    The   benefits   of   using   “double  
thresholding”   to   improve   variant   discovery   in   HG002   while   also   reducing   the   rate   of   Mendelian   discordance.   “Rescued   from   absence”   
refers   to   SVs   which   would   have   been   missed   in   HG002   using   a   single   threshold.   “Rescued   from   discordance”   refers   to   SVs   which   
would   have   been   discordant   in   HG002   with   a   single   threshold,   but   which   we   were   able   to   detect   in   one   or   both   parents   with   double   
thresholding.    e.)    The   effects   of   the   sniffles    max_dist    parameter   on   downstream   discordance.   Using   a   tighter   bound   of   50   on   the   
maximum   distance   sniffles   allows   between   breakpoints   in   individual   reads   increases   the   total   number   of   variants   discovered   while   at   the   
same   time   reducing   the   number   of   discordant   variants   compared   to   the   default   value   of   1000.    f.)    The   rate   of   discordance   when   
comparing   SVs   between   individuals   with   Jasmine   as   well   as   five   existing   methods   for   population   inference.   Jasmine   reduces   the   
discordance   rate   while   at   the   same   time   addressing   issues   present   in   other   methods   such   as   merging   variants   of   different   types,   
variants   with   the   same   type   but   corresponding   to   unique   breakpoint   adjacencies   (mixed   strand),   or   variants   within   the   same   sample.   
  

SV   Analysis   Across   Sequencing   Technologies   
  

Improved   methods   for   comparing   multiple   SV   callsets   also   enable   the   comparison   of   variants   identified   in   a   
single   individual   from   different   sequencing   technologies.   We   evaluated   three   different   technologies   applied   to   
HG002:   Pacific   Biosciences   Continuous   Long   Reads   (CLR),   Pacific   Biosciences   High-Fidelity   (HiFi)   circular   
consensus   sequencing   and   Oxford   Nanopore   long   reads   (ONT)   basecalled   with   Guppy   4.2.2.   Variants   were   
called   separately   from   each   technology,   and   the   resulting   callsets   were   merged   with   Jasmine.   The   three   
callsets   were   largely   in   agreement,   with   30,590   out   of   46,906   variants   being   supported   by   all   three   
technologies   ( Figure   3a   and   3b ).   The   set   of   technology-concordant   variants,   shown   in    Figure   3c ,   shows   that   
insertion   and   deletion   calls   are   largely   balanced,   with   a   slight   enrichment   of   insertions,   shown   in   previous   
studies   to   be   caused   by   missing   sequence   in   the   human   reference   genome    (Audano   et   al.   2019) .   There   is   also   
an   increased   number   of   variants   around   sizes   of   300bp   and   6-7kbp,   corresponding   to   SINE   and   LINE   elements   
respectively.     
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Figure   3.   SV   Inference   across   Sequencing   Technologies   in   HG002.    We   called   SVs   in   HG002   separately   from   Pacbio   CLR   data,   
Oxford   Nanopore   data,   and   Pacbio   HiFi   CCS   data,   and   used   Jasmine   to   compare   the   variants   discovered   by   each   of   them.    a.)    The   
number   of   variants   discovered   by   each   subset   of   technologies.    b.)    The   variant   type   distribution   within   each   subset   of   technologies.    c.)   
The   distribution   of   types   and   lengths   among   SVs   for   which   all   of   the   technologies   agree.    d-f.)    The   SV   type   and   length   distributions   for   
SVs   unique   to   CLR,   ONT,   and   HiFi   respectively.   
  

We   also   examined   variants   that   were   identified   only   by   a   single   technology,   as   these   may   reveal   systematic   
biases   in   variant   calling   caused   by   each   technology’s   error   model.   Of   the   499   variants   identified   exclusively   in   
CLR   data   ( Figure   3d ),   there   were   244   insertions   and   155   deletions,   with   an   excess   of   insertions   in   the   size   
range   750   to   1000,   corresponding   to   a   known   error   characteristic   of   CLR   sequencing    (Sedlazeck,   
Rescheneder,   et   al.   2018) .   Of   the   3329   ONT-only   variant   calls   ( Figure   3e ),   there   were   539   insertions   and   2652   
deletions,   with   an   enrichment   of   small   deletions   less   than   50   basepairs   in   length.   In   addition,   we   found   that   
many   of   the   variants,   particularly   deletions,   unique   to   ONT   or   HiFi   are   in   centromeric   regions   or   satellite   
repeats   ( Supplementary   Figure   13 ).   
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De   Novo    Variant   Discovery   
  

We   next   leveraged   our   methods,   as   well   as   data   from   all   three   technologies   listed   above,   to   screen   the   HG002   
trio   for    de   novo    variants.   We   called   variants   from   each   of   the   three   technologies   in   HG002   as   well   as   both   
parents,   for   a   total   of   nine   callsets.   We   merged   these   nine   callsets   with   Jasmine   and   filtered   out   any   variants   
which   were   present   in   one   or   more   of   the   six   parent   callsets.   Of   the   remaining   variants,   we   stratified   them   by   
which   technologies   supported   their   presence   in   the   child   and   found   that   there   were   16   which   were   supported   
by   all   three   technologies   ( Figure   4a ),   with   an   additional   35   that   were   supported   by   HiFi   and   at   least   one   other   
technology,   a   43-fold   reduction   in   candidates   from   using   prior   methods   ( Figure   2a ).     
  

Upon   manual   inspection,   six   of   these   were   high   confidence    de   novo    SVs   ( Figure   4b ),   while   the   remaining   
candidates   were   in   noisy   regions   that   displayed   split   read   alignments,   but   we   could   not   be   certain   whether   the   
alignments   were   correct   ( Supplementary   Figure   16 ).   One   of   the   high-confident   candidates,   a   107bp   deletion   
at   chr17:53340465   ( Figure   4c ),   was   previously   identified   as   a    de   novo    SV   in   a   previous   effort   to   characterize   
the   variants   in   HG002    (Zook   et   al.   2020) .   Another   example,   a   537bp   insertion   at   chr14:23280711,   consists   of   a   
microsatellite   repeat   expansion   on   the   paternal   haplotype,   a   known   class   of   mutations   often   caused   by   
replication   slippage    (Ellegren   2004)    ( Figure   4d ).   These   and   other   examples   ( Supplementary   Figures   14-16 )   
show   that   our   approach   can   correctly   identify   known    de   novo    SVs   as   well   as   identify   potential    de   novo    variants   
which   were   previously   undiscovered.   
  

  
  

Figure   4.    De   Novo    SV   Discovery   in   HG002.    We   called   SVs   in   each   of   HG002,   HG003,   and   HG004   from   three   different   sequencing   
technologies   -   CLR,   ONT,   and   HiFi   -   to   identify   potential    de   novo    variants   that   were   called   in   none   of   the   six   parent   callsets   but   one   or   
more   of   the   HG002   callsets.    a.)    The   number   of   SVs   which   are   absent   in   all   six   parent   callsets   whose   presence   in   HG002   is   supported   
by   each   subset   of   technologies.   While   we   manually   inspected   all   SVs   supported   by   HiFi   and   at   least   one   other   technology,   both   of   the   
examples   in   (a)   and   (b)   were   supported   by   all   three   technologies.    b.)    All   SVs   supported   by   HiFi   and   at   least   one   other   technology   in   
HG002   that   are   absent   in   all   parent   callsets.   The   potential    de   novo    SVs   we   identified   are   highlighted   in   green,   with   the   microsatellite   
repeat   expansion   denoted   by   an   arrow.    c.)    A   potential    de   novo    107bp   deletion   in   HG002   at   chr17:53340465.    d.)    A   potential    de   novo   
microsatellite   repeat   expansion   in   HG002   at   chr14:23280711.   
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Population   SV   Inference   
  

As   the   cost   of   long-read   sequencing   has   continued   to   decrease   in   recent   years,   long-read   studies   including   
large   cohorts   have   become   more   prevalent    (Shi   et   al.   2021;   Beyter   et   al.   2021) .   As   this   trend   is   expected   to   
continue    (Ranallo-Benavidez   et   al.   2021) ,   it   is   particularly   important   for   SV   inference   methods   to   be   able   to   
scale   to   many   samples.   To   compare   Jasmine   to   existing   approaches,   we   called   SVs   in   31   publicly   available   
long-read   samples   ( Supplementary   Table   2 )   and   observed   the   results   of   merging   these   callsets   with   each   
method.   All   methods   produced   a   population-level   callset   within   a   few   hours   with   24   threads   on   a   modern   4GHz   
server   with   192GB   of   RAM,   but   the   callsets   produced   by   existing   approaches   suffer   from   a   number   of   issues.   
In   addition   to   the   invalid   merges   mentioned   above   ( Figure   2d ),   several   of   the   existing   methods   use   algorithms   
which   give   different   merging   results,   and   consequently   different   numbers   of   total   variant   calls,   based   on   the   
input   order   of   the   sample   callsets   ( Figure   5a ).   This   problem   only   worsens   as   the   number   of   samples   grows   
and   the   number   of   possible   sample   orderings   increases   exponentially.   Conversely,   Jasmine’s   algorithm,   which   
merges   variant   pairs   in   increasing   order   of   their   breakpoint   distances   irrespective   of   the   input   order,   produces   
identical   results   after   any   permutation   of   input   files.   Finally,   there   is   an   abundance   of   low-confidence   likely   false   
positive   SV   calls   in   samples   sequenced   with   CLR   ( Supplementary   Figure   17 ),   and   methods   which   use   a   
constant   breakpoint   distance   threshold   incorrectly   merge   these   calls   with   high-confidence   SV   calls   in   other   
samples   to   obtain   an   unreasonable   trimodal   allele   frequency   distribution   ( Supplementary   Figure   18 ).   

  

  
  

Figure   5.   Population-Scale   Inference   from   Public   Datasets.    We   called   SVs   with   our   pipeline   in   a   cohort   of   31   samples   from   diverse   
ancestries   and   sequencing   technologies   and   used   Jasmine   as   well   as   five   prior   methods   to   combine   the   individual   samples’   SVs   into   a   
population-scale   callset.    a.)    The   number   of   SVs   obtained   with   each   merging   software   across   100   runs   with   the   list   of   input   VCFs   
randomly   shuffled   each   time.    b.)    The   distribution   of   the   range   of   breakpoints   of   SV   calls   merged   into   single   variants   by   each   software,   
excluding   unmerged   variants.    c.)    The   number   of   intrasample   merges   within   single   merged   variants,   defined   as   the   number   of   variants   
minus   the   number   of   unique   samples,   for   each   software.    d.)    The   allele   frequency   distribution   of   variants   merged   by   Jasmine.    e.)    The   
number   of   SVs   discovered   by   Jasmine   as   the   number   of   samples   increases.    f.)    The   distribution   of   SV   types   and   lengths   in   the   cohort   
when   using   Jasmine.    g.)    The   number   of   SVs   in   the   cohort   in   1Mbp   bins   across   the   human   genome.       

