












mutant KRAS interactome comprising RSK1, SPRED2, and NF1,
these proteins were nominated as the top 13th, 14th, and 20th
interactors specific to KRASQ61H in the human cell map dataset
(55). Taken together, our results demonstrate that the proximity
of RSK1 to KRASG12D depends on NF1 and SPRED2 and sug-
gest a function for these negative regulators of RAS signaling.
RSK1 to 4 are a family of serine/threonine kinases known to

be activated by ERK signaling and translocated to the plasma
membrane transiently and in an ERK-dependent manner upon
EGF stimulation (58, 59). To test whether MEK/ERK pathway
activation regulates the interaction between RSK1 and mutant
KRAS, we treated B-G12D–expressing FPC cells with 500 nM of
the MEK inhibitor trametinib or vehicle control during the biotin
incubation of the BioID assay and performed streptavidin pulldown
and Western blot for RSK1. MEK inhibition markedly decreased
phospho-ERK levels and abrogated RSK1 biotinylation by B-G12D
(Fig. 3D), suggesting that the RSK1–KRASG12D interaction de-
pends on MEK/ERK pathway activation. To determine whether
the abrogation of KRASG12D-mediated RSK1 biotinylation is a

secondary effect of suppressing cellular proliferation rather than
a specific effect of inhibiting the MEK/ERK pathway, we eval-
uated the proliferation of mT42 G12D-expressing cells upon
treatment with 20 nM gemcitabine, a cytotoxic drug, or 5, 50, 200,
and 500 nM trametinib. As expected, gemcitabine suppressed the
proliferation of these cells. Similarly, trametinib inhibited their
proliferation in a concentration-dependent manner (Fig. 3E).
Having confirmed the effects of these drugs on cellular prolifer-
ation, we repeated the BioID experiment with increasing doses of
trametinib, vehicle control, or 20 nM gemcitabine. Western blot
analyses confirmed the loss of RSK1 biotinylation upon the inhi-
bition of ERK activation, whereas RSK1 biotinylation was mostly
unchanged in gemcitabine-treated cells (SI Appendix, Fig. S3E),
thereby confirming that the loss of RSK1 biotinylation upon MEK
inhibition is a direct consequence of MEK/ERK pathway inhibi-
tion. Since ERK-mediated phosphorylation of RSK1 has been
previously linked to its membrane translocation (59), we sought to
determine whether a decrease in RSK phosphorylation by ERK
could explain the loss of RSK1 biotinylation upon MEK inhibition.
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Fig. 4. Membrane-localized RSK1 exerts negative
feedback on WT RAS. (A) FPC cell line mT42 cells
ectopically expressing RSK1, myr-RSK1, or empty
vector control were plated for cell proliferation and
treated with DMSO or 4-OHT, then measured by
CellTiter-Glo luminescence assay every day for 4 d.
(B) mT42 FPC cells ectopically expressing RSK1, myr-
RSK1, or empty vector control were treated with
DMSO or 4-OHT and analyzed by Western blot.
Gemcitabine was used as a proliferation control.
Immunoblotting was performed for RSK1 with RAS
pathways represented by phospho-ERK and phospho-
AKT, and the RSK1 substrates, phospho-EPHA2 and
phospho-S6. (C) MIA PaCa-2 cells expressing RSK1,
myr-tag RSK1, and empty vector control were seeded at
2,000 cells per well and treated with either 100 nM
AMG 510 or DMSO control, then measured by CellTiter-
Glo luminescence assay every day for 4 d. (D) MIA
PaCa-2 cells were seeded at 2,000 cells per well and
treated 24 h after seeding with 5 μM BI-3406 or DMSO
control and AMG 510 (from 5 μM to 0.1 nM). Cell vi-
ability was measured after 4 d with CellTiter-Glo. (E)
mT42 cells were seeded at 1,000 cells per well and
treated with 4-OHT or DMSO control and BI-3406 in a
dose–response manner (from 20 μM to 2 nM). Cell
viability was measured using CellTiter-Glo Lumines-
cence assay at day 4. (F) FPC cell line mT42 cells were
treated with 5 μM BI-3406, 20 nM trametinib, or
DMSO vehicle control in the presence or absence of
mutant KRAS by treatment with DMSO vehicle control
or 4-OHT, respectively. Immunoblotting was performed
for RAS pathways by phospho-ERK and phospho-AKT
and the RSK1 substrate phospho-S6.
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To this end, we treated mT42 cells with 50 nM trametinib and
performed Western blot analysis for phospho-RSK (S380).
Phospho-RSK decreased upon MEK inhibition, supporting a
model in which MEK/ERK pathway inhibition reduces RSK
phosphorylation and regulates its ability to interact with NF1 (SI
Appendix, Fig. S3F). Since ERK activation induces the expression
of negative regulators of the RAS pathway, including SPRED,
SPROUTY, and DUSP family proteins, we asked whether ERK
deactivation via MEK inhibition decreases SPRED1/2 expression,
thereby preventing the membrane localization and recruitment
of the NF1/RSK1 complex to the mutant KRAS interactome.
Indeed, we found that DUSP6, SPRED1, and SPRED2 were all
potently down-regulated following MEK inhibition in mT42
FPC cells in a time- and concentration-dependent manner (SI
Appendix, Fig. S3G), providing an additional explanation for the
loss of RSK1 biotinylation by oncogenic KRAS in the context of
MEK inhibition.

