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ABSTRACT 
A major challenge for many sensory systems is the representation of stimuli that vary along many 
dimensions. This problem is particularly acute for chemosensory systems because they require 
sensitivity to a large number of molecular features. Here we use a combination of computational 
modeling and in vivo electrophysiological data to propose a solution for this problem in the circuitry of 
the mammalian main olfactory bulb. We model the input to the olfactory bulb as an array of chemical 
features that, due to the vast size of chemical feature space, is sparsely occupied. We propose that this 
sparseness enables compression of the chemical feature array by broadly-tuned odorant receptors. 
Reconstruction of stimuli is then achieved by a supernumerary network of inhibitory granule cells. The 
main olfactory bulb may therefore implement a compressed sensing algorithm that presents several 
advantages. First, we demonstrate that a model of synaptic interactions between the granule cells and 
the mitral cells that constitute the output of the olfactory bulb, can store a highly efficient representation 
of odors by competitively selecting a sparse basis set of “expert” granule cells. Second, we further show 
that this model network can simultaneously learn separable representations of each component of an 
odor mixture without exposure to those components in isolation. Third, our model is capable of 
independent and odor-specific adaptation, which could be used by the olfactory system to perform 
background subtraction or sensitively compare a sample odor with an internal expectation. This model 
makes specific predictions about the dynamics of granule cell activity during learning. Using in vivo 
electrophysiological recordings, we corroborate these predictions in an experimental paradigm that 
stimulates memorization of odorants. 

INTRODUCTION 
In order to survive, organisms navigating the sensory world need to extract as much information as possible from 
their environment. The bandwidth of initial sensory processing by peripheral receptors constitutes a critical 
bottleneck for the nervous system’s ability to extract and represent high-dimensional information from the 
environment (Barlow, 2001; Lorincz et al., 2012). Chemosensation is a particularly acute example. The 
chemicals an organism can potentially encounter in its lifetime vary along many dimensions, and they are also 
vast in number, thus presenting an enormous challenge. How does the brain maintain specificity and accuracy 
in detection of environmental chemicals, while also representing as many chemicals as possible?   
One solution to this problem is to have an array of highly-specific molecular detectors that uniquely signal the 
presence of one or a small number of highly important compounds (Ai et al., 2010; Kurtovic et al., 2007; 
Semmelhack and Wang, 2009; Suh et al., 2007; Suh et al., 2004). This ‘labeled line’ scheme allows completely 
independent control over the response to individual odors, however the number of chemicals that can be 
represented is limited to approximately the number of receptor types. The mammalian main olfactory system 
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appears to have evolved a different solution. That system uses a large number of receptor types that are 
relatively broadly tuned to the presence of chemical structural elements or molecular features (Araneda et al., 
2000; Buck and Axel, 1991). Consequently, each receptor responds to multiple chemicals, and each chemical 
activates multiple receptors (Malnic et al., 1999). In this case, the representational bandwidth for odors is much 
larger, but odor-specific learning is complicated by the interdependence of the representations of odors that 
activate overlapping sets of receptors. 
We propose that the mammalian main olfactory bulb (MOB) solves this problem by implementing a ‘compressed 
sensing’ algorithm. Compressed sensing exploits the sparseness of input signals to successfully recover them 
from lower bandwidth representations (Baraniuk, 2007; Donoho and Tanner, 2005, 2006). Relative to the large 
number of potential chemical features, the specific set of features that constitute a given odorant is sparse, 
presenting an opportunity for the olfactory system to take advantage of compressed sensing. In practice, we 
show that this enables the MOB to efficiently represent and recognize on the order of 107 distinct monomolecular 
compound with only ~1000 receptors. 
Koulakov and Rinberg (2011) have developed a Sparse Incomplete Representations (SIR) model of the olfactory 
bulb, wherein mitral cells, which carry information on to deeper brain targets, effectively compute the difference 
between active sensory inputs and a learned template encoded in the inhibitory granule cells