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Abstract 
Summary: Evaluating gene networks with respect to known biology is a common task but often a 
computationally costly one.  Many computational experiments are difficult to apply exhaustively in 
network analysis due to run-times. To permit high-throughput analysis of gene networks, we have 
implemented a set of very efficient tools to calculate functional properties in networks based on guilt-
by-association methods. EGAD (Extending 'Guilt-by-Association' by Degree) allows gene networks to 
be evaluated with respect to hundreds or thousands of gene sets. The methods predict novel mem-
bers of gene groups, assess how well a gene network groups known sets of genes, and determines 
the degree to which generic predictions drive performance. By allowing fast evaluations, whether of 
random sets or real functional ones, EGAD provides the user with an assessment of performance 
which can easily be used in controlled evaluations across many parameters.   
Availability and Implementation: The software package is freely available at 
https://github.com/sarbal/EGAD and implemented for use in R and Matlab. The package is also freely 
available under the LGPL license from the Bioconductor web site (http://bioconductor.org). 
Contact: JGillis@cshl.edu  
Supplementary information: Supplementary data are available at Bioinformatics online and the full 
manual at http://gillislab.labsites.cshl.edu/software/egad-extending-guilt-by-association-by-degree/. 

 

1 Introduction  
The analysis of gene networks has emerged as a central interest in bioin-
formatics with one major focus being to use gene networks to determine 
commonalities in known gene sets or predict new members (Sharan, et 
al., 2007). Exploring factors affecting performance is generally so chal-
lenging that it is conducted across laboratories, with each group using 
different algorithms, data, or both (e.g., CAFA (Radivojac, et al., 2013)). 
Although there are numerous methods to prioritize candidate genes or 
interpret network data, none are designed to permit controlled computa-
tional experiments. Generally, network inference tools benchmark their 
task on other algorithms or provide basic ‘one-off’ statistical tests (e.g., 
see (Bellot, et al., 2015; Meyer, et al., 2008)). Instead of exploring the 
basis of performance in greater detail, a major focus has been in develop-

ing more sophisticated algorithms, exacerbating the difficulty of inter-
pretation and controlled comparisons. This focus is surprising in light of 
the high performance of basic methods in gene network analysis in every 
controlled evaluation (Consortium, 2014; Eduati, et al., 2015; Gillis and 
Pavlidis, 2013; Peña-Castillo, et al., 2008). Indeed, simple methods are 
often generally effective in machine learning (Hand, 2006), performing 
almost on par to the more “state-of-the-art” approaches. In a series of 
papers, we have explored factors affecting performance (Gillis and 
Pavlidis, 2013; Pavlidis and Gillis, 2013; Verleyen, et al., 2015). For 
example we highlighted the degree to which gene annotation patterns 
(“multifunctionality”) and network properties influences predictions; 
e.g., P53 tends to be a member of many gene sets, which makes it easier 
to make predictions about its function.   
   Motivated by these observations, and desiring to make our approaches 
more widely available, we have developed EGAD (Extending ‘Guilt by 
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Association’ by Degree), a gene network analysis toolset that allows 
efficient evaluation of thousands of gene sets with respect to the underly-
ing gene network, and also to assess gene properties such as multifunc-
tionality or network topology. EGAD allows the user to determine how 
well a gene network will group any sets of genes and what genes it 
would predict as new members of those sets. The methods in EGAD are 
fully-vectorized and thus orders of magnitude faster than other super-
vised algorithms.  It also assesses the biases and confounds as described 
in our previous work (Pavlidis and Gillis, 2013).  While current offerings 
include generic graph analysis packages (Csardi and Nepusz, 2006), and 
packages focused on unsupervised approaches for gene co-expression 
network analysis (Langfelder and Horvath, 2008), implementations of 
supervised approaches for functional prediction from gene networks 
appear to be absent. In addition to the R/Bioconductor package, we pro-
vide a Matlab implementation (https://github.com/sarbal/EGAD). 

2 Implementation and usage 
Two of the core features of EGAD are: a function prediction algorithm, 
allowing network characterization across thousands of functional groups 
to be accomplished in minutes in cross-validation, and an analytic de-
termination of the optimal prediction across multiple functional sets. We 
also provide methods to build gene networks from genome-wide biologi-
cal data sources (e.g., protein-protein interactions).  
Gene networks and gene annotation sets. The network analysis within 
EGAD require two types of data: a network represented as a matrix, and 
an annotation set represented as a binary vector. We define networks as 
undirected graphs, where nodes represent genes and edges the relation-
ship between a pair of genes. For binary networks, edges are either 1s or 
0s, indicating whether or not a relationship exists between the adjacent 
nodes (build_binary_network). These sparse binary networks can be 
extended (extend_network) through indirect connections (Gillis and 
Pavlidis, 2011), adding weights to the 0s. Co-expression networks (also 
weighted) can be constructed from the correlation coefficients of gene 
expression profiles across multiple samples (build_coexp_network). 

Annotation sets are defined as gene sets, typically corresponding to a 
given function (e.g., GO: “carbohydrate catabolic process”), a known 
pathway (e.g., KEGG: “mTOR signaling”), or a disease (e.g., candidate 
genes for autism).  The labels define functional groups represented in an 
annotation matrix, where rows correspond to genes and columns to the 
respective groups. Associations between genes and groups are indicated 
by an entry 1 in the matrix, otherwise are set to 0 (make_annotations).  
Neighbor-voting for network analysis and gene function prediction. 
The neighbor-voting algorithm provided is a fully vectorized method for 
evaluating functional properties of an interaction network (neigh-
bor_voting). It is based on the "guilt-by-association” principle: genes 
with shared functions are preferentially connected. The algorithm takes a 
gene network and a set of annotations (gene label vectors) as input. Per-
formed as an n-fold cross-validation task, we hide a subset of gene labels 
and then ask if the remaining genes in the functional group can predict 
the hidden genes’ identities, in this case having the same annotation (i.e., 
label) as the selected subset using information inferred from the network. 
The output is a performance metric for each of the annotation sets tested 
(often GO functions), and is the averaged AUROC (area under the ROC 
curve) for each group across the n-folds. Analytically calculated for the 

sake of computation time, this metric broadly reflects how well the genes 
in the network align with the given annotation set. High AUROCs indi-
cate genes within a gene set preferentially have one another as neighbors.  

