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Abstract

An increasingly important scenario in population genetics is when a large cohort has been genotyped using
a low-resolution approach (e.g. microarrays, exome capture, short-read WGS), from which a few individuals
are selected for resequencing using a more comprehensive approach, especially long-read sequencing. The
subset of individuals selected should ensure that the captured genetic diversity is fully representative and
includes variants across all subpopulations. For example, human variation has historically been focused on
individuals with European ancestry, but this represents a small fraction of the overall diversity.

To address this goal, SVCollector (https://github.com/fritzsedlazeck/SVCollector) identifies the optimal
subset of individuals for resequencing. SVCollector analyzes a population-level VCF file from a low reso-
lution genotyping study. It then computes a ranked list of samples that maximizes the total number of
variants present from a subset of a given size. To solve this optimization problem, SVCollector implements
a fast greedy heuristic and an exact algorithm using integer linear programming. We apply SVCollector
on simulated data, 2504 human genomes from the 1000 Genomes Project, and 3024 genomes from the 3K
Rice Genomes Project and show the rankings it computes are more representative than widely used naive
strategies. Notably, we show that when selecting an optimal subset of 100 samples in these two cohorts, SV-
Collector identifies individuals from every subpopulation while naive methods yield an unbalanced selection.
Finally, we show the number of variants present in cohorts of different sizes selected using this approach
follows a power-law distribution that is naturally related to the population genetic concept of the allele
frequency spectrum, allowing us to estimate the diversity present with increasing numbers of samples.
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Introduction

In recent years it has become increasingly clear that structural variants (SVs) play a key role in evolution,
diseases, and many other aspects of biology across all organisms (Lupski 2015; Sudmant et al. 2015; Alonge
et al. 2020). It is less well known, however, whether the evolutionary forces shaping SV diversity are
analogous or distinct from those influencing single nucleotide variants (SNVs). Genome-wide inferences of
human evolutionary relationships (The 1000 Genomes Project Consortium 2015) and key population genetic
parameters such as θ (Watterson 1975), π (Nei and WH Li 1979), and Tajima’s D (Tajima 1989) have
largely focused on SNVs but not SVs. Similarly, genome-wide scans of human SNV data have revealed
positive and/or balancing selection targeting genomic regions including lactase, the ABO blood groop, and
the HLA immune complex (Fu 2014), but the role of SVs in human adaptation remains poorly understood.

Performing population genetic research using structural variants will require better methods that identify
SVs in a more cost-effective way. Short-read sequencing is currently the most widely-used approach for
identifying SVs, although it suffers from limited accuracy (Chaisson et al. 2015; Sedlazeck et al. 2018). Long
reads, such as those from PacBio and Oxford Nanopore, provide greater sensitivity and lower false discovery
rates, but their higher costs hinder widespread application in large sequencing studies. Another related
question with large cohorts is how to efficiently validate a large number of SVs from the short read-based
calls. Traditional methods such as PCR/Sanger sequencing are costly and labor intensive, necessitating
careful consideration of variants and samples to validate for further study. Thus, these methods are often
limited to hundreds of SVs that can be validated out of an average of 20,000-23,000 SVs present in an healthy
individual (Mahmoud et al. 2019).

Here we present SVCollector (https://github.com/fritzsedlazeck/SVCollector), an open-source method
(MIT license) to optimally rank and select samples based on variants that are shared within a large popula-
tion. By default, the optimal ranking strives to capture as much genetic population diversity as possible in a
fixed number of samples. As a consequence of this approach, the selected samples will include most common
variants plus as many rare and private variants as possible. Alternatively, it can optimize the selection
by weighting the variants by their allele frequency, which enriches for common variants in the population.
Together, SVCollector allows for both a more cost-efficient way to validate a large number of common SVs,
along with an improved re-sequencing approach to discover SVs that were initially missed by short-read se-
quencing. Naive methods to select samples include picking a random selection or picking the samples which
individually have the most variants. These methods do not account for the fact that variants may be shared
across multiple samples in the selection. Instead, SVCollector uses a greedy approach to identify a set that
collectively spans as many variants as possible.

In the analysis, SVCollector reports the cumulative number of distinct variants present for each individual
selected. We show that the number of distinct variants follows a power-law distribution, allowing SVCollector
to accurately extrapolate to even larger collections of genomes. After fitting a distinct power-law curve for
each of the 26 subpopulations in the 1000 Genomes Project, we estimate the number of individuals that
would need to be sequenced in order to obtain a given fraction of the total population-specific diversity. This
shows that, minimally, many thousands of human genomes need to be sequenced in order to capture the
majority of human variants, especially those with African ancestry.

