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Abstract

Deep neural networks have demonstrated improved performance at predicting the

sequence specificities of DNA- and RNA-binding proteins compared to previous methods

that rely on k-mers and position weight matrices. To gain insights into why a DNN makes a

given prediction, model interpretability methods, such as attribution methods, can be

employed to identify motif-like representations along a given sequence. Because explana-

tions are given on an individual sequence basis and can vary substantially across

sequences, deducing generalizable trends across the dataset and quantifying their effect

size remains a challenge. Here we introduce global importance analysis (GIA), a model

interpretability method that quantifies the population-level effect size that putative patterns

have on model predictions. GIA provides an avenue to quantitatively test hypotheses of

putative patterns and their interactions with other patterns, as well as map out specific func-

tions the network has learned. As a case study, we demonstrate the utility of GIA on the

computational task of predicting RNA-protein interactions from sequence. We first introduce

a convolutional network, we call ResidualBind, and benchmark its performance against pre-

vious methods on RNAcompete data. Using GIA, we then demonstrate that in addition to

sequence motifs, ResidualBind learns a model that considers the number of motifs, their

spacing, and sequence context, such as RNA secondary structure and GC-bias.

Author summary

Although deep neural networks are becoming widely applied in genomics, it remains

unclear why they make a given prediction. For model interpretability, attribution methods

reveal the independent importance of single nucleotide variants in a given sequence on

model predictions. While the resultant attribution maps can help to identify representa-

tions of motifs, it remains challenging to identify generalizable patterns across the

dataset and to quantify their effect size on model predictions. Here, we introduce an
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interpretability method called global importance analysis (GIA) to quantify the effect size

that putative patterns have on model predictions across a population of sequences. GIA

provides a natural follow up to current interpretability methods to quantitatively test

hypotheses of putative patterns (and their interactions with other patterns). As a case

study, we demonstrate how it can be used for the computational task of predicting RNA-

protein interactions and show that deep learning models can learn not only sequence

motifs, but also the number of motifs, their spacing, and sequence context, such as RNA

secondary structure and GC-bias.

This is a PLOS Computational Biology Methods paper.

Introduction

To infer sequence preferences of RNA-binding proteins (RBPs), a variety of in vitro and in
vivo experimental methods enrich for protein-bound RNA sequences [1–8], and computa-

tional methods are used to deduce the consensus RNA sequence and/or structure features that

these bound sequences share [9–13]. Many computational approaches employ position-

weight-matrices (PWMs) or k-mers to model RNA sequence and, in some cases, its secondary

structure context. These methods often make simplifying assumptions that do not fully con-

sider biologically important features, such as the multiplicity, size, and position of the features

along a given sequence.

Recently, deep neural networks (DNNs), predominantly based on convolutional neural net-

works (CNNs) or convolutional-recurrent network hybrids, have emerged as a promising

alternative, in most cases, improving prediction performance on held-out test data [13–19].

DNNs are a powerful class of models that can learn a functional mapping between input geno-

mic sequences and experimentally measured labels, requiring minimal feature engineering

[20–22]. DeepBind is one of the first “deep learning” approaches to analyze RBP-RNA interac-

tions [13]. At the time, it demonstrated improved performance over PWM- and k-mer-based

methods on the 2013-RNAcompete dataset, a standard benchmark dataset that consists of 244

in vitro affinity selection experiments that span across many RBP families [5]. Since then,

other deep learning-based methods have emerged, further improving prediction performance

on this dataset [23–25] and other CLIP-seq-based datasets [11, 18, 26, 27].

To validate that DNNs are learning biologically meaningful representations, features

important for model predictions are visualized and compared to known motifs, previously

identified by PWM- and k-mer-based methods [28]. For RBPs, this has been accomplished by

visualizing first convolutional layer filters and via attribution methods [13, 18, 23, 24]. First

layer filters have been shown to capture motif-like representations, but their efficacy depends

highly on choice of model architecture [29], activation function [30], and training procedure

[31]. First-order attribution methods, including in silico mutagenesis [13, 32] and other gradi-

ent-based methods [19, 33–36], are interpretability methods that identify the independent

importance of single nucleotide variants in a given sequence toward model predictions—not

the effect size of extended patterns such as sequence motifs.

Recent progress has expanded the ability to probe interactions between putative motifs

[37–39]. For instance, MaxEnt Interpretation uses Markov Chain Monte Carlo to sample

sequences that produce a similar activation profile in the penultimate layer of the DNN [37],

allowing for downstream analysis of these sequences. Deep Feature Interaction Maps estimates
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the pairwise interactions between features (either nucleotides or subsequences) by monitoring

how perturbations of the source features influence the attribution score of the target features

in a given sequence [38]. DeepResolve uses gradient ascent to find intermediate feature maps

that maximize a class-activated neuron [39]. Class-activated neurons are often highly expres-

sive (i.e. many patterns can drive its high activity) [40], requiring multiple initializations to

sample across a diversity of possible patterns that can lead to a similar neuron activity level.

The complex optimization landscape makes it difficult to ensure that the feature map space is

sampled well enough to capture the diversity of features/interactions learned by a given class-

activated neuron.

These aforementioned interpretability methods provide insights into sequence patterns

that are associated with model predictions. The feature importances are often noisy and their

scores are often meaningful only within the context of an individual sequence, making it chal-

lenging to deduce generalizable patterns across the dataset. Nevertheless, these methods pro-

vide a powerful approach to derive hypotheses of important patterns such as motifs and

putative feature interactions.