7   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.445886doi: bioRxiv preprint 

https://paperpile.com/c/bGhr8g/fwHT+MLig
https://paperpile.com/c/bGhr8g/fqdh
https://doi.org/10.1101/2021.05.27.445886
http://creativecommons.org/licenses/by/4.0/


  
Using   our   SV   inference   pipeline,   we   created   a   panel   of   long-read   SVs   from   these   31   samples.   The   datasets   we   
used   include   individuals   from   a   wide   range   of   ancestral   backgrounds,   as   well   as   sequencing   data   from   multiple   
technologies.   Variants   were   called   in   each   sample   separately   and   merged   with   Jasmine   to   create   a   unified   
callset.   The   allele   frequency   distribution   is   monotonically   decreasing   as   expected,   except   an   excess   of   variants   
at   100%   corresponding   to   errors   and/or   minor   alleles   in   the   reference    (Audano   et   al.   2019)    ( Figure   5d ).   The   
cumulative   number   of   variants   increases   with   the   number   of   samples,   but   at   a   decreasing   rate   ( Figure   5e ).   
The   indels   are   approximately   balanced,   with   a   slight   bias   towards   insertions,   and   there   are   spikes   in   the   size   
distribution   around   300bp   and   6-7kbp   for   SINE   and   LINE   elements   ( Figure   5f ).   There   is   also   an   enrichment   of   
SVs   in   the   centromeres   and   telomeres   ( Figure   5g ),   likely   due   to   a   combination   of   missing   reference   sequence,   
repetitive   sequence   which   is   difficult   to   align   to,   and   greater   recombination   rates    (Audano   et   al.   2019) .     
  

Measuring   Effects   of   SVs   on   Gene   Expression   
  

Previous   expression   quantitative   trait   loci   (eQTL)   studies   have   shown   that   SVs   often   have   large   effects   on   
gene   expression   and   that   they   are   causal   at   3.5-6.8%   of   eQTLs    (Consortium   and   The   1000   Genomes   Project   
Consortium   2015;   Chiang   et   al.   2017) .   To   investigate   this   with   our   enhanced   catalog   of   SVs,   we   used   
Paragraph    (Chen   et   al.   2019)    to   genotype   each   SV   in   444   individuals   from   the   1000   Genomes   Project   (1KGP)   
for   which   gene   expression   data   is   publicly   available    (Lappalainen   et   al.   2013) ,   after   removing   SVs   that   were   
inconsistent   with   population   genetics   expectations   based   on   the   Hardy-Weinberg   equilibrium   ( Figure   6a ).   
Following   the   prior   studies,   we   mapped   SV-eQTLs   by   pairing   common   (MAF   ≥   0.05)   SVs   to   genes   within   1   
Mbp   using   gene   expression   data   in   lymphoblastic   cell   lines   from   the   GEUVADIS   consortium    (Lappalainen   et   al.   
2013) .   We   then   fit   a   linear   model   to   measure   the   effect   sizes   of   these   SVs   on   gene   expression,   and   found   that   
5,456   pairs   passed   a   significance   threshold   with   10%   FDR,   which   is   substantially   higher   than   the   478   pairs   that   
we   observe   among   short-read   SVs.   These   associations   occur   for   both   deletions   and   insertions,   and   both   have   
approximately   the   same   effect   size   distribution   ( Figure   6b ).   These   data   suggest   that   many   of   the   SVs   that   are   
only   visible   through   genotyping   long-read-based   variant   calls   have   large   effects   on   gene   expression   and   thus   
are   potentially   functionally   relevant.   
  

In   order   to   evaluate   which   SVs   are   likely   to   have   causal   effects   on   their   associated   genes,   we   used   the   
fine-mapping   tool   CAVIAR    (Hormozdiari   et   al.   2014)    to   measure   the   posterior   probability   that   any   given   SV   is   
causal   compared   to   nearby   SNPs   within   a   1   Mbp   window,   taking   into   account   possible   linkage   disequilibrium   
(LD)   between   variants.   We   found   that   SVs   had   high   posterior   scores   (>0.1)   at   68   genes   out   of   1,863   genes   
examined   (3.65%).   Additionally,   when   compared   to   existing   databases   of   SNP-eQTLs   from   the   GTEx   project   
(Chiang   et   al.   2017) ,   SVs   had   a   higher   CAVIAR   posterior   than   reported   SNPs   for   53.5%   of   genes   ( Figure   6c ).   
This   shows   that   previously   undetected   SVs   are   likely   causal   at   a   large   number   of   sites   where   the   effects   on   
gene   expression   were   reported   as   SNP-eQTLs   instead.   
  

When   examining   the   CAVIAR   posteriors   for   our   data,   we   found   that   SVs   with   higher   CAVIAR   posteriors   are   
enriched   for   positions   overlapping   with   or   very   close   to   ENCODE   candidate   cis-regulatory   elements   ( Figure   
6d ),   indicating   that   a   number   of   the   high-scoring   variants   are   functionally   relevant.   We   also   found   that   higher   
CAVIAR   posteriors   are   associated   with   other   regulatory   elements,   distance   to   the   associated   gene   (as   
previously   reported   in    (Chiang   et   al.   2017) ),   as   well   as   to   FunSeq   high   occupancy   of   transcription   factor   (HOT)   
regions    (Fu   et   al.   2014)     ( Supplementary   Figures   24-25 ).   
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Figure   6.   Functional   impact   of   SVs   from   Jasmine.    We   used   Paragraph   to   genotype   SVs   from   the   cohort   of   31   samples   in   444   
samples   from   the   1000   Genomes   Project   which   have   RNA-seq   data.    a.)    Number   of   SVs   detected   per   sample   for   genotyped   SVs   
(Jasmine)   versus   SVs   reported   in   the   1000   Genomes   Project   (1KGP)   after   HWE   filtering.    b.)    Effect   sizes   of   significant   SV-eQTLs   
mapped   from   Jasmine   SVs   or   1KGP   SVs.    c.)    CAVIAR   posterior   probabilities   for   each   gene   with   significant   SV   and   SNP   data.   The   
x-axis   is   the   maximum   CAVIAR   posterior   of   a   SNP   reported   as   a   SNP-eQTL   by   the   GTEx   consortium,and   the   y-axis   is   the   maximum   
CAVIAR   posterior   of   a   Jasmine   SV   from   our   mapped   SV-eQTLs.   Variants   above   the   diagonal   line   have   a   higher   SV   posterior   than   
GTEx   SNP   posterior.   The   inset   box   contains   genes   with   highly   causal   (posterior   >0.8)   SVs.    d.)    Jasmine   SV   distance   to   the   nearest   
ENCODE   cCRE   versus   CAVIAR   posterior.   The   histogram   shows   the   distribution   of   distances   to   ENCODE   cCREs.    e.)    Genotype   and   
gene   expression   distribution   in   1KGP   samples   for   novel   SEMA5A   deletion.    f.)    Manhattan   plot   for   SNPs   and   the   novel   SV   near   
SEMA5A,   with   p   value   measured   by   Wilcoxon   rank-sum   test.   The   green   point   is   the   SNP   reported   in   GTEx   eQTLs   
(chr5_9431336_A_T);   other   points   are   colored   by   LD   to   that   SNP.   
  

Inspecting   all   SV-gene   pairs   with   a   CAVIAR   posterior   greater   than   that   of   any   previously   reported   SNP-eQTL   
for   that   gene   (and   greater   than   0.2   overall),   we   identified   several   potentially   functional   SVs   in   high   linkage   
disequilibrium   (LD)   with   reported   SNPs.   Among   these   newly   discovered   SV-sQTLs   is   a   noncoding   deletion   
associated   with   the   expression   of   SEMA5A,   a   gene   involved   in   neural   development   that   has   been   implicated   
as   an   autism   susceptibility   gene    (Melin   et   al.   2006;   Duan   et   al.   2014)    ( Figure   6e ).   We   found   that   while   a   
number   of   SNPs   are   associated   with   this   gene’s   expression,   including   SNPs   reported   in   the   GTEx   SNP-eQTL   
dataset,   the   most   highly   associated   variant   is   the   structural   variant   ( Figure   6f ).   Other   small   deletions   in   
SEMA5A   have   been   previously   associated   with   neurodevelopmental   disorders    (Mosca-Boidron   et   al.   2016) ,   
but   this   deletion   was   not   previously   reported   as   it   is   difficult   to   detect   from   short-read   data   alone.   This   suggests   
that   previous   studies   exclusively   examining   SNPs   may   have   ascribed   functional   relevance   to   SNP-eQTLs   in   
close   LD   with   the   SV.   In   addition   to   SEMA5A,   we   also   found   several   additional   examples   in   LRGUK,   CSF2RB,   
CAMKMT,   and   several   other   genes   where   reportedly   functional   SNPs   are   in   close   LD   with   potentially   more   
functionally   significant   SVs,   which   are   underrepresented   or   ignored   in   existing   eQTL   studies   ( Supplementary   
Figures   28-30 ).   

  
9   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.445886doi: bioRxiv preprint 

https://paperpile.com/c/bGhr8g/VR9c+Ofi2
https://paperpile.com/c/bGhr8g/y5xd
https://doi.org/10.1101/2021.05.27.445886
http://creativecommons.org/licenses/by/4.0/


  
Discussion   
  

Here   we   introduced   Jasmine,   a   fast   and   accurate   method   for   population-level   structural   variant   comparison   
and   analysis.   It   improves   upon   existing   methods   and   achieves   highly   accurate   results   by   merging   pairs   of   
variants   in   increasing   order   of   their   breakpoint   distance,   while   maintaining   favorable   scaling   qualities   through   
the   use   of   a   KD-tree   to   efficiently   locate   nearby   variant   pairs.   Jasmine   also   separately   processes   the   SV   calls   
by   chromosome   and   SV   type   and   strand   to   enable   built-in   parallelization,   while   many   alternative   methods   
incorrectly   combine   SVs   of   different   types.   By   combining   Jasmine   with   additional   novel   methods   and   carefully   
optimizing   existing   methods,   we   produced   an   SV-calling   pipeline   that   reduces   the   rate   of   Mendelian   
discordance   by   more   than   a   factor   of   five   over   prior   pipelines,   while   at   the   same   time   being   applicable   to   large   
cross-technology   cohorts   and   resolving   a   number   of   issues   encountered   when   using   other   methods.   Finally,   by   
calling   SVs   in   31   publicly   available   long-read   samples   with   our   pipeline   we   developed   and   released   a   database   
of   human   structural   variants.   By   genotyping   these   variants   in   444   short-read   samples   from   the   1000   Genome   
Project,   we   catalogued   novel   eQTLs   across   the   human   genome,   including   in   medically   relevant   genes.   
  