Results

We assessed the results of SVCollector based on simulated data (Supplemental Note 1, Supplemental
Figures 1-2) and two large short-read sequencing projects involving 2,504, and 3,024 samples each (see
Figure 1). For each cohort, we focused on selecting an optimal set of 100 diverse samples. Crucially, using
SVCollector, the individuals that are identified span all subpopulations, whereas the commonly used ”topN”
approach concentrates the selection in a few subpopulations (see below). For all cohorts, the runtime and
memory requirements were minimal. For example, for the 1000 Genomes VCF file of 2,504 samples over
66,555 distinct SVs (Sudmant et al. 2015), SVCollector computed the top 100 samples in 67 seconds using
1.7MB memory. Each of the modes had a similar runtime and RAM requirements.
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Figure 1: A) Density plot of the number of SVs reported per person for each of the five superpopulations
in the 1000 Genomes Project. The variants include all non-reference alleles, with both homozygous and
heterozygous variants considered equally. The peak for the African (AFR) superpopulation occurs around
3,750 SVs per person, while the peaks for the other superpopulations occur around 3,250 SVs per person.
B-C) PCA plots of the 1000 Genome Project samples colored by superpopulation highlighting the 100 most
diverse samples chosen by the topN or greedy approaches respectively. The topN method oversamples from
superpopulations with a greater number of SVs, while the greedy method picks a representative sampling
across all the superpopulations. D) Density plot of the number of SVs per sample for each of the nine
populations in the 3K Rice Genomes Project. E-F) PCA plots of the 3K Rice Genome Project samples
constructed by using variants with an allele frequency greater than 5%. The PCA plots are colored by
population and highlight the 100 most diverse samples chosen by the topN or greedy approaches respectively.
The topN method oversamples from populations with a greater number of SVs, while the greedy method
picks a representative sampling across all the populations.

Sample selection based on SVs from 2,504 human genomes

We assessed SVCollector based on 2,504 human genomes from the 1000 Genomes Project (Sudmant et al.
2015). For our analyses, we used the phase 3 variant callset (The 1000 Genomes Project Consortium 2015)
for chromosomes 1 through 22 with all children removed. Figure 1 shows a summary of the results and
Supplemental Note 2 and Supplemental Table 1 list the details. We first investigated the distribution of
the 100 samples selected by SVCollector across the 5 superpopulations (Supplemental Table 2). Notably,
the widely used naive topN approach selects 99 African samples and 1 American sample, while SVCollector’s
optimal greedy approach covers all 5 superpopulations containing 57 African, 14 East Asian, 14 South Asian,
8 American, and 7 European samples and represents 25 of the 26 subpopulations, excluding only GBR
(Figures 1B-C). The topN approach oversamples from the African superpopulation since it has a greater
number of SVs than the other superpopulations (Figure 1A).

We next investigated the fraction of SVs covered by the 100 samples selected by SVCollector. We
compared SVCollector’s greedy method to the more widely used topN method, to a random method, and to
the exact algorithm using integer linear programming (ILP) (Figure 2A). The ILP approach allowed us to
establish a ground truth so that we could assess the accuracy of the much faster greedy heuristic (Methods).
The random selection was run 100 times per cohort, and we report a boxplot of the percent of SVs identified.
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Figure 2: A) Cumulative fraction of SVs covered for a given number of samples chosen by the ILP, greedy,
topN, and random approaches. SVCollector’s greedy approach approximates the true ILP solution and
exceeds the topN and random approaches at recovering unique SVs. B) Number of SVs covered using three
sample selection methods. In red is the median number of SVs covered over 100 trials of a random sample
of 100 individuals. The red ribbon comprises the minimum and maximum number of SVs covered over the
100 trials. In green is the number of SVs covered using the 100 best ranked (greedy) individuals from the
SNV data, and in blue is the number of SVs covered using the 100 best ranked individuals (greedy) from
the SV data. Data is from the 1000 Genomes Project.

The ILP solution was run for 24 hours and the best solution at this time was chosen. SVCollector’s fast
greedy approach (20.43% of SVs) slightly outperforms the widely used naive topN approach (19.47% of SVs)
and equals the ILP solution (20.43% of SVs) when investigating the top 10 ranked samples in terms of SVs
captured. However, when extending the selection to 100 genomes, the greedy approach (41.65% of SVs)
more substantially outperforms the topN approach (35.75% of SVs) and only slightly underperforms the
ILP solution (41.75% of SVs) by 74 SVs. Across all the values we tested (k = 5, 6, 10, 12, 15, 16, 20, 30, 40,
50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200) we find that the greedy approach takes only seconds to run
and underperforms the ILP solution by at most 74 variants (0.11% of SVs).

By default, SVCollector maximizes the count of distinct variants, without taking into account the allele
frequency of the variants. This often leads to an enrichment of rare or private variants in the identified set,
potentially at the expense of capturing more common variants. However, SVCollector can also be run in a
mode that takes allele frequency into account. In this mode, SVCollector also uses a greedy approach but
optimizes for common variants in the population by weighting variants by their observed allele frequency.
We assessed SVCollector in this allele frequency mode to choose the most diverse set of 10 samples in the
1000 Genomes Project. In the allele frequency mode, SVCollector selects samples that cover 92.47% of the
total weighted SV diversity, while in the normal mode SVCollector selects samples that cover 91.25%. We
also compared the two modes when choosing the most diverse set of 100 samples. In the allele frequency
mode, SVCollector selects samples that cover 98.96% of the total weighted SV diversity, while in the normal
mode that samples selected cover 98.89%. Furthermore, SVCollector chooses 57 African, 14 East Asian, 13
European, 12 South Asian, and 10 American samples. Thus, even in the allele frequency mode SVCollector
chooses a representative selection of samples across all subpopulations.
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Sample selection based on SNVs from 2,504 human genomes