Here we introduce global importance analysis (GIA), an approach that enables hypothesis-

driven model interpretability to quantitatively measure the effect size that patterns have on

model predictions across a population of sequences. GIA is a natural follow-up to current

interpretability methods, providing an avenue to move beyond observations of putative fea-

tures, such as motifs, towards a quantitative understanding of their importance. As a case

study, we highlight the capabilities of GIA on the computational task of predicting RNA

sequence specificities of RBPs. We introduce ResidualBind, a new convolutional network, and

demonstrate that it outperforms previous methods on RNAcompete data. Using GIA, we dem-

onstrate that in addition to sequence motifs, ResidualBind learns a model that considers the

number of motifs, their spacing, and sequence context, such as RNA secondary structure and

GC-bias.

Global importance analysis

Global importance analysis measures the population-level effect size that a putative feature,

like a motif, has on model predictions. Given a sequence-function relationship i.e. F : x! y,

where x is a sequence of length L (x 2 AL
, where A ¼ fA;C;G;Tg) and y represents a corre-

sponding function measurement (y 2 R), the global importance of pattern ϕ (� 2 Al
, where

l< L) embedded starting at position i in sequences under the observed data distribution D is

given by:

I global
¼ Ex�i�D½yjx� � Ex�D½yjx� ; ð1Þ

where E is an expectation and x�i represents sequences drawn from the data distribution that

have pattern ϕ embedded at positions [i, i + l]. Eq 1 quantifies the global importance of pattern

ϕ across a population of sequences while marginalizing out contributions from other positions.

Important to this approach is the randomization of other positions, which is necessary to miti-

gate the influence of background noise and extraneous confounding signals that may exist in a

given sequence. If the dataset is sufficiently large and randomized, then Eq 1 can be calculated

directly from the data. However, sequences with the same pattern embedded at the same posi-

tion and a high diversity at other positions must exist for a good estimate of Eq 1.

Alternatively, a trained DNN can be employed as a surrogate model for experimental mea-

surements by generating data for synthetic sequences necessary to calculate Eq 1, using model

predictions as a proxy for experimental measurements. Given a DNN that maps input

sequence to output predictions, i.e. f: x! y
�

, where y� represents model predictions, the

PLOS COMPUTATIONAL BIOLOGY Global importance analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008925 May 13, 2021 3 / 21

https://doi.org/10.1371/journal.pcbi.1008925


estimated global importance of pattern ϕ embedded starting at position i under the approxi-
mate data distribution D� is given by:

Î global ¼ Ex�i�D� ½y�jx� � Ex�D� ½y�jx� ;

�
1

N

XN

n

f ðx�in Þ �
1

N

XN

n

f ðxnÞ ;

where Î global represents an estimate of I global, the expectation is approximated with an average

of N samples from an approximate data distribution D� � D. Without loss of generality, if we

sample the same nth sequence for both expectations with the only difference being that x�in has

an embedded pattern, then we can combine summations, according to:

Î global �
1

N

XN

n

f ðx�in Þ � f ðxnÞ
� �

: ð2Þ

The difference between the nth sequence with and without the embedded pattern inside the

summation of Eq 2 calculates the local effect size—the change in prediction caused by the pres-

ence of the pattern for the given sequence. The average across N samples estimates the global
effect size—the change in prediction caused by the presence of the pattern across a population

of sequences.

The approximate data distribution must be chosen carefully to be representative of the

observed data distribution and to minimize any distributional shift, which can lead to mislead-

ing results. Knowing the complete information about the data distribution (including all possi-

ble interactions between nucleotides) is intractable, but it is possible to construct a sequence

model of the data distribution that preserves some desirable statistical properties. One

approach can be to sample sequences from a position-specific probability model of the

observed sequences—average nucleotide frequency at each position, also referred to as a pro-

file. A profile model captures position-dependent biases while averaging down position-inde-

pendent patterns, like motifs. Alternative sequence models include random shuffling and

dinucleotide shuffling of the observed sequences, which would maintain the same nucleotide

and dinucleotide frequencies, respectively. If there exists high-order dependencies in the

observed sequences, such as RNA secondary structure or motif interactions, a distributional

shift between the synthetic sequences and the data distribution may arise. Later, we will dem-

onstrate how structured synthetic sequences can be used to address targeted hypotheses of

motif dependency on RNA secondary structure. Alternatively, the sequences used in GIA can

be sampled directly from the observed dataset, although this requires careful selection such

that unaccounted patterns do not persist systematically, which may confound GIA. Prior

knowledge can help to select a suitable approximate data distribution. In this paper, we employ

GIA using 7 different sampling methods for the approximate data distribution: sampling from

a profile model, random shuffle of observed sequences, dinucleotide shuffle of observed

sequences, and a random subset of observed sequences sampled from each quartile of experi-

mental binding scores (see Materials and methods).

GIA calculates a statistical association between a sequence pattern and a functional out-

come. Similar to randomized control trials, GIA satisfies properties such as ignorability of

assignment and exchangeability of treatment effect, i.e. which sequences have interventions

with embedded patterns, ensuring that GIA provides a causal quantity that is identifiable with

Eq 2. Using experimental measurements for the same sequences in our GIA experiments

would provide a direct way to calculate causal effect sizes. However, this can be time consum-

ing and costly due to the large number of sequences required to calculate Eq 2 for each
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hypothesis. Here, we opt to use a DNN, which has learned to approximate the underlying

sequence-function relationship of the data, to “measure” the potential outcome of interven-

tions (i.e. embedded patterns)—using predictions in lieu of experimental measurements. Con-

sequently, GIA quantifies the causal effect size of the interventional patterns through the lens

of the DNN and is thus subject to the quality of the learned sequence-function relationship.

Therefore, GIA is, at its core, a model interpretability tool—a method to quantitatively uncover

causal explanations of a DNN.