Membrane-Localized RSK1 Exerts Negative Feedback on WT RAS.
Having established an active KRAS interactome including NF1
and RSK1, we sought to determine a functional role for membrane-
localized RSK1 in PDAC cells. RSK1 is a known ERK pathway
effector, and membrane-targeted RSK1, considered to be consti-
tutively active, can confer MEK independence and mediate pro-
survival signals in IL-3–dependent cells (60). However, in other
cellular contexts, membrane-localized RSK1 has also been shown
to inhibit RAS signaling (61). As KRAS localizes to the plasma
membrane, we used a myristoylation (myr) tag to target RSK1 to
the plasma membrane (62) (SI Appendix, Fig. S4A). To identify
whether membrane-targeted RSK1 regulates the RAS pathway or
contributes to RAS-mediated transformation in PDAC cells, we
retrovirally introduced RSK1 or myr-tagged RSK1 into parental
mT42 cells and derivative cell lines stably expressing our tagged
KRAS variants, B-WT, B-G12D, and B-G12D/C185S. For com-
parison, we also included overexpression of ARAF and myr-tagged
ARAF as well as an empty vector control. These cells were plated
sparsely and treated with 4-OHT for 3 d to excise endogenous
KrasG12V before crystal violet staining to measure foci formation.
Expectedly, mT42 cells expressing B-G12D formed colonies nor-
mally despite the removal of endogenous KrasG12V, whereas the
parental cells and cells with overexpression of B-WT and B-G12D/
C185S were unable to rescue this loss and therefore exhibited less
colonies (SI Appendix, Fig. S4 B–D). Myr-tagged ARAF, but not
untagged ARAF, was able to partially rescue the loss of KRASG12V,
consistent with the observation that membrane-targeted ARAF
does not require active KRAS to activate downstream signaling
(63). In contrast, myr-RSK1 further inhibited colony formation of
mT42 parental cells and cells with either B-WT or B-G12D/C185S
following the excision of KrasG12V. Similarly, compared to empty
vector, RSK1, or kinase-dead RSK1 expression, myr-RSK1 ex-
pression in mT42 FPC cells markedly attenuated proliferation
following KrasG12V excision (Fig. 4A, Top) but had no effect on
cellular fitness when endogenous KrasG12V was present (Fig. 4A,
Bottom). We further validated this finding in mT93 cells (SI Ap-
pendix, Fig. S4E) and then sought to dissect the molecular under-
pinnings of this finding. Since membrane-targeted RSK produces
a growth suppression phenotype only in cells lacking oncogenic
KRAS, we hypothesized that this phenotype depends on the in-
hibition of WT RAS signaling.
To determine whether membrane-targeted RSK1 suppresses