Next, we investigated the relationship between SNVs and SVs, especially to measure if SNV calls can be
utilized as an approximation of SV diversity. For this, we used the 1000 Genomes Project data and compared
three different methods for picking a sample of 100 individuals to optimize the total number of SVs covered.
Overall we find that SVCollector is effective at optimizing sample selection to maximize the number of
distinct SVs, even in the absence of SV calls (Figure 2B).

First we analyzed 100 trials each consisting of 100 randomly picked individuals. Out of the 100 trials,
the SVs covered ranged from 21,627 to 23,792 with a median of 22,839.5 SV. Next, we ran SVCollector
in the greedy mode on the SNV data from the 1000 Genomes Project and picked the best ranked 100
individuals. The number of SVs contained in this sample was 25,459. Comparing this to the greedy selection
of SVCollector based on SVs resulted in only 3,070 fewer SVs. Thus, selecting the best ranked individuals
from the SNV data improves over a random sample, and approaches the upper limit of SVs covered.

Sample selection based on SVs from 3,024 rice genomes

We also assessed SVCollector based on 3,024 genomes from the 3K Rice Genomes Project (The 3,000 rice
genomes project 2014). Figure 1 summarizes the results and Supplemental Table 3 lists the details.
We first investigated the sampling of the 100 samples selected by SVCollector across the populations, using
the 2,223 samples that can be confidently classified into one of the nine populations (W Wang et al. 2018)
(Supplemental Table 4). Notably, the topN approach selects 42 XI-3, 31 XI-2, 16 XI-1A, 7 cA, and 4
XI-1B samples, but no cB, GJ-subtrp, GJ-tmp, or GJ-trp samples. The greedy approach on the other hand
selects a representative sample consisting of all nine subpopulations (24 XI-3, 23 cA, 17 XI-2, 9 XI-1A, 8 cB, 8
XI-1B, 5 GJ-trp, 3 GJ-subtrp, 3 GJ-tmp) (Figures 1E-F). The topN approach oversamples the XI-3, XI-2,
and XI-1A populations since they have a greater number of SVs than the other populations (Figure 1D).
We next investigated the fraction of SVs covered by the 100 samples selected by SVCollector. SVCollector’s
greedy approach (19.2%) outperformed the topN approach (17.0%) when investigating the first 10 ranked
samples. When extending the selection to 100 genomes, the greedy approach (45.4%) outperforms the topN
approach (37.8%).

New population diversity metrics

Next, we examined the distribution in the number of distinct variants present for each individual selected
by SVCollector and found that it follows a power-law distribution (Methods). Based on this result, we
introduce two new population diversity metrics corresponding to the coefficients α and β of the best fit
power-law curve. Specifically, α measures the population mutation rate and β measures the extent to which
variants are shared across individuals in a population. A larger α value corresponds to a higher mutation
rate, while a smaller α value corresponds to a lower mutation rate. A less negative β (i.e. closer to 0)
corresponds to a relative excess of rare variants in the population, while a more negative β corresponds to
a relative lack of rare variants in the population. Thus, we would expect more genetically heterogeneous
populations to have a less negative β and more homogeneous populations to have a more negative β.

To connect these metrics to well-established theory, we compare our two new population diversity metrics
to previously existing metrics. Specifically, Watterson’s θ and Tajima’s D are summary statistics derived from
the allele frequency spectrum (Fisher 1931; Wright 1938). The allele frequency spectrum considers counts
of the number of samples possessing each variant. SVCollector instead considers counts of the number of
variants contained within each sample. As we show by using the counts of the number of variants, it is
straightforward to extrapolate the number of variants we would expect to see as the number of individuals
in the sample is increased.

For each of the 26 subpopulations in the 1000 Genomes data, we calculated a value of α, β, Watterson’s
θ, and Tajima’s D over the autosomes. We calculated one set of values on the SNV data and another on
the SV data (Supplemental Table 5). The program scikit-allel (Miles et al. 2019) was used to determine
the values for Watterson’s θ and Tajima’s D (Supplemental Table 6). From this analysis, we find that
the SVCollector population diversity metrics are correlated with these previously existing diversity metrics.
We first compared our α metric to Watterson’s θ, which is used to determine the population mutation
rate. We find that α is highly correlated with Watterson’s θ both using SNV data and using SV data
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(Supplemental Figures 4A and 4C). Interestingly, the correlations also hold when performing a localized
analysis of individual chromosomes, although with varying levels of correlation with r2 varying from 0.7812
(Chromosome 14) to 0.9026 (Chromosome 19). We next compared our β metric to Tajima’s D, which is
often used to test for deviations from neutrality or demographic equilibrium. Specifically it compares the
mean number of pairwise differences to the number of segregating sites. We find that β is highly correlated
with Tajima’s D (Supplemental Figures 4B and 4D). We also compared β to Tajima’s D calculated on
SNVs over each autosome for the 26 subpopulations. We find high correlation in all cases, with r2 varying
from 0.7738 (Chromosome 2) to 0.8683 (Chromosome 21).