While Eqs 1 and 2 describe the global importance of a single pattern, GIA supports embed-

ding more than one pattern (as will be demonstrated below). GIA can also be extended to

multi-task problems when each class is independent. GIA is a formalization of previous in sil-
ico experiments that quantify population-level feature importance [28, 32, 41], which helps to

distinguish it from other in silico experiments to obtain model predictions for query sequences

as a proxy for experimental measurements [42] and occlusion-based in silico experiments that

identify the importance of features local to a sequence under investigation [41, 43].

Materials and methods

RNAcompete dataset

Overview. We obtained the 2013-RNAcompete dataset from [5], where a full explanation

of the data can be found. The 2013-RNAcompete experiments consist of around 241,000 RNA

sequences each 38-41 nucleotides in length, split into two sets ‘set A’ (120,326 sequences) and

‘set B’ (121,031 sequences). Sequences were designed to ensure that all possible combinations

of 9-mers are sampled at least 16 times, with each set getting 8 copies of all possible 9-mers.

The provided binding score for each sequence is the log-ratio of the fluorescence intensities of

pull-down versus input, which serves as a measure of sequence preference. The 2013-RNA-

compete dataset consists of 244 experiments for 207 RBPs using only weakly structured probes

[5].

Preparation of RNAcompete datasets. Each sequence from ‘set A’ and ‘set B’ was con-

verted to a one-hot representation. For a given experiment, we removed sequences with a

binding score of NaN. We then performed either clip-transformation or log-transformation.

Clip-transformation consists of clipping the extreme binding scores to the 99.9th percentile.

Log-transformation processes the binding scores according to the function: log (S − SMIN + 1),

where S is the raw binding score and SMIN is the minimum value across all raw binding scores.

This monotonically reduces extreme binding scores while maintaining their rank order, and

also yields a distribution that is closer to a Normal distribution. The processed binding scores

of either clip-transformation or log-transformation were converted to a z-score. We randomly

split set A sequences to fractions 0.9 and 0.1 for the training and validation set, respectively.

Set B data was held out and used for testing. RNA sequences were converted to a one-hot

representation with zero-padding added as needed to ensure all sequences had the same length

of 41 nucleotides. Henceforth, all predictions and experimental binding scores are in terms of

the z-transformed clip- or log-transformed binding score.

ResidualBind

Architecture. ResidualBind takes one-hot encoded RNA sequence as input and outputs a

single binding score prediction for an RBP. ResidualBind consists of: (1) convolutional layer

(96 filters, filter size 11), (2) dilated residual module, (3) mean-pooling layer (pool size 10), (4)

fully-connected hidden layer (256 units), and (5) fully-connected output layer to a single out-

put. The dilated residual module consists of 3 convolutional layers with a dilation rate of 1, 2,

and 4, each with a filter size of 3. Each convolutional layer employs batch normalization prior

PLOS COMPUTATIONAL BIOLOGY Global importance analysis
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to a rectified linear unit (ReLU) activation and dropout probabilities according to layers (1)

0.1, (2) 0.2, (4) 0.5. The pre-activated output of the third convolutional layer is added to the

inputs of the dilated residual module, a so-called skipped connection [44], the output of which

is then activated with a ReLU. The stride of all convolutions is 1 and set to the pool size for the

mean-pooling layer. We found that varying the hyperparameter settings largely yielded similar

results. Choice of the final model was based on slightly better performance on the validation

set.

Training ResidualBind. For each RNAcompete experiment, we trained a separate, ran-

domly-initialized ResidualBind model on ‘set A’ sequences by minimizing the mean squared-

error loss function between the model predictions and the experimental binding scores (which

were used as labels). All models were trained with mini-batch stochastic gradient descent

(mini-batch of 100 sequences) with Adam updates [45] with a decaying learning rate—the ini-

tial learning rate was set to 0.001 and decayed by a factor of 0.3 if the model performance on a

validation set (as measured by the Pearson correlation) did not improve for 7 epochs. Training

was stopped when the model performance on the validation set does not improve for 20

epochs. Optimal parameters were selected by the epoch which yields the highest Pearson cor-

relation on the validation set. The parameters of each model were initialized according to

Glorot initialization [46]. On average, it took about 100 epochs (13 seconds/epoch) to train an

RNAcompete experiment on a single NVIDIA 2080ti RTX graphical processing unit. Code for

building, training, and evaluating ResidualBind was written in Python using Tensorflow 2

[47].

Evaluation. Residualbind models were evaluated using the Pearson correlation between

model predictions and experimental binding scores on the held-out test data (‘Set B’), similar

to [12, 13].

Incorporation of secondary structure profiles. Paired-unpaired structural profiles were

calculated using RNAplfold [48]. Structural profiles consisting of predicted paired probabilities

of five types of RNA structure—paired, hairpin-loop, internal loop, multi-loop, and external

loop (PHIME)—were calculated using a modified RNAplfold script [10]. For each sequence,

the window length (-W parameter) and the maximum spanning base-pair distance (-L param-

eter) were set to the full length of the sequence. Secondary structure profiles were incorporated

into ResidualBind by creating additional input channels. The first convolutional layer now

analyzes either 6 channels (4 channels for one-hot primary sequence and 2 channels for PU

probabilities) or 9 channels (4 channels for one-hot primary sequence and 5 channels for

PHIME probabilities).

In silico mutagenesis

In silico mutagenesis is calculated by systematically querying a trained model with new

sequences with a different single nucleotide mutation along the sequence and ordering the pre-

dictions as a nucleotide-resolution map (4 × L, where 4 is for each nucleotide and L is the

length of the sequence). Each prediction is subtracted by the wildtype sequence prediction,

effectively giving zeros at positions where the variant matches the wildtype sequence. To visu-

alize the in silico mutagenesis maps, a sequence logo is generated for the wildtype sequence,

where heights correspond the sensitivity of each position via the L2-norm across variants for

each position, and visualized using Logomaker [49].