cellular proliferation by inhibiting the RAS pathway, we introduced
empty vector, RSK1, kinase-dead RSK1, or myr-RSK1 to mT42
cells and treated the cells with either 4-OHT or DMSO control.
We confirmed that these constructs were correctly expressed and
functional by immunoblotting (Fig. 4B). As expected, cells expressing
RSK1 or myr-RSK1 showed increased activation of RSK1 substrates

such as S6 and EPHA2. There were no notable differences in the
phosphorylation levels of ERK and AKT in the presence of en-
dogenous mutant KRAS. However, upon mutant KRAS abroga-
tion, phospho-ERK levels were markedly reduced in myr-RSK1
compared to kinase-dead RSK1 and empty vector–expressing
cells. Importantly, mT42 empty vector–expressing cells treated
with 20 nM gemcitabine exhibited no attenuation of ERK acti-
vation, indicating that the reduction of RAS signaling induced by
myr-RSK1 is not a consequence of reduced proliferation. We also
performed these experiments in mT93 cells and obtained similar
results (SI Appendix, Fig. S4F). Collectively, these findings suggest
that membrane-targeted RSK1 selectively exerts negative feed-
back on WT RAS signaling.
To extend these findings to human PDAC, RSK1 and myr-RSK1

were ectopically expressed in MIA PaCa-2 cells, which harbor a
KRASG12C mutation that can be targeted by the commercially
available KRASG12C-specific inhibitor AMG 510 (64). To test
whether membrane-localized RSK1 might affect cell prolifera-
tion as a function of the observed changes in RAS signaling
pathways, we cultured RSK1-, myr-RSK1-, or empty vector–
expressing MIA PaCa-2 cells with DMSO or 100 nM AMG 510.
Whereas overexpression of RSK1 and myr-RSK1 had no effect
on the proliferation of mT42 cells treated with DMSO, cells
expressing these constructs, particularly myr-RSK1, exhibited in-
creased sensitivity to 100 nM AMG 510 (Fig. 4C). To further
validate these results using various concentrations of AMG 510,
we performed dose curves in MIA PaCa-2 cells expressing empty
vector, RSK1, and myr-RSK1 and similarly found that the
blockade of oncogenic KRAS with AMG 510 sensitized these cells
to RSK1 and myr-RSK–induced growth suppression (SI Appendix,
Fig. S4G). This effect could not be induced by 20 nM gemcitabine
(SI Appendix, Fig. S4H, Top), suggesting that AMG 510 elicits
RSK1-mediated growth suppression through the blockade of on-
cogenic RAS pathway, rather than through its secondary effects on
cellular fitness. To determine whether the attenuation of effector
pathways downstream of oncogenic KRAS modulates the sensi-
tivity to RSK1 expression, we treated MIA PaCa-2 cells expressing
control and RSK constructs with 20 nM trametinib and performed
proliferation assays. Interestingly, myr-RSK1 but not untagged
RSK1 reduced proliferation following trametinib treatment (SI
Appendix, Fig. S4H, Bottom). As the growth-suppressive effect of
RSK1 occurs exclusively at the membrane, and membrane-
targeted but not untagged RSK1 can bypass cellular control of
its membrane localization, this result suggests that direct MEK
inhibition has a greater effect on preventing RSK1 membrane
localization compared to upstream oncogenic KRAS inhibition.
Next, we sought to confirm whether membrane RSK1 inhibits
RAS effector pathways following oncogenic KRAS blockade in
MIA PaCa-2 cells in a similar manner to our prior findings in
FPC cells. To this end, we treated MIA PaCa-2 cells expressing
control and RSK constructs with 100 nM AMG 510 and harvested
protein lysates for Western blot analyses at 1 h, 1 d, and 3 d after
drug treatment. Remarkably, RSK1 and myr-RSK1 attenuated
ERK activation especially following 1 d of AMG 510 treatment
(SI Appendix, Fig. S4I). These findings nominate RSK1 as an
interactor of mutant KRAS that bridges the downstream acti-
vation of ERK signaling to the upstream negative regulator of
WT RAS, NF1. This suggests that RSK1/NF1 participates as a
dual negative feedback inhibitor of WT RAS, consistent with
previously described RSK1-mediated negative feedback that
involves NF1 (65) and SOS1 (61). The resistance of PDAC cells
to membrane-targeted RSK1 may reflect the indifference of
oncogenic KRAS to NF1 GAP activity and less dependence on
SOS1-mediated GTP loading compared to WT RAS.
Given the specificity of membrane RSK1 to WT RAS and