To better understand whether the population structure of structural variants within a population is similar
to that of small variants, we compared the values of each population metric calculated using SV data for
each subpopulation to the values calculated using SNV data for each subpopulation (Supplemental Figure
5). We find high correlation between the SV and SNV values for all four population diversity metrics with
r2 values of 0.8941, 0.9387, 0.9932, and 0.9459 for α, β, Watterson’s θ, and Tajima’s D respectively. These
results indicate that the population structures of structural variants and small variants are highly analogous.

Population substructure

We next show that β can be used to compare the genetic diversity of subpopulations. After comparing the
values of β for each of the 26 subpopulations we find β is least negative (indicating a relative excess of rare
variants) for the seven African populations and most negative (indicating a relative lack of rare variants)
for the five East Asian populations, as expected (Figure 3A). This comports with previous analyses of
intrapopulation diversity showing the African superpopulation to be the most genetically diverse and the
East Asian superpopulation to be the least genetically diverse (The 1000 Genomes Project Consortium 2015)
as a result of serial founder effects during ancient human dispersal across the globe (Deshpande et al. 2009).
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Figure 3: A) SVCollector curves for the most and least diverse human subpopulations (SNVs). The seven
African subpopulations are the most diverse and the five East Asian subpopulations are the least diverse
according to their corresponding β values. B) Selective sweep on Chromosome 6. For each 5 Mbp window
on Chromosome 6, the β z-scores for the 26 populations are plotted as a box plot. Window 7 corresponds
to the HLA region and shows a strong signal for selective pressure acting in this region.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.240390doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.240390
http://creativecommons.org/licenses/by/4.0/


Signatures of selection

We next show that β can be used to find regions of the genome exhibiting signatures of positive or balancing
selection. To perform a genome-wide scan for such signatures, we calculated β over small genomic regions
(5 Mbp non-overlapping windows). Specifically, for each of the 26 subpopulations we calculated β over
each window using only the corresponding SNVs. On average, there were 28,760 SNVs per window. Then,
for each subpopulation we computed the β z-score across all windows to allow for comparisons across the
different subpopulations. For each window, we then constructed a boxplot of the β z-scores across the 26
subpopulatons. We find that for the 26 subpopulations, the genomic region spanning the HLA immune
complex (window 7 on Chromosome 6) has a more negative β value than all other regions. This indicates a
relative lack of rare variants in this region which is a signal of balancing/diversifying selection (Hughes and
Yeager 1998) (Figure 3B).

Additionally, β can be used to discover regions of the genome targeted by historical local adaptation,
whereby positive selection generated strong frequency differences across human populations. For example, we
would expect that Northern European populations but not East Asian populations, would exhibit signatures
of positive selection targeting the lactase gene (LCT) (Bayless et al. 2017; Bersaglieri et al. 2004). Indeed
we find that the British in England and Scotland (GBR) population has the most negative β z-score (-0.920)
for this region, while none of the East Asian populations have a negative β z-score. The limited number of
SVs in the 1000 Genomes dataset, with an average of only 26 SVs per 5 Mbp window, limits similar selective
sweep analyses using SVs.

Extrapolations

Finally, we perform extrapolations of the best fit power-law curves to determine the extent to which the
human pan-genome is open and provide lower bounds on how many individuals would need to be sequenced
to obtain a given proportion (90%) of the total shared genetic diversity. By shared genetic diversity, we
mean all the variants that are either partially or entirely shared by the individuals in the population and
excluding singleton variants found only in a single individual. If every individual brings a positive number
of singleton variants, it would be impossible to entirely sequence the pan-genome without sequencing every
individual. The shared diversity corresponds to the α(i)β term of the power-law model, which is the term
we use to make the extrapolations.

First, we perform subsampling on the entire dataset, fit a best fit curve to each subsample, and extrapolate
to the full dataset. We run 100 trials each for subsamples of 10, 25, and 100 random individuals (Figure
4A-B). As is expected, the extrapolation from subsampling produces an underestimation in the amount
of diversity because the subsample would have to include exactly the most diverse individuals in order for
the extrapolated diversity to match the actual diversity on the entire dataset. Consequently, increasing the
sample size improves the accuracy of the extrapolation.

