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Abstract

Evolutionary changes in gene expression are often driven by gains and losses of cis-regulatory ele-

ments (CREs). The dynamics of CRE evolution can be examined using multi-species epigenomic

data, but so far such analyses have generally been descriptive and model-free. Here, we intro-

duce a probabilistic modeling framework for the evolution of CREs that operates directly on raw

chromatin immunoprecipitation and sequencing (ChIP-seq) data and fully considers the phyloge-

netic relationships among species. Our framework includes a phylogenetic hidden Markov model,

called epiPhyloHMM, for identifying the locations of multiply aligned CREs, and a combined

phylogenetic and generalized linear model, called phyloGLM, for accounting for the influence of

a rich set of genomic features in describing their evolutionary dynamics. We apply these methods

to previously published ChIP-seq data for the H3K4me3 and H3K27ac histone modifications in

liver tissue from nine mammals. We find that enhancers are gained and lost during mammalian

evolution at about twice the rate of promoters, and that turnover rates are negatively correlated

with DNA sequence conservation, expression level, and tissue breadth, and positively correlated

with distance from the transcription start site, consistent with previous findings. In addition, we

find that the predicted dosage sensitivity of target genes positively correlates with DNA sequence

constraint in CREs but not with turnover rates, perhaps owing to differences in the effect sizes

of the relevant mutations. Altogether, our probabilistic modeling framework enables a variety of

powerful new analyses.
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Introduction

It is now well established that the evolution of form and function is often driven by mutations

in cis-regulatory elements (CREs), particularly in multicellular eukaryotes having complex pro-

grams for regulating gene expression1–4. In humans, patterns of genetic polymorphism, patterns

of interspecies divergence, and the results of genome-wide association studies all indicate that a

majority of phenotype- or fitness-influencing nucleotides fall in noncoding sequences and likely

function in gene regulation5–10. While the mutations that underly regulatory evolution sometimes

have subtle effects on, say, protein-DNA binding or chromatin accessibility, in many of the best-

known cases, they instead alter gene expression through the gain or loss in activity of a whole

CRE11–13. A number of lines of evidence indicate that this gain-and-loss process—sometimes

called “turnover”—occurs at substantial rates over evolutionary time14–22. Indeed, the evolutionary

dynamics of this process appear to play out over considerably shorter time periods than those for

other critical functional elements, such as protein-coding genes, microRNAs, or long noncoding

RNAs23, 24.

There have been numerous attempts to model the evolutionary dynamics of CRE turnover

at the level of the primary DNA sequence14, 15, 25–27. However, characterizing this process at the

sequence level is fundamentally challenging owing to limitations in the inference of regulatory

function from the DNA sequence alone. During the past 15 years, new technologies for collect-

ing high-throughput epigenomic data—such as chromatin immunoprecipitation and sequencing

(ChIP-seq) data for transcription factors or histone modifications—have provided a path forward,
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by more directly indicating similarities and differences across species in molecular phenotypes

that are closely related to cis-regulatory activity. A considerable number of comparative epige-

nomic studies have now been carried out in a variety of organisms, including studies based on

transcription factor binding17, 18, 28–31, particular histone modifications32–36, chromatin accessibility

or chromatin contacts37–39, DNA methylation40, and nascent transcription24 (partially reviewed in

ref. 41). Among other findings, these studies have confirmed generally rapid rates of CRE gain and

loss, and demonstrated that turnover rates are substantially higher in enhancers than in promoters,

that depth of conservation correlates with various measures of functional impact, and that the evo-

lutionary stability of gene expression correlates with the complexity and conservation of the local

CRE architecture. However, with rare exceptions40, 42 (see Discussion), the available comparative

epigenomic data sets have been analyzed using heuristic, model-free methods that do not consider

the phylogenetic relationships of the species under study or the uncertainty in epigenomic data.

In this article, we introduce new model-based inference methods that address these deficien-

cies by fully accounting for the species phylogeny as well as the relationship between element

activity and raw ChIP-seq read counts. Our methods can also account for correlations of turnover

rates with local features along the genome sequence—such as gene expression patterns across tis-

sues, distance to the transcription start site, or DNA sequence conservation—and they are efficient

enough to be applied to genome-wide data sets. As a proof of concept, we apply these meth-

ods to previously published ChIP-seq data for the H3K4me3 and H3K27ac histone modifications

in liver tissue across a phylogeny of nine mammals35. As described in detail below, we confirm

several previous findings regarding relative rates of turnover in enhancers and promoters, and cor-
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relations with gene expression patterns and local regulatory architecture. In addition, we examine

differences between patterns of constraint at the DNA sequence and CRE turnover levels, and find

evidence suggesting that they reflects differences in the effect sizes of the relevant mutations.

Results

General approach. Our approach for analyzing multi-species epigenomic data consists of three

major stages (Fig. 1A). First, we carry out a series of preprocessing steps to summarize the ChIP-

seq read counts for each species in a common coordinate system (based on version hg38 of the

human reference genome), excluding genomic regions where we could not establish clear one-

to-one orthology based on genomic synteny (see Methods for details). Second, we apply a newly

developed probabilistic inference method, called epiPhyloHMM, to identify “active” regions based

on the ChIP-seq read counts, working in the common coordinate system. At this stage, an “active”

region is one containing CREs in any one or more species. This method accounts for the phyloge-

netic gain and loss process, as well as noise in the ChIP-seq data, at the same time as it predicts

the locations of the elements. Third, we apply a new probabilistic modeling program, called phy-

loGLM, to describe the process of phylogenetic gain and loss in more detail, within the “active”

regions identified by epiPhyloHMM. PhyloGLM conditions on a rich set of genomic features,

capturing their correlations with local rates of gain and loss.

Shared phylogenetic model. The epiPhyloHMM and phyloGLM programs both make use of the

same core probabilistic model for the gain and loss of CREs along the branches of a phylogeny.

Moreover, in both cases, this model also describes the generation of read counts that are reflective
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of CRE presence or absence at the tips of the tree. Thus, it serves as a generative model for multi-

species read counts that can be fitted to the raw data by maximum likelihood (Fig. 1B). In this

article, we focus on read counts from ChIP-seq experiments, but the model can easily be extended

to other data types, such as those arising from DNase-seq, ATAC-seq, or PRO-seq experiments.

The phylogenetic component of the model is a straightforward presence/absence model (with

state variables s ∈ {0, 1}) for CREs along the branches of a phylogeny. It assumes a tree topology is

given together with nonnegative real-valued branch lengths. In practice, the tree and branch lengths

can be obtained from the literature or estimated from sequence data (see Methods). The stochastic

process for gains and losses is defined, in the usual manner, by a continuous-time Markov model

with an instantaneous rate matrix Q, from which branch-length dependent turnover (gain/loss)

probabilities can be obtained as P(t) = exp(Qt) for each branch-length t (see ref. 43). The model

has two free parameters: the stationary probability of CRE presence (π) and a single turnover

rate parameter (γ), which together define a reversible rate matrix Q (Fig. 1B). Given data at the

leaves of the tree, phylogenetic inference with this model can be accomplished using Felsenstein’s

pruning algorithm44, 45 (see Methods).