because RSK1 has been previously shown to feedback inhibit
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RAS/ERK signaling through the inhibition of SOS1 or through
its activation of NF1 (61), we asked whether WT RAS inhibi-
tion through selective pharmacological inhibition of SOS1
could phenocopy the effects of membrane-targeted RSK. Ac-
cordingly, we treated MIA PaCa-2 cells with a combination
AMG 510, to abrogate oncogenic KRAS signaling, and a se-
lective SOS1 inhibitor, BI-3406, to block WT RAS signaling.
Although MIA PaCa-2 cells have undergone loss of heterozy-
gosity and do not possess WT KRAS, this cell line expresses
other RAS isoforms, HRAS and NRAS (SI Appendix, Fig. S4J),
which are amenable to mutant KRAS-induced negative feed-
back inhibition and have been recently shown to exhibit in-
creased activation following KRASG12C inhibition (66, 67).
Indeed, we found that BI-3406, a selective SOS1 inhibitor, en-
hanced the AMG 510-induced growth suppression in MIA PaCa-
2 cells (Fig. 4D and SI Appendix, Fig. S5A). We also obtained
similar results using NCI-H358, a KRASG12C non–small cell lung
cancer model (SI Appendix, Fig. S5B, Left). Expectedly, SUIT2
PDAC cells with KRASG12D were completely resistant to the drug
combination (SI Appendix, Fig. S5B, Right). SOS1 inhibition may
impair GDP-to-GTP KRASG12C cycling, thereby increasing the
efficacy of AMG 510 through increased availability of its substrate
rather than direct inhibition of WT RAS (68). To validate the
effect of SOS1 inhibition on WT RAS specifically, we employed
our FPC model, which precludes the contribution of mutant
KRAS GTP loading through genetic deletion of KRASG12V.
KrasG12V deletion combined with SOS1 inhibition abrogated the
proliferation of FPC cells (Fig. 4E and SI Appendix, Fig. S5C),
thereby supporting the notion that the blockade or loss of onco-
genic KRAS eliminates negative feedback signaling on WT RAS.
Notably, excision of mutant RAS modestly enhanced the effect of
trametinib in these cells (SI Appendix, Fig. S5D). The efficacy of
SOS1 inhibition upon the loss of endogenous mutant KRAS im-
plicates WT RAS in mediating the adaptive response to oncogenic
KRAS-directed therapies and suggests combination strategies
involving dual targeting of oncogenic KRAS and WT RAS in
KRAS-driven cancers. Finally, we sought to determine whether,
similarly to membrane-targeted RSK, pharmacological blockade
of WT RAS signaling would attenuate downstream RAS effector
pathways upon ablation of oncogenic KRAS. Indeed, treatment
with 5 μM BI-3406 following the excision of endogenous mutant
KRAS abolished both ERK and AKT activation, consistent with
the inhibition of WT RAS signaling (Fig. 4F). Our findings
collectively provide support for a model in which oncogenic
KRAS elicits negative feedback on WT RAS through NF1/RSK1
(Fig. 5A). The loss of this feedback signaling through oncogenic
KRAS deletion or blockade disinhibits WT RAS and provides a
mechanism for adaptive resistance to oncogenic KRAS-directed
therapies (Fig. 5B).