Next, for each subpopulation, we extrapolate the best fit power-law curve out to 100,000 individuals to
estimate a lower bound on the total number of shared variants. Then, we calculate the number of sequenced
individuals necessary to obtain 90% of this diversity. We find that relatively fewer East Asian individuals
would need to be sequenced and relatively more African individuals would need to be sequenced (Figure
4C-D). For example, only 180 Chinese Dai (CDX) individuals are needed to capture 90% of the shared SNVs
of 100,000 CDX individuals, but at least 32,978 Luhya (LWK) individuals are needed to capture 90% of the
shared SNVs of 100,000 LWK individuals. Since these estimates are lower bounds, many more individuals
need to be sequenced in order to fully capture the diversity of human variants but expect the relative amount
of diversity between the subpopulations to remain.
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Figure 4: A-B) Extrapolating the number of shared variants covered with subsamples. In black is the
shared diversity of the full dataset. The lines represent the median number of covered variants over 100 trials
of the given sample size. The ribbons represent the minimum and maximum number of covered variants
over 100 trials of the given sample size. The left panel is calculated on SNVs while the right panel is
calculated on SVs. C-D) Boxplots of subpopulation diversity by superpopulation. For each subpopulation,
the predicted total amount of shared variants for 100,000 individuals is calculated. Then, the number of
sequenced individuals necessary to obtain 90% of this diversity is calculated. Finally, boxplots of the number
of required individuals (log scale) are plotted for the corresponding subpopulations in each superpopulation.
The left panel is calculated on SNVs while the right panel is calculated on SVs.
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Discussion

SVCollector is a fast and powerful method to quantitatively and optimally select samples for long-read
resequencing or optical mapping based on their genomic variation (SNV and or SV) shared in the population.
SVCollector’s greedy mode substantially outperforms the commonly used topN or random selections both
in the representativeness across populations and in the number of SVs captured. These gains will in turn
translate to cost savings for resequencing and validation experiments. Indeed, SVCollector has already been
applied to larger sequencing projects such as a detailed study of 11 human genomes and 100 tomato genomes
sequenced with long reads (Shafin et al. 2020; Alonge et al. 2020).

Importantly, we found that SNV variant callsets can be used to choose a sample of individuals that
maximizes the number of distinct SVs. In the 1000 Genomes dataset, this method results in only 3,070 fewer
SVs captured than when using the SV variant callset directly. Additionally, in the human datasets, female
samples often contributed more SVs than male samples because of the extra heterozygous SVs on the X
chromosome. Depending on the application, researchers may want to exclude the sex chromosomes prior to
analysis as we did in our analyses.

The two new population diversity metrics we introduced, α and β, can be used to quantify the frequency
distribution of SV as well as scan for genomic regions exhibiting signatures of historical selection. α and β
can be easily calculated from multi-sample VCF files, which will allow researchers to gain important insights
about understudied populations across species. Unfortunately, the relatively small number of SVs in the
1000 Genomes callset limits similar analyses for human SVs. Furthermore, the values of α, β, Watterson’s θ,
and Tajima’s D calculated on SV data are highly correlated with the values calculated on SNV data. This
helps explain why SVCollector is effective at optimizing sample selection even in the absence of SV calls.
Finally, we show that the human pan-genome is very diverse, and that capturing 90% of the total shared
diversity would require the sequencing of many more individuals than has been done in any long-read cohort
to date.

It remains challenging to create a population-wide variant callset as the selection clearly depends on the
quality of the initial SV callset. Nevertheless, given a low quality (i.e. over representation of false positive
SVs) variation callset, SVCollector will likely also over-represent false positives, which will help with the
detection and negative validation of these SV calls. In the case when an SV callset is limited in the detection
of SVs, SVCollector will still rank the samples, but it is unclear what minimal sensitivity rate would be
needed to accurately represent the population.

Overall we showcase a cost-efficient yet comprehensive way to utilize long-read sequencing at population
scale. This is particularly important for population projects (CCDG, TOPMed, 1000 Genomes Project, etc.)
where genotyping data is available. We show that SVCollector identifies the optimal subset of samples for
further examination and at the same time provides population specific insights. Given the current many-
fold price differences between long-read sequencing and Illumina sequencing together with the abundance of
population studies (exons, arrays, etc.), SVCollector will remain useful for quite some time.

Methods

SVCollector is implemented in C++, and computes a ranked list and diagnostic plots of the samples listed
in a multi-sample VCF file. It uses an iterative approach to minimize the memory footprint, and requires
less than 2 MB of RAM even when ranking thousands of samples with tens of thousands of variants each.
In the first iteration, it parses the VCF file, counts the total number of variants, and generates a temporary
file storing the sample IDs associated with each SV. For subsequent iterations, it reads the temporary file
and deletes SVs that were present in the previously selected sample.

SVCollector has two major ranking modes: topN, and greedy. For the topN mode, it picks samples with
the largest number of SVs irrespective if the SVs are shared with other samples. For the greedy mode,
it finds an optimal subset of samples that collectively contain the largest number of distinct variants (see
Figure 5 for an example of the difference between these two modes). Solving this exactly is computationally
demanding as it is a version of the well-known NP-hard maximum coverage problem. We implement the
following integer linear programming (ILP) formulations of the problem to solve it exactly, although this
requires an excessively long run time even for relatively small datasets.
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A B C
Variant 1 1 1 0
Variant 2 1 1 0
Variant 3 1 0 0
Variant 4 0 0 1

topN A B C
Variant 1 1 1 0
Variant 2 1 1 0
Variant 3 1 0 0
Variant 4 0 0 1

greedy A B C
Variant 1 1 1 0
Variant 2 1 1 0
Variant 3 1 0 0
Variant 4 0 0 1

Figure 5: A) Presence/absence matrix for three samples and four variants. B) When picking the two most
diverse samples, the topN algorithm selects A and B since they are the individuals with the most number of
variants. However, this selection only includes three of the four variants. C) The greedy algorithm on the
other hand selects A and C since it accounts for the fact that the variants covered by B have already been
included by A. The greedy selection includes all four variants.