Unlike with standard phylogenetic models for DNA sequences, however, the observed data

here consists of epigenomic (typically ChIP-seq) read counts, which provide only an approximate

indication of whether or not an active CRE exists in each species. We accommodated the uncer-

tainty in read counts by borrowing from the literature on statistical peak calling for ChIP-seq data46.

In particular, we described both the probability of the observed read counts xi in species i given

an active CRE in that species, P(xi | si = 1), and the probability of the observed read counts given
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no active CRE, P(xi | si = 0), using negative binomial distributions (Fig. 1B). Moreover, for the

“active” model, we used a mixture of three negative binomial distributions to accommodate peaks

of various heights (see Methods)47, 48. We also adapted these emission distributions to accommo-

date missing data due to alignment gaps (Methods). Altogether, this modeling approach allows us

to perform multi-species peak calling and phylogenetic inference simultaneously, accounting for

uncertainty in both the locations of present day CREs along the genome and their presence/absence

over evolutionary time.

epiPhyloHMM: Prediction of multi-species CREs from epigenomic data. To address the prob-

lem of predicting “active” CREs, we made use of the framework of phylogenetic hidden Markov

models, or phylo-HMMs49, 50. Phylo-HMMs are hidden Markov models whose hidden states are

associated with phylogenetic models, which in turn, define distributions over columns in multiply

aligned sequences of observations. Phylo-HMMs are sometimes called “space-time” models51 be-

cause they describe stochastic processes in both a spatial dimension, along the genome sequence,

and a temporal dimension, along the branches of a phylogeny. In this case, the temporal (phylo-

genetic) models describe distributions over aligned ChIP-seq readcounts from multiple species, as

described in the previous section. The spatial (hidden Markov) model, in turn, is designed to allow

the identification of CREs with various patterns of presence/absence at the tips of the tree.

This hidden Markov model consists of a single “inactive” state and a set of states representing

each possible presence/absence pattern (Fig. 2A). Assuming most of the genome will be inactive,

the transition model is sparse, with each active state being accessible only from the inactive state,

and not from other active states (see ref. 25 for a similar approach). It is completely defined by
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two free parameters, ρ0 and ρ1 (Fig. 2A and Methods). In practice, we constrain the complexity

of the model by including states only for presence/absence patterns that are achievable by at most

three gain/loss events along the branches of the phylogeny (see Methods). The free parameters

of both the phylogenetic model (π, γ) and the HMM (ρ0, ρ1) are fitted to aligned epigenomic data

by maximum likelihood, and then active elements are called in the standard way, using the Viterbi

algorithm (Fig. 2B). The method generally performs well on simulated data (Supplemental Meth-

ods & Supplemental Figs. S1–S5).

Application of epiPhyloHMM to histone-modification data for nine mammals. We applied

epiPhyloHMM to recently published H3K4me3 and H3K27ac ChIP-seq data for liver tissue from

mammals35, preprocessing and aligning the data as outlined above (see also Methods). We used

data for nine of the 20 species examined in ref. 35, prioritizing ones with high-quality genome as-

semblies and alignments. This analysis produced an average of v16,000 and v47,000 elements per

species for the H3K4me3 and H3K27ac marks, respectively (Supplemental Fig. S6), with some

variation across species owing to differences in data quality and alignability. The substantially

greater abundance of H3K27ac elements was expected because the H3K27ac mark is associated

with both active promoters and active enhancers, whereas the H3K4me3 mark is more specific to

promoters. The two types of elements also had highly distinct distributions of state assignments,

with the fully conserved state being the most frequent for the H3K4me3 mark but ranking much

lower for the H3K27ac mark, beneath most single-species states (Supplemental Fig. S7). This

difference suggests substantially lower rates of turnover in enhancers than promoters (see below).
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phyloGLM: Modeling of CRE turnover conditional on local genomic features. We addressed

the third stage in our pipeline—modeling of gain/loss dynamics conditional on genomic features

such as nearby gene expression or sequence conservation—with a new program, called phyloGLM,

that allows the free parameters of the our phylogenetic model (π and γ) to be determined by a

function of genomic features through a generalized linear model (GLM; Fig. 3). As shown below,

this GLM-based design provides a rigorous framework for measuring the strength of association

of individual genomic features with turnover rate, and for testing for differences in turnover rate

between distinct groups of CREs (see Discussion).

Application of phyloGLM to real data. We applied phyloGLM to the genome-wide predictions

from epiPhyloHMM, separately analyzing the H3K4me3 promoter data set and two subsets of

the H3K27ac data that correspond to likely promoters and likely enhancers. Thus, we were able

to compare the enhancer data set with two distinct promoter data sets, one of which (H3K27ac)

included more abundant but less precise predictions than the other (H3K4me3). To set up the

analysis, we first assigned each CRE a putative target gene from Ensembl52 using simple distance-

based rules, which essentially associated each CRE with the closest transcription start site (TSS)

of a gene but discarded elements that could plausibly be associated with more than one gene (see

Methods and Supplemental Fig. S8). Also based on proximity to the nearest TSS, we classified

H3K27ac CREs as likely promoter (within 1.5 kb) or enhancer (within 100 kb) elements, and

we similarly classified H3K4me elements as likely promoters (within 1.5kb) or discarded them.

Finally, we associated each CRE with a collection of genic and cis-regulatory features that could

potentially impact its turnover rate (Fig. S9). Broadly, these features described the numbers of
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CREs associated with the target gene, the expression patterns and annotated function of that gene,

and measures of evolutionary constraint on the local DNA sequence. After removing all elements

with incomplete covariate data, we were left with 5,368 H3K4me3 promoters, 7,220 H3K27ac

promoters, and 25,673 H3K27ac enhancers for further analysis. These features were somewhat

correlated with one another, but most correlations were weak (Supplemental Fig. S10). We fitted

phyloGLM separately to these three sets of elements, estimating all free parameters by maximum

likelihood and conditioning on a phylogeny with branch lengths based on published estimates of

divergence times in millions of years53. In all cases, we separately parameterized the branch to the

outgroup (opossum), on which gains and losses are difficult to distinguish, to avoid skewing the

other parameter estimates.

This model permitted us to compute the expected total numbers of gains and losses along

each branch of the phylogeny, conditional on the data and the fitted model. Similar patterns of

gain and loss were observed for the H3K4me3 and H3K27ac promoters, with fewer total events

in the H3K4me3 elements (0.97 vs. 1.22 events per element on average; Supplemental Fig. S11).

For H3K27ac elements, we found that the overall rates of gains and losses are fairly similar, with

somewhat more gains than losses, both within promoters and within enhancers (Supplemental

Fig. S12). However, the total rate of turnover for enhancers appears to be approximately twice that

of promoters, with 2.47 events per element compared with 1.22 for the H3K27ac elements. The

numbers of expected events per branch were roughly proportional to the branch lengths, with long

branches tending to be assigned more events than short branches. The gain/loss proportions were

somewhat variable across branches, but this variation likely reflects a combination of true differ-
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ences and biases from human-referenced alignments and differences in ChIP-seq data abundance

and quality across species (see Discussion).