While   Jasmine   offers   highly   accurate   population   SV   analysis,   we   remain   limited   by   the   sequencing   data   that   is   
available.   A   major   challenge   we   faced   when   applying   our   methods   to   a   cohort   consisting   of   samples   from   
multiple   sequencing   technologies   was   the   additional   noise   in   the   samples   sequenced   with   high-error   CLR   
reads   ( Supplementary   Figure   18 ).   While   we   mitigated   this   noise   through   computational   means   such   as   
double   thresholding   and   carefully   tuned   parameters,   we   expect   that   even   more   accurate   SV   calls   could   be   
obtained   by   using   HiFi   or   ONT   sequencing   for   all   samples.   In   addition,   there   were   systematic   anomalies   in   the   
SV   calls   in   highly   repetitive   regions   such   as   the   centromere   and   satellite   repeats   and   an   overall   excess   of   
variants   that   are   found   in   all   samples.   There   has   recently   been   work   to   improve   the   reference   genome   to   more   
accurately   reflect   these   regions    (Nurk   et   al.   2021) ,   and   as   tools   for   aligning   to   and   calling   variants   in   these   
regions   continue   to   mature,   we   expect   the   accuracy   of   these   calls   to   even   further   improve.   Finally,   while   we   
have   detected   a   large   number   of   SVs   in   the   31   samples   we   studied,   there   is   still   much   to   be   discovered.   As   the   
costs   of   long-read   genome   sequencing   continue   to   decrease,   we   expect   to   apply   these   methods   to   even   larger   
populations,   as   well   to   other   species,   to   deepen   our   understanding   of   the   role   of   SVs   in   disease,   development,   
and   evolution.   
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Online   Methods   
  

Refined   Variant   Breakpoints   and   Sequences   with   Iris   
  

Many   existing   long-read   SV   callers   identify   variants   from   read   alignments   based   on   signatures   such   as   an   
extended   gap   in   the   alignment   or   a   segment   of   the   read   which   aligns   to   a   distant   region   of   the   genome   
(Sedlazeck,   Rescheneder,   et   al.   2018;   Jiang   et   al.   2020) .   In   the   widely   used   variant   caller   sniffles    (Sedlazeck,   
Rescheneder,   et   al.   2018) ,   a   variant   is   called   when   multiple   reads   show   similar   signatures   that   cluster   together   
based   on   their   type,   span,   and   location.   However,   when   reporting   the   variant’s   breakpoints   and   sequence,   the   
alignment   from   a   single   representative   read   (chosen   arbitrarily)   is   used   to   infer   this   information.   This   is   
particularly   problematic   for   insertions,   where   the   novel   sequence   being   inserted   is   taken   directly   from   the   single   
read.   Since   some   read   technologies,   such   as   CLR   and   ONT   have   error   rates   of   5%   or   higher,   it   is   expected   
that   the   sequence   reported   will   have   a   sequence   with   a   similar   or   higher   rate   of   divergence   from   the   true   
insertion   sequence   ( Supplementary   Figure   1 ).   When   comparing   across   samples,   especially   those   sequenced   
with   different   technologies   with   different   error   models,   this   may   cause   the   same   variant   in   both   individuals   to   be   
falsely   identified   as   two   separate   variants.   
  

Addressing   this,   we   introduce   Iris,   a   method   for   refining   the   breakpoints   and   novel   sequence   of   SV   calls   by   
aggregating   information   from   multiple   reads   which   support   each   variant   call   ( Figure   1 ).   Iris   refines   each   variant   
call   separately,   but   supports   the   processing   of   multiple   variants   in   parallel.   In   the   case   of   an   insertion   variant   
call,   Iris   starts   with   an   initial   sequence   consisting   of   the   variant   sequence   plus   flanking   sequence   from   the   
reference   genome   (default   1kb   on   each   side   of   the   variant).   Then,   it   gathers   all   of   the   reads   which   support   the   
variant’s   presence   -   indicated   by   the   RNAMES   field   in   the   output   of   sniffles   -   and   aligns   those   reads   to   the   
initial   sequence   with   minimap2    (Li   2018) .   These   alignments   are   used   as   input   to   the   polishing   software   racon   
(Vaser   et   al.   2017) ,   which   polishes   the   initial   sequence.   Finally,   the   polished   sequence   is   aligned   to   the   
reference   with   minimap2   and   the   CIGAR   string   is   parsed   to   extract   the   insertion   in   the   polished   sequence   
relative   to   the   reference   which   most   closely   resembles   the   original   insertion   call.   If   such   an   insertion   is   found,   
the   variant   call   is   refined   to   reflect   the   updated   sequence   and   breakpoints.   Iris   also   supports   the   refinement   of   
deletion   breakpoints,   which   is   of   particular   interest   when   the   sequencing   technology   being   used   has   a   biased   
error   model   in   favor   of   either   insertions   and   deletions.   These   are   handled   similarly   to   insertions,   with   the   initial   
sequence   instead   consisting   of   the   concatenation   of   the   reference   sequences   immediately   before   and   after   the   
deleted   region.   Iris   is   available   as   a   standalone   tool   at    https://github.com/mkirsche/Iris .   
  

Simulation   Results:     To   test   the   performance   of   Iris   on   simulated   data,   we   simulated   400   indels   with   uniformly   
random   lengths   -   200   with   length   [50,   200]   and   200   with   length   [900,   1100]   -   in   a   5   Mbp   segment   of   chr1   
(chr1:20000000-24999999).   Then,   we   used   SURVIVOR    (Jeffares   et   al.   2017)    with   a   read   error   and   length   
model   trained   on   HG002   Oxford   Nanopore   reads   to   simulate   30x   coverage   of   long   reads.   We   aligned   these   
reads   back   to   the   unmodified   segment   of   chromosome   1   with   winnowmap    (C.   Jain   et   al.   2020)    and   called   SVs   
with   sniffles    (Sedlazeck,   Rescheneder,   et   al.   2018) .   From   the   insertion   SV   calls,   we   measured   the   similarity   
scores   of   the   reported   sequences   to   the   ground   truth   using   the   formula:   Similarity( S ,    T )   =   (1   -   EditDistance( S ,   
T )   /   max(length( S ),   length( T )).   We   also   refined   these   variant   calls   with   Iris   and   measured   the   similarity   score   of   
the   updated   insertion   sequences   ( Supplementary   Figure   2a ).   The   average   sequence   similarity   score   
increased   from   94.7%   to   98.6%,   demonstrating   that   Iris   refinement   significantly   improves   insertion   sequence   
accuracy.   
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Real   Results   in   HG002:    While   this   simulated   experiment   demonstrated   that   Iris   is   able   to   improve   sequence   
accuracy   in   simulation   conditions,   we   wanted   to   ensure   that   it   also   improves   the   novel   sequences   of   true   
genomic   variants,   where   the   novel   sequences   are   typically   more   repetitive   and   the   alignments   noisier   than   
when   the   insertions   are   random   basepairs.   To   do   this,   we   used   the   cell   line   HG002,   which   was   sequenced   with   
multiple   technologies,   notably   including   both   ONT   and   HiFi.   While   the   ONT   reads   have   a   high   error   rate   around   
8%,   the   HiFi   reads   have   approximately   99.5%   accuracy    (Wenger   et   al.   2019) ,   so   even   novel   insertion   
sequences   taken   from   only   a   single   HiFi   read   are   expected   to   be   highly   accurate.   Therefore,   we   used   
winnowmap   and   sniffles   for   variant   calling   as   in   the   simulated   experiment,   but   used   the   HiFi   SV   calls’   
sequences   in   place   of   a   ground   truth.   For   each   ONT   SV   call,   we   matched   it   with   the   nearest   HiFi   call   if   it   was   
within   1   kbp,   they   shared   at   least   50%   sequence   identity,   and   no   other   ONT   call   had   already   matched   with   it.   
This   resulted   in   13,467   matched   ONT   calls   before   and   14,401   after   refinement,   with   12,978   having   a   matching   
HiFi   call   both   before   and   after   refinement.   Among   these,   9,522   (73.37%)   had   been   changed   by   Iris.   The   
average   sequence   identity   among   these   9,522   SVs   increased   from   91.6%   before   Iris   to   96.2%   after   Iris,   and   
the   distributions   of   sequence   accuracy   scores   are   shown   in    Supplementary   Figure   2b .   
  

Comparing   Variant   Calls   at   Population   Scale   with   Jasmine   
  

In   order   to   perform   SV   inference   at   population   scale   and   identify   variants   associated   with   diseases   or   
phenotypes,   it   is   important   to   identify   when   multiple   individuals   share   the   same   (or   functionally   identical)   
variants.   However,   the   same   variant   call   can   manifest   differently   in   unique   samples   because   of   sequencing   
error   or   samples   being   processed   with   different   sequencing   technologies,   levels   of   coverage,   or   upstream   
alignment   and   variant   calling   software.   These   differences,   along   with   the   increasing   availability   of   long-read   
sequencing   data   for   many   individuals,   highlight   the   need   for   careful   variant   comparison   when   analyzing   SVs   in   
multiple   samples.   
  

We   refer   to   the   problem   of   consolidating   multiple   variant   callsets   into   a   single   set   of   variants   as   the   “SV   
merging   problem”.   This   is   because   the   problem   consists   of   identifying   variant   calls   in   separate   samples   which   
correspond   to   the   same   variant   and   merging   them   into   a   single   call   which   is   annotated   with   the   samples   in   
which   it   is   present.   A   number   of   methods   already   exist   for   SV   merging,   but   each   has   major   issues   such   as   
invalid   merges,   results   which   vary   significantly   based   on   the   order   of   input   samples,   or   high   levels   of   Mendelian   
discordance   when   evaluated   on   trio   datasets.  
  