Discussion
While prior BirA-RAS studies have included other RAS isoforms
and cell types, our experiments focused on PDAC to identify
relevant mutant KRAS interactors in this malignancy (46, 47). In
addition, the normalization of peptide counts to the detection of
BirA increased the robustness of the analyses as suggested by the
detection of internal and positive controls. It is notable that some
biotinylated proteins, such as p110-α, could not be verified by MS,
suggesting that the sensitivity of MS may be below the threshold
for certain proteins and therefore additional fractionation meth-
ods should be considered for future BioID-MS work. Nonetheless,
our approach identified 32 candidate interactors of KRASG12D, 11
of which have been previously reported. Our work showed that
ARAF differs from the other RAF family kinases, BRAF and
RAF1, by being predominantly membrane-localized with mutant
RAS. Since membrane-bound ARAF is transforming even in the

absence of active KRAS, this prompts further investigation of
potential unique functional roles of ARAF. Other notable mu-
tant- and membrane-specific interactors include the mTORC2
complex described by Kovalski et al. and RSK1, of which we fo-
cused on the latter (47).
While RSK1 is known to be involved in the RAS pathway

downstream of ERK1/2 (60), RSK1 does not have an annotated
RBD. Additionally, RSK has been previously described to have
negative feedback effects on the RAS pathway via both inhibition
of SOS1 and activation of NF1 in the context of WT RAS (61, 65).
Although RSK1 and NF1 have been previously described to work
in parallel to feedback inhibit WT RAS, our findings reveal an
interaction between NF1 and RSK1. We demonstrate that the
RSK1 interaction with KRASG12D requires the expression of
NF1 and SPRED2, suggesting the existence of a protein complex
composed of mutant KRAS, NF1, RSK1, and SPRED2. Exper-
iments with the MEK inhibitor trametinib further show that the
proximity of RSK1 to KRASG12D depends on ERK signaling,
consistent with previous studies indicating that RSK1 activity is
downstream of ERK (60, 69). RSK1 has been previously shown to
transiently localize to the membrane upon EGF stimulation, and
its interaction with NF1 and KRAS may mechanistically explain
this observation (59). We show that membrane targeting of RSK1
does not impair the proliferation of KRAS mutant PDAC cells.
However, pharmacological blockade or genetic ablation of mutant
KRAS sensitizes PDAC cells to growth suppression by membrane-
localized RSK1, consistent with RSK1 acting as a negative regu-
lator of WT RAS signaling.
We demonstrate that oncogenic KRAS engages NF1/RSK1 to

feedback inhibit WT RAS signaling. Consequently, the pharmaco-
logical targeting of oncogenic KRAS would disengage this negative
feedback pathway, activate WT RAS, and trigger adaptive re-
sistance. Indeed, we provide evidence that PDAC cells survive
the deletion of endogenous KRASG12V mutant in vitro; however,
concomitant blockade of WT RAS through SOS1 inhibition
completely impairs the fitness of these tumor cells. Additionally,
we show that blockade of WT RAS either by expressing mem-
brane RSK1 or pharmacologically through SOS1 inhibition en-
hances the efficacy of AMG 510, a selective KRASG12C inhibitor,
in KRASG12C-mutant tumor cells. Our work complements recent
studies that demonstrate synergy between KRASG12C inhibitors
and blockade of upstream activators of WT RAS, such as EGFR
or SHP2, and suggests that activation of WT RAS may play a
dominant role in the adaptive resistance to oncogenic KRAS-
directed therapies (68, 70).
While we demonstrate that membrane-localized RSK1 attenu-