Global importance analysis

1,000 synthetic RNA sequences, each 41 nucleotides long, were sampled from 7 different mod-

els for the approximate data distributions: 1) randomly sampled from a profile sequence

PLOS COMPUTATIONAL BIOLOGY Global importance analysis
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model; 2) random shuffle of the observed sequences; 3) dinucleotide shuffle of the observed

sequences; and 4-7) a random subset of sequences sampled from each quartile of experimental

binding scores. Patterns under investigation were embedded in positions specified in each

GIA experiment. We queried a trained ResidualBind model with these sequences with and

without the embedded pattern. We refer to the difference between the predictions with and

without the pattern for each sequence as the“local” importance (the value inside the summa-

tion of Eq 2) and the average across the population as the “global” importance.

Profile sequence model. The profile sequence model was generated by averaging the

nucleotide frequency statistics across all test sequences. 1,000 synthetic sequences were gener-

ated from the profile model by independently sampling the each nucleotide at each position.

Random shuffle. 1,000 observed sequences from the test set were randomly chosen and

the positions of each sequence was randomly shuffled, thereby preserving the nucleotide fre-

quency while destroying coherent patterns.

Dinucleotide shuffle. 1,000 observed sequences from the test set were randomly chosen

and the positions of each sequence was dinucleotide shuffled, thereby preserving the dinucleo-

tide frequency while destroying coherent patterns.

Quartile sampling. All observed sequences were sorted according to their experimental

binding score and divide into 4 bins. The 1st Quartile corresponds to the sequences with the

lowest 25% in binding scores and the 3rd Quartile corresponds to the 50%-75% in binding

scores. After this division, we randomly select 1,000 sequences from each bin, creating 4 differ-

ent sets of sequences from different models of the approximate data distribution.

Motif visualization

Motif representations learned by ResidualBind are visualized with 2 methods, top k-mer motif

and k-mer alignment motif. Top k-mer motif plots the top k-mer as a logo with heights scaled

according to the L2-norm of the difference in global importance of nucleotide variants at each

position, which is measured via GIA by systematically introducing a single nucleotide muta-

tion to the top k-mer embedded at positions 18-24, and the global importance of wildtype top

k-mer.

A k-mer alignment-based motif was generated by greedily aligning the top 10 k-mers (iden-

tified via GIA) to the top k-mer according to the maximum cross-correlation value. The nucle-

otide frequency, weighted by the global importance score for each k-mer, gives a matrix that

resembles a position probability matrix which can be visualized as a sequence logo using Logo-

maker [49].

Results

To demonstrate the utility of GIA, we developed a deep CNN called ResidualBind to address

the computational task of predicting RNA-protein interactions. Unlike previous methods

designed for this task, ResidualBind employs a residual block consisting of dilated convolu-

tions, which allows it to fit the residual variance not captured by previous layers while consid-

ering a larger sequence context [50]. Moreover, the skipped connection in residual blocks

foster gradient flow to lower layers, improving training of deeper networks [44]. Dilated con-

volutions combined with skipped connections have been previously employed in various set-

tings for regulatory genomics [16, 17, 41].

ResidualBind yields state-of-the-art predictions on the RNAcompete dataset

To compare ResidualBind against previous methods, including MATRIXReduce [9], RNAcon-

text [10], GraphProt [11], DeepBind [13], RCK [12], DLPRB [23], cDeepbind [24] and

PLOS COMPUTATIONAL BIOLOGY Global importance analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008925 May 13, 2021 7 / 21

https://doi.org/10.1371/journal.pcbi.1008925


ThermoNet [25], we benchmarked its performance on the 2013-RNAcompete dataset (see

Materials and methods for details). We found that ResidualBind (average Pearson correlation:

0.690±0.169) significantly outperforms previously reported methods based on PWMs

(MATRIXReduce: 0.353±0.192, RNAcontext: 0.434±0.130), k-mers (RCK: 0.460±0.140), and

DNNs (DeepBind: 0.409±0.167, cDeepbind: 0.582±0.169, DLPRB: 0.628±0.160, and Thermo-

Net: 0.671±0.171, p-value < 0.01, Wilcoxon sign rank test) (Fig 1A). Interestingly, RNAcon-

text, RCK, ThermoNet, cDeepbind, and DLPRB all take sequence and secondary structure

predictions as input, whereas ResidualBind is a pure sequence-based model.

We noticed that the preprocessing step employed by previous methods, which clips large

experimental binding scores to their 99.9th percentile value and normalizing to a z-score, a

technique we refer to as clip-transformation, adversely affects the fidelity of ResidualBind’s

predictions for higher binding scores, the most biologically relevant regime (Fig 1b).

Instead, we prefer preprocessing experimental binding scores with a log-transformation,

similar to a Box-Cox transformation, so that its distribution approaches a normal distribu-

tion while also maintaining their rank-order (see Materials and methods). With log-trans-

formation, we found that ResidualBind yields higher quality predictions in the high-binding

score regime (Fig 1c), although the average performance was essentially the same (Fig 1d,

average Pearson correlation is 0.685±0.172 for log-transformation). Henceforth, our down-

stream interpretability results will be based on preprocessing experimental binding scores

with log-transformation.

Secondary structure context does not help ResidualBind

RNA structure is important for RBP recognition [51]. Previous work, including RCK, RNA-

context, DRPLB, cDeepbind, and ThermoNet, have found that including RNA secondary

structure predictions as an additional input feature significantly improves the accuracy of their

model’s predictions. Despite yielding better predictions when considering only sequences, we

wanted to test whether incorporating secondary structure predictions would also improve

ResidualBind’s performance. Similar to previous methods, we predicted two types of RNA sec-

ondary structure profiles for each sequence using RNAplfold [48], which provides the proba-

bility for each nucleotide to be either paired or unpaired (PU), and a modified RNAplfold

script [10], which provides the probability for each nucleotide to be in a structural context:

paired, hairpin-loop, internal loop, multi-loop, and external-loop (PHIME). Surprisingly, sec-

ondary structure profiles do not increase ResidualBind’s performance (Fig 1e and 1f, average

Pearson correlation of 0.685±0.172, 0.684±0.183, and 0.682±0.183 for sequence, sequence

+ PU, and sequence + PHIME, respectively). One possible explanation is that ResidualBind

has already learned secondary structure effects from sequence alone, an idea we will explore

later.