The input for the ILP maximum coverage optimization problem is represented by an n×m binary matrix
A = [ai,j ] ∈ {0, 1}n×m, in which every entry ai,j ∈ {0, 1} determines if in sample i the variant j is present
or absent. Given a matrix A and 1 ≤ k ≤ n, we define an optimization problem as a search for a subset
I ⊆ {1, 2, . . . , n} of samples with |I| ≤ k, such that the total number of variants present across all samples
in I is maximized.

We formulate the following ILP to solve the aforementioned optimization problem. First, we define the
decision variables in our ILP formulation:

∀i ∈ [1, 2, . . . , n] : xi ∈ {0, 1}, (1a)

∀j ∈ [1, 2, . . . ,m] : yi ∈ {0, 1}, (1b)

where an xi encodes whether or not a sample i is selected to be present in the problem solution I, and
a variable yj encodes whether or not a variable j is going to be represented in the problem solution (i.e.,
present in at least one sample from I).

We now define the constraints for the ILP formulation. We start with the constraint that ensures that
no more than k samples are selected: ∑

i

xi ≤ k. (2)

We then define constraints that ensure that when a variable yj = 1, at least one sample xi in which
variant j is present is selected:

∀j ∈ [1, 2, . . . ,m] :
∑
i

xi · ai,j ≥ yj (3)

Finally, we define an objective function for our optimization ILP, forcing the maximum number of variants
to be represented in the desired solution:

max
xi,yj

∑
j

yj . (4)

Though these ILP formulations solve the maximum coverage problem exactly, they are inefficient. Con-
versely, the greedy algorithm provides an efficient polynomial time solution that closely approximates the
optimal solution (Feige 1998). Consequently, SVCollector uses a greedy approximation that starts with the
sample with the largest number of variants, and then iteratively picks the sample containing the largest
number variants not yet included in the subset. It also has a random mode that mimics an arbitrary selec-
tion process, and is helpful for evaluating the diversity of the topN or greedy approaches. For each mode,
SVCollector reports the rank, sample name, its unique contribution of SVs, the cumulative sum of SVs up to
the chosen sample, and the cumulative percentage compared to the total number of SVs in the input VCF
file.

Power-law curves

SVCollector creates a diagnostic plot of population diversity where the y-axis is the cumulative count of
variants up to the chosen sample and the x-axis is the number of samples. These SVCollector curves (when
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produced using the greedy mode) allow us to visualize the rate at which the cumulative number of variants
increases as individuals are optimally added. Indeed, this rate is a function of the genetic diversity of the
population under consideration. To see this, consider a population consisting of individuals with a constant
positive number of personal variants, but with zero shared variants between each other. In this case, the
rate of change in the cumulative number of variants will remain constant as individuals are added. Now
consider a population consisting of individuals with shared variants. A higher prevalence of shared variants
across individuals will result in a faster decrease in the rate of change of cumulative variants as individuals
are added.

Thus, it would be beneficial to model the shape of these curves so that information about the underlying
population diversity can be extracted. We have found that these curves are modeled exceptionally well by a
power-law distribution (Figure 6 and Supplemental Figures 6-31). The power-law distribution has been
found to underlie many natural phenomena, and arises from situations involving a preferential attachment
process (i.e. new items are preferentially distributed among individuals according to how many items they
already have) (Mitzenmacher 2004).

Similar analyses of the cumulative population diversity in samples have been performed in the context
of determining the extent to which the pan-genome of a bacterial species is open or closed (Medini et al.
2005). In this analysis, the pan-genome includes the “core” genome which is shared among all individuals
in a population and a “dispensable” genome which is either partially shared between individuals (accessory
genome) or is unique to a single individual (unique genome). Here we define the “shared” genome as the
union of the core and accessory genomes. In one study, the pan-genome of Streptococcus agalactiae was
concluded to be open due to mathematical extrapolation of the plot of the cumulative number of genes
present versus number of strains added (Tettelin et al. 2005).

To model the SVCollector curves, we fit the following equation:

f(n) =
n∑
i=1

(α(i)β + γ) (5)

where n is the number of individuals included in the subset, f(n) is the cumulative number of variants
present after the n-th individual is added, α is a population diversity metric that scales with the total number
of variants in the population, β is a population diversity metric that describes the diversity of the population,
and γ is a variable that relates to the number of personal variants for each individual. To determine the
parameter values of the model that best fit the data, SVCollector uses non-linear optimization. Specifically,
the nlsLM function in R is used, which implements the Levenberg-Marquardt algorithm (Moré 1978) whereby
an iterative procedure is performed to update the initial estimate.
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Figure 6: SVCollector curves and best fit cumulative power-law models for (A) SNVs and (B) SVs. Data
is shown for one representative subpopulation for each superpopulation in the 1000 Genomes Project.