ates WT RAS signaling, the importance of membrane-bound
RSK1 during tumor progression in KRAS mutant cells remains
to be determined. We show that one role for membrane-bound
RSK1 is to inhibit the signaling through WT RAS proteins during
mitogenesis. This may focus biochemical effectors on mutant RAS
oncoproteins to drive cancer. Alternatively, membrane-localized
RSK paralogs (particularly RSK1 and RSK2) have been shown to
promote invasion and metastasis of cancer cells (71). Indeed,
RSK1 with prolonged membrane localization may have a greater
opportunity to phosphorylate membrane-localized substrates that
promote cellular functions associated with tumorigenesis, includ-
ing increased cell proliferation, survival, migration, and glycolytic
flux (71–76). This would implicate a function for the NF1 tumor
suppressor protein in RAS-mutant cells. Consistent with such a
function is that biallelic mutations and complete suppression of
NF1 is rare in cancer (77). In conclusion, membrane-localized
RSK1 may promote cancer in several ways in vivo. This moti-
vates further study of the role of the NF1/RSK1 pathway in mu-
tant KRAS-driven PDAC.
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Materials and Methods
Constructs. The BirA R118G biotin-protein ligase gene including the multiple
cloning site was cloned from the pcDNA3.1 mycBioID plasmid deposited by
the Roux laboratory. Murine Kras was inserted between the multiple cloning
site of BirA R118G and SalI with GGCGGAAGCGGA, encoding for a short
glycine linker (GGSG). The C185S mutation was made with the Q5 Site-
Directed Mutagenesis Kit. BirA-CAAX control was created by fusing the
last 20 amino acids of murine KRAS4B to the C terminus of BirA. The

constructs were moved to pBABE-neo between BamHI and SalI for retroviral
production. For RSK1 overexpression, human RSK1 complementary DNA
(cDNA) was obtained from John Blenis via Addgene. The sequence (gggagt
agcaagagcaagcctaaggaccccagccagcgc) was added after the start codon of
the RSK1 cDNA to fuse a myr-tag to the N terminus. Both RSK1 and myr-
RSK1 were cloned into pBABE-neo between EcoRI and SalI. For gene editing,
lentiCas9-Blast (addgene no. 52962, deposited by the Feng Zhang labora-
tory) was used (78). Guides were designed using the Benchling CRISPR tool
against the first coding exon of each target gene with the best off-target

Fig. 5. Oncogenic KRAS engages an
RSK1/NF1 pathway to inhibit WT RAS in
pancreatic cancer cells. Schematics illus-
trating RSK1/NF1 interactions and known
mechanisms of RSK1-mediated negative
feedback on the RAS pathway. Mutant
KRAS activates the RAF/MEK/ERK/RSK and
PI3K/AKT pathways. Upon ERK activation,
RSK1 transiently localizes to the mem-
brane (59). (A) In KRAS-mutant PDAC cells,
RSK1 depends on MEK activity and NF1/
SPRED2 expression to be recruited to the
mutant-KRAS interactome on the mem-
brane. Membrane-localized RSK1 nega-
tively regulates RAS activation by inhibiting
the RasGEF, SOS1, and activating the
RasGAP, NF1. Compared to mutant RAS,
WT RAS exhibits greater sensitivity to RasGEFs
and RasGAPs; therefore, the RSK1-mediated
negative feedback mechanism potently
inhibits WT RAS but not mutant RAS. (B)
Upon mutant Kras ablation, decreased
SPRED2 expression and ERK-mediated
RSK1 phosphoactivation disengages the
negative feedback exerted on WT RAS by
NF1/RSK1, thereby enabling RAS-addicted
cells to survive.
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scores inserted into the ipUSEPR lentiviral vector (SI Appendix, Table S4).
Kinase-dead RSK plasmid was constructed by PCR-based cloning. Using
p-BABE-RSK plasmid as a template, the primer containing the mutations
(CATCTTGGTCCGGACGCGGTCACGTACTTTCAGCGTTGCCTTCTTCAGCACGCG-
CATAGCATACAGGTGCCCAC) and 5′ pBABE-RSK1 primer were used to amplify
the PCR products. The PCR products digested with EcoRI/BPEBI and MfeI/BSM
were subsequently subcloned into p-BABE-hRSK vector digested with
EcoRI/BPEBI and MfeI/BSMI, respectively. The mutations were confirmed by
Sanger sequencing.

Cell Culture. Phoenix, 293T, 3T3, mT42, mT93, mT95, and SUIT2 cells were
cultured in Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal
bovine serum (FBS) at 37 °C in 5% CO2 incubator. MIA PaCa-2 cells were
cultured in Roswell Park Memorial Institute Medium (RPMI 1640) with 10%
FBS. Cells for BioID experiments had their media changed to serum-free
DMEM with 50 μM biotin for 24 h prior to cell harvest.

