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Abstract 
Numerous studies of emerging species have identified genomic “islands” of elevated           

differentiation against a background of relative homogeneity. The causes of these islands            

remain unclear, however, with some signs pointing toward “speciation genes” that locally restrict             

gene flow and others suggesting selective sweeps that have occurred within nascent species             

after speciation. Here, we examine this question through the lens of genome sequence data for               

five species of southern capuchino seedeaters, finch-like birds from South America that have             

undergone a species radiation during the last ~50,000 generations. By applying newly            

developed statistical methods for ancestral recombination graph inference and         

machine-learning methods for the prediction of selective sweeps, we show that previously            

identified islands of differentiation in these birds appear to be generally associated with             

relatively recent, species-specific selective sweeps, most of which are predicted to be “soft”             

sweeps acting on standing genetic variation. Many of these sweeps coincide with genes             

associated with melanin-based variation in plumage, suggesting a prominent role for sexual            

selection. At the same time, a few loci also exhibit indications of possible selection against gene                

flow. These observations shed new light on the complex manner in which natural selection              

shapes genome sequences during speciation. 

 

Significance Statement 

Genome-wide scans can identify differentiated loci between species that may have promoted             

speciation. So-called “islands of differentiation” have generally been identified and characterized           

using standard population genetic s​ummary statistics (e.g., ​F​ST and ​d​xy​), which are limited in              

distinguishing among possible causes of differentiation, such as selection against gene flow and             

selective sweeps. ​We introduce a powerful strategy for analyzing such islands, combining new             

methods for inferring the full Ancestral Recombination Graph and machine learning methods for             

identifying selective sweeps. We applied our methods to genomic sequences from closely            

related southern capuchino seedeaters (Neotropical tanagers) and found signatures of recent           

selective sweeps around pigmentation genes, including many “soft” sweeps that acted on            

standing variation. 
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Main Text 
Introduction 

The question of how new species arise is one of the oldest and thorniest puzzles in                

evolutionary biology, having occupied investigators at least since Darwin and Wallace ​1–3​. A key             

component of the neodarwinian synthesis of the early 20th century was to formulate a genetic               

basis for the process of speciation ​1,4,5​. By the mid-1900s, theories of speciation had come to rely                

heavily on the notion of allopatry, or geographical or ecological barriers to interbreeding ​6​.             

However, it has since become clear that separate species may also emerge in the absence of                

such barriers, and there are now numerous well-supported cases of speciation with gene             

flow​7–14​. 

In recent decades, inexpensive, large-scale DNA sequencing has allowed genetic studies           

of speciation to be extended from traditional laboratory model systems to natural populations.             

Particularly useful are natural systems that consist of populations in the early stages of genetic               

separation—that is, groups of organisms “caught in the act” of speciation ​1​. These systems allow              

genomic regions with relevant differences to stand out clearly against a background of relatively              

low genetic differentiation. Examples include ​Heliconius butterflies​15,16​, Anopheles        

mosquitos​17,18​, pea aphids​19​, stick insects​20​, sunflowers​21​, monkeyflowers​22​, house mice ​23,24​,         

threespine stickleback​25 and cichlid ​26 fish, and various birds, including carrion and hooded            

crows​27–29​, flycatchers​30​, and blue- and golden-winged warblers​31​. In addition to enabling           

investigation of the genetic architecture of reproductive barriers, these systems allow many            

other questions to be addressed, such as what is the timeline of speciation, and what are the                 

roles of chromosomal rearrangements and sex chromosomes​1​? In some cases, they also allow             

identification of particular mutations underlying important differences between incipient species. 

A number of such studies have focused, in particular, on the intriguing observation that              

recently separated species often exhibit local genomic regions of pronounced interspecies           

differentiation against a background of relative homogeneity—a phenomenon dubbed “islands          

of differentiation” or, sometimes, “islands of speciation”​1,17​. Early on, these islands were widely             

believed to reflect “speciation genes” (sometimes called “barrier loci”) that contribute in some             

way to reduced gene flow, presumably through inviability, sterility, or reduced fitness of             

hybrids​17,32​. Later, however, it was shown that a similar local elevation of genetic differentiation              

could be generated instead by reductions of genetic diversity within one or both nascent species               
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during and following speciation, stemming from selective sweeps and possibly background           

selection ​33–35​. In other words, the observed “islands” may not reflect differential gene flow, but              

instead, differential influences of selection. This ambiguity follows from the widespread use of             

relative measures of genetic differentiation such as ​F​ST​, which can be elevated either by              

increases in interspecies divergence or decreases in intraspecies variation. Some recent           

studies have considered competing hypotheses for the origins of islands of differentiation and             

found mixed evidence regarding their primary causes​28,29,36​. 

Recently, we collected whole-genome sequence data for another natural system: southern           

capuchino seedeaters of the genus ​Sporophila​, a group of passerine birds native to South              

America. These birds are similar to Darwin’s finches (also members of the family Thraupidae) in               

that they appear to have recently separated into numerous distinct and largely genetically             

separate species. The southern capuchino species, however, are morphologically and          

ecologically indistinct and differ primarily in male plumage, suggesting that sexual selection may             

have been important in driving speciation ​37–39​. These species have adjacent and, in many cases,              

overlapping ranges​40​, and can be syntopic at breeding sites. In addition, they include many pairs               

with similar levels of genetic differentiation, allowing for numerous quasi-independent pairwise           

comparisons. 

Our data set includes nine species of southern capuchinos, eight of which are estimated to               

have emerged <50,000 generations ago from a large, highly polymorphic ancestral species​41​.            

We focus here on the five of these eight species that were most broadly sampled (12 diploid                 

individuals per species), including ​Sporophila pileata (pil), ​S. melanogaster (mel), ​S. nigrorufa            

(nig), ​S. palustris (pal), and ​S. hypoxantha (hypox). The combination of a recent radiation and a                

large ancestral population for these species leads to modest levels of genetic differentiation and              

a great deal of shared polymorphism, reflecting widespread incomplete lineage sorting.           

Nevertheless, these genomes include numerous striking islands of differentiation, as defined by            

peaks in pairwise ​F​ST​, and these islands are strongly enriched for genes in the melanogenesis               

pathway, suggesting an association with melanin-based variation in plumage ​40​. Campagna ​et al.            

focused in particular on 25 peaks with elevated ​F​ST​, which represent candidate targets of              

selection during or after speciation. Many of these islands appear recurrently across different             

pairwise comparisons and 10 of the 25 peaks are located on the sex-linked ​Z​ chromosome. 

In this paper, we re-examine these islands of differentiation in the southern capuchinos.             

Rather than focusing on the use of summary statistics in windows across the genome, as in                

most previous studies, we base our analysis on the underlying genealogies that precisely             
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describe the relationships among the sequenced genomes. In particular, we make use of             

methods we recently developed for sequence-based statistical inference of the ancestral           

recombination graph (ARG), which describes both genealogical relationships and changes to           

those relationships along the genome due to historical recombination events​42,43​. This approach            

enables us to delve more deeply into the evolutionary processes underlying these islands, and              

distinguish among their possible causes. Furthermore, we combine ARG inference with the            

latest machine-learning methods​44 to identify selective sweeps of various ages and types, and             

systematically compare these predictions with the previously identified islands of differentiation.           