A comparison of the distributions of numbers of events per CRE provided further support

for a roughly two-fold higher rate of turnover at enhancers than promoters, with median values of

0.0075 and 0.0031 events per million years (myr), respectively, for the H3K27ac data (Fig. 4A;

p < 2.2 × 10−16; Wilcoxon signed-rank test). From these distributions and the estimated phy-

logeny, it was also possible to estimate a distribution of the “half-life” (time required for half of

active elements to be lost) for each type of CRE. For the H3K27ac data, the median half-life for

enhancers is 130 myr and that for promoters is 552 myr (Fig. 4B; see Methods). These estimates

are substantially lower than previous estimates of 296 myr and 939 myr, respectively35. However,

our estimate of the median turnover rate for promoters based on the less noisy H3K4me3 data set

was ∼30% lower, at 0.0022 events per myr, corresponding to a half-life estimate of 937 myr, in

much better agreement with the corresponding previous estimate. Thus, it seems likely that our

H3K27ac turnover rate estimates are substantially inflated by the lower resolution ChIP-seq data

(see Discussion).

Gene-expression-related features associated with turnover rates. In addition to allowing us

to characterize overall rates of turnover, our GLM-based framework enabled us to examine the

strength and directionality of the association between each of the genomic features we considered

and the rates of turnover at enhancers and promoters. We begin by considering these relationships

for gene-expression-related features, and examine the remaining features in subsequent sections.

For promoters, three gene-expression-related covariates had statistically significant associations
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with turnover rate: the level of expression of the target gene in the liver (the assayed tissue here),

the number of tissues in which the target gene was expressed, and the cross-tissue expression dis-

persion (Fig. 5). For liver expression and the number of tissues, increased values of the covariate

were associated with significantly decreased turnover rates. These observations are broadly consis-

tent with a variety of previous analyses that have indicated that CREs associated with high levels

of expression in the tissue of interest or with broad expression patterns across tissues tend to expe-

rience elevated levels of constraint8, 35, 54–56. The positive correlation with cross-tissue expression

dispersion (significant for H3K4me3 only) appears to reflect a similar trend.

The results for enhancers were generally similar to those for promoters, but tended to be

somewhat weaker, likely in part owing to the difficulty of correctly linking enhancers with target

genes. One notable difference for enhancers was that the number of tissues in which the target gene

was expressed was not significantly associated with turnover rate. This difference might result

in part from tissue-general “housekeeping” tending to have fewer enhancers than tissue-specific

genes57. In addition, housekeeping genes are likely enriched for proximal enhancers, which tend

to be excluded by our filters.

Additional features associated with turnover rates. The remaining genomic features describe

either measures of sequence constraint of the CRE (phastCons6) or the gene (pLI58), or aspects

of the local regulatory “architecture” of each target gene, including the numbers of enhancers and

promoters and the distance of each enhancer from the TSS (Fig. 6). Both enhancers and promoters

displayed a negative correlation between CRE sequence conservation, as measured by phastCons,

and turnover rate. As previously noted24, 35, 56, this observation indicates that elements that are
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more constrained at the DNA sequence level are also more resistant to evolutionary gain and loss.

Interestingly, however, we observed no significant correlation between constraint against loss-of-

function variants in the gene, as measured by pLI scores, and turnover rates of associated enhancers

or promoters (see next section).

Among the architectural features, the strongest correlate at the enhancer level is the distance

to the TSS, a quantity that is positively associated with turnover rate. As has been noted in several

recent studies24, 35, 56, this increased constraint against turnover on enhancers close to the TSS likely

reflects an enrichment for genuine enhancer-gene interactions and direct influence on the expres-

sion of the target gene. Another observation that echoes a previous finding is that the number of

enhancers per gene is positively correlated with the enhancer turnover rate but negatively corre-

lated with the promoter turnover rate. As previously noted24, this observation suggests that larger

ensembles of enhancers associated with the same target gene tend to impose additional constraints

against promoter turnover, but nevertheless to relax constraint on each of the enhancers themselves,

perhaps because each enhancer is less essential to the overall regulatory architecture of the locus

(see also refs. 59–61). We also observed significant effects for several top-level Reactome categories,

suggesting that biological function may provide additional information about regulatory constraint

(Supplementary Fig. S13). Together, these observations suggest that CREs evolve in a manner

that is strongly dependent on the local regulatory context in which they appear.

Differences between DNA sequence and epigenetic conservation in CREs. The correlation of

turnover rate with the phastCons scores of CREs but not with the pLI scores of target genes is

curious, but what does it signify? The pLI score for a gene measures the probability of intolerance
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to (generally heterozygous) loss-of-function mutations in that gene, as inferred from patterns of

variation in ultra-deep human exome sequencing data58. pLI scores can be used to differentiate

between haploinsufficient and haplosufficient genes or, similarly, between dosage-sensitive and

insensitive genes58 (although, strictly speaking, the scores are directly informative only about the

strength of selection acting on heterozygotes62). By contrast, phastCons scores simply measure

a reduction in fixed derived alleles, and do not effectively differentiate among various forms of

negative selection. Therefore, the observed difference in correlation suggests that gains and losses

of CREs are generally deleterious but perhaps do not depend strongly on the dominance or dosage

properties of target genes.

To investigate this issue further, we examined CRE turnover rates at the promoters of two

classes of genes that serve as proxies for dosage insensitivity and sensitivity, respectively: genes

that encode proteins involved in metabolism such as enzymes (whose action tends to be relatively

insensitive to protein abundance) and genes that encode proteins that regulate gene expression

such as transcription factors (which tend to be more sensitive to abundance)63, 64. We found no

significant difference between these classes of genes in the turnover rates of CREs in either pro-

moters or enhancers (Fig. 7A), further supporting the idea that turnover rates have little dependency

on dosage or dominance. Interestingly, however, when we condition on the expected number of

turnover events at each CRE and focus on the CREs that have undergone the fewest events, we do

observe increased sequence conservation at the more dosage-sensitive regulatory genes. This dif-

ference is observed both for promoters (Fig. 7B) and enhancers (Fig. 7C), although it is statistically

significant for promoters only. It suggests that, while both classes of genes are similarly resistant to
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mutations that result in the complete gain and loss of elements (Fig. 7A), dosage-insensitive genes

are more tolerant of nucleotide substitutions that do not result in complete gain or less events (Fig.

7B&C). These observations illustrate how the evolutionary dynamics of CRE gain and loss may

differ from those for nucleotide substitutions owing to the pronounced effects of turnover events on

gene expression, and, more generally, how patterns of evolutionary constraint across the genome

may depend on the effect sizes of mutations.