Jasmine   Methods:    We   introduce   Jasmine,   a   novel   method   which   solves   the   SV   merging   problem.   Jasmine   
takes   as   input   a   list   of   VCF   files   consisting   of   the   variant   callsets   for   each   individual,   and   produces   a   single   
VCF   file   in   which   each   variant   is   annotated   with   a   list   of   samples   in   which   it   is   present   (as   well   as   the   IDs   of   the   
input   calls   which   correspond   to   that   variant).   
  

Jasmine   first   separates   the   variants   by   their   chromosome   (or   chromosome   pair   in   the   case   of   translocations),   
variant   type,   and   strand.   Each   of   these   groups   is   processed   independently   with   an   option   for   parallelization   
because   no   two   variants   in   different   groups   could   be   representations   of   the   same   variant.   When   processing   a   
group   of   variants,   Jasmine   represents   each   variant   as   a   2-D   point   in   space   representing   the   start   position   and   
length   of   the   variant.   When   represented   this   way,   variants   which   are   closer   together   along   the   genome   (and   
are   therefore   more   likely   to   represent   the   same   variant)   have   a   smaller   Euclidean   distance   between   them.   
Consequently,   each   pair   of   variants   can   be   assigned   a   quantitative   distance   which   reflects   how   dissimilar   they   
are.   
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After   projecting   these   variants   into   2-D   Euclidean   space,   Jasmine   implicitly   builds   a   variant   proximity   graph,   or   
a   graph   in   which   nodes   are   individual   variants   and   each   pair   of   variants   has   an   edge   between   them   with   a   
weight   corresponding   to   the   Euclidean   distance   between   them.   Then,   the   SV   merging   can   be   framed   as   
selecting   a   set   of   edges   (merges)   making   up   a   forest   which   is   a   subgraph   of   the   variant   proximity   graph,   and   
which   minimizes   the   sum   of   edge   weights   chosen   subject   to   a   few   constraints:   
  

1. No   intra-sample   merging:    No   connected   component   of   the   forest   contains   multiple   variants   from   the   
same   individual   because   they   have   already   been   identified   as   different   variants   

2. Distance   threshold:    No   chosen   edge   has   a   weight   greater   than   the   user-chosen   distance   threshold   
(default   max(100bp,   50%   of   variant   length))     

3. Maximality:    To   prevent   the   trivial   solution   of   no   edges,   we   require   that   given   a   set   of   chosen   edges,   no   
additional   edges   can   be   added   to   the   solution   while   still   satisfying   the   other   constraints.   

  
Jasmine   seeks   to   solve   this   optimization   problem   with   a   greedy   algorithm   similar   in   design   to   Kruskal’s   
algorithm   for   finding   a   minimum   spanning   tree.   In   this   algorithm,   the   set   of   chosen   edges   is   initially   empty,   and   
each   edge   is   considered   in   order   of   non-decreasing   edge   weight.   If   adding   the   edge   to   the   solution   would   
violate   any   of   the   above   constraints   given   the   previously   added   edges,   it   is   ignored;   otherwise,   it   is   added   to   
the   solution.   When   the   edges   being   considered   start   to   exceed   the   distance   threshold,   the   algorithm   
terminates.   
  

One   issue   with   this   algorithm   is   that   in   order   to   sort   the   edges   by   weight,   they   may   need   to   be   loaded   into   
memory.   This   is   problematic   because   some   population   datasets,   with   tens   to   hundreds   of   thousands   of   SVs   
per   sample,   include   millions   of   variants,   with   the   number   of   edges   potentially   scaling   quadratically   with   the   
variant   count.   This   is   prohibitive   even   with   existing   datasets,   and   will   only   be   more   of   a   problem   as   even   larger   
datasets   are   produced.   Therefore,   Jasmine   instead   stores   the   edges   implicitly,   making   use   of   a   KD-tree   to   
quickly   find   the   next   smallest   edge   in   the   variant   proximity   graph.   
  

To   avoid   storing   the   entire   graph   in   memory,   Jasmine   maintains   a   list   of   a   small   number   of   nearest   neighbors   
(initially   4)   for   each   node,   which   are   computed   by   forming   a   KD   tree   with   all   of   the   variant   points,   a   data   
structure   which   supports   k-nearest   neighbor   queries   with   a   logarithmic   runtime   with   respect   to   the   number   of   
variants.   Then,   the   edge   to   the   single   nearest   neighbor   of   each   variant   is   stored   in   a   minimum   heap,   and   it   is   
guaranteed   that   the   first   entry   removed   from   this   heap   will   be   the   edge   with   the   smallest   weight   in   the   entire   
graph.   When   an   edge   is   processed,   the   node   for   which   it   was   the   minimum-weight   incident   edge   has   its   next   
nearest   neighbor   added   to   the   heap   based   on   the   next   entry   in   its   nearest   neighbor   list.   If   the   list   of   nearest   
neighbors   for   a   node   becomes   empty,   the   KD-tree   is   queried   for   a   set   of   twice   as   many   nearest   neighbors,   and   
the   list   is   refilled.   In   this   manner,   the   next   smallest   edge   in   the   graph   will   always   be   the   edge   removed   from   the   
heap,   and   the   data   structures   Jasmine   uses   help   to   maintain   this   property   without   requiring   a   prohibitively   large   
amount   of   time   or   memory.   The   pseudocode   for   this   algorithm   can   be   found   in    Supplementary   Note   1 .   
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Jasmine   Distance   Threshold:    When   merging   variants,   it   is   important   to   determine   for   a   given   variant   pair   
whether   or   not   the   two   variants   are   sufficiently   close   together   in   terms   of   their   breakpoints   to   be   considered   the   
same   variant.   In   Jasmine,   this   is   based   on   a   distance   threshold   -   if   the   distance   between   them   (according   to   
the   chosen   distance   metric)   is   above   the   threshold   they   will   be   considered   two   different   variants,   while   if   their   
distance   is   less   than   or   equal   to   the   threshold   they   will   be   a   candidate   for   merging.   Jasmine   offers   a   number   of   
classes   of   distance   thresholds,   including   constant   thresholds,   thresholds   which   vary   based   on   a   fixed   
proportion   of   each   variant’s   size,   or   even   per-variant   distance   thresholds.   By   default,   the   distance   threshold   for   
Jasmine   is   max(100bp,   50%   of   variant   length).   We   measured   the   difference   in   merging   when   using   different   
values   for   the    min_dist    parameter,   which   is   100   by   default,   ( Supplementary   Figure   3) ,   and   found   that   while   
larger   values   for   this   parameter   offer   lower   Mendelian   discordance,   these   more   lenient   thresholds   perform   
poorly   in   a   cross-technology   cohort   setting   because   of   false   merges,   and   100bp   offers   a   good   balance   in   
performance   across   use   cases.   
  

Building   an   SV   Inference   Pipeline   
  

Our   SV   inference   pipeline   is   implemented   in   Snakemake,   and   supports   multithreaded   as   well   as   multi-node   
execution.   It   takes   as   input   a   list   of   FASTQ   files   for   each   sample   being   studied   as   well   as   a   reference   genome,   
and   produces   as   its   final   output   a   VCF   file   containing   population-level   SV   calls.   It   is   highly   customizable,   
supporting   unique   configurations   for   alignment   and   variant   calling   on   a   per-sample   or  
per-sequencing-technology   level.   It   also   enables   the   user   to   specify   the   alignment   software   to   use   -   ngmlr,   
winnowmap,   and   minimap2   -   and   separately   sets   recommended   default   parameters   for   samples   sequenced   
with   each   specific   technology.   On   each   sample   we   processed,   the   pipeline   took   about   a   day   to   run   on   a   single   
Intel   Cascade   Lake   6248R   compute   node   with   48   cores   and   192GB   RAM   at   3.0GHz.   The   Snakemake   files   to   
run   the   pipeline   are   included   in   the   Jasmine   repository:   
https://github.com/mkirsche/Jasmine/tree/master/pipeline .     
  

Evaluating   Mendelian   Discordance   
  

When   performing    de   novo    variant   analysis,   we   are   particularly   interested   in   Mendelian   discordant   variants,   or   
variants   which   are   called   as   present   in   the   child   of   a   trio   but   neither   parent.   This   includes   genuine    de   novo   
variants,   but   in   practice   most   of   these   calls   are   actually   false    de   novo    variants   caused   by   errors   in   variant   
calling   or   merging.   Accordingly,   one   major   goal   of   trio   SV   inference   is   to   reduce   the   number   of   discordant   
variants   while   retaining   any   true    de   novo    variants   in   that   set.   
  

To   measure   Mendelian   discordance,   we   called   variants   in   the   Ashkenazim   individual   HG002   as   well   as   their   
parents   HG003   (46,XY)   and   HG004   (46,XX).   We   merged   these   three   callsets   with   Jasmine   (or   other   merging   
software   when   comparing   them   to   Jasmine),   and   counted   the   number   of   variants   which   were   identified   in   
HG002   but   not   merged   with   any   variants   from   either   parent.   We   then   filtered   these   variants   by   confidence   by   
requiring   that   they   be   supported   by   at   least   min(10,   25%   of   average   coverage)   of   the   reads   and   have   a   length   
of   at   least   30.   In   addition,   we   filtered   out   any   variants   which   were   not   marked   with   the   PRECISE   INFO   field   by   
the   sniffles   variant   calling.   The   discordance   rate   was   calculated   as   the   quotient   of   the   number   of   discordant   
variants   over   the   total   number   of   variants   in   the   merged   and   filtered   trio   callset.   
  

   

14   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.445886doi: bioRxiv preprint 

https://github.com/mkirsche/Jasmine/tree/master/pipeline
https://doi.org/10.1101/2021.05.27.445886
http://creativecommons.org/licenses/by/4.0/


  
Optimized   Sniffles   Variant   Calling   Parameters     
  

Similar   to   the   HiFi   analysis   in    Figure   2c ,   we   used   Mendelian   discordance   to   measure   the   effects   of   different   
variant   calling   parameters   in   CLR   data   for   HG002.   We   varied   the    max_dist    parameter   when   running   sniffles   for   
variant   calling   and   measured   the   number   of   variants   and   discordance   for   each   trio   callset.    Supplementary   
Figure   4    shows   the   effect   of   this   parameter   on   these   metrics,   and   based   on   these   results   we   used   
max_dist =50   for   calling   variants   from   CLR   data.   
  

Next,   to   optimize   variant   calling   parameters   in   ONT   data   from   HG002,   we   repeated   the   experiment   used   for   
CLR   data,   varying   the    max_dist    variant   calling   parameter   in   Sniffles   and   measured   the   number   of   variants   and   
discordance   for   each   trio   callset.   These   results   are   shown   in    Supplementary   Figure   5 ,   and   based   on   them   we   
used    max_dist =50   for   calling   variants   from   ONT   data.   While   this   doesn’t   give   the   lowest   discordance   rate,   all   
settings   examined   yielded   less   than   1%   discordance,   so   we   used   a   value   of   50   to   enable   a   high   degree   of   
variant   discovery   and   consistency   across   technologies.     
  