As we discuss in detail below, we find multiple lines of evidence for a strong relationship                

between selective sweeps—particularly recent, species-specific “soft” sweeps—and the        

observed islands. By contrast, we find much less evidence for an influence from selection              

against gene flow, with a few notable exceptions. Altogether, our study provides new insights              

into the processes leading to genetic differentiation between species in a powerful model             

system for rapid speciation. 

 

Results 
 

Genealogical Patterns in ​F​ST​ Peaks 
We began by reanalyzing the 25 ​F​ST peaks (​Supplementary Table S1 and            

Supplementary Figure S1 ​) identified by Campagna et al.​40​, with the goal of gaining further              

insight into their evolutionary causes. As noted above, these peaks are presumed to reflect the               

speciation process in some manner, but the previous reliance on summary statistics made it              

difficult to distinguish among the specific evolutionary processes that may have generated them.             

We were particularly interested in using ARG-based methods to distinguish between a scenario             

where ​F​ST peaks were driven by selection against gene flow that was established early in the                

speciation process, and one where they were driven by more recent selective sweeps (​Figure              
1​), allowing for the possibility that both scenarios could be at play (see ​Discussion​). 

We applied the ​ARGweaver program to the 60 individual genome sequences from five             

Sporophila species across 1.06 Gb of sequenced scaffolds (see ​Supplementary Text​). This            

program jointly infers genealogies across all nucleotide sites, accounting for their correlation            

structure via an assumed Markovian recombination process. By efficiently pooling information           

across haplotypes, ​ARGweaver can obtain a fairly accurate reconstruction of the genealogy at             
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each position ​42​. We summarized the inferred genealogies both within the peaks and in flanking              

“background” regions using several features, including the expected time to most recent            

common ancestry (TMRCA) within each species—which should be reduced in peaks in the             

presence of local sweeps but unaffected by selection against gene flow between species during              

speciation—and the cross-coalescence time between species—which should be increased in          

peaks by selection against gene flow but unaffected by local sweeps (​Figure 1​). We also              

calculated the standard summary statistics ​F​ST and ​d​XY in a 10kb sliding window. Notice that the                

within-species TMRCA and the cross-coalescence time are related to the conventional summary            

statistics π​Within (a.k.a. π​W​) and ​d​XY (a.k.a. π​Between​, π​B​, or π​XY​), respectively, which have been               

previously used to distinguish among different contributing factors to ​F​ST peaks​33,36,45​. However,            

the ARG-based statistics are potentially more informative, by reflecting a comprehensive,           

model-based inference that considers correlated, fully resolved genealogies and the full           

distribution of coalescence times. Notably, these ARG-based statistics also provide a natural            

means for accommodating background selection and mutation rate variation (see          

Supplementary Text ​and ​ Discussion​). 
We first compared the windowed ​F​ST and ​d​XY statistics within the ​F​ST peaks. If the ​F​ST peaks                 

are driven by selection against gene flow, then these ​F​ST and ​d​XY estimates should be positively                

correlated, with larger values indicating deeper, and smaller values indicating shallower,           

cross-species coalescence (​Figure 1​)​33,36​. By contrast, if the ​F​ST peaks are driven by recent,              

species-specific sweeps, then no correlation is expected, because ​F​ST will be determined by the              

strength and ages of the sweeps, and ​d​XY will be largely consistent with the background. We                

found that the correlation between these statistics was quite low overall (Pearson’s ​r = 0.197;               

Supplementary Figure S2 ​), more consistent with a “recent sweeps” model than an “early            

selection against gene flow” model.  

Next we turned to the ​ARGweaver​-inferred genealogies and compared the within-species           

TMRCAs in the ​F​ST peaks and the background regions. If the ​F​ST peaks are driven by selective                 

sweeps, we would expect them to exhibit a reduced within-species TMRCA relative to the              

background, reflecting recent increases in the frequency of selected alleles and corresponding            

“bursts” of coalescence. Indeed, the inferred genealogies at several ​F​ST peaks, such as the one               

on scaffold 404 near the ​SLC45A2 gene (​Figure 2A​), display this qualitative behavior, with              

dense clusters of recent coalescence events suggesting selective sweeps (see additional           

examples in ​Supplementary Figure S3 ​). Accordingly, a measure of the within-species TMRCA            

that allows for partial sweeps, called TMRCAH (the TMRCA for the first 50% of all lineages from                 
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the species; see ​Methods ​), is depressed at these ​F​ST peaks (​Figure 2B​). At the same time, the                 

cross-coalescence time does not tend to be elevated at these peaks, as would be expected if                

they were driven by selection against gene flow during speciation (​Figure 2C​). 

To see whether these trends held more generally, we devised statistical tests for             

(1) enrichment of particular species within clades of these trees, and (2) a corresponding             

reduction in the within-species TMRCA. The first test identifies instances of species            

differentiation, and the second identifies likely species-specific sweeps (see ​Methods and           

Supplementary Text​). In both cases, we applied stringent significance thresholds based on the             

results of the tests when applied to genomic scaffolds that do not contain ​F​ST peaks. In 23 of the                   

25 (92%) ​F​ST peaks, we observed a significant enrichment for at least one species based on                

test 1, with 7 peaks (28%) showing significant enrichment for more than one species (​Table 1​).               

Overall, we detected 35 instances of species-enriched clades in these peaks, with ​S. nigrorufa              

showing the largest contribution (14 peaks) and ​S. hypoxantha showing the smallest (2 peaks).              

Of these 35 instances, 18 (64%) in 16 different peaks had significantly reduced within-species              

TMRCAs compared to the background, based on test 2. Together, these observations suggest             

a substantial contribution from recent selective sweeps to differentiation between southern           

capuchino species in these genomic islands. 

We further examined the remaining 17 cases of species enrichment that did not exhibit              

reduced TMRCAs. These could represent cases in which the ​F​ST peaks are driven by early               

selection against gene flow rather than recent selective sweeps, although they could equally             

well reflect weaker or older sweeps that failed to meet our criteria for significance. To distinguish                

between these possibilities, we devised a test for elevated cross-coalescence times between            

species (test 3), as expected in the case of selection against gene flow at the time of speciation                  

but not in the case of sweeps (see ​Methods and ​Supplementary Text​). We tested the               

statistical power of this method on simulated data (​Supplementary Table S4​), and controlled            

for false positives using genomic scaffolds that do not contain ​F​ST peaks. We found that most                

F​ST peaks had either no significant difference in cross-coalescence time with respect to flanking              

regions, or reduced—rather than elevated—cross-coalescence times (​Supplementary       
Table S5 and ​Supplementary Text​). Nonetheless, three of the peaks did exhibit elevations of             

cross-coalescence times consistent with selection against gene flow (​Table 1​). The genomic           

signatures at these peaks are subtle but the genealogical evidence is compelling, particularly in              

the peaks on scaffolds 252 and 1635 (​Supplementary Figures S4​-​S6​). Notably, the region            

near the peak on scaffold 252, which is upstream of the gene encoding the Agouti-signaling               
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protein (ASIP), contains multiple signatures of divergence. These include an apparent recent            

species-specific sweep in ​S. melanogaster​, and a modestly recent sweep in ​S. nigrorufa​,             

alongside deep separation for ​S. palustris and ​S. pileata​. This deep separation could indicate              

selection against gene flow in these species, although it could also reflect other phenomena,              

such as ancestral population structure or balancing selection ​46 (​Supplementary Text​).          