Discussion

In this article, we have introduced a new probabilistic modeling framework for inferring the dy-

namics of CRE gain and loss, which accounts for phylogenetic correlations among species, uncer-

tainty in peak calls from ChIP-seq data, and the influence of local genomic features on turnover

rates. By applying our methods to H3K4me3 and H3K27ac ChIP-seq data35, we find support for

a number of previously reported results, including a substantially higher rate of turnover in en-

hancers than promoters, negative correlations of turnover rate with DNA sequence conservation,

expression level, and tissue breadth, positive correlations with distance from the TSS, and a strong

dependency on features of the local regulatory architecture such as number of enhancers per gene.

Overall, we find that enhancers are gained and lost at about twice the rate of promoters during

mammalian evolution, with median rates of 0.0075 and 0.0031 events per element per million

years, respectively, based on the H3K27ac data.

In addition, we made use of our modeling framework to examine an apparent lack of correla-

tion between turnover rates at CREs and the haploinsufficiency or dosage sensitivity of target genes,
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as measured approximately using pLI scores58. We found that turnover rates were significantly neg-

atively correlated with DNA sequence conservation in CREs, suggesting that both whole gain/loss

events and nucleotide substitutions are deleterious, but that turnover rates were not correlated with

pLI scores, suggesting that gain/loss events are no more deleterious at haploinsufficient/dosage-

sensitive genes than at haplosufficient/dosage-insensitive genes. However, when we conditioned

on the expected number of turnover events at each CRE, a positive correlation became evident

between sequence conservation and dosage sensitivity at low-turnover CREs (Fig. 7). We interpret

this result as indicating that DNA substitutions that do not cause complete gain or loss events are

more easily tolerated at dosage-insensitive genes than at dosage-sensitive genes. These mutations

of small effect at dosage-insensitive genes may be allowed to accumulate and perhaps compensate

for one another, permitting drift in CRE sequences as long as it does not cause the gain or loss of

a whole element. By contrast, gains and losses of entire CREs have sufficiently large effects that

they are deleterious at both dosage-sensitive and -insensitive genes. Thus the divergence between

epigenetic and sequence constraint is potentially informative about the mode of selection at each

locus. These observations may help to explain previous reports of CREs that display conservation

of epigenetic marks but not the DNA sequence65–68 (see also refs. 69, 70).

For various reasons, we have approached the problems of identifying regulatory elements

and modeling their evolution separately, using the epiPhyloHMM and phyloGLM programs, re-

spectively. This strategy allows us to address the problem of segmenting the genome into “active”

and “inactive” regions in a relatively efficient manner, using a simpler model, and then characterize

the turnover process using a richer model that conditions on a diverse collection of genomic fea-

15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/773614doi: bioRxiv preprint 

https://doi.org/10.1101/773614
http://creativecommons.org/licenses/by-nc/4.0/


tures. It also has practical advantages in terms of modularity of software development and efficient

processing of genome-wide data. At the same time, this strategy has the limitation that the richer

evolutionary model implemented in phyloGLM is not exploited in element identification, which

in principle, could result in loss of power. Still, this limitation does not appear to be of major

practical importance because identifying regions containing active elements turns out to be fairly

straightforward. A related limitation is that we analyze the genome in bins of fixed size, which oc-

casionally results in spurious inferences of turnover when the boundaries of the bins align poorly

with the locations of peaks. Nevertheless, this simple approach is generally fairly effective for

pooling read counts along the genome and accommodating limitations in the genomic resolution

of peak locations (see below).

Notably, our flexible phyloGLM design allows not only for improved modeling of evolu-

tionary dynamics, but also direct assessment of hypotheses about how these dynamics depend

on various aspects of genomic context, such as gene expression, local regulatory architecture,

and sequence conservation. Since phyloGLM considers all covariates together in a single model,

we avoid the need for complex post-hoc analyses, for example, that require matching of fore-

ground and background sets of elements in terms of relevant covariates. Similar approaches have

been used for the estimation of dN/dS rates71 and probabilities of fitness consequences for new

mutations55, 72, but to our knowledge, this approach has not been previously employed in the study

of CRE evolution.

Two other recently published methods40, 42 have addressed the problem of inferring evolu-

tionary dynamics from multi-species epigenomic data using strategies that are similar to ours, but
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are also different in key respects. Importantly, both of these methods avoid separating the element

identification and evolutionary inference problems—a decision that has potential advantages, pro-

vided the data have sufficiently high resolution to avoid overfitting, but that is also costly in com-

putational efficiency. The first method42 directly models an evolving continuous signal (replication

timing, in their application) along a collection of aligned genomes using an elegant combination

of a branching Orstein-Uhlenbeck process along a phylogeny and a hidden Markov model along

the genome sequence, which is fitted to genome-wide data by expectation maximization. This ap-

proach appears to be quite powerful but it differs from ours in that it focuses on direct modeling

of a continuous molecular phenotype, rather than on describing a relationship between a discrete

property of interest (such as transcription factor binding or CRE activity) and functional genomic

data describing that property (such as ChIP-seq read counts). The strategy has potential advantages

when the property of interest truly is continuous, but could also tend to overfit a complex signal.

The second method40 is more similar to ours in that it does distinguish between discrete “positive”

and “negative” states (in this case, reflecting DNA methylation status), again using a combination

of a hidden Markov model and a phylogenetic model. The structure of this HMM is more complex

than ours, however, and requires Monte Carlo methods for fitting. The setting for this method is

also different from ours in that the whole genome bisulfite sequencing data being analyzed appear

to provide a higher-resolution, more precise readout of the feature of interest, avoiding some of the

uncertainty of peak-calling from ChIP-seq data. More generally, modeling of comparative epige-

nomic data remains an active area of research, with a number of newly developed methods that

make similar but complementary modeling assumptions, and more work will be needed to find
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which approaches are best suited for various applications of interest.

A major problem faced by all current modeling approaches—and a reason why model-free

methods have often been used instead—is the fundamental imprecision of comparative epigenomic

data. In most data sets, there is considerable uncertainty not only in the strength of the signal

along the genome, but also in the precise genomic position and breadth of that signal (i.e., in peak

height, location, and width, in the context of ChIP-seq data). This uncertainty is compounded

by errors in alignment and orthology identification between species. Evolutionary models must

therefore strike a balance between getting the most out of the available data, and avoiding biases

that come from assuming unrealistic levels of precision or resolution. Indeed, in practice, all of

the current modeling approaches have required the use of extensive heuristics and filters before

and/or after they are applied. In our case, the imprecision of the data resulted in a tendency to

fragment individual elements into multiple predicted segments, for example, because peaks did

not align well in width or position across species. We attempted to mitigate this problem by

postprocessing the epiPhyloHMM predictions with heuristic rules that joined and filtered elements

(see Methods). Nevertheless, these misalignment and fragmentation issues undoubtedly produced

some upward bias in our estimates of turnover rate. This effect most likely drives the substantial

elevation in rate for the promoters based on the noisier H3K27ac data as compared with the more

precise H3K4me3 data. More work will be needed both to improve the precision of comparative

epigenomic data and to accommodate uncertainty in models of evolutionary dynamics.