Double   Thresholding   
  

To   reduce   the   impact   of   threshold   effects   on   variant   calling,   our   pipeline   uses   two   different   variant   calling   
thresholds:   a   highly   specific,   strict   high-confidence   threshold   and   a   highly   sensitive,   more   lenient   
low-confidence   threshold.   To   be   a   high-confident   call,   a   variant   must   be   at   least   30bp   long   supported   by   a   
number   of   reads   greater   than   or   equal   min(10,   25%   of   average   coverage   over   that   sample);   otherwise   a   variant   
is   called   with   low   confidence   if   it   is   at   least   20bp   long   and   supported   by   at   least   two   reads.   All   of   the   variants   
that   meet   either   threshold   are   used   as   input   to   Jasmine’s   cross-sample   merging,   and   any   low-confidence   
variants   that   do   not   get   merged   with   any   high-confidence   variants   are   discarded.   This   allows   variants   which   are   
close   to   the   strict   threshold   to   be   properly   detected   in   all   of   the   samples   in   which   they   are   present   
( Supplementary   Figure   6 ).   
  

Associating   Structural   Variants   to   Genes   
  

To   obtain   genotypes   for   SV-gene   association,   we   called   SVs   in   31   long-read   samples   with   our   inference   
pipeline   and   merged   them   into   a   unified   cohort-level   callset   with   Jasmine.   We   then   genotyped   these   SVs   with   
Paragraph   after   filtering   out   translocations   and   other   variants   which   Paragraph   cannot   genotype,   for   a   total   of   
189,581   genotyped   variants   across   444   individuals.   Following   previous   studies    (Chen   et   al.   2019) ,   we   then   
used   the   Hardy-Weinberg   Equilibrium   (HWE)   test   to   filter   out   variants   not   consistent   with   population   genetic   
expectations,   removing   variants   found   to   be   significant   with   p   <   0.0001   using   an   exact   test   of   HWE    (Wigginton,   
Cutler,   and   Abecasis   2005) .   After   filtering   with   HWE   and   additionally   removing   any   variants   that   were   left   
uncalled   in   50%   or   more   of   the   samples,   we   were   left   with   138,715   variants   across   the   444   individuals   
( Supplementary   Figure   23 ).   
  

We   examined   common    cis -SV-eQTLs   by   associating   our   SV   genotypes   to   gene   expression   data   in   the   same  
cell   lines   collected   by   the   GEUVADIS   consortium    (Lappalainen   et   al.   2013) .   We   first   paired   each   gene   with   
every   structural   variant   that   has   a   MAF   ≥0.05   and   resides   within   a   window   of   1   Mbp   from   the   gene’s   TSS.   We   
then   tested   whether   the   distribution   of   normalized   (zero-mean,   unit   variance)   gene   expression   is   different   for   
those   individuals   with   or   without   the   variant   by   using   a   Wilcoxon   rank-sum   test   for   each   variant-gene   pair   with   a   
p-value   cutoff   reflecting   a   Benjamini-Hochberg   multiple   testing   correction   with   an   FDR   of   0.1.   After   identifying   a   
set   of   significantly-associated   SV-eQTLs,   we   fit   a   linear   model   between   each   variant   genotype   (where   
reference   is   encoded   as   0   and   the   alternate   allele   is   encoded   as   1   if   heterozygous   and   2   if   homozygous)   and   
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gene   expression   in   order   to   determine   the   effect   size   (β)   and   the   R 2    of   the   association.   We   then   analyzed   the   
relationship   between   the   effect   size   and   various   features   of   the   SV   or   gene.   
  

Comparing   SVs   and   SNP-eQTLs   with   Fine   Mapping:    We   used   the   dataset   of   SNP-eQTLs   from   the   GTEx   
project   for   all   tissues    (Chiang   et   al.   2017)    as   a   set   of   known   SNP-eQTLs   which   we   could   use   as   a   benchmark   
to   compare   the   effects   of   SVs   to   SNPs   on   genes   for   which   both   may   be   associated.   We   examined   the   set   of   
genes   for   which   there   were   both   associated   SNP-eQTLs   in   GTEx   (which   were   also   significantly   associated   in   
our   data)   and   significantly-associated   SVs   from   our   callset   within   a   1MB   window.   We   then   collected   a   set   of   
1000   most-closely   associated   variants   (SNP   or   SV)   to   each   gene   within   the   1MB   window   and   computed   the   
Z-score   from   a   linear   regression   as   well   as   the   linkage   disequilibrium   between   each   pair   of   variants.   We   used   
these   values   as   input   to   the   fine-mapping   program   CAVIAR    (Hormozdiari   et   al.   2014)    in   order   to   predict   which   
variants   within   the   set   are   causal.   We   used   CAVIAR’s   posterior   probability   as   a   measure   of   how   likely   a   
particular   variant   was   to   be   causal.   
  

Measuring   Enrichment   of   SVs   based   on   CAVIAR   Scores:    We   examined   the   relationship   between   CAVIAR’s   
posterior   probability   for   each   SV’s   most   highly   associated   gene   and   various   variant   features,   such   as   the   
distance   to   various   regulatory   elements   ( Supplementary   Figure   25 ).   We   used   the    bedtools   closest   
function   to   compute   the   distance   between   each   SV   and   the   nearest   ENCODE   candidate   cis-regulatory   element   
from   the   UCSC   genome   browser    (Navarro   Gonzalez   et   al.   2021)    ( Supplementary   Figure   25a ).   Using   the   
Ensembl   Regulatory   Build    (Zerbino   et   al.   2015) ,   we   performed   a   similar   distance   calculation   to   measure   the   
distance   between   each   variant   and   the   nearest   Ensembl   Regulatory   Element   ( Supplementary   Figure   25b ).   
  

We   also   examined   the   relationship   between   CAVIAR   posterior   probability   and   various   conservation   scores,   as   
well   as   other   sequence   features   such   as   GC   content.   To   compute   conservation   scores,   inspired   by   previous   
works    (Abel   et   al.   2020) ,   we   used   pyBigWig   to   extract   regions   covered   by   the   SV   and   computed   the   mean   of   
the   top   10   scores   of   individual   bases   within   that   region.   For   insertion   variants,   we   extracted   the   flanking   
reference   sequence   -   75   basepairs   in   each   direction   -   to   assess   the   conservedness   of   the   affected   context.   We   
calculated   CADD   scores    (Rentzsch   et   al.   2019) ,   LINSIGHT   scores    (Huang,   Gulko,   and   Siepel   2017) ,   and   
PhastCons    (Hubisz,   Pollard,   and   Siepel   2011)    in   a   similar   fashion.   Based   on   these   prediction   scores,   we   do   not   
observe   signs   of   enrichment   of   extreme   pathogenicity   or   conservation   among   SVs   with   high   CAVIAR   posteriors   
( Supplementary   Figures   26-27 ).   We   also   do   not   observe   a   pattern   among   the   GC   percentage   for   SVs   with   
high   CAVIAR   posteriors   ( Supplementary   Figure   27a ).   However,   larger-scale   studies   are   needed   to   make   
definitive   conclusions,   as   the   number   of   SVs   we   observed   with   high   CAVIAR   posterior   are   limited.    
  
  

Data   Availability   
  

The   sequencing   data   used   in   this   study   is   available   from   the   publications   listed   in    Supplemental   Table   1    and   
Supplemental   Table   2 .   All   variant   calls   are   available   at    http://data.schatz-lab.org/jasmine/ .   
  

   

16   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.445886doi: bioRxiv preprint 

https://paperpile.com/c/bGhr8g/SvRU
https://paperpile.com/c/bGhr8g/JH6q
https://paperpile.com/c/bGhr8g/mJ1A
https://paperpile.com/c/bGhr8g/cQJu
https://paperpile.com/c/bGhr8g/7CS0
https://paperpile.com/c/bGhr8g/876q
https://paperpile.com/c/bGhr8g/iad0
https://paperpile.com/c/bGhr8g/X65b
http://data.schatz-lab.org/jasmine/
https://doi.org/10.1101/2021.05.27.445886
http://creativecommons.org/licenses/by/4.0/


  
References   

Abel,   Haley   J.,   David   E.   Larson,   Allison   A.   Regier,   Colby   Chiang,   Indraniel   Das,   Krishna   L.   Kanchi,   Ryan   M.   Layer,   et   al.   
2020.   “Mapping   and   Characterization   of   Structural   Variation   in   17,795   Human   Genomes.”    Nature    583   (7814):   83–89.   

Aganezov,   Sergey,   Sara   Goodwin,   Rachel   M.   Sherman,   Fritz   J.   Sedlazeck,   Gayatri   Arun,   Sonam   Bhatia,   Isac   Lee,   et   al.   
2020.   “Comprehensive   Analysis   of   Structural   Variants   in   Breast   Cancer   Genomes   Using   Single-Molecule   
Sequencing.”    Genome   Research    30   (9):   1258–73.   

Alkan,   Can,   Bradley   P.   Coe,   and   Evan   E.   Eichler.   2011.   “Genome   Structural   Variation   Discovery   and   Genotyping.”    Nature   
Reviews   Genetics .   https://doi.org/ 10.1038/nrg2958 .   

Alonge,   Michael,   Xingang   Wang,   Matthias   Benoit,   Sebastian   Soyk,   Lara   Pereira,   Lei   Zhang,   Hamsini   Suresh,   et   al.   2020.   
“Major   Impacts   of   Widespread   Structural   Variation   on   Gene   Expression   and   Crop   Improvement   in   Tomato.”    Cell    182   
(1):   145–61.e23.   

Audano,   Peter   A.,   Arvis   Sulovari,   Tina   A.   Graves-Lindsay,   Stuart   Cantsilieris,   Melanie   Sorensen,   Annemarie   E.   Welch,   
Max   L.   Dougherty,   et   al.   2019.   “Characterizing   the   Major   Structural   Variant   Alleles   of   the   Human   Genome.”    Cell    176   
(3):   663–75.e19.   

Belyeu,   Jonathan   R.,   Harrison   Brand,   Harold   Wang,   Xuefang   Zhao,   Brent   S.   Pedersen,   Julie   Feusier,   Meenal   Gupta,   et   al.   
2021.   “De   Novo   Structural   Mutation   Rates   and   Gamete-of-Origin   Biases   Revealed   through   Genome   Sequencing   of   
2,396   Families.”    American   Journal   of   Human   Genetics    108   (4):   597–607.   