Going beyond in silico mutagenesis with GIA

It remains unclear why ResidualBind, and many other DNN-based methods, including cDeep-

bind, DLPRB, and ThermoNet, yield a significant improvement over previous methods based

on k-mers and PWMs. To gain insights into what DNN-based methods have learned, DLPRB

visualizes filter representations while cDeepbind employs in silico mutagenesis. Filter represen-

tations are sensitive to network design choices [29, 30]; ResidualBind is not designed with the

intention of learning interpretable filters. Hence, we opted to employ in silico mutagenesis,

which systematically probes the effect size that each possible single nucleotide mutation in a

given sequence has on model predictions. For validation purposes, we perform a detailed

exploration for a ResidualBind model trained on an RNAcompete dataset for RBFOX1 (dataset
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Fig 1. Performance comparison on the 2013-RNAcompete dataset. (a) Box-violin plot of test performance by

different computational methods. Each plot represents the Pearson correlation between model predictions and

experimental binding scores on held out test data for all 244 RBPs of the 2013-RNAcompete dataset. Median value is

shown as a red line. (b,c) Scatter plot of ResidualBind’s predicted binding scores and experimental binding scores from

the test set of an RBP experiment in the 2013-RNAcompete dataset (RNCMPT00169) processed according to (b) clip-

transformation and (c) log-transformation. Black dashed line serves as a guide-to-the-eye for a perfect correlation. (d)

Box-violin plot of test performance for experimental binding scores processed according to a clip-transformation and a

log-transformation. (e) Box-violin plot of the test performance for different input features: sequence, sequence and

paired-unpaird secondary structure profiles (sequence+PU), and sequence and PHIME secondary structure profiles

(sequence+PHIME). (f) Histogram of the one-to-one performance difference between ResidualBind trained on

sequences and trained with additional PHIME secondary structural profiles.

https://doi.org/10.1371/journal.pcbi.1008925.g001
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id: RCMPT000168), which has an experimentally verified motif ‘UGCAUG’ [6, 52, 53]. Fig 2a

highlights in silico mutagenesis sequence logos for two sequences with high predicted binding

scores—one with a perfect match and the other with two mismatches to the canonical

RBFOX1 motif (Materials and Methods). Evidently, a single intact RBFOX1 motif is sufficient

for a high binding score, while the sequence that contains mismatches to the canonical motif

can also have high binding scores by containing several ‘sub-optimal’ binding sites (Fig 2a, ii).
This suggests that the number of motifs and possibly their spacing is relevant.

In silico mutagenesis, which is the gold standard for model interpretability of DNNs in

genomics, is a powerful approach to highlight learned representations that resemble known

motifs, albeit locally to an individual sequence. However, it can be challenging to generalize

the importance of the patterns that are disentangled from contributions by other factors in a

given sequence. Moreover, attribution methods find the independent contribution of each

nucleotide on model predictions and hence may not accurately quantify the effect size of larger

patterns, such as motifs or combinations of motifs. Therefore, to quantitatively test the hypoth-

esis that ResidualBind learns additive effects from sub-optimal binding sites, we employ GIA.

GIA shows ResidualBind learns multiple binding sites are additive. By progressively

embedding the canonical RBFOX1 motif (UGCAUG) and a suboptimal motif (AGAAUG,

which contains two mismatches at positions 1 and 3) in synthetic sequences sampled from a

profile model at various positions, 4-9, 11-16, and 18-23, we find ResidualBind has indeed

learned that the contribution of each motif is additive (Fig 2c). We also validate that the spac-

ing between two binding sites can decrease this effect when two motifs are too close (Fig 2d),

which manifests biophysically through steric hindrance. While these results are demonstrated

for synthetic sequences sampled from a profile model, we found that these results are robust

across other models of the approximate data distribution (see S1 Fig).

GIA identifies expected sequence motifs with k-mers. In many cases, the sequence

motif of an RBP is not known a priori, which makes the interpretation of in silico mutagenesis

maps more challenging in practice. One solution is to employ GIA for ab initio motif discovery

by embedding all possible k-mers at positions 18-24. Indeed the top scoring 6-mer that yields

the highest importance score for a ResidualBind model trained on RBFOX1 is ‘UGCAUG’

which is consistent with its canonical motif (Fig 2e). Using the top scoring k-mer as a base

binding site, we can determine the importance of each nucleotide variant by calculating the

global importance for all possible single nucleotide mutations (Fig 2e). Fig 2f shows that the

global importance for different variants correlate significantly with experimentally-determined

lnKD ratios of the variants and wild type measured by surface plasmon resonance experiments

[52] (p-value = 0.0015, t-test). Progressively embedding the top k-mer in multiple positions

reveals that ResidualBind largely learns a function where non-overlapping motifs are predomi-

nantly additive (Fig 2g).

A motif representation can be generated from the global in silico mutagenesis analysis in

two ways, by plotting the top k-mer with heights scaled by the L2-norm of the GIA-based in sil-
ico mutagenesis scores at each position or by creating an alignment of the top k-mers and cal-

culating a weighted average according to their global importance, which provides a position

probability matrix that can be converted to a sequence logo. ResidualBind’s motif representa-

tions and the motifs generated from the original RNAcompete experiment (which are depos-

ited in the CISBP-RNA database [5]) are indeed similar (S1 Table).