Two other limitations of our analysis that are broadly shared with other comparative ge-

nomics studies concern the use of reference-based multiple alignments and proximity-based rules
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for associating CREs with target genes. Our use of human-referenced multiple alignments (which

are also used in refs. 40 & 42) prevents us from analyzing portions of the other genomes that do

not align to the human genome, and therefore creates a general bias toward “gains” in human and

closely related species, and toward “losses” in more distant parts of the tree, as is evident in a close

inspection of Supplementary Figs. S11 & S12. This same limitation makes it infeasible to test

for differences in gain or loss rates across branches or clades of the phylogeny, because alignment-

induced biases would likely overwhelm real biological differences. There has been some progress

in recent years toward generalized reference-free multiple alignment methods73, 74 but much more

work is needed on this important problem.

Similarly, the linking of CREs, particularly enhancers, with target genes is another funda-

mental unsolved problem that pervades many genomic analyses. In our case, it is likely that a

substantial fraction of enhancers are mis-assigned a target gene, with downstream effects on a

number of our analyses (e.g., Figs. 5, 6, & 7). Experimental work to link enhancers to the correct

target genes, either via 3D-chromatin capture75–77, or large scale genome editing78, will help to

improve this issue over time.
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Software availability

epiPhylo is available as an R package at https://github.com/ndukler/flexPhyloHMM. phy-

loGLM is also available as an R package at https://github.com/ndukler/phyloGLM.

Methods

ChIP-seq data preparation. All ChIP-seq data were obtained from ref. 35. Reads were aligned

to the reference genome for each species79–86 (obtained from the UCSC genome browser) using

bowtie2 (v 2.2.9)87. Each read was summarized by the single base at the center of the read and

converted to the human reference genome using the liftOver utility and the best reciprocal chains

supplied by the UCSC genome browser88 (hg38). A coverage map was computed from the con-

verted reads and summed to get the total number of reads per 250bp bin. Regions that could be

aligned to the human genome from one or more other species were combined if they were less than

50kb apart and were expanded by 5kb to either side to create genomic blocks within which to run

the phylo-HMM. Sections of the human genome that were not covered by one of these blocks were

excluded from the analysis, leaving 2.83Gb for further analysis.

Model for peak-calling. Our peak-calling model has two versions: the full model used in epiPhy-

loHMM and a simpler two-state model that is applied separately to the data for each species in a

preprocessing step (as detailed below). The two versions are the same except for the state space.

In the two-state model, the probability of the data in bin j, for presence/absence state p ∈ {0, 1} is
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given by a negative binomial mixture model:

P(x̃ j | µ̃p, w̃p, γ j, λ̃) =
∑

m

wp,m ·
∏

r

nbinom
(
x j,r | µp,mγ jλr, σp,m, j,r

)
.

Here, x̃ j is a vector of the read counts for each replicate r, wp,m is the weight of mixture component

m for state p (such that
∑

m wp,m = 1), µp,m is the mean count for state p and component m, σp,m, j,r

represents the dispersion parameter for the negative binomial distribution (see below), γ j is the

fraction of bases in bin j that are aligned to the human reference genome, and λ̃ = {λr} is a set of

scaling factors that account for the sequencing depth of each replicate r. As noted in the Results

section, we use a three-component mixture model for the “presence” state (p = 1) and a single

component for the “absence” state (p = 0). The scaling factor λr is calculated as:

λr =
1
α

∑
j

x j,r,

where α = maxr

(∑
j x j,r

)
. To account for differences in the dispersion of read counts for differ-

ent mean depths, we make use of the model from DESeq2 (ref. 47) where the dispersion of the

distribution σ is defined as a function of the mean µ and two free parameters, θ1 and θ2:

σ(µ, θ1, θ2) =
θ1

µ
+ θ2.

We use the DESeq2 software to estimate θ1 and θ2, after sub-sampling the genome to obtain roughly

similar numbers of low-, medium-, and high-coverage sites. We then calculate the dispersion per

data-point as,

σp,m, j,r =
θ1

µp,mγ jλr
+ θ2.

This strategy accounts for effects of sample library depth and cross-species alignability on the

expected read-count depth for each state p, mixture component m, replicate r, and bin j.
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The transition model is a simple two-state model with auto-correlation parameters ρ1 for the

peak state and ρ0 for the background state (Fig. 2).

Hidden Markov model. The hidden Markov model used by epiPhyloHMM includes a set of

states {s1, ..., sE} representing all patterns of CRE presence and absence at the tips of the tree, up to

a maximum number of gain/loss events (three, in our application). Conditional on the state (and,

implicitly, on the gain/loss history), the read-counts at the tips of the tree are independent. Thus,

the emission probability for the observed data in state se at site j is given by a product over tips

(species) t and presence/absence states p:

P(x̃ j | se, µ̃, w̃, γ j, λ̃) =
∏

t

∏
p∈{0,1}

P(x̃ jt | µ̃pt, w̃pt, γ jt, λ̃t)δ(se≈{t,p}),

where δ(se ≈ {t, p}) takes a value of one if HMM state se is consistent with species t having

presence/absence state p and a value of zero otherwise. Where there is a large alignment gap in a

species (with size ≥5 kb), we force the emission probability for “presence” (p = 1) in that species

to zero, presuming a deletion.

The matrix of transition probabilities consists of three different types of transitions. First,

self-transitions for all active and inactive states, have probabilities ρ1 and ρ0, respectively (Fig. 2).

Second, all transitions from active states to the inactive state have probability 1 − ρ1. Third, each

transition from the inactive state to any active state se has probability (1 − ρ0) · 1
Z PFels(se). Here,

PFels(se) is the probability of the presence/absence pattern at the tips of the tree consistent with state

se, as computed using Felsenstein’s pruning algorithm, under our phylogenetic turnover model

(implicitly conditioned on the given phylogeny and the parameters π and γ). Because not all
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presence/absence patterns are possible, this probability must explicitly be normalized by the sum

across all allowable states, Z =
∑

active se
PFels(se). Thus, the relative frequencies of the active

states are proportional to their equilibrium probabilities under the specified phylogenetic process.

All other elements of the transition matrix are fixed at zero, preventing direct transitions between

active states.

epiPhylo model fitting. For reasons of efficiency, we fit the epiPhyloHMM model to the data

approximately in several successive steps. We first fit the peak-calling models separately to the

data for each species, using a subset (125 Mb) of the mapped reads and estimating all free pa-

rameters by maximum likelihood with the L-BFGS-B algorithm89. As noted above, this calcula-

tion made use of the dispersion model that was pre-estimated using DESeq2. We then split the

multi-species data into twenty partitions of similar size, with break-points in 50kb-long regions

lacking alignment to the human genome by any other species. Separately in each species, we con-

verted bins with <15% of bases aligning to the human genome to missing data. We then estimated

the ρ1, ρ0, π, and γ parameters of the epiPhyloHMM model by maximum likelihood using the L-

BFGS-B algorithm89, keeping the species-specific peak-calling parameters—namely, the mixture

coefficients ~w and mean counts ~µ—at their previously estimated values. We then obtained an inital

set of element calls using the Viterbi algorithm, and filtered them by the following heuristics:

1. We grouped maximal sets of elements that were separated by at most one “background” bin

(as sometimes occurs due to the sparse design of the transition matrix; Fig. 2).