An additional informative assessment of the network is based on node 
degree (the number of connections a gene has within a network). Rank-
ing genes according to their node degree, we use that single vector as a 
prediction for each annotation set. The resulting AUROCs is a measure 
of node degree bias(Gillis and Pavlidis, 2011), as performance demon-
strates the predictability of the gene in the group tested solely due to its 
prominence  in the network rather than its preferential connectivity to 
other genes within the annotation set.  
Multifunctionality assessment. Another measure to test for biases 
which can explain performance trends is through a multifunctionality 
evaluation, based on frequency of annotations across the multitude of 
sets assessed. Here, a single gene list is constructed which maximizes the 
performance metric, i.e., gives the highest average AUROC across all 
functions (calculate_multifunc, auc_multifunc). The more highly anno-
tated – multifunctional - a gene is the higher the chances it will be pre-
dicted as a good candidate for having any annotation, rendering its pre-
diction correct but uninformative (Gillis and Pavlidis, 2011). A compari-
son of these multifunctionality AUROCs to the neighbor-voting perfor-
mance AUROCs gives an indication of the degree to which generic 
predictions dominate results. Correlation between artifacts and multi-
functionality will also induce good apparent performances, often arising 
due to selection biases (see use case).  
Run time comparisons. To compare the performance of our implemen-
tation to other methods, we ran the neighbor-voting algorithm (in R) on a 
dense co-expression network (17,293 genes) for each GO group of size 
20 (104 terms, GO Dec 2014). This took approximately 116 seconds on 
our server (8 CPU cores @ 2.40GHz). Our implementation in Matlab 
took ~0.78 seconds. In comparison, the Matlab implementation of 
GeneMANIA (Warde-Farley, et al., 2010)  took 4.2 hours, with highly 
similar AUROC performance (Table 1). To optimize within R, we can 
use MRAN (https://mran.revolutionanalytics.com/) to obtain a speed-up 
to approximately 30 seconds.  

Table 1. Benchmark results 

Method Mean AUROC Timing (seconds) 

Neighbor-voting (EGAD) 
R 0.7040  115.5 
R + MRAN 0.7000 29. 2 
Matlab 0.7046 0.78 
GeneMANIA  0.7014  15122 
 
Use case: assessing selection biases in the use of model organisms. It 
is common for researchers to use gene networks from model organisms 
in the hope of identifying patterns relevant to humans (Ideker and 
Sharan, 2008), and thus might consider only genes which have human 
orthologs. EGAD allows us to explore the biases that might be intro-
duced by this filtering.  If we exclude all annotations assigned to genes 
without orthologs, we are looking at the degree to which GO groups 
would cluster in gene network data if all functions could only have been 
originally discovered in mouse, for example. This is a selection bias; the 
subset of genes without orthologs are now poor candidates for all func-
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tional groups. To measure this effect using EGAD, we first constructed a 
human gene network using BIOGRID (3.4.126), and the corresponding 
GO annotations matrix. We then created filtered versions of the human 
annotation matrix limited to the orthologs of each of five model organ-
isms. Then, for each filtered annotation matrix, we calculate a ranked 
optimal list, which we use to calculate the multifunctionality AUROCs. 
Additionally, we run the neighbor-voting algorithm (always using the 
same human gene network) with the filtered annotation matrix, and use 
the node degree AUROCs from the output.   

Fig. 1. The effect of only considering orthologs as candidates in predicting gene 

function. AUROCs are the reported average performances for all GO groups evalu-

ated. (A) Node degree performance shift between human (H. sapiens, grey) and 

human genes having yeast orthologs (S. cerevisiae, black) (B) and change in multi-

functionality performance. (C) The trends across species are consistent for both 

node degree (C) and multifunctionality (D).  

As shown in Figure 1A and C, limiting analysis to genes having 
orthologs causes a positive shift in node degree AUROC shift, indicating 
the filtering selects more well studied and thus more-connected genes. 
This annotation bias is directly revealed by the multifunctionality as-
sessment (Figure 1B and D): multifunctionality performance (bias) rises 
as we limit gene function discovery to properties discoverable only in 
more and more distantly related organisms We conclude that studies of 
human gene orthologs are more prone to biases in annotations with re-
spect to commonly used network data. In real use-cases, functions arise 
from many different model organisms, and thus trivially filtering or 
controlling for these effects will not be possible.  Full details and code 
for this and other use cases are in the user manual.   

3 Discussion 
The methods in EGAD are very simple, albeit carefully optimized for 
efficiency. This is in contrast to the trends in the field to introduce ever 
more “sophisticated” gene network algorithms, in hopes of exploiting 
purportedly more complex patterns. Instead, we have shown that most 
performance seems to be accountable by neighbor-voting, after some 

simple encoding of global state (i.e., path length to all pairs).  This is 
beneficial because the EGAD methods permit simpler biological inter-
pretations of the networks without sacrificing performance or robustness. 
We hope that EGAD will encourage researchers performing network-
based analysis to thoroughly examine the sources of performance in their 
own studies and lead to more useful function predictions in the future. 
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