Bentley,   Jon   Louis.   1975.   “Multidimensional   Binary   Search   Trees   Used   for   Associative   Searching.”    Communications   of   the   
ACM .   https://doi.org/ 10.1145/361002.361007 .   

Beyter,   Doruk,   Helga   Ingimundardottir,   Asmundur   Oddsson,   Hannes   P.   Eggertsson,   Eythor   Bjornsson,   Hakon   Jonsson,   
Bjarni   A.   Atlason,   et   al.   2021.   “Long-Read   Sequencing   of   3,622   Icelanders   Provides   Insight   into   the   Role   of   Structural   
Variants   in   Human   Diseases   and   Other   Traits.”    Nature   Genetics ,   May.   https://doi.org/ 10.1038/s41588-021-00865-4 .   

Brandler,   William   M.,   Danny   Antaki,   Madhusudan   Gujral,   Morgan   L.   Kleiber,   Joe   Whitney,   Michelle   S.   Maile,   Oanh   Hong,   
et   al.   2018.   “Paternally   Inherited   Cis-Regulatory   Structural   Variants   Are   Associated   with   Autism.”    Science    360   (6386):   
327–31.   

Byrska-Bishop,   Marta,   Uday   S.   Evani,   Xuefang   Zhao,   Anna   O.   Basile,   Haley   J.   Abel,   Allison   A.   Regier,   André   Corvelo,   et   
al.   2021.   “High   Coverage   Whole   Genome   Sequencing   of   the   Expanded   1000   Genomes   Project   Cohort   Including   602   
Trios.”    bioRxiv .   https://doi.org/ 10.1101/2021.02.06.430068 .   

Chaisson,   Mark   J.   P.,   Ashley   D.   Sanders,   Xuefang   Zhao,   Ankit   Malhotra,   David   Porubsky,   Tobias   Rausch,   Eugene   J.   
Gardner,   et   al.   2019.   “Multi-Platform   Discovery   of   Haplotype-Resolved   Structural   Variation   in   Human   Genomes.”   
Nature   Communications    10   (1):   1784.   

Chen,   Sai,   Peter   Krusche,   Egor   Dolzhenko,   Rachel   M.   Sherman,   Roman   Petrovski,   Felix   Schlesinger,   Melanie   Kirsche,   et   
al.   2019.   “Paragraph:   A   Graph-Based   Structural   Variant   Genotyper   for   Short-Read   Sequence   Data.”    Genome   Biology   
20   (1):   291.   

Chiang,   Colby,   GTEx   Consortium,   Alexandra   J.   Scott,   Joe   R.   Davis,   Emily   K.   Tsang,   Xin   Li,   Yungil   Kim,   et   al.   2017.   “The   
Impact   of   Structural   Variation   on   Human   Gene   Expression.”    Nature   Genetics .   https://doi.org/ 10.1038/ng.3834 .   

Consortium,   The   1000   Genomes   Project,   and   The   1000   Genomes   Project   Consortium.   2015.   “A   Global   Reference   for   
Human   Genetic   Variation.”    Nature .   https://doi.org/ 10.1038/nature15393 .   

Duan,   Yuntao,   Shih-Hsiu   Wang,   Juan   Song,   Yevgeniya   Mironova,   Guo-Li   Ming,   Alex   L.   Kolodkin,   and   Roman   J.   Giger.   
2014.   “Semaphorin   5A   Inhibits   Synaptogenesis   in   Early   Postnatal-   and   Adult-Born   Hippocampal   Dentate   Granule   
Cells.”    eLife    3   (October).   https://doi.org/ 10.7554/eLife.04390 .   

Ebert,   Peter,   Peter   A.   Audano,   Qihui   Zhu,   Bernardo   Rodriguez-Martin,   David   Porubsky,   Marc   Jan   Bonder,   Arvis   Sulovari,   
et   al.   2021.   “Haplotype-Resolved   Diverse   Human   Genomes   and   Integrated   Analysis   of   Structural   Variation.”    Science   
372   (6537).   https://doi.org/ 10.1126/science.abf7117 .   

Ellegren,   Hans.   2004.   “Microsatellites:   Simple   Sequences   with   Complex   Evolution.”    Nature   Reviews   Genetics .   
https://doi.org/ 10.1038/nrg1348 .   

Fu,   Yao,   Zhu   Liu,   Shaoke   Lou,   Jason   Bedford,   Xinmeng   Jasmine   Mu,   Kevin   Y.   Yip,   Ekta   Khurana,   and   Mark   Gerstein.   
2014.   “FunSeq2:   A   Framework   for   Prioritizing   Noncoding   Regulatory   Variants   in   Cancer.”    Genome   Biology    15   (10):   
480.   

Goodwin,   Sara,   John   D.   McPherson,   and   W.   Richard   McCombie.   2016.   “Coming   of   Age:   Ten   Years   of   next-Generation   
Sequencing   Technologies.”    Nature   Reviews.   Genetics    17   (6):   333–51.   

Hormozdiari,   Farhad,   Emrah   Kostem,   Eun   Yong   Kang,   Bogdan   Pasaniuc,   and   Eleazar   Eskin.   2014.   “Identifying   Causal   
Variants   at   Loci   with   Multiple   Signals   of   Association.”    Genetics    198   (2):   497–508.   

Huang,   Yi-Fei,   Brad   Gulko,   and   Adam   Siepel.   2017.   “Fast,   Scalable   Prediction   of   Deleterious   Noncoding   Variants   from   
Functional   and   Population   Genomic   Data.”    Nature   Genetics    49   (4):   618–24.   

Hubisz,   M.   J.,   K.   S.   Pollard,   and   A.   Siepel.   2011.   “PHAST   and   RPHAST:   Phylogenetic   Analysis   with   Space/time   Models.”   
Briefings   in   Bioinformatics    12   (1).   https://doi.org/ 10.1093/bib/bbq072 .   

Iossifov,   Ivan,   Brian   J.   O’Roak,   Stephan   J.   Sanders,   Michael   Ronemus,   Niklas   Krumm,   Dan   Levy,   Holly   A.   Stessman,   et   

17   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.445886doi: bioRxiv preprint 

http://paperpile.com/b/bGhr8g/7CS0
http://paperpile.com/b/bGhr8g/7CS0
http://paperpile.com/b/bGhr8g/7CS0
http://paperpile.com/b/bGhr8g/7CS0
http://paperpile.com/b/bGhr8g/P6Xs
http://paperpile.com/b/bGhr8g/P6Xs
http://paperpile.com/b/bGhr8g/P6Xs
http://paperpile.com/b/bGhr8g/P6Xs
http://paperpile.com/b/bGhr8g/P6Xs
http://paperpile.com/b/bGhr8g/ZYHj
http://paperpile.com/b/bGhr8g/ZYHj
http://paperpile.com/b/bGhr8g/ZYHj
http://paperpile.com/b/bGhr8g/ZYHj
http://dx.doi.org/10.1038/nrg2958
http://paperpile.com/b/bGhr8g/ZYHj
http://paperpile.com/b/bGhr8g/kKlb
http://paperpile.com/b/bGhr8g/kKlb
http://paperpile.com/b/bGhr8g/kKlb
http://paperpile.com/b/bGhr8g/kKlb
http://paperpile.com/b/bGhr8g/kKlb
http://paperpile.com/b/bGhr8g/he1MF
http://paperpile.com/b/bGhr8g/he1MF
http://paperpile.com/b/bGhr8g/he1MF
http://paperpile.com/b/bGhr8g/he1MF
http://paperpile.com/b/bGhr8g/he1MF
http://paperpile.com/b/bGhr8g/5jou
http://paperpile.com/b/bGhr8g/5jou
http://paperpile.com/b/bGhr8g/5jou
http://paperpile.com/b/bGhr8g/5jou
http://paperpile.com/b/bGhr8g/5jou
http://paperpile.com/b/bGhr8g/OEkh
http://paperpile.com/b/bGhr8g/OEkh
http://paperpile.com/b/bGhr8g/OEkh
http://paperpile.com/b/bGhr8g/OEkh
http://dx.doi.org/10.1145/361002.361007
http://paperpile.com/b/bGhr8g/OEkh
http://paperpile.com/b/bGhr8g/MLig
http://paperpile.com/b/bGhr8g/MLig
http://paperpile.com/b/bGhr8g/MLig
http://paperpile.com/b/bGhr8g/MLig
http://paperpile.com/b/bGhr8g/MLig
http://dx.doi.org/10.1038/s41588-021-00865-4
http://paperpile.com/b/bGhr8g/MLig
http://paperpile.com/b/bGhr8g/r8ak
http://paperpile.com/b/bGhr8g/r8ak
http://paperpile.com/b/bGhr8g/r8ak
http://paperpile.com/b/bGhr8g/r8ak
http://paperpile.com/b/bGhr8g/r8ak
http://paperpile.com/b/bGhr8g/iq3O
http://paperpile.com/b/bGhr8g/iq3O
http://paperpile.com/b/bGhr8g/iq3O
http://paperpile.com/b/bGhr8g/iq3O
http://paperpile.com/b/bGhr8g/iq3O
http://dx.doi.org/10.1101/2021.02.06.430068
http://paperpile.com/b/bGhr8g/iq3O
http://paperpile.com/b/bGhr8g/ZHOUO
http://paperpile.com/b/bGhr8g/ZHOUO
http://paperpile.com/b/bGhr8g/ZHOUO
http://paperpile.com/b/bGhr8g/ZHOUO
http://paperpile.com/b/bGhr8g/UwuS
http://paperpile.com/b/bGhr8g/UwuS
http://paperpile.com/b/bGhr8g/UwuS
http://paperpile.com/b/bGhr8g/UwuS
http://paperpile.com/b/bGhr8g/UwuS
http://paperpile.com/b/bGhr8g/SvRU
http://paperpile.com/b/bGhr8g/SvRU
http://paperpile.com/b/bGhr8g/SvRU
http://paperpile.com/b/bGhr8g/SvRU
http://dx.doi.org/10.1038/ng.3834
http://paperpile.com/b/bGhr8g/SvRU
http://paperpile.com/b/bGhr8g/gTjl
http://paperpile.com/b/bGhr8g/gTjl
http://paperpile.com/b/bGhr8g/gTjl
http://paperpile.com/b/bGhr8g/gTjl
http://dx.doi.org/10.1038/nature15393
http://paperpile.com/b/bGhr8g/gTjl
http://paperpile.com/b/bGhr8g/Ofi2
http://paperpile.com/b/bGhr8g/Ofi2
http://paperpile.com/b/bGhr8g/Ofi2
http://paperpile.com/b/bGhr8g/Ofi2
http://paperpile.com/b/bGhr8g/Ofi2
http://dx.doi.org/10.7554/eLife.04390
http://paperpile.com/b/bGhr8g/Ofi2
http://paperpile.com/b/bGhr8g/vCZ9
http://paperpile.com/b/bGhr8g/vCZ9
http://paperpile.com/b/bGhr8g/vCZ9
http://paperpile.com/b/bGhr8g/vCZ9
http://paperpile.com/b/bGhr8g/vCZ9
http://dx.doi.org/10.1126/science.abf7117
http://paperpile.com/b/bGhr8g/vCZ9
http://paperpile.com/b/bGhr8g/QqzB
http://paperpile.com/b/bGhr8g/QqzB
http://paperpile.com/b/bGhr8g/QqzB
http://paperpile.com/b/bGhr8g/QqzB
http://dx.doi.org/10.1038/nrg1348
http://paperpile.com/b/bGhr8g/QqzB
http://paperpile.com/b/bGhr8g/gd8j
http://paperpile.com/b/bGhr8g/gd8j
http://paperpile.com/b/bGhr8g/gd8j
http://paperpile.com/b/bGhr8g/gd8j
http://paperpile.com/b/bGhr8g/gd8j
http://paperpile.com/b/bGhr8g/yhz2
http://paperpile.com/b/bGhr8g/yhz2
http://paperpile.com/b/bGhr8g/yhz2
http://paperpile.com/b/bGhr8g/yhz2
http://paperpile.com/b/bGhr8g/JH6q
http://paperpile.com/b/bGhr8g/JH6q
http://paperpile.com/b/bGhr8g/JH6q
http://paperpile.com/b/bGhr8g/JH6q
http://paperpile.com/b/bGhr8g/iad0
http://paperpile.com/b/bGhr8g/iad0
http://paperpile.com/b/bGhr8g/iad0
http://paperpile.com/b/bGhr8g/iad0
http://paperpile.com/b/bGhr8g/X65b
http://paperpile.com/b/bGhr8g/X65b
http://paperpile.com/b/bGhr8g/X65b
http://dx.doi.org/10.1093/bib/bbq072
http://paperpile.com/b/bGhr8g/X65b
http://paperpile.com/b/bGhr8g/yZ3Y
https://doi.org/10.1101/2021.05.27.445886
http://creativecommons.org/licenses/by/4.0/