Data Access

The 22 autosome SNV VCF files for the 1KGP project can be downloaded at ftp://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/release/20130502/. The 22 autosome SV VCF files for the 1KGP project can be
downloaded at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/. The data
used to generate the SV VCF files for the 3K Rice Genome Project Large Structural Variants Dataset can
be downloaded at https://snp-seek.irri.org/_download.zul.
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Supplemental Note 1. Simulated Population Analysis

For evaluation we wrote a simulation script that generates a multi-sample VCF file with an arbitrary
population structure. Briefly, the simulator simulates F founder genotypes, that each contain on average
Normal(N,M) variants placed at random along the genome (the initial genome size is fixed at 100,000,000
bp). Then for each founder population, a collection of Normal(S, T ) individual samples are generated at
random that contain the original founder variants plus an additional Normal(X,Y ) variants. Consequently,
the expected total number of variants in the collection is F ∗N +F ∗S ∗X variants. If N > S, then most of
the variants will be shared within the population group, and if S > N , most variants will be unique to that
sample. We emphasize this is not designed to simulate realistic pedigrees, but to examine the extremes of
high or low levels of sharing among the individuals.

The code can be found at our GitHub page: https://github.com/fritzsedlazeck/SVCollector/

tree/master/simul.

The first simulated population (simple10.vcf) has 10 founder genomes with exactly 1000 variants located
at random. From each founder genome, 10 samples are simulated that contain the 1000 founder variants plus
an additional 100 variants. The SVCollector curve for this sample is presented in Supplemental Figure
1. The sharp inflection point for the greedy curve at N=10 illustrates how the code realizes there are 10
founder populations. After these 10 populations have been sampled, the rate at which additional SVs are
identified reduces to a much slower rate as these variants are only contained in individual samples.

The simulator was executed like this: ./popsim.pl 10 10 0 1000 0 100 0 > simple10.vcf

The second simulated population (complex10.vcf) also has 10 founder genomes that each randomly con-
tain Normal(500, 250) variants. From each founder population, Normal(10, 5) samples are simulated that
contain the founder variants, plus an additional Normal(500, 250) variants unique to this sample. The
SVCollector curve is presented in Supplemental Figure 2. Notice that despite having the same number
of founder genomes, the curves are substantially different, and lack the inflection point at N = 10. This
highlights how sample specific variants contribute at a similar level to the founder genotypes.

The simulator was executed like this: ./popsim.pl 10 10 .5 500 .5 500 .5 > complex10.vcf
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Supplemental Figure 1: SVCollector curve of a simple simulated population with most variants shared
within the population group.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.240390doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.240390
http://creativecommons.org/licenses/by/4.0/


Supplemental Figure 2: SVCollector curve of a complex simulated population with most variants specific
to the individuals.
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Supplemental Note 2. 1000 Genomes Analysis

We downloaded the VCF file from the 1000 genomes FTP site: ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz.

To further assess the robustness of our ranking using the greedy approach we sub-selected once 70%
(46,589 SVs) of the SVs reported over the 1000 genomes and once 50% (33,278 SVs) of the SVs. Next, we
compared the selection of these sub-selected lists of SVs to the original ranking based on all SVs. For the
70% subsampled set we observed that 7 out of the top 10 accessions are the same compared to the full text.
This ratio remains similar for the top 100 ranked samples out of which 71 samples where the same. For
the 50% subsampled VCF file we observed similar numbers where 7 out of 10 remained the same within the
top 10 ranked samples. For the top 100 this ratio dropped to 59 out of the 100 samples. This illustrates
the robustness of SVCollector when it comes to sensitivity issues for SV calling as the ranking remains very
similar even with only 50% of the SVs present.

Supplemental Figure 3: Allele frequency distribution across the 1000 Genomes samples
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Supplemental Figure 4: Linear regressions of new versus established population diversity metrics. Each
point represents one of the 26 subpopulations in the 1000 Genomes Project. The upper panels are calculated
on SNV data and the lower panels are calculated on SV data.
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the 26 subpopulations.