GIA reveals ResidualBind learns RNA secondary structure context from sequence.

The 2013-RNAcompete dataset was specifically designed to be weakly structured [5], which

means that the inclusion of secondary structure profiles as input features should, in principle,

not add large gains in performance. To better assess whether ResidualBind benefits from the

inclusion of secondary structure profiles, we trained ResidualBind on the 2009-RNAcompete
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Fig 2. Investigation of a ResidualBind model trained on RBFOX1. (a) Scatter plot of experimental binding scores versus predicted binding scores for

test sequences in the 2013-RNAcompete dataset for RBFOX1 (Pearson correlation = 0.830). The color of each point is determined by the number of

mutations between the canonical motif (UGCAUG) and its best match in the sequence. (i-ii) The inset shows sequence logos for in silico mutagenesis

maps for a high binding score sequence with at best: (i) a perfect match and (ii) a double nucleotide mismatch to the canonical RBFOX1 motif. Box plot

of the local importance for synthetic sequences with varying numbers of the (b) canonical RBFOX1 motif (UGCAUG) and (c) a sub-optimal motif

AGAAUG embedded progressively at positions: 4-9, 11-16, and 18-23. Black dashed line represents a linear fit, red horizontal dashed line represents the

median, and green triangles represents the global importance. (d) Box plot of the local importance for synthetic sequences with varying degrees of

separation between two RBFOX1 motifs (‘N’ represents a position with random nucleotides). (e) Heatmap of the difference in the global importance for

synthetic sequences embedded with single nucleotide mutations of the canonical RBFOX1 motif from wildtype, with a sequence logo that has heights

scaled according to the L2-norm at each position. (f) Scatter plot of the experimental ln KD ratio of the mutant to wild type measured via surface

plasmon resonance [51] versus the global importance for the same RBFOX1 variants. Red dashed line represents a linear fit and the R2 and p-value from
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dataset [54], which consists of more structured RNA probes that include stem-loops for nine

RBPs. We preprocessed the 2009-RNAcompete dataset in the same way as the 2013-RNAcom-

pete dataset using the log-tranformation for binding scores. On average, ResidualBind yielded

only a slight gain in performance by including PU secondary structure profiles (average Pear-

son correlation of 0.711±0.115 and 0.721±0.116 for sequence only and sequence+PU Residual-

Bind models, respectively).

In this dataset, VTS1 is a well-studied RBP with a sterile-alpha motif (SAM) domain that

has a high affinity towards RNA hairpins that contain ‘CNGG’ [55, 56]. ResidualBind’s perfor-

mance for VTS1 was comparable (0.6981 and 0.7073 for sequence only and sequence+PU

ResidualBind model, respectively), suggesting that the sequence-only model may be learning

secondary structure context. An in silico mutagenesis analysis for the sequence-only Residual-

Bind model reveals that the VTS1 motif is found in sequences with a high and low binding

score, albeit with flanking nucleotides given significant importance as well (Fig 3a). The pres-

ence of a VTS1 motif in a sequence is not sufficient to determine its binding score. Neverthe-

less, each sequence was accurately predicted by the sequence-only model. The PU secondary

structure profile given by RNAplfold for each sequence reveals that the VTS1 motif is inside a

loop region of a stem-loop structure in high binding score sequences and in the stem region

for low binding score sequences. This further supports that the network may be learning posi-

tive and negative contributions of RNA secondary structure context directly from the sequence

despite never explicitly being trained to do so. Moreover, the seemingly noisy importance

scores that flank the VTS1 motif may represent signatures of secondary structure.

To quantitatively validate that ResidualBind has learned secondary structure context, we

performed GIA by embedding the learned VTS1 motif (Fig 3b) in either the loop or stem

region of synthetic sequences designed to have a stem-loop structure—enforcing Watson-

Crick base pairs at positions 6-16 with 23-33 (Fig 3c). As a control, a similar GIA experiment

was performed with the VTS1 motif embedded in the same positions but in random RNAs.

Evidently, ResidualBind learns that the VTS1 motif in the context of a hairpin loop leads to

higher binding scores compared to when it is placed in other secondary structure contexts.

Similarly, these results are robust to choice of model for the approximate data distribution

(S2 Fig).

GIA highlights importance of GC-bias. By observing in silico mutagenesis plots across

many 2013-RNAcompete experiments, we noticed that top scoring sequences exhibited

importance scores for known motifs along with GC content towards the 3’ end (Fig 4a and

4b). We did not observe any consistent secondary structure preference for the 3’ GC-bias

using structure predictions given by RNAplfold. Using GIA, we tested the effect size of the

GC-bias for sequences with a top 6-mer motif embedded at the center. Fig 4c and 4d show that

GC-bias towards the 3’ end indeed is a systemic feature for nearly all RNAcompete experi-

ments with an effect size that varies from RBP to RBP (Fig 4e). As expected, consistent results

were found across different models of the approximate data distribution (S3–S5 Figs). We do

not know the origin of this effect. Many experimental steps in the RNAcompete protocol

could lead to this GC-bias [7, 57, 58].

Discussion

Global importance analysis is a powerful method to quantify the effect size of putative features

that are causally linked to model predictions. It provides a framework to quantitatively test

a t-test is shown in the inset. (g) Histogram of the R2 from a linear fit of global importance of embedding different numbers of the top k-mer (identified

by a separate, k-mer-based GIA experiment) at positions: 4-9, 11-16, and 18-23, across the 2013-RNAcompete dataset.

https://doi.org/10.1371/journal.pcbi.1008925.g002
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hypotheses of the importance of putative features and explore specific functional relationships

using in silico experiments, for both positive and negative controls.