  
al.   2014.   “The   Contribution   of   de   Novo   Coding   Mutations   to   Autism   Spectrum   Disorder.”    Nature    515   (7526):   216–21.   

Jain,   Chirag,   Arang   Rhie,   Haowen   Zhang,   Claudia   Chu,   Brian   P.   Walenz,   Sergey   Koren,   and   Adam   M.   Phillippy.   2020.   
“Weighted   Minimizer   Sampling   Improves   Long   Read   Mapping.”    Bioinformatics     36   (Suppl_1):   i111–18.   

Jain,   Miten,   Hugh   E.   Olsen,   Benedict   Paten,   and   Mark   Akeson.   2016.   “The   Oxford   Nanopore   MinION:   Delivery   of   
Nanopore   Sequencing   to   the   Genomics   Community.”    Genome   Biology    17   (1):   239.   

Jeffares,   Daniel   C.,   Clemency   Jolly,   Mimoza   Hoti,   Doug   Speed,   Liam   Shaw,   Charalampos   Rallis,   Francois   Balloux,   
Christophe   Dessimoz,   Jürg   Bähler,   and   Fritz   J.   Sedlazeck.   2017.   “Transient   Structural   Variations   Have   Strong   Effects   
on   Quantitative   Traits   and   Reproductive   Isolation   in   Fission   Yeast.”    Nature   Communications    8   (January):   14061.   

Jiang,   Tao,   Yongzhuang   Liu,   Yue   Jiang,   Junyi   Li,   Yan   Gao,   Zhe   Cui,   Yadong   Liu,   Bo   Liu,   and   Yadong   Wang.   2020.   
“Long-Read-Based   Human   Genomic   Structural   Variation   Detection   with   cuteSV.”    Genome   Biology    21   (1):   189.   

Korlach,   Jonas,   Keith   P.   Bjornson,   Bidhan   P.   Chaudhuri,   Ronald   L.   Cicero,   Benjamin   A.   Flusberg,   Jeremy   J.   Gray,   David   
Holden,   Ravi   Saxena,   Jeffrey   Wegener,   and   Stephen   W.   Turner.   2010.   “Real-Time   DNA   Sequencing   from   Single   
Polymerase   Molecules.”    Methods   in   Enzymology .   https://doi.org/ 10.1016/s0076-6879(10)72001-2 .   

Kruskal,   Joseph   B.   1956.   “On   the   Shortest   Spanning   Subtree   of   a   Graph   and   the   Traveling   Salesman   Problem.”   
Proceedings   of   the   American   Mathematical   Society .   https://doi.org/ 10.1090/s0002-9939-1956-0078686-7 .   

Lappalainen,   Tuuli,   Michael   Sammeth,   Marc   R.   Friedländer,   Peter   A.   C.   ’t   Hoen,   Jean   Monlong,   Manuel   A.   Rivas,   Mar   
Gonzàlez-Porta,   et   al.   2013.   “Transcriptome   and   Genome   Sequencing   Uncovers   Functional   Variation   in   Humans.”   
Nature    501   (7468):   506–11.   

Larson,   David   E.,   Haley   J.   Abel,   Colby   Chiang,   Abhijit   Badve,   Indraniel   Das,   James   M.   Eldred,   Ryan   M.   Layer,   and   Ira   M.   
Hall.   2019.   “Svtools:   Population-Scale   Analysis   of   Structural   Variation.”    Bioinformatics     35   (22):   4782–87.   

Li,   Heng.   2018.   “Minimap2:   Pairwise   Alignment   for   Nucleotide   Sequences.”    Bioinformatics     34   (18):   3094–3100.   
Mahmoud,   Medhat,   Nastassia   Gobet,   Diana   Ivette   Cruz-Dávalos,   Ninon   Mounier,   Christophe   Dessimoz,   and   Fritz   J.   

Sedlazeck.   2019.   “Structural   Variant   Calling:   The   Long   and   the   Short   of   It.”    Genome   Biology    20   (1):   246.   
Melin,   M.,   B.   Carlsson,   H.   Anckarsater,   M.   Rastam,   C.   Betancur,   A.   Isaksson,   C.   Gillberg,   and   N.   Dahl.   2006.   

“Constitutional   Downregulation   of   SEMA5A   Expression   in   Autism.”    Neuropsychobiology    54   (1):   64–69.   
Mosca-Boidron,   Anne-Laure,   Lucie   Gueneau,   Guillaume   Huguet,   Alice   Goldenberg,   Céline   Henry,   Nadège   Gigot,   Emilie   

Pallesi-Pocachard,   et   al.   2016.   “A   de   Novo   Microdeletion   of   SEMA5A   in   a   Boy   with   Autism   Spectrum   Disorder   and   
Intellectual   Disability.”    European   Journal   of   Human   Genetics .   https://doi.org/ 10.1038/ejhg.2015.211 .   

Nattestad,   Maria,   Sara   Goodwin,   Karen   Ng,   Timour   Baslan,   Fritz   J.   Sedlazeck,   Philipp   Rescheneder,   Tyler   Garvin,   et   al.   
2018.   “Complex   Rearrangements   and   Oncogene   Amplifications   Revealed   by   Long-Read   DNA   and   RNA   Sequencing  
of   a   Breast   Cancer   Cell   Line.”    Genome   Research    28   (8):   1126–35.   

Navarro   Gonzalez,   Jairo,   Ann   S.   Zweig,   Matthew   L.   Speir,   Daniel   Schmelter,   Kate   R.   Rosenbloom,   Brian   J.   Raney,   
Conner   C.   Powell,   et   al.   2021.   “The   UCSC   Genome   Browser   Database:   2021   Update.”    Nucleic   Acids   Research    49   
(D1):   D1046–57.   

Nurk,   Sergey,   Sergey   Koren,   Arang   Rhie,   Mikko   Rautiainen,   Andrey   V.   Bzikadze,   Alla   Mikheenko,   Mitchell   R.   Vollger,   et   al.   
2021.   “The   Complete   Sequence   of   a   Human   Genome.”    bioRxiv .   https://doi.org/ 10.1101/2021.05.26.445798 .   

Ranallo-Benavidez,   T.   Rhyker,   Zachary   Lemmon,   Sebastian   Soyk,   Sergey   Aganezov,   William   J.   Salerno,   Rajiv   C.   McCoy,   
Zachary   B.   Lippman,   Michael   C.   Schatz,   and   Fritz   J.   Sedlazeck.   2021.   “Optimized   Sample   Selection   for   Cost-Efficient   
Long-Read   Population   Sequencing.”    Genome   Research ,   April.   https://doi.org/ 10.1101/gr.264879.120 .   

Renaux-Petel,   Mariette,   Françoise   Charbonnier,   Jean-Christophe   Théry,   Pierre   Fermey,   Gwendoline   Lienard,   Jacqueline   
Bou,   Sophie   Coutant,   et   al.   2018.   “Contribution   of   de   Novo   and   Mosaic   Mutations   to   Li-Fraumeni   Syndrome.”    Journal   
of   Medical   Genetics    55   (3):   173–80.   

Rentzsch,   Philipp,   Daniela   Witten,   Gregory   M.   Cooper,   Jay   Shendure,   and   Martin   Kircher.   2019.   “CADD:   Predicting   the   
Deleteriousness   of   Variants   throughout   the   Human   Genome.”    Nucleic   Acids   Research    47   (D1):   D886–94.   

Sedlazeck,   Fritz   J.,   Hayan   Lee,   Charlotte   A.   Darby,   and   Michael   C.   Schatz.   2018.   “Piercing   the   Dark   Matter:   
Bioinformatics   of   Long-Range   Sequencing   and   Mapping.”    Nature   Reviews.   Genetics    19   (6):   329–46.   

Sedlazeck,   Fritz   J.,   Philipp   Rescheneder,   Moritz   Smolka,   Han   Fang,   Maria   Nattestad,   Arndt   von   Haeseler,   and   Michael   C.   
Schatz.   2018.   “Accurate   Detection   of   Complex   Structural   Variations   Using   Single-Molecule   Sequencing.”    Nature   
Methods    15   (6):   461–68.   