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.240390doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.240390
http://creativecommons.org/licenses/by/4.0/


A

alpha: 4431469 beta: −1.00895 gamma: 19561

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0 30 60 90 120

Number of Samples

C
u

m
u

la
ti
ve

 N
u

m
b

e
r 

o
f 

V
a

ri
a

n
ts

Variants in ACB (SNV)

B

alpha: 4122 beta: −0.98271 gamma: 0

0

5000

10000

15000

20000

25000

0 30 60 90 120

Number of Samples

C
u

m
u

la
ti
ve

 N
u

m
b

e
r 

o
f 

V
a

ri
a

n
ts

Variants in ACB (SV)

Supplemental Figure 6: SVCollector curves for the African Caribbeans in Barbados (ACB) population
using (A) SNV data and (B) SV data.
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Supplemental Figure 7: SVCollector curves for the Americans of African Ancestry in SW USA (ASW)
population using (A) SNV data and (B) SV data.
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Supplemental Figure 8: SVCollector curves for the Bengali from Bangladesh (BEB) population using
(A) SNV data and (B) SV data.
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Supplemental Figure 9: SVCollector curves for the Chinese Dai in Xishuangbanna, China (CDX) popu-
lation using (A) SNV data and (B) SV data.
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Supplemental Figure 10: SVCollector curves for the Utah Residents (CEPH) with Northern and Western
European Ancestry (CEU) population using (A) SNV data and (B) SV data.
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Supplemental Figure 11: SVCollector curves for the Han Chinese in Beijing, China (CHB) population
using (A) SNV data and (B) SV data.
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Supplemental Figure 12: SVCollector curves for the Southern Han Chinese (CHS) population using (A)
SNV data and (B) SV data.
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Supplemental Figure 13: SVCollector curves for the Colombians from Medellin, Colombia (CLM) pop-
ulation using (A) SNV data and (B) SV data.
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Supplemental Figure 14: SVCollector curves for the Esan in Nigeria (ESN) population using (A) SNV
data and (B) SV data.
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Supplemental Figure 15: SVCollector curves for the Finnish in Finland (FIN) population using (A) SNV
data and (B) SV data.
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Supplemental Figure 16: SVCollector curves for the British in England and Scotland (GBR) population
using (A) SNV data and (B) SV data.
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Supplemental Figure 17: SVCollector curves for the Gujarati Indian from Houston, Texas (GIH) popu-
lation using (A) SNV data and (B) SV data.
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Supplemental Figure 18: SVCollector curves for the Gambian in Western Divisions in the Gambia (GWD)
population using (A) SNV data and (B) SV data.
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Supplemental Figure 19: SVCollector curves for the Iberian Population in Spain (IBS) population using
(A) SNV data and (B) SV data.
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Supplemental Figure 20: SVCollector curves for the Indian Telugu from the UK (ITU) population using
(A) SNV data and (B) SV data.
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Supplemental Figure 21: SVCollector curves for the Japanese in Tokyo, Japan (JPT) population using
(A) SNV data and (B) SV data.
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Supplemental Figure 22: SVCollector curves for the Kinh in Ho Chi Minh City, Vietnam (KHV) popu-
lation using (A) SNV data and (B) SV data.

A

alpha: 4387817 beta: −0.98403 gamma: 4582

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0 30 60 90 120

Number of Samples

C
u

m
u

la
ti
ve

 N
u

m
b

e
r 

o
f 

V
a

ri
a

n
ts

Variants in LWK (SNV)

B

alpha: 4011 beta: −0.99213 gamma: 0

0

5000

10000

15000

20000

25000

0 30 60 90 120

Number of Samples

C
u

m
u

la
ti
ve

 N
u

m
b

e
r 

o
f 

V
a

ri
a

n
ts

Variants in LWK (SV)

Supplemental Figure 23: SVCollector curves for the Luhya in Webuye, Kenya (LWK) population using
(A) SNV data and (B) SV data.
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Supplemental Figure 24: SVCollector curves for the Mende in Sierra Leone (MSL) population using (A)
SNV data and (B) SV data.
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Supplemental Figure 25: SVCollector curves for the Mexican Ancestry from Los Angeles USA (MXL)
population using (A) SNV data and (B) SV data.
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Supplemental Figure 26: SVCollector curves for the Peruvians from Lima, Peru (PEL) population using
(A) SNV data and (B) SV data.
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Supplemental Figure 27: SVCollector curves for the Punjabi from Lahore, Pakistan (PJL) population
using (A) SNV data and (B) SV data.
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Supplemental Figure 28: SVCollector curves for the Puerto Ricans from Puerto Rico (PUR) population
using (A) SNV data and (B) SV data.

A

alpha: 3699909 beta: −1.24606 gamma: 32295

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0 30 60 90 120

Number of Samples

C
u

m
u

la
ti
ve

 N
u

m
b

e
r 

o
f 

V
a

ri
a

n
ts

Variants in STU (SNV)

B

alpha: 3027 beta: −1.09504 gamma: 10

0

5000

10000

15000

20000

25000

0 30 60 90 120

Number of Samples

C
u

m
u

la
ti
ve

 N
u

m
b

e
r 

o
f 

V
a

ri
a

n
ts

Variants in STU (SV)

Supplemental Figure 29: SVCollector curves for the Sri Lankan Tamil from the UK (STU) population
using (A) SNV data and (B) SV data.
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Supplemental Figure 30: SVCollector curves for the Toscani in Italia (TSI) population using (A) SNV
data and (B) SV data.
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Supplemental Figure 31: SVCollector curves for the Yoruba in Ibadan, Nigeria (YRI) population using
(A) SNV data and (B) SV data.
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