2. For each grouped element, we computed an alignment “score” equal to the sum of alignment
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scaling factors γ j across all bins j in the element and across all species.

3. We retained the element in the group having the highest alignment score.

4. In addition, we retained any elements having a score that exceeded a designated threshold T

(T = 16 in our analysis).

5. We masked any remaining elements from the data by re-setting their alignment scale factors

γ j to 0.

After this masking step, we re-estimated the ρ1, ρ0, π, and γ parameters of the epiPhyloHMM

model separately for each partition of the data. Then we obtained our final set of predictions by

running the Viterbi algorithm genome-wide using the median values of these per-block estimates.

CRE-gene association and annotation as enhancers and promoters. All assignments were

based on distances to genes obtained from Ensembl build 93 (ref. 52) via BiomaRt90, 91. Promoter

regions were defined per transcript as the interval ±1.5kb of the annotated transcription start site

(TSS). Each promoter region was associated with the gene linked to the TSS in question, but mul-

tiple promoter regions were allowed per gene. H3K4me3 elements that overlapped (by at least

one nucleotide) with a single promoter region were annotated as ‘promoter’ and associated with

the corresponding gene. H3K4me3 elements that overlapped with multiple promoter regions were

annotated as an ‘unassociated promoter’ (promoter UA). H3K4me elements that did not overlap

with any promoter regions were annotated as ‘unknown’ (unk). For H3K27ac marks, the same

rules were used to label an elements as promoter or promoter UA.
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To classify enhancers, we first defined ‘expanded promoter regions’ as intervals ±10kb of

the TSS, again merging them across transcripts of the same gene. H3K27ac elements that over-

lapped with a single expanded promoter region were annotated as a ‘proximal enhancer’ (en-

hancer proximal) and associated with the corresponding gene. H3K27ac elements that overlapped

with multiple expanded promoter regions were annotated as an ‘unassociated proximal enhancer’

(enhancer proximal UA). H3K27ac elements that did not overlap with any expanded promoter re-

gions but still fell within 100 kb of a TSS were annotated as a ‘distal enhancer’ and associated with

the closest gene (enhancer distal). H3K27ac elements that met none of these criteria were labeled

as ‘unknown’. This scheme is represented in Supplemental Fig. S8.

Linking phylogenetic parameters to genomic features for phyloGLM. As described in the Re-

sults section, the phylogenetic model for CRE turnover is defined by two free parameters: the

turnover rate, γ, and the equilibrium frequency of element “presence” distribution, π. These pa-

rameters are defined as generalized linear functions of a vector of genomic features, or covariates,

that are assumed to be available for each bin j. Specifically, the turnover rate, γ j, for a given

bin j with covariate vector C j is defined by passing a linear combination of C j and a vector of

coefficients θγ through the logistic function,

w(θγ,C j) =
eC j·θγ

1 + eC j·θγ
,
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with bounds of γmin ≤ γ j ≤ γmax imposed as follows,

γ j = γmin ·
(
1 − w(θγ,C j)

)
+ γmax · w(θγ,C j)

= γmin +
(γmax − γmin)eC j·θγ

1 + eC j·θγ

= γmin +
γmax − γmin

1 + e−C j·θγ
.

Our implementation allows for a separate set of coefficients θγ,e for each edge e of the phy-

logeny, but in practice we separate only the branch to the outgroup and apply the same coefficients

to all other branches of the tree. This strategy ensures that weak power to distinguish gains and

losses on this branch, and poor alignability to the outgroup, do not drive the maximum likelihood

estimates for other parts of the tree.

Similarly, the stationary distribution of element presence π j is defined as

π j =
eC j·θπ

1 + eC j·θπ
=

1
1 + e−C j·θπ

.

In order to prevent numerical underflow, if π j < 10−3, we reset π j = 10−3; similarly, if 1−π j < 10−3,

we reset π j = 1 − 10−3.

Fitting a phyloGLM model. The phyloGLM model was fit to the data using the L-BFGS-B

algorithm89 as implemented in the ‘optim’ function in R92. Gradients with respect to the log like-

lihood L(~θ;~x) (where ~θ denotes the entire parameter set) for elements of the coefficient vectors θγ

and θπ were computed using the chain rule. For example, the gradient for an element i of the vector

θγ, denoted θγ,i, is given by,

δL(~θ;~x)
δθγ,i

=
∑

j

δL(~θ; x̃ j)
δU j

·
δU j

δθγ,i
,
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where the sum is across all bins, L(~θ;~x j) represents the contribution of bin j to the log likelihood

function, and U j = θγ · C j is the linear combination of features for bin j. The partial derivative

δL(~θ;x̃ j)
δU j

was computed numerically. However, the final term can easily be computed analytically as,

δU j

δθγ,i
=

δ

δθγ,i

(
θγ,0 + θγ,1C j,1 + ... + θγ,iC j,i + ... + θγ,nC j,n

)
= C j,i.

Notice that the use of the chain rule considerably accelerates these calculations because δL(~θ;x̃ j)
δU j

only needs to be computed once per phylogenetic parameter (γ and π), and then can be propagated

efficiently to all of the individual coefficients. The same approach works for elements of θπ.

Preparation of genomic features. Distances to the TSS were based on annotations from En-

sembl build 93 (ref. 52), accessed via BiomaRt90, 91. The distance was computed from the nearest

boundary of the CRE to the annotated TSS position. Gene expression features were based on data

downloaded from the GTEx web portal (https://gtexportal.org/). Mean phastCons-100way

scores were calculated using the GenomicScores package93. pLI scores were collected from ftp:

//ftp.broadinstitute.org/pub/ExAC_release/release1/manuscript_data/. Functional

annotations of genes were obtained from Reactome 201894. For the fitting of the phyloGLM model,

only bins that were unambiguously associated with a single gene and had no missing covariate val-

ues were used. After this filtering, 7,220 promoters and 25,990 enhancers associated with 5,307

and 5,552 unique genes remained. All non-categorical CRE covariates were scaled to have mean 0

and standard deviation 1 to improve model-fitting performance and produce comparable coefficient

values across covariates.
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Expected numbers of gains and losses per branch. We calculated the expected numbers of

gains and losses per branch (Supplemental Figs. S11 & S12) using the standard message-passing

algorithm on the phylogeny, followed by estimation of the probabilities of each state transition per

branch (see ref. 95 for details).

Half-life estimation Under our model, the instantaneous rate of transition from the active state

to the inactive state is given by γ(1 − π). Thus, the half-life t 1
2
, or time required for half of active

elements to become inactive, is given by:

1
2

= e
−γ(1−π)t 1

2 =⇒ t 1
2

=
ln(2)

γ(1 − π)
.