Cell Lysis for Protein. Cells were washed five times with ice-cold phosphate-
buffered saline (PBS) prior to lysis with mild buffer (50 mM 4-(2-hydrox-
yethyl)-1-piperazineethanesulfonic acid (HEPES), 150 mM NaCl, 0.7% Non-
idet P-40, 10% Glycerol, 1mM ethylenediaminetetraacetic acid (EDTA) with
Roche cOmplete Mini protease inhibitor tablet and Roche PhoSTOP phos-
phatase inhibitor. Lysates were spun at 16,900 × g for 10 min. The detergent-
compatible (DC) Protein Assay (Bio-Rad) was used to quantify the protein
concentration. For experiments using FPC cells, 2 μM of 4-hydroxytamoxifen
(4-OHT) with DMSO as the vehicle was added to the media for 3 d prior to
harvest. AMG 510 (Selleckchem, no. S8830) dissolved in DMSO was added to
RPMI for 24 h or as indicated in MIA PaCa-2 experiments. Buffers and pro-
tocol for sequential cell fractionation experiments were followed as laid out
in Baghirova et al. (53)

Pulldown and Immunoprecipitation. Cell lysates were harvested in mild
Nonidet P-40 buffer with protease and phosphatase inhibitor as described
above (50mM HEPES, 150 mM NaCl, 0.7% Nonidet P-40, 10% Glycerol, 1mM
EDTA) with Roche cOmplete Mini protease inhibitor tablet and Roche
PhoSTOP phosphatase inhibitor, at 0 °C. A total of 5 mg lysate in 1 mL total
buffer was incubated with 30 μl MyOne Streptavidin C1 Dynabeads or 5 mg
Myc-Tag (9B11) Mouse mAb (Cell Signaling, no. 2276) antibody for 3 h with
subsequent 1-h incubation with 30 μl Protein G Dynabeads for streptavidin
pulldown and myc-tag immunoprecipitation (IP), respectively. The beads
were washed five times in lysis buffer before elution in NuPAGE 3-(N-mor-
pholino)propanesulfonic acid (MOPS) sodium dodecyl sulfate (SDS) running
buffer at 95 °C.

MS Analysis. On-bead tryptic digestion of Dynabeads, liquid chromatography
with tandem mass spectrometry (LC-MS/MS), and database searching is

detailed in SI Appendix. Proteins quantified by only one peptide were
omitted from further analysis. All quantification of peptides was normalized
to that of BirA prior to producing relative enrichment by ratiometric anal-
ysis. The proteins were ranked by relative enrichment for each biological
replicate. The sum of the three assigned ranks was used to indicate a general
enrichment score for all three biological replicates to account for protein
expression differences across cell lines. The candidate interactors were then
sorted by their cumulative rank scores to identify consistently enriched
interactors. Candidate interactors met their respective criteria if they were
enriched in two of three biological replicates.

Cell Proliferation Assay.Mouse cell lines (3T3 cells and FPC cells) were plated at
1,000 cells per well while human cell lines (MIA PaCa-2, SUIT-2, and NCI-H358)
were plated at 2,000 cells per well. Five wells were used for technical rep-
licates. Pharmacological agents were added by HP D300 drug dispenser, and
cell viability was assayed daily using the CellTiter-Glo Assay and read on a
Spectramax i3 plate reader. For crystal violet staining, cells were plated in
6-well plates at a density of 5,000 cells per well and allowed to grow for 2 d
or 2,000 cells per well for 3 d. The cells were washed with ice-cold PBS twice
before methanol fixation for 20 min. These cells were then stained with a
crystal violet solution (0.5% crystal violet, 95% ethanol in water).

Statistical Analysis. Microsoft Excel and GraphPad Prism were used for
graphical representation of data. Statistical analysis was performed using
Student’s t test.

Data Availability.All study data are included in the article and/or SI Appendix.
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