Shi,   Jinlong,   Zhilong   Jia,   Xiaojing   Zhao,   Jinxiu   Sun,   Fan   Liang,   Minsung   Park,   Chenghui   Zhao,   et   al.   2021.   “Structural   
Variant   Selection   for   High-Altitude   Adaptation   Using   Single-Molecule   Long-Read   Sequencing.”    bioRxiv .   
https://doi.org/ 10.1101/2021.03.27.436702 .   

Vaser,   Robert,   Ivan   Sović,   Niranjan   Nagarajan,   and   Mile   Šikić.   2017.   “Fast   and   Accurate   de   Novo   Genome   Assembly   from   
Long   Uncorrected   Reads.”    Genome   Research    27   (5):   737–46.   

Veltman,   Joris   A.,   and   Han   G.   Brunner.   2012.   “De   Novo   Mutations   in   Human   Genetic   Disease.”    Nature   Reviews   Genetics .   
https://doi.org/ 10.1038/nrg3241 .   

Wenger,   Aaron   M.,   Paul   Peluso,   William   J.   Rowell,   Pi-Chuan   Chang,   Richard   J.   Hall,   Gregory   T.   Concepcion,   Jana   Ebler,   
et   al.   2019.   “Accurate   Circular   Consensus   Long-Read   Sequencing   Improves   Variant   Detection   and   Assembly   of   a   
Human   Genome.”    Nature   Biotechnology    37   (10):   1155–62.   

Wigginton,   Janis   E.,   David   J.   Cutler,   and   Goncalo   R.   Abecasis.   2005.   “A   Note   on   Exact   Tests   of   Hardy-Weinberg   
18   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.445886doi: bioRxiv preprint 

http://paperpile.com/b/bGhr8g/yZ3Y
http://paperpile.com/b/bGhr8g/yZ3Y
http://paperpile.com/b/bGhr8g/yZ3Y
http://paperpile.com/b/bGhr8g/qcsQ
http://paperpile.com/b/bGhr8g/qcsQ
http://paperpile.com/b/bGhr8g/qcsQ
http://paperpile.com/b/bGhr8g/qcsQ
http://paperpile.com/b/bGhr8g/NpdcZ
http://paperpile.com/b/bGhr8g/NpdcZ
http://paperpile.com/b/bGhr8g/NpdcZ
http://paperpile.com/b/bGhr8g/NpdcZ
http://paperpile.com/b/bGhr8g/fjY7R
http://paperpile.com/b/bGhr8g/fjY7R
http://paperpile.com/b/bGhr8g/fjY7R
http://paperpile.com/b/bGhr8g/fjY7R
http://paperpile.com/b/bGhr8g/fjY7R
http://paperpile.com/b/bGhr8g/58eP
http://paperpile.com/b/bGhr8g/58eP
http://paperpile.com/b/bGhr8g/58eP
http://paperpile.com/b/bGhr8g/58eP
http://paperpile.com/b/bGhr8g/ExtDd
http://paperpile.com/b/bGhr8g/ExtDd
http://paperpile.com/b/bGhr8g/ExtDd
http://paperpile.com/b/bGhr8g/ExtDd
http://paperpile.com/b/bGhr8g/ExtDd
http://dx.doi.org/10.1016/s0076-6879(10)72001-2
http://paperpile.com/b/bGhr8g/ExtDd
http://paperpile.com/b/bGhr8g/r8sI
http://paperpile.com/b/bGhr8g/r8sI
http://paperpile.com/b/bGhr8g/r8sI
http://dx.doi.org/10.1090/s0002-9939-1956-0078686-7
http://paperpile.com/b/bGhr8g/r8sI
http://paperpile.com/b/bGhr8g/0jIX
http://paperpile.com/b/bGhr8g/0jIX
http://paperpile.com/b/bGhr8g/0jIX
http://paperpile.com/b/bGhr8g/0jIX
http://paperpile.com/b/bGhr8g/a80h
http://paperpile.com/b/bGhr8g/a80h
http://paperpile.com/b/bGhr8g/a80h
http://paperpile.com/b/bGhr8g/a80h
http://paperpile.com/b/bGhr8g/Eq7f
http://paperpile.com/b/bGhr8g/Eq7f
http://paperpile.com/b/bGhr8g/Eq7f
http://paperpile.com/b/bGhr8g/fGwC
http://paperpile.com/b/bGhr8g/fGwC
http://paperpile.com/b/bGhr8g/fGwC
http://paperpile.com/b/bGhr8g/fGwC
http://paperpile.com/b/bGhr8g/VR9c
http://paperpile.com/b/bGhr8g/VR9c
http://paperpile.com/b/bGhr8g/VR9c
http://paperpile.com/b/bGhr8g/VR9c
http://paperpile.com/b/bGhr8g/y5xd
http://paperpile.com/b/bGhr8g/y5xd
http://paperpile.com/b/bGhr8g/y5xd
http://paperpile.com/b/bGhr8g/y5xd
http://paperpile.com/b/bGhr8g/y5xd
http://dx.doi.org/10.1038/ejhg.2015.211
http://paperpile.com/b/bGhr8g/y5xd
http://paperpile.com/b/bGhr8g/6etC
http://paperpile.com/b/bGhr8g/6etC
http://paperpile.com/b/bGhr8g/6etC
http://paperpile.com/b/bGhr8g/6etC
http://paperpile.com/b/bGhr8g/6etC
http://paperpile.com/b/bGhr8g/mJ1A
http://paperpile.com/b/bGhr8g/mJ1A
http://paperpile.com/b/bGhr8g/mJ1A
http://paperpile.com/b/bGhr8g/mJ1A
http://paperpile.com/b/bGhr8g/mJ1A
http://paperpile.com/b/bGhr8g/j6zt
http://paperpile.com/b/bGhr8g/j6zt
http://paperpile.com/b/bGhr8g/j6zt
http://paperpile.com/b/bGhr8g/j6zt
http://dx.doi.org/10.1101/2021.05.26.445798
http://paperpile.com/b/bGhr8g/j6zt
http://paperpile.com/b/bGhr8g/fqdh
http://paperpile.com/b/bGhr8g/fqdh
http://paperpile.com/b/bGhr8g/fqdh
http://paperpile.com/b/bGhr8g/fqdh
http://paperpile.com/b/bGhr8g/fqdh
http://dx.doi.org/10.1101/gr.264879.120
http://paperpile.com/b/bGhr8g/fqdh
http://paperpile.com/b/bGhr8g/k1qS
http://paperpile.com/b/bGhr8g/k1qS
http://paperpile.com/b/bGhr8g/k1qS
http://paperpile.com/b/bGhr8g/k1qS
http://paperpile.com/b/bGhr8g/k1qS
http://paperpile.com/b/bGhr8g/876q
http://paperpile.com/b/bGhr8g/876q
http://paperpile.com/b/bGhr8g/876q
http://paperpile.com/b/bGhr8g/876q
http://paperpile.com/b/bGhr8g/juMyt
http://paperpile.com/b/bGhr8g/juMyt
http://paperpile.com/b/bGhr8g/juMyt
http://paperpile.com/b/bGhr8g/juMyt
http://paperpile.com/b/bGhr8g/fgYz
http://paperpile.com/b/bGhr8g/fgYz
http://paperpile.com/b/bGhr8g/fgYz
http://paperpile.com/b/bGhr8g/fgYz
http://paperpile.com/b/bGhr8g/fgYz
http://paperpile.com/b/bGhr8g/fwHT
http://paperpile.com/b/bGhr8g/fwHT
http://paperpile.com/b/bGhr8g/fwHT
http://paperpile.com/b/bGhr8g/fwHT
http://paperpile.com/b/bGhr8g/fwHT
http://dx.doi.org/10.1101/2021.03.27.436702
http://paperpile.com/b/bGhr8g/fwHT
http://paperpile.com/b/bGhr8g/jq1o
http://paperpile.com/b/bGhr8g/jq1o
http://paperpile.com/b/bGhr8g/jq1o
http://paperpile.com/b/bGhr8g/jq1o
http://paperpile.com/b/bGhr8g/gWS7
http://paperpile.com/b/bGhr8g/gWS7
http://paperpile.com/b/bGhr8g/gWS7
http://paperpile.com/b/bGhr8g/gWS7
http://dx.doi.org/10.1038/nrg3241
http://paperpile.com/b/bGhr8g/gWS7
http://paperpile.com/b/bGhr8g/JuQRH
http://paperpile.com/b/bGhr8g/JuQRH
http://paperpile.com/b/bGhr8g/JuQRH
http://paperpile.com/b/bGhr8g/JuQRH
http://paperpile.com/b/bGhr8g/JuQRH
http://paperpile.com/b/bGhr8g/wyEa
https://doi.org/10.1101/2021.05.27.445886
http://creativecommons.org/licenses/by/4.0/


  
Equilibrium.”    American   Journal   of   Human   Genetics    76   (5):   887–93.   

Zerbino,   Daniel   R.,   Steven   P.   Wilder,   Nathan   Johnson,   Thomas   Juettemann,   and   Paul   R.   Flicek.   2015.   “The   Ensembl   
Regulatory   Build.”    Genome   Biology    16   (March):   56.   

Zook,   Justin   M.,   Nancy   F.   Hansen,   Nathan   D.   Olson,   Lesley   Chapman,   James   C.   Mullikin,   Chunlin   Xiao,   Stephen   Sherry,   
et   al.   2020.   “A   Robust   Benchmark   for   Detection   of   Germline   Large   Deletions   and   Insertions.”    Nature   Biotechnology   
38   (11):   1347–55.   

  

19   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.445886doi: bioRxiv preprint 

http://paperpile.com/b/bGhr8g/wyEa
http://paperpile.com/b/bGhr8g/wyEa
http://paperpile.com/b/bGhr8g/wyEa
http://paperpile.com/b/bGhr8g/cQJu
http://paperpile.com/b/bGhr8g/cQJu
http://paperpile.com/b/bGhr8g/cQJu
http://paperpile.com/b/bGhr8g/cQJu
http://paperpile.com/b/bGhr8g/a1W7
http://paperpile.com/b/bGhr8g/a1W7
http://paperpile.com/b/bGhr8g/a1W7
http://paperpile.com/b/bGhr8g/a1W7
http://paperpile.com/b/bGhr8g/a1W7
https://doi.org/10.1101/2021.05.27.445886
http://creativecommons.org/licenses/by/4.0/