Altogether, the observed patterns suggest possible selection against gene flow at a few loci of               

interest but its overall contribution to islands of differentiation appears to be limited compared to               

that of recent selective sweeps. 

 

Prediction of Selective Sweeps by Machine Learning 
The previous analysis suggests that selective sweeps have played a major role in driving              

the islands of differentiation observed in these recently emerged southern capuchino species.            

To characterize these sweeps in more detail, we developed machine-learning methods to            

predict individual sweeps of various kinds across the available genome sequences. We adopted             

a prediction strategy based on supervised learning, using a diverse collection of standard             

population genomic summary statistics as features and a linear Support Vector Machine (SVM)             

for classification (​Figure 3 and ​Methods ​). Similar approaches are becoming increasingly widely            

used in population genomics, and have been shown to be particularly effective in integrating              

multiple disparate signals to address challenging prediction problems​47,48,44,49​. As in most           

previous applications, we trained our classifiers from simulated data, which has the advantage             

of providing essentially unlimited training data with error-free annotation of selection histories,            

but the potential disadvantage of being sensitive to the choice of simulation parameters (see              

Discussion​). To make our method as robust as possible to this choice, we used a forward                

simulation scheme based on the SLiM​50 simulator, making use of a previously inferred             

demographic model ​41 and allowing for ranges of values of key parameters, including selection             

coefficients, mutation and recombination rates, effective population sizes, and positions of           

beneficial mutations (see ​Methods ​and ​Supplementary Text​). 
We were interested in several properties of the selective sweeps that contributed to the              

diversification of these species, including whether they tended to be “soft” or “hard” sweeps; to               

be recent or ancestral; or to be “complete” or “partial” sweeps​51,52​. To make these complex and                

intertwined questions more tractable, we sought first to address them individually, in sequence,             

and then later considered more complex cases combining multiple factors. Moreover, we            

focused first on the simple case of a pairwise analysis of present-day species, and simulations               
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involving an ancestral population that diverged into two species, taking advantage of the fact              

that the five species under study are believed to have diverged from one another at roughly the                 

same time, leading to a high degree of symmetry in the pairwise comparisons. In all cases, we                 

simulated 48 haploid genomes (24 per species) consisting of 9000 regions of length 50 kb,               

using 8000 regions for training and the remaining 1000 for testing. Each genomic region was               

analyzed in five nonoverlapping 10 kb windows for signs of selection in the middle 10-kb               

window (see ​Methods​). 
 

Soft Sweeps have been Common in the Diversification of Southern Capuchinos 
We focused first on the distinction between soft and hard sweeps, training a three-way              

classifier to distinguish species-specific soft and hard sweeps from each other and from neutral              

regions (see ​Methods ​). On simulated test sets, the classifier displayed an overall accuracy of              

~93%, with most errors coming from the misclassification of soft sweeps as hard sweeps (~9%               

of soft sweeps) or of hard sweeps as soft sweeps (~6% of hard sweeps). (​Supplementary               
Table S6 ​and ​Supplementary Figure S7 ​). In an extensive series of simulations, we found that               

the classifier was reasonably robust to differences in mutation and recombination rate,            

misspecified demographic models, misspecified selection coefficients, gene conversion, and         

other factors (see ​Supplementary Text​, ​Supplementary Figure S8-S14, and Supplementary          
Table S7 ​). We applied the method to the real data for ​S. melanogaster and ​S. nigrorufa​,                

focusing at first on four scaffolds (252, 412, 404, and 1717) that contain top ​F​ST peaks and                 

harbor known pigmentation-related genes (​Supplementary Table S8 ​and Figure 4A ​). The          

classifier predicted a total of 154 soft and 33 hard sweeps across these four scaffolds, including                

high-confidence (probability > 0.95) predictions of 28 soft and 3 hard sweeps. We observed              

similar patterns in three other pairwise analyses, selected based on their high levels of              

differentiation ​40 (​Supplementary Figure S15-17 and ​Supplementary Table S8​). In general, we           

identified large numbers of apparent species-specific sweeps, many of which coincided with ​F​ST             

peaks or otherwise occurred nearby genes involved in the regulation of melanogenesis,            

consistent with the hypothesis that selective sweeps have been a major force behind the              

differentiation of these species. Furthermore, we consistently observed much larger numbers of            

predicted soft sweeps than hard sweeps. For example, in a broader analysis of sweeps in ​S.                

melanogaster (relative to ​S. nigrorufa​) in the 19 scaffolds that contain ​F​ST peaks for this species,                

we observed 520 predicted soft sweeps and only 85 predicted hard sweeps, of which 86 and 8                 

were predicted with probability greater than 0.95, respectively (​Supplementary Table S9​). 
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To validate these predictions, we made use of several orthogonal analyses. First, we             

examined many individual predictions in detail, considering the local trees inferred by            

ARGweaver at both predicted hard and soft sweeps (​Figure 4B​). We found, in numerous cases,               

that the hard and soft sweeps had distinct genealogical features, with the hard sweeps              

displaying evidence of single derived haplotypes at high frequency, corresponding to unusually            

large and young clades, and the soft sweeps showing signatures of multiple potentially             

beneficial haplotypes all at elevated frequencies (​Supplementary Figure S18)​. Second, we           

carried out a more systematic analysis based on two measures derived from the inferred ARGs:               

(1) the time to most recent common ancestry (TMRCA) for the species experiencing the sweep,               

and (2) a related statistic called the relative TMRCA half-life (RTH), which is expected to be                

reduced in partial or soft sweeps​42 (​Figure 4C and ​Supplementary Figure S19–20​). We found              

that both hard and soft sweeps exhibited reductions of both statistics relative to flanking neutral               

regions. Interestingly, hard sweeps show a lower RTH than soft sweeps, likely because of their               

recent origin on a single haplotype background.  

Finally, to validate our ability to differentiate between soft and hard sweeps, we examined              

two haplotype homozygosity statistics, and , which are sensitive to differences in    H12   H1
H2        

frequency between the two most prevalent haplotypes​54 (see ​Supplementary Text​). We found,            

as expected, that the predicted soft sweeps tended to have larger values of and smaller             H1
H2    

values of while the hard sweeps showed the opposite pattern (​Figure 4C and  ,H12             

Supplementary Figure S21​). Simulated hard and soft sweeps showed qualitatively similar           

behavior, although, unsurprisingly, they separated more cleanly than the empirical ones. ​We            

also verified that few (~3%) of our predicted soft sweeps fall within the 20kb flanking regions of                 

predicted hard sweeps (see ​Supplementary Text​), indicating that our classifier is not frequently             

misled by the “soft shoulders” of hard sweeps​53​. Overall, our results suggest that the empirical               

data is indeed dominated by the soft sweeps, and if anything, the classifier has erred on the                 

side of miscalling some soft sweeps as hard sweeps (consistent with tests on simulated data). 