As a case study, we introduced ResidualBind for the computational task of predicting RNA-

protein interactions. By benchmarking ResidualBind’s performance on RNAcompete data, we

showed that it outperforms previous methods, including other DNNs. While DNNs as a class

of models have largely improved performance compared to previous methods based on

PWMs and k-mers, model interpretability—based on attribution methods and visualization of

first convolutional layer filters—often demonstrate that they learn similar motif representa-

tions as previous PWM-based methods, which makes it unclear what factors are driving per-

formance gains. Since first-order attribution methods only inform the effect size of single

nucleotide variants on an individual sequence basis, insights have to be gleaned by observing

patterns that generalize across multiple sequences. Without ground truth, interpreting plots

from attribution methods can be challenging.

Fig 3. Investigation of a ResidualBind model trained on VTS1 from the 2009-RNAcompete dataset. (a) Scatter plot of experimental binding scores

versus predicted binding scores on held-out test sequences. The color of each point is determined by the number of mutations between the

CISBP-RNA-derived motif (GCUGG) and the best match across the sequence. The inset shows sequence logos for in silico mutagenesis maps generated

by a ResidualBind model trained only on sequences for representative sequences with high predicted binding scores (i-ii) and low predicted binding

scores which contain the VTS1 motif (iii-iv). Below each sequence logo is a PU structure logo, where ‘U’ represent unpaired (grey) and ‘P’ represents

paired (black), calculated by RNAplfold. (b) Global importance for synthetic sequences embedded with single nucleotide mutations of the top scoring

6-mer (GCUGGC). Above is a sequence logo with heights scaled according to the L2-norm at each position. (c) Box plot of local importance for the top

scoring 6-mer embedded in the stem and loop region of synthetic sequences designed with a stem-loop structure and in the same positions in random

RNA sequences. Green triangles represent the global importance.

https://doi.org/10.1371/journal.pcbi.1008925.g003
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Fig 4. GC-bias in high binding score sequences. (a) Representative sequence logos from in silico mutagenesis analysis for a test

sequence with a top-10 binding score prediction for RNAcompete experiments for CG17838 (RNCMPT00131) and HuR

(RNCPT00112). (b) Motif comparison between CISBP-RNA and ResidualBind’s motif representations generated by k-mer

alignments. (c) Box plot of local importance for synthetic sequences with the top scoring 6-mer embedded in position 18-24 and

GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41 (Motif+GC, right). As a control, the GC content

embedded at positions 35-41 without any motif is also shown. Green triangles represent the global importance. (d) Histogram of

the GC-bias effect size, which is defined as the global importance when GC-bias is placed on the 5’ end (orange) and the 3’ end

(blue) of synthetic sequences with a top scoring 6-mer embedded at positions 18-24 divided by the global importance of the

motif at the center without any GC content, for each 2013-RNAcompete experiment. (e) Histogram of the difference between

the GC-bias effect size, GC-bias on the 5’ end minus the 3’ end for each 2013-RNAcompete experiment.

https://doi.org/10.1371/journal.pcbi.1008925.g004

PLOS COMPUTATIONAL BIOLOGY Global importance analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008925 May 13, 2021 14 / 21

https://doi.org/10.1371/journal.pcbi.1008925.g004
https://doi.org/10.1371/journal.pcbi.1008925


Using GIA, we were able to move beyond speculation from observations of attribution

maps by quantitatively testing the relationships between putative features with interventional

experiments across a population of sequences. Interestingly, we found that despite Residual-

Bind’s ability to fit complex non-linear functions, it largely learns an additive model for bind-

ing sites, which any linear PWM or k-mer based model is fully capable of capturing. We

believe the performance gains arise from positional information of the features, including

spacing between binding sites and the position of sequence context, such as secondary struc-

tures and GC-bias. While these properties are well known features of RBP-RNA interactions,

previous computational models were not fully considering these factors, which may have led

to their lower performance on the RNAcompete dataset.

Moving past observational interpretability

Existing model interpretability methods provide a powerful way to identify input features in

a given sequence that are important for model predictions. When more than one pattern

emerges, it remains challenging to disentangle the relative importance of each feature on

model predictions (especially if nonlinear interactions exist) and how sequence context influ-

ences this. Associations of putative patterns from observations of attribution maps are useful

to generate hypotheses of what the network is learning. GIA provides a downstream analysis

that allows one to directly test hypotheses of putative features in a quantitative manner using

interventional experiments on synthetic sequences sampled from a model of the approximate

data distribution. Of course a hypothesis must be formulated first and so it is still important to

perform a thorough first pass analysis with attribution methods and second-order interpret-

ability methods.

Approximate data distribution

GIA requires choice of sequences in which to embed hypothesis patterns. In the main text, we

demonstrate results using a profile model, which is appropriate due to the slight position-spe-

cific bias in the 5’ end of the RNA probes. There were no significant pairwise frequencies

observed for other positions, on average. By design, RNAcompete probes are diverse and thus

any random sequence model seems to work well for this dataset. This may explain why GIA

was robust across all explored models of the approximate data distribution, including synthetic

sequences via shuffling and those that were observed in the data. For other datasets, there may

be a more optimal choice. For example, in the binary classification task for ChIP-seq data, the

negative label sequences may serve as a suitable model for the approximate data distribution

used to embed patterns that will not introduce any significant distributional shift. In practice,

it would be prudent to test the robustness of the results across many different models of the

approximate data distribution.

Beyond additive models of interpretability

Previously, quantifying the importance of a motif from attribution maps relied on a strong

assumption of an additive model of importance scores [36, 38]. Indeed, attribution methods

such as DeepSHAP are explicitly designed to distribute additive contributions of features

toward model predictions from a baseline. However, this assumes that each nucleotide’s con-

tribution within a motif is additive. GIA can provide the global importance of extended pat-

terns, such as motifs, on model predictions without making such assumptions. Thus, GIA

should, in principle, provide more accurate insights when there exist non-additive interac-

tions, i.e. stacking interactions within or flanking motifs and motif-motif interactions [42, 59,
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60]. Of course, GIA would yield similar results if the DNN learns an additive model of nucleo-

tide importance within a motif.