Dosage-sensitivity analysis Annotations of genes as “Metabolic” or “Generic Transcription Path-

way” were obtained from Reactome 201894. Only genes having one of the functional annotations

“R-HSA-1430728” or “R-HSA-212436” were selected for analysis; genes with both labels were

omitted. To test for significant differences between the two gene categories, we compared the log

likelihoods of phyloGLM models having (i) separate coefficients for the two gene categories and

(ii) one coefficient that applied to both categories, computing p-values for one degree of freedom.

Mean 100way phastCons scores were calculated using bwtool96.
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Figure 1: Illustration of modeling framework. (A) ChIP-seq data is aligned separately to the

reference genome for each species then converted to the coordinate system of the human (hg38)

genome using the liftOver program (Methods). Only regions of apparent one-to-one orthology

are considered, based on synteny. Cis-regulatory elements (CREs) that are active in one or more

species are then identified using epiPhyloHMM. Finally, the dynamics of CRE turnover within

these elements are modeled using phyloGLM, which accounts for the associations between various

genomic features and local rates of gain and loss. (B) Both epiPhyloHMM and phyloGLM use a

core phylogenetic model in which the presence (si = 1) and absence (si = 0) of CREs is allowed to

change in a branch-length-dependent manner along a fixed phylogeny, according to a continuous-

time Markov model. The model is defined by an instantaneous rate matrix Q (dashes indicate

values required for rows to sum to zero). The probabilities of the ChIP-seq read counts at the

tips of the tree (xi) given si are modeled using negative binomial (NB) distributions. The color

intensities for the “0” and “1” boxes are proportional to the corresponding conditional likelihoods.

π: stationary frequency of CRE presence; γ: gain/loss rate; ti: length of branch i.
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Figure 2: Prediction of multi-species cis-regulatory elements (CREs) using epiPhyloHMM.

(A) State-transition diagram for the phylogenetic hidden Markov model. Each state represents a

different combination of active and inactive elements in the observed species, corresponding to

a different gain/loss scenario along the branches of the tree (gold: active; black: inactive). The

fully inactive (background) state is shown on the left and the states representing various possible

presence/absence patterns for active elements are grouped on the right. The red star indicates

the state associated with the focal site in the cartoon data at top. Notice that each active state is

accessible only from the inactive state, leading to a sparse transition matrix for the hidden Markov

model. (B) Example of predictions obtained by applying epiPhyloHMM to H3K4me3 ChIP-seq

data from ref. 35 in a region along human chromosome 1. Shown are the nine-species phylogeny

(left) and the corresponding ChIP-seq read counts along the chromosome (right), with predicted

elements highlighted in red boxes. For reference, annotated protein-coding genes and an antisense

transcription unit are also shown (top).
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Figure 3: The phyloGLM model. phyloGLM combines the general modeling framework of Fig. 1

with a generalized linear model (GLM) to account for the influence of local genomic covariates

(such as gene expression levels or sequence conservation scores) on the turnover process. In each

genomic bin j, the turnover rate γ j and the equilibrium frequency for active elements π j are deter-

mined by a logistic function f (see Methods) applied to a linear combination of covariate values C j

with weight vectors θγ and θπ, respectively. The phylogeny and hypothetical read counts x j for bin

j are shown at the left, and hypothetical covariate values are represented by colored squares to the

right. The shades of gray to the right of the phylogeny illustrates relative values of the conditional

likelihoods P(x j|s).
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Figure 4: Enhancers show greater rates of turnover than promoters. (A) Distributions of

estimated turnover rates per bin (γ j) across all elements, based on the full phyloGLM model.

Results are shown for separate analyses of promoters based on the H3K4me3 mark, promoters

based on the H3K27ac mark, and enhancers based on the H3K27ac mark (see Methods). The

phylogeny and branch lengths (in millions of years) were obtained from ref. 53. The branch to the

opossum outgroup was excluded in rate estimation. To simplify the visualization, a small number

of elements (41 of 38,170) with turnover rates > 0.044 were omitted. The bar in each violin plot

represents the median. (B) Similar distributions of times for half of all active elements to decay to

an inactive state (half-life).
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Figure 5: Marginal effects of gene-expression-related features on turnover rates. Estimates of

the coefficients in the generalized linear model (θγ) for four gene-expression-related features, for

promoters based on H3K4me3 (left) and both promoters and enhancers based on H3K27ac (right).

A positive value indicates that a feature increases the turnover rate and a negative value indicates

that it decreases the turnover rate. The branch to the outgroup is excluded from rate estimation.

Error bars represent approximate 95% confidence intervals (see Methods). “*” indicates a signif-

icant difference from zero (p < 0.05 after Benjamini-Hochberg correction) based on a likelihood

ratio test.
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Figure 6: Marginal effects of remaining features on turnover rates. Estimates of the coefficients

in the generalized linear model (θγ) for four additional features, for promoters based on H3K4me3

(left) and both promoters and enhancers based on H3K27ac (right). A positive value indicates that

a feature increases the turnover rate and a negative value indicates that it decreases the turnover

rate. The branch to the outgroup is excluded from rate estimation. Error bars represent approximate

95% confidence intervals (see Methods). “*” indicates a significant difference from zero (p < 0.05

after Benjamini-Hochberg correction) based on a likelihood ratio test.
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Figure 7: Turnover rates and sequence conservation at CREs for dosage-sensitive and in-

sensitive genes. (A) Estimated coefficients θγ for indicators for the Reactome94 categories

“Metabolism” (less dosage-sensitive) and “Gene expression (Transcription)” (more dosage-

sensitive) at associated promoters and enhancers (both based on H3K27ac). Error bars represent

approximate 95% confidence intervals (see Methods). “*” indicates a statistically significant dif-

ference from zero (p < 0.05 after Benjamini-Hochberg correction) based on a likelihood ratio test.

The differences between the two categories of genes are not significant (n.s.). (B) Mean phastCons

scores for vertebrates (100-way alignment in UCSC Genome Browser) in H3K27ac-based promot-

ers of the same two categories of genes, stratified by the expected number of turnover events per

CRE. Notches correspond to 1.58 · IQR/
√

n indicating an approximate 95% confidence interval for

the median. “*” indicates a significant difference between gene categories (p < 0.05, t-test with

Benjamini-Hochberg correction). (C) Same as (B) but for H3K27ac-based enhancers. For visual

clarity, outliers (more than 1.5 · IQR from the hinge) are not shown in (B) and (C).

46

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/773614doi: bioRxiv preprint 

https://doi.org/10.1101/773614
http://creativecommons.org/licenses/by-nc/4.0/


Supplemental Materials

Simulation study. To test the power of our model to recover the true peak calls and parameters,

we simulated data under the model used for inference, allowing for all 2N states, given a variety

of genome sizes, phylogenetic trees, and values of the turnover parameter (γ). We fixed the pa-

rameters for the peak calling model to their true values to mimic our multi-step fitting process and

isolate the ability of the model to correctly estimate the evolutionary parameters of interest.