 

Many of the Soft Sweeps are also Recent and Partial 
We expanded our simulation scheme to consider other distinguishing characteristics of           

selective sweeps. First, focusing on the case of soft sweeps, we asked whether these sweeps               

tended to occur recently, after a pair of species diverged, or whether they may instead be                

ancestral, meaning that they began in the common ancestor of the two species. In simulation               
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experiments, we found that we had some statistical power to distinguish these cases, with              

somewhat better classification accuracy for recent sweeps (~98%) than ancestral ones (~80%;            

see ​Supplementary Table S10 and ​Supplementary Figure S22​). In particular, the ancestral            

sweeps and neutral regions tended to be difficult to distinguish, probably owing to loss in older                

sweeps of the characteristic pattern of extended homozygosity​54​. We applied our classifier to the              

real data and did obtain predictions of 4–11 times as many recent, species-specific sweeps              

(per-species) as ancestral sweeps (see ​Supplementary Table S11​), although this enrichment           

likely in part reflects differences in power. 

Second, we attempted to ask whether species-specific soft sweeps tended to be            

“complete,” meaning that the favored allele has been driven completely to fixation, or “partial,”              

meaning that it has not been fixed. We had limited power to address this question (see                

Supplementary Table S12 ​and ​Supplementary Figure S23​) but found some evidence           

suggesting that a substantial fraction of soft sweeps are partial sweeps (see ​Supplementary             
Table S13​). This observation is consistent with the fact that the reduction in RTH observed in                

predicted soft sweeps is more pronounced than the reduction in TMRCA (​Figure 4C​).  

 

An Expanded Analysis of all Five Species Further Supports Abundant 

Species-Specific Soft Sweeps 
Having found that soft sweeps—often recent—have likely been common in these southern            

capuchino species, we extended our pairwise analyses to consider all five species            

simultaneously, allowing for a sweep to occur in any one of them. Our goal was to produce a                  

comprehensive set of predictions encompassing all species. Based on simulated data, our            

multi-way classifier showed good accuracy in this setting (93–95% accuracy; ​Supplementary           
Table S14 and ​Supplementary Figure S24​). An analysis of the nineteen scaffolds containing             

F​ST peaks identified numerous species-specific soft sweeps (​Supplementary Figure S25 ​and           

Supplementary Table S15​), consistent with our previous pairwise analyses. Furthermore, the           

inferred local trees associated with these predicted sweeps indicated reduced RTH statistics            

(​Figure 5 and ​Supplementary Figures S26​). Together, these findings further support the            

prevalence of soft sweeps. 

To gain insight into the functional relevance of the predicted sweeps, we examined the              

Gene Ontology (GO) biological process of nearby genes, focusing on predictions of            

species-specific soft sweeps with probability >0.95. We identified only two significantly enriched            

GO processes: “melanin biosynthetic process from tyrosine” (​p = 0.023 after FDR correction)             
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and “pigmentation” (​p = 0.022 after FDR correction). Notably, the predicted sweeps were mostly              

located in non-coding regions near the genes in question, and likely contain cis-regulatory             

elements that control gene expression. Prominent examples include predictions near the genes            

ASIP (induces melanocytes to synthesize pheomelanin instead of eumelanin), ​KITL (stimulates           

melanocyte proliferation) (​Figure 5​), and ​SLC45A2 (transports substances needed for melanin           

synthesis).  

 

Discussion 
In this article, we have presented an analysis of the genome sequences of 60 individuals               

representing five species of southern capuchino seedeaters. These birds serve as an excellent             

model for recent speciation in the presence of gene flow. Furthermore, because they differ              

primarily in male plumage and are mostly sympatric, they are a powerful system for studying the                

genetic effects of sexual selection in speciation ​40,41​.  

Our analysis focused in large part on previously identified genomic islands of            

differentiation ​40​, defined by local peaks in ​F​ST​. There has been a great deal of interest for more                 

than a decade in the identification of such islands using summary statistics such as ​F​ST and ​d​XY​.                 

These summary statistics, however, provide limited information about the evolutionary          

processes underlying the separation of populations into distinct species. In this case, we further              

dissected the previously identified regions using a powerful new method for ancestral            

recombination graph (ARG) inference called ​ARGweaver​. This method provides access to fully            

resolved genealogies, recombination breakpoints, and distributions over coalescence times, as          

opposed to the coarser averages represented by ​F​ST and ​d​XY​. Inspection of individual loci              

indicates that they often provide clearer indications of the evolutionary events underlying islands             

of differentiation (​Supplementary Figures S27-29​). Therefore, we designed a series of           

statistical tests that attempted to exploit this high-resolution information more generally. In            

addition, we combined these tests with machine-learning methods for the prediction of various             

types of selective sweeps, in order to gain deeper insights into the processes that led to the                 

observed islands of differentiation. 

We were particularly interested in comparing two competing models for the formation of             

genomic islands of differentiation: one in which selection acts during speciation to reduce gene              

flow in these genomic regions, and another in which selection acts to reduce within-species              

diversity through species-specific selective sweeps​32,33​. Notably, the “selective sweeps” model is           
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a distillation of a larger family of models that allows for early sweeps, late sweeps, and adaptive                 

introgression ​33,36,45​. Nevertheless, we view these two general paradigms—early barriers to gene           

flow vs. recent sweeps—as representing a fundamental distinction between plausible models for            

the formation of islands, with the timing and specific nature of the sweeps being less essential. 

At the same time, a binary choice between models is clearly an oversimplification—not only              

does it mask a diversity of scenarios within each paradigm, but it also obscures the possibility                

that both paradigms could be simultaneously at play. Importantly, the ARG-based statistics            

allow us to gain insight into the possible contributions of each model at each island of                

differentiation. For example, in the island upstream of the ​ASIP gene, we find evidence of a                

recent near-complete sweep in ​S. melanogaster alongside a deep separation between           

S. pileata and the other four species (​Supplementary Figures S4–S5 and ​Supplementary           
Text​). Thus, both models likely contributed to differentiation in the regulatory sequence of this              

gene, but at different times and in different species. Notably, the distinction between the two               

paradigmatic models may not be absolute, since loci that experienced early barriers to gene              

flow could later undergo selective sweeps, and loci that underwent species-specific sweeps            

could lead to reduced hybrid fitness resulting in barriers to gene flow. Nevertheless, when we               

contrast these two extreme scenarios, we find much stronger support overall for ​F​ST peaks being               

associated with recent sweeps than with older barriers to gene flow. 