Generalization of GIA

GIA is a general framework that enables one to quantitatively probe the sequence-function

relationship learned by a DNN with controlled in silico experiments. Such experiments should

be done on a case-by-case basis, depending on the hypotheses that one would like to test.

The GIA experiments performed here are specific to the hypotheses generated from ana-

lyzing RNAcompete data. Analysis of different datasets will create different hypotheses and

thus may require customized GIA experiments. For instance, although the GIA experiments

that were performed here embed patterns in specific positions, alternative strategies include

embedding the pattern in random positions and marginalizing out this nuisance parameter.

This would average over any positional bias. Moreover, GIA does not necessarily require

randomizing all input features; it can also be applied to a single sequence context. For

instance, occlusion-based experiments can remove a putative feature and be replaced with

randomized features. This measures the effect size of the removal of the putative feature(s)

while fixing the rest of the sequence context. Unlike previous occlusion-based model

interpretability, the importance of the occluded region is marginalized out altogether, thus

unaffected by spurious patterns that may arise by chance or non-realistic positions that are

effectively “zeroed-out”.

Although GIA was developed for genomic sequences, it can be broadly applied to protein

sequences and non-sequence data modalities, albeit the approach to randomize input features

must be chosen carefully and thus requires domain knowledge.

ResidualBind

ResidualBind is a flexible model that can be broadly applied to a wide range of different RBPs

without modifying hyperparameters for each experiment, although tuning hyperparameters

for each experiment would almost certainly boost performance further. While ResidualBind

was developed here for RBP-RNA interactions as measured by the RNAcompete dataset, this

approach should also generalize to other data modalities that measure sequence-function rela-

tionships, including high-throughput assays for protein binding, histone modifications, and

chromatin accessibility, given the outputs and loss function are modified appropriately for the

task-at-hand.

In vitro-to-in vivo generalization gap

Ideally, a computational model trained on an in vitro dataset would learn principles that gener-

alize to other datasets, including in vivo datasets. However, models trained on one dataset

typically perform worse when tested on other datasets derived from different sequencing tech-

nologies/protocols [61], which have different technical biases [7, 57, 58, 62]. Learned features

like GC-bias may explain why DNNs exhibit large performance gains on held-out RNAcom-

pete data but only a smaller gain compared to k-mer-based methods when tasked with general-

ization to in vivo data based on CLIP-seq [23–25]. While we focus our model interpretability

efforts on sequences with high binding scores, exploration in other binding score regimes may

reveal other sequence context. GIA highlights a path forward to tease out sequencing biases,

which can inform downstream analysis to either remove/de-bias unwanted features from the

dataset.
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Supporting information

S1 Table. Performance comparison on RNAcompete. (Sheet 1) Table shows a comparison of

the test performance measured by the Pearson correlation on held out test sequences for differ-

ent models for each RNAcompete experiment. (Sheet 2) Table shows a comparison of the orig-

inal RNAcompete motif (represented as a sequence logo) with motif representations learned

by ResidualBind (k-mer-alignment motif and top k-mer motif).

(XLSX)

S1 Fig. Comparison of different models of the approximate data distribution for multiple

binding sites of RBFOX1. GIA was performed using different models of the approximate data

distribution: profile, random shuffle, dinucleotide shuffle, and different binding score quar-

tiles. Box plots of the local importance for synthetic sequences with varying numbers of the

canonical RBFOX1 motif (UGCAUG) embedded progressively at positions: 4-9, 11-16, and

18-23. Black dashed line represents a linear fit, red horizontal dashed line represents the

median, and green triangles represent the global importance. This demonstrates that GIA is

robust across many different models of the approximate data distribution.

(TIF)

S2 Fig. Comparison of different models of the approximate data distribution for secondary

structure preferences of VTS1 from the 2009-RNAcompete dataset. GIA was performed

using different models of the approximate data distribution: profile, random shuffle, dinucleo-

tide shuffle, and different binding score quartiles. Box plot of local importance for the top scor-

ing 6-mer pattern, GCUGGC, embedded in the stem and loop region of synthetic sequences

designed with a stem-loop structure and in the same positions in random RNA sequences.

Green triangles represent the global importance.

(TIF)

S3 Fig. Comparison of different models of the approximate data distribution for GC-bias

of SNF. GIA was performed using different models of the approximate data distribution: pro-

file, random shuffle, dinucleotide shuffle, and different binding score quartiles. Box plots show

local importance for synthetic sequences with the top scoring 6-mer embedded in position 18-

24 and GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41 (Motif+GC,

right). As a control, the GC content embedded at positions 35-41 without any motif is also

shown. Green triangles represent the global importance.

(TIF)

S4 Fig. Comparison of different models of the approximate data distribution for GC-bias

of CG17838. GIA was performed using different models of the approximate data distribution:

profile, random shuffle, dinucleotide shuffle, and different binding score quartiles. Box plots

show local importance for synthetic sequences with the top scoring 6-mer embedded in posi-

tion 18-24 and GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41

(Motif+GC, right). As a control, the GC content embedded at positions 35-41 without any

motif is also shown. Green triangles represent the global importance.

(TIF)

S5 Fig. Comparison of different models of the approximate data distribution for GC-bias

of HuR. GIA was performed using different models of the approximate data distribution: pro-

file, random shuffle, dinucleotide shuffle, and different binding score quartiles. Box plots show

local importance for synthetic sequences with the top scoring 6-mer embedded in position 18-

24 and GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41 (Motif+GC,

right). As a control, the GC content embedded at positions 35-41 without any motif is also
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shown. Green triangles represent the global importance.

(TIF)
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