With regard to calling peaks at the species level, we found that epiPhylo performed well by

both precision and recall metrics but suffered slightly at higher turnover rates (Fig. S1). Model

predictions were evaluated on a per-bin basis so that a prediction was considered a true prediction

if the model’s state call for a bin in a particular species matched that bin’s state in the simulation.

Each bin in a multi-bin element was evaluated separately. Across a broad range of rate parameters

and tree topologies, estimates of γ converged to an inflated, but stable estimate of γ with as little

as 250 kb when γ was large and as much as 250 Mb when γ was small (Fig. S2). The stationary

probability for an absent element (1 − π) was systematically underestimated while estimates of

the autocorrelation ρ1, converged to the true values given as little as 2.5 Mb of data (Fig. S3-

S4). Systematic biases in the fitted values of γ and π occur to accommodate due to a ridge in the

likelihood surface (Fig. S5), however this does not greatly impact the recovery of true regulatory

elements in our simulation.
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Figure S1: EpiPhylo performance as a function of rate for simulated data. (A) Precision of the

epiPhylo model based on the number of 250bp bins for each species with correct state calls across

three different trees. (B) Recall of the epiPhylo model based on the number of 250bp bins for

each species with correct state calls across three different trees. For both calculations, the state that

epiPhylo calls is used to assign active elements across species which are then compared to the true

peaks at the species level. All possible species configurations were simulated, and the epiPhylo

model was fit with all configurations that required three or fewer mutations.
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Figure S2: Estimates of γ depend on the number of expected substitutions per site. Raw count

data was simulated under the epiPhyloHMM model, with all possible states being enumerated,

for genomic regions of varying size (1,000 sites = 250KB) at varying rates for fixed ρ1 and πA.

epiPhyloHMM converges to inflated estimates of the correct values given increasing amounts of

data, with convergence occurring more rapidly for scenarios with a greater number of expected

substitutions per site.

49

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/773614doi: bioRxiv preprint 

https://doi.org/10.1101/773614
http://creativecommons.org/licenses/by-nc/4.0/


●

●

●

●

●● ●

●

●
● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

0.97

3
5

9

1,000 10,000 100,000 1,000,000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Number of sites

In
fe

rr
ed

 π
0 Rate

1e−07
1e−05
0.001

N
um

ber of S
pecies

Simulated  π0

Figure S3: Estimates of π are biased by mis-estimates of rate. Raw count data was simulated

under the epiPhyloHMM model, with all possible states being enumerated, for genomic regions of

varying size (1,000 sites = 250KB) at varying rates for fixed ρ1 and πA. epiPhyloHMM converges

to biased estimates of the correct values depending on the rate.
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Figure S4: Estimates of ρ1 converge rapidly to the true value Raw count data was simulated

under the epiPhyloHMM model, with all possible states being enumerated, for genomic regions of

varying size (1,000 sites = 250KB) at varying rates for fixed ρ1 and πA. epiPhyloHMM converges

to correct estimates of the true value of ρ1.
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Figure S5: Example of ridge in log-likelihood surface for fitting epiPhylo model. Log-

likelihood is computed on finite grid of γ and π values with the auto-correlation parameters (ρ0,

ρ1) fixed to the true values of the simulated data. The blue “X” indicates the true value while the

red “X” indicates the MLE parameter values on the computed landscape.
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Figure S6: Number of multi-species epigenetic state calls from epiPhylo based on the Viterbi

algorithm (A) H3K4me3 (B) H3K27ac
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Figure S7: Distribution of common state calls by epiPhyloHMM. (A) The distribution of state

calls from epiPhyloHMM for the (A) H3K4me3 mark and (B) the H3K27ac mark. The heatmap

describes the configuration of active and inactive elements for each state. All un-visualized states

are at lower frequency.
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Figure S8: Annotation scheme for epigenetic elements. All genic distances and annotations are

based on the human genome build GrCH3852. H3K4me3 elements were annotated as promoters

if they were within +/ − 1.5kbp of a TSS. If they overlapped with TSS(s) for only one gene, they

were associated with that gene. If they overlapped with TSSs from more than one gene, they

were annotated as unassigned promoters. The same rules apply for annotating H3K27ac marks

as promoters, however there are additional rules for annotating them as enhancers. If a H3K27ac

element was within +/−10kbp but not within +/−1.5kbp of a TSS they were annotated as proximal

enhancers and assigned analogously to promoters. If an H3K27ac mark was between 10kbp and

100kbp away from the nearest TSS, they were annotated as distal enhancer and assigned to the gene

of the nearest TSS. H3K27ac elements further away than 100kbp were annotated as unknown.
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Figure S9: Genomic covariates run with phyloGLM model. Schematic of genomic covariates

collected to analyze turnover rates of CREs. Promoter and enhancer complexity is respectively, the

number of promoter and enhancers associated with a given gene. Mean phastCons scores are the

mean phastCons-100way score in the region covered by a CRE on the human genome (GrCh38).

The expression features are computed from GTEx (V6) data assuming independence of samples.

Functional catagories are limited to top level Reactome pathways (functional annotations which

have no “parent” annotations). It is possible, but very rare for a CRE to have more than one such

label.
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Figure S10: Pearson correlation of genomic covariates for the H3K4me3 and H3K27Ac ele-

ments. Pearson correlation of genomic covariates for all elements used to fit a phyloGLM model.

Correlations were calculated seperately for (A) H3K27ac promoter, (B) H3K4me3 promoter, and

(C) H3K27ac enhancer elements.
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Figure S11: Ancestral reconstruction of gain/loss events on a rooted tree for H3K4me3 ele-

ments. Pie chart area per branch is proportional to the fraction of total enhancer/promoter state

calls undergoing gain or loss. Numbers of gain/loss events were computed from pairwise marginals

of the transition matrices on each branch. Estimates on branches leading to outgroup were removed

as there was insufficient information to polarize gain/loss calls.
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Figure S12: Ancestral reconstruction of gain/loss events on a rooted tree for H3K27ac ele-

ments. Pie chart area per branch is proportional to the fraction of total enhancer/promoter state

calls undergoing gain or loss. Numbers of gain/loss events were computed from pairwise marginals

of the transition matrices on each branch. Estimates on branches leading to outgroup were removed

as there was insufficient information to polarize gain/loss calls. Sites with an H3K27ac mark in

one or more species were partitioned into enhancers and promoters based on proximity to tran-

scriptional start sites (TSS) in humans (Fig. S8, see Methods).
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Figure S13: phyloGLM associates some functional characteristics with differential turnover

rate Rate parameter estimates for reactome annotations of genes fitted to H3K27ac data. If param-

eter is estimated to have a value > 0 is increases the turnover rate; if it is < 0, a decreased turnover

rate. Error bars represent approximate 95% confidence intervals derived from the hessian. Param-

eters with a “*” above them have FDR ≤ 0.05 calculated via a likelihood ratio test.
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