It is worth noting that, while we have focused on selective sweeps as an alternative to                

barriers to gene flow, previous models have allowed for a reduction in within-species diversity              

owing to background selection (BGS) as well as selective sweeps​34,36,46​. We focused on             

selective sweeps because they are far more plausible as an explanation for dramatic reductions              

in within-species diversity that have occurred recently and in a species-specific manner. In             

addition, a recent study provides compelling evidence that BGS is unlikely to produce a              

significant local inflation of ​F​ST under realistic population genetic parameters for vertebrates​55​.            

Moreover, we took care to use indicators of selective sweeps that should be fairly robust to                

BGS, to avoid mistaking signatures of background selection for sweeps. In particular, our             

ARG-based analysis made use of measures based on the degree of “clustering” of coalescence              

events in local trees, which are designed to be sensitive to sweeps to the exclusion of BGS​43                 

(see ​Methods ​). Similarly, haplotype statistics such as and ​should be elevated by       H12   H1
H2      

sweeps but not by BGS. Thus, our conclusions about the prominence of sweeps should be               

relatively unaffected by BGS. 
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It has recently been shown that ​F​ST outlier scans can indirectly enrich for regions of reduced                

recombination, because the ​F​ST statistic has increased variance in such regions​56​. Therefore,            

the ​F​ST peaks we have analyzed could potentially have lower average recombination rates than              

the background regions to which they were compared. We do not expect such a difference—if it                

does exist—to have a major impact on our conclusions, owing to our focus on the inferred                

genealogies in ​F​ST peaks and the relative times of coalescence events, which should not be               

highly sensitive to recombination rates. Moreover, even if the outlier effect were to enrich for               

distorted genealogies, we do not expect it produce a bias in differentiating between signatures              

of selection against gene flow (e.g., deep cross-coalescence) and signatures of recent sweeps             

(e.g., shallow within-species TMRCAs). Nevertheless, it is possible that locally reduced           

recombination rates in the ​F​ST peaks could have some indirect influences on our analysis.              

Improved recombination maps will be needed for the southern capuchinos or closely related             

species to enable this issue to be explored in more detail. 

Consistent with other recent studies, we found machine-learning methods based on           

combinations of traditional population genetic summary statistics to be quite powerful in            

detecting selective sweeps. Notably, we went beyond previous work by characterizing sweeps            

not only as “soft” or “hard”, but also as ancient or recent, and partial or complete. Overall, we                  

found abundant evidence for sweeps in these capuchino species, and indications that these             

sweeps are enriched for soft sweeps and recent population-specific sweeps. These conclusions            

were further supported by semi-independent evidence from ARG inference and haplotype           

statistics. At the same time, it was clear from our simulation experiments that some features of                

sweeps were much more difficult than others to discern from sequence data. For example, we               

had limited power to identify ancient sweeps and partial sweeps. We also attempted to              

distinguish between sweeps that were specific to a single species and sweeps that occurred in               

parallel at the same locus in multiple species, but found that our results were somewhat               

ambiguous, with true parallel sweeps being mixed together with cases of apparent shared             

sweeps or adaptive introgression (​Supplementary Table S16 and Supplementary Figures          
S30–S32​). In addition, our current machine-learning methods are still coarse-grained, in that            

they identify broad windows containing sweeps rather than specific causal variants, and they do              

not make direct use of informative ARG-derived features in classification. An important area for              

future work will be to develop improved high-resolution ARG-aware machine-learning predictors           

of sweeps​49​, taking advantage of the latest advances in genealogy and ARG inference ​43,57,58​.  
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As in all studies that predict sweeps using machine-learning classifiers trained from            

simulated data, our methods are sensitive to biases stemming from our choices of parameters              

for simulation ​44,49​. We attempted to mitigate this issue by simulating from a broad family of               

models, and by validating our predictions with independent methods where possible. In addition,             

we systematically evaluated the influence on our predictions of features such as misspecified             

demographic models, selection coefficients, mutation and recombination rates; the addition of           

gene conversion; and the “soft shoulders” phenomenon (​Supplementary Text​); and we found            

that our methods were fairly robust to these confounding factors. ​Nevertheless, training bias and              

limitations in both power and resolution have undoubtedly influenced our predictions to a             

degree. 

Regardless of these caveats, the prediction of abundant soft sweeps—largely recent and            

population-specific—makes sense from first principles and previous findings. These capuchino          

species appear to have emerged from a large, highly polymorphic ancestral population, which             

would have provided high levels of standing variation to serve as the substrate for soft sweeps.                

Furthermore, these speciation events appear to have been quite recent, which might favor soft              

sweeps over hard sweeps, because they can occur more rapidly​59​. It has further been argued               

that standing genetic variants may be more likely than novel ones to drive speciation ​60​, because               

novel mutations tend to be deleterious if not neutral ​61​, whereas older variants have already been               

filtered and shaped by selection in their ecological context​62​. Notably, other recent empirical             

studies have similarly found a predominance of soft selective sweeps in both ​Drosophila             

melanogaster​63,64 and humans​65​. The recent speciation event would also allow limited time for             

haplotypes under selection to reach fixation, which would favor partial sweeps over complete             

sweeps. Finally, the likely role of sexual selection in driving many of these sweeps is consistent                

with selected alleles for features such as plumage having been present in the ancestral              

population, likely at low frequency, and having swept to high frequency relatively recently, in a               

species-specific manner. Sexual selection would also be consistent with our observations           

suggesting that many loci have experienced sweeps in parallel in different species. We note that               

there is now strong evidence—including genetic, behavioral, coloration, song and captive           

breeding data ​66–69​—that these are truly distinct species, not artificial taxonomic constructs based            

on superficial morphological features. 

Overall, the genetic changes underlying any speciation event are complex and unlikely to             

be fully explained by any simple model. They are undoubtedly highly context-dependent,            

depending on diverse features such as population size and structure, rates and patterns of gene               
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flow, degrees of sympatry, differences in local environments, and the strength of sexual             

selection. Nevertheless, our analysis of these capuchino species demonstrates that prominent           

genomic islands of differentiation can be explained largely through recent, species-specific           

selective sweeps. Furthermore, we have shown that the analysis of these islands can benefit              

substantially by going beyond summary statistics such as ​F​ST and ​d​XY and making full use of the                 

ancestral recombination graph (ARG), as well as machine-learning methods for prediction of            

selective sweeps. Together, our observations help to fill in the picture of how selection,              

recombination, and drift act together to shape the genomes of distinct species, with broad              

implications across the tree of life. 
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Materials and Methods 

Obtaining local trees from genome sequence data. ​All of our analyses are based on the               

genome sequence data published by Campagna et al.​40​. We applied standard filtering and             

executed ​ARGweaver ​on the entire data set, producing an inferred local tree for every position               

along the sequenced genome scaffolds (​Supplementary Text​). 

Summarizing genealogical signatures from the inferred ARG. Genealogical information was          

summarized using several measures extracted from each local tree (see below). Average            

values for each measure were computed in non-overlapping 20 kb windows tiling all scaffolds              

(​Supplementary Text​). A significance threshold was determined for each measure separately           

by considering the distribution of values observed in the 39,699 windows that cover the 576               

scaffolds that do not contain ​F​ST peaks. We applied thresholds associated with a strict empirical               

p​-value of 0.0001. Moreover, to account for the use of extreme values (maximum or minimum)               

in long genomic blocks, we examined the distribution of values for each measure in a collection                

of 1,376 non-overlapping 500 kb blocks from the same 576 scaffolds. The block length was               

selected to be conservative relative to the length distribution of ​F​ST peaks (mean length 243 kb                

and only four peaks longer than 500 kb; ​Supplementary Table S1​). 

A test for species differentiation (test 1 in Table 1). ​Scores corresponding to species              

differentiation in local trees were determined using a hypergeometric test, as follows. For a              

subtree with ​n ​leaves out of which ​k are mapped to a certain species, we computed the                 

probability of this observation under a hypergeometric distribution, and defined the associated            

enrichment score as -log ​10​(P​K=24,N=120​(​X​≥​k ​|​n ​)). The enrichment score associated with a given           

species in a given site is defined as the maximum score associated with that species in a                 

subtree of the local tree inferred in that position. Thus, a high enrichment score is obtained                

when the local tree contains a subtree enriched for individuals from that species. Enrichment              

scores were averaged in non-overlapping 20 kb windows, and an empirical ​p​-value of 0.0001              

was determined separately for each species by considering the top four values observed in the               

set of 39,699 windows used for control (see above). An ​F​ST peak was considered to exhibit                

significant differentiation for a given species (gray cells in ​Table 1 ​), if the peak contained a 20                 

kb window with an enrichment score for that species that exceeded its empirical significance              

threshold (See ​Supplementary Table S2 for the species-specific thresholds and a complete set             

of results). Notably, the enrichment scores based on the hypergeometric distribution reflect a             
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simplifying assumption of exchangeability of all lineages across species; however, the empirical            

control ensures that violations of this assumption do not produce a bias in the identified peaks. 

A test for reduction in within-species time to most recent common ancestry (TMRCA)             
(test 2 in Table 1). We based this test on the time to the most recent common ancestor of half                    

the haploid samples (​n​=12) from a given species (TMRCAH). Requiring only half the samples              

allows us to consider partial sweeps and provides robustness to the inherent uncertainty in the               

inferred local trees. To account for variation in age estimates stemming from mutation rate              

variation and/or background selection, we used a relative version of TMRCAH, which, following             

ref. ​42​, we denote as the Relative TMRCA ​H​alflife (RTH). Originally, RTH was defined as the                

TMRCAH of a given species divided by the full TMRCA of that species, but for test 2, we used a                    

slightly modified measure (RTH’) obtained by dividing the TMRCAH by the age of the youngest               

subtree that contained at least half of all samples, not only those samples from the species in                 

question (​n​=60). This measure provides improved robustness to errors in tree inference and             

potentially captures a wider variety of selective sweeps (​Supplementary Text​). RTH’ is related             

to the species-specific sequence diversity (​π​Within​) that has been used in other studies of islands               

of differentiation, but we expect RTH’ to be more sensitive to partial sweeps and less affected                

by mutation rate variation and background selection (​Supplementary text and ​Supplementary           
Figure ​S28​). Values of RTH’ were averaged in non-overlapping 20 kb windows, and an              

empirical ​p​-value of 0.0001 was determined separately for each species by considering the             

lowest four values observed in the set of 39,699 windows used for control (see above). An ​F​ST                 

peak was considered to exhibit a significant reduction in TMRCA in a given species (red circles                

in ​Table 1 ​), if the peak contained a 20 kb window with an RTH’ for that species that is below its                     

empirical significance threshold (See ​Supplementary Table S3 for ​the species-specific          

thresholds and a complete set of results​). 

A test for elevation in cross-coalescence time (test 3 in Table 1). ​For a given local tree and                  

pair of species, we considered the ten most recent cross-coalescent events between the two              

species and normalized these ages, as in test 2, by the age of the youngest subtree that                 

contains at least half of the total number of haploid samples. These measures are related to ​d​XY​,                 

but are expected to be more sensitive to recent changes in gene flow and less affected by                 

mutation rate variation and background selection (​Supplementary Text and ​Supplementary          
Figure ​S29​). Rather than computing average values across 20 kb windows, we computed for              

each species-pair the distribution of normalized recent cross coalescence times in every ​F​ST             
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peak and compared this distribution to the one observed in flanking regions. Quantile             

differences were used to measure the difference between the two distributions, and a             

significance threshold associated with an empirical ​p​-value of 0.01 was set based on             

examination of 1,367 genomic regions from scaffolds that do not contain an ​F​ST peak              

(​Supplementary text​).  

A test for possible selection against gene flow ​. Because elevated cross coalescence times             

could be caused by a variety of phenomena (​Supplementary Text​), we applied additional             

conditions to detect deep clades enriched for lineages ancestral to a particular species, as              

expected from selection against gene flow. In particular, we infer possible selection against             

gene flow for a given species in a given ​F​ST peak (blue circles in ​Table 1 ​) if these conditions                   

hold: 

(1) The species has a significantly high enrichment score in the peak (passes test 1). 

(2) The species does not have a significantly low RTH’ in the peak (fails test 2). 

(3) The species has significantly elevated cross-coalescence times with some other species            
relative to the flanking regions (passes test 3). 

Summary statistics used as features for prediction of different models for selective            
sweeps. Several sequence-based species-level summary statistics were used as features for a            

machine learning approach to distinguish among different models of selection (including neutral            

drift). All statistics were collected in five consecutive 10 kb windows with the objective of               

identifying possible sweeps induced by a positively selected mutation in the third (middle)             

window. Some of these summary statistics corresponded to standard measures of diversity,            

such as the number of segregating sites, 𝜋 (ref. ​70​), Tajima’s D (ref. ​71​), θ ​W (ref. ​72​), θ ​H ​(ref. ​70​), the                     

number of distinct haplotypes (ref. ​64​), Z​nS (ref. ​73​), and maximum value of ⍵ (ref. ​74​). For each of                  

these statistics, we computed an average value for each of the five 10 kb windows for each                 

analyzed species separately and jointly for all species together. We also extracted statistics             

based on the distribution of the coefficient of linkage disequilibrium (​D​AB​) of each of the five                

windows with the middle window—where the site under selection is assumed to be located. ​D​AB               

was computed for every variant site in the middle window with each other variant site across all                 

five windows. Then, for each of the five windows, we extracted the 75th, 90th, and 95th                

percentiles of the distribution of ​D​AB values relative to the middle window. Each of these               

LD-based statistics was recorded for each analyzed species separately. Finally, each summary            
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statistic was normalized by dividing the value recorded for a given window by the sum of values                 

across all five windows (see ​Figure 3​). 

Simulated datasets used for training and testing the selective sweep classifier. Training            

and testing data sets were generated using SLiM​50 by simulating 9,000 regions of length 50 kb                

for each model we considered: (e.g., “neutral”, “soft sweep”, or “hard sweep”). Of these regions,               

8,000 were used for training and 1,000 were used for testing (see below). The number of                

simulated species and sampled sequences was set to match the analyzed data set. Thus, in the                

species-pair analyses, a total of 48 haploid sequences were sampled at the end of the               

simulation (24 per species), and in the expanded analysis the entire set of five species was                

simulated and 120 haploid sequences were sampled. Simulations used a demographic model            

based on one inferred previously from ddRAD data ​41​. To demonstrate how well the simulations              

fit the empirical data at hand, we applied PCA to the summary statistics extracted from both the                 

empirical data and the simulations based on the demographic model inferred from RAD-seq             

data (see ​Supplementary Figure S33​). In the expanded analysis we used the complete model,              

and in the species-pair analyses we used the appropriate two-species derivatives of this model              

(​Supplementary Text​). In non-neutral simulations, selection was applied to a single focal site             

located in the middle 10 kb window. We explored a range of values for the main parameters                 

corresponding to demography and selection: (1) mutation rate, (2) recombination rate, (3)           

effective population sizes, (4) selection coefficient, (5) onset time of selection, and (6) position of               

beneficial mutation. Furthermore, for soft sweeps (partial or complete), we also varied the initial              

derived allele frequency at which a mutation switches from evolving under drift to becoming              

beneficial, and for partial sweeps we varied the target derived allele frequency at which a               

mutation switches back to being neutral (​Supplementary Text​). For each simulated region, we             

recorded the set of features used by the classifier (see above). If one of these statistics fell                 

outside of the range of values observed in the genomic data, the simulated 50 kb segment was                 

excluded from the set and replaced by another segment (to maintain a total of 9,000 simulated                

segments per class). The comparison to genomic data was done based on the 19 scaffolds that                

contain ​F​ST peaks and the specific species being analyzed by the classifier. Thus, slightly              

different filtering was applied for each of the four species-pair analyses in each classification              

task (see below). 

Training a linear SVM to classify different modes of selection. ​A linear support vector              

machine (SVM) was applied to the simulated training data sets to learn a classification model for                
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each task separately. The linear SVM classifies samples into two categories (e.g., “neutral” vs.              

“non-neutral”) by finding the hyperplane that maximizes the separation of the data from the two               

different classes​75,76 (​Figure 3 ​). Since most of our prediction tasks had more than two              

categories (e.g. “neutral”, “soft sweep”, and “hard sweep”), we used a one-vs-rest approach.             

Thus, a separate classifier was trained for each class, with the 8,000 regions simulated for that                

class as positive training examples, and regions simulated under other models as negative             

training examples. We used the ​C-Support Vector Classification tool (​sklearn.svm.SVC​) from           

the Python ​sklearn package to train and test the classifier. Default operating parameters were              

used in all cases. Classification into more than two categories was obtained by combining the               

results from multiple binary classifiers using the ​predict_proba function in ​sklearn​. This function             

applies a logistic function to the individual score produced by each classifier, thus transforming it               

into a value reflecting the probability that the binary classifier assigns to its “positive” class. It                

then divides the probability obtained (separately) for each class by the sum of all probabilities, to                

obtain a normalized prediction probability for each class. The resulting multi-way classifier was             

then tested using 1,000 regions simulated for each class. The results of these tests were               

summarized in a confusion matrix describing the frequency of different types of prediction errors              

when the predicted class is set as the one with the highest probability. We also computed a                 

receiver operating characteristic (ROC) curve for every pair of classes, to provide a more              

complete summary of the behavior of different types of errors. ​We report the calibration curves               

in ​Supplementary Figure S34 to assess the calibration of the probabilities generated by the              

classifier. 

Robustness study. Our machine-learning approach requires making subjective decisions         

about which types of examples to simulate and will naturally be biased towards the assumed               

scenarios. Therefore, it is important to test the model with simulations representing alternative             

scenarios. We have carried out a fairly extensive analysis of the robustness of our approach,               

considering not only alternative demographic parameters (such as ancestral Ne, derived           

species Ne, divergence time), but also alternative parameters for recombination rate, mutation            

rate, selection coefficients, and gene conversion. In all cases, we took care to test our prediction                

methods under parameters well outside the range used in training. This analysis is summarized              

in the ​Supplementary Text​. ​We found that our method was fairly robust to alternative              

parameter values, although, as expected, performance did degrade somewhat under severely           

misspecified models (see ​Supplementary Figures S8-14​)​. 
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Species-pair analyses and expanded analysis of all five species. ​We started by            

distinguishing among different types of selective sweeps using a series of classification tasks,             

each focused on two types of sweeps and two species. The pairs of sweep categories               

considered were (1) soft vs. hard sweeps, (2) recent vs. ancestral sweeps, (3) partial vs.               

complete sweeps, and (4) species-specific vs. parallel sweeps (see ​Supplementary Text for            

more details). In each case, we aimed to distinguish the two types of sweeps from each other                 

and from neutrally evolving regions. Each of these four classification tasks was applied to the               

four species-pairs that overall exhibited the highest ​F​ST values genome-wide:          

(1)​ S.​ ​melanogaster ​vs. ​S. ​nigrorufa​, (2) ​S. ​ ​nigrorufa ​vs. ​S. ​pileata​, (3) ​S. ​pileata ​vs. ​S. palustris​,              

and (4) ​S. ​hypoxantha ​vs. ​S.​ ​melanogaster​. Note that for each species-pair, simulated            

segments were filtered using slightly different empirical ranges (see above). Based on the             

outcome of the four classification tasks in all four species pairs, we designed an expanded               

analysis of all five capuchino species. In particular, in this analysis we allowed any one of the                 

five species to undergo a species-specific complete soft sweep. 

Application of machine learning to genomic data. ​We analyzed the 19 scaffolds that contain              

F​ST peaks using each of our trained classifiers. Each scaffold was scanned by a sliding 50 kb                 

window along the scaffold with a step size of 10 kb. Summary statistics were extracted, as                

described above, for each 50 kb window using the genome samples appropriate for the specific               

classification task at hand—24 genomes in each species-pair analyses and all 60 genomes in              

the expanded analysis. These summary statistics were then provided as input to the trained              

binary classifiers and their classification outputs were combined to provide a normalized            

probability for each class (see above). The middle 10 kb of the 50 kb window was then assigned                  

the class with the highest score, and ​Manhattan plots were used to show the distribution of                

class assignments and their normalized probabilities across each scaffold (e.g., Figure 4A). 
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Figure 1: Two models for the formation of islands of differentiation (​F​ST peaks): selection              
against gene flow during speciation vs. recent species-specific selective sweeps.          
(​A​) Representative genealogies for six individuals from two recently diverged species in an ​F​ST             
peak (​yellow​) and in a nearby neutrally evolving genomic region (​gray​). Under both models,              
neutral genealogies exhibit frequent incomplete lineage sorting (ILS) due to large ancestral            
population sizes and possible ongoing gene flow between species (​vertical dashed gray line​).             
ILS is reduced in the ​F​ST peaks either because the time back to the first cross-coalescence                
(marked by X​) is elevated by selection against gene flow (​left​), or because the within-species               
time to most recent common ancestry (TMRCA; marked by triangle​) is reduced by a selective               
sweep in one or both species (​right​). (​B​) Hypothetical distributions of various sequence-based             
and genealogy-based measures under the two models. Selection against gene flow (​blue​) will             
tend to induce a positive correlation between ​F​ST and ​d​XY​, whereas species-specific sweeps             
(​red​) will not (​left​). The within-species TMRCA is expected to be reduced by selective sweeps,               
but not substantially by selection against gene flow (​middle​). The cross-coalescence time is             
expected to be elevated by selection against gene flow but not substantially by species-specific              
sweeps (​right​). 
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Figure 2: Comparison of inferred genealogies in an ​F​ST peak and in flanking neutral regions for                
the first 10 Mb of scaffold 404. (​A​) Average ​F​ST values in non-overlapping 10-kb windows               
between ​S. nigrorufa (nig) and ​S. palustris (pal), showing a pronounced peak near the              
pigmentation-related gene, ​SLC45A2​. Local trees are shown within the peak (​top right​) and in a               
flanking neutral region (​top left​), representing the relationships among 120 haploid samples from             
five species (see ​legend​). The tree within the ​F​ST peak has two very young clades (​gray boxes​)                 
each of which is enriched for ​S. palustris or ​S. nigrorufa and has a more recent TMRCA than                  
expected given its size (​p​=0.01, ​Supplementary Text​). By contrast, the flanking tree is             
characterized by frequent deep coalescence events and incomplete lineage sorting. (​B​) Times            
to most recent common ancestry (in millions of generations) for half of the haploid samples               
(TMRCAH) from ​S. nigrorufa​. Values are reduced in the ​F​ST peak compared to flanking regions,               
suggesting species-specific selective sweeps. (​C​) Cross-coalescence times (CC) in millions of           
generations between ​S. nigrorufa and ​S. palustris​, as computed from the inferred ARG. No              
elevated cross coalescence times are observed in the ​F​ST peak, as would be expected if               
selection against gene flow were predominant. The smoothing method used in panels ​B and ​C               
was local polynomial regression; the gray bands represent 95% confidence intervals.  
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Figure 3: Illustration of machine-learning pipeline for prediction of selective sweeps. Based on             
an estimated demographic history​41​, SLiM​50 is used to simulate both neutral genomic regions,             
and regions containing sweeps. Summary statistics specific to each species are then extracted             
from each simulated region. The summary statistics used were 𝜋 (ref. ​78​), the number of               
segregating sites, Tajima’s ​D​71​, θ ​W (ref. ​72​), θ ​H ​(ref. ​70​), the number of distinct haplotypes​64​, ​Z​nS                
(ref. ​73​), the maximum value of ⍵ (ref. ​74​), and several statistics that summarize the linkage                
disequilibrium (LD) distribution (see ​Methods ​). All statistics were used as features in training a              
machine-learning model (a linear SVM) to discriminate a sweep from a neutral region. The              
model detects not only characteristic combinations of features, but also their patterns of             
variation across genomic windows. The learned model is applied to the empirical data to predict               
individual sweeps across genomic scaffolds. Finally, the predicted sweeps are analyzed using            
ARG-based measures (e.g. species-specific TMRCA and RTH), and local trees that map to             
those predictions are explored for recent clusters of coalescent events. Similar pipelines are             
used to distinguish between soft and hard sweeps, recent and ancient sweeps, and partial and               
complete sweeps (see ​Methods​). 
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Figure 4: (​A​) Manhattan plots showing the prediction probabilities for soft and hard sweeps in               
S. melanogaster (mel) and ​S. nigrorufa (nig) across three scaffolds harboring top ​F​ST peaks and               
known pigmentation genes (labeled in ​red​). (​B​) Local trees inferred by ​ARGweaver in 10 kb              
windows classified as soft or hard sweeps in ​S. melanogaster (mel) and ​S. nigrorufa (nig). The                
red arrow in panel A points to the classified window from which each local tree was extracted.                 
Shown also is the RTH of the local tree and the prediction probability for soft or hard sweeps                  
associated with the 10 kb window. Highlighted for each local tree are the two youngest clades                
containing at least three haploid samples from the target species. We also highlight the              
youngest clade that contains at least half the haploid samples for the target species (TMRCAH).               
(​C​) Cumulative distribution functions of ​ARGweaver​-based estimates of species-specific         
TMRCA (​left​) and RTH (​middle​) for ​S. melanogaster in regions classified as hard sweeps (red),              
soft sweeps (blue), or other classes (green) (see ​Supplementary Text​). These statistics are             
depleted by selective sweeps, owing to clusters of recent coalescent events. (​right​) Relationship             
between homozygosity-based statistics and ​H​12 ​(see ​Supplementary Text​) for simulated   H1

H2         
and real ​S. melanogaster ​data ​. ​Each dot in the plot corresponds to a 50 kb region, and its color                  
indicates its predicted (or simulated) class. 
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Figure 5: ​Predictions of the soft sweep classifier expanded to all five species and              
corresponding genealogical signatures. (​A​) Prediction probabilities for soft sweeps in each of            
the five species (top; see legend for species color code) in a region containing an ​F​ST peak                 
(dashed vertical lines) upstream of the ​KITL gene (red) on scaffold 412. A high-confidence              
prediction for a soft sweep in S. ​nigrorufa (prediction probability 0.94) is inferred roughly 130 kb                
upstream of the ​KITL gene. The 50 kb region surrounding this predicted peak (gray bar) exhibits                
genealogical signatures of a sweep in two ARG-based statistics: (1) high enrichment scores for              
S. ​nigrorufa (middle) indicating that local trees in this region contain clades enriched for this               
species, and (2) low RTH (bottom) indicating that the clades enriched for S. ​nigrorufa are young.                
(​B​) A local tree inferred by ​ARGweaver in the region containing the inferred soft sweep (position                
3.43 Mb). Tree tips are colored based on species label (see legend) and color of internal                
branches represents average over all offspring branches. The figure focuses on the last million              
generations, with deeper branches faded out and shown in half scale. The tree contains a               
young clade (~105,000 generations) with 15 haploid samples, all from S. ​nigrorufa (out of the               
total 24 samples). This clade contains two major subclades (gray background), which could             
possibly correspond to two haplotype backgrounds for the inferred soft sweep. 
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Table 1: ​Summary of genealogical signatures of speciation​. Results are for the 25 ​F​ST ​peaks               
previously identified in pairwise analyses of ​S. hypoxantha (hypox), ​S. melanogaster (mel), ​S.             
nigrorufa (nig), ​S. palustris (pal), and ​S. pileata (pil)​40​. Associated local trees were extracted              
from the ​ARGweaver​-inferred ancestral recombination graph and examined for evidence of           
species differentiation (test 1: gray cells, ​p​<0.0001), young clades indicating recent           
species-specific selective sweeps (test 2: red circles, ​p​<0.0001), and deep separation indicating            
selection against gene flow ​(test 3: blue circles, quantile difference > 0.1). See ​Methods and               
Supplementary Tables S2, S3 and S5 ​ for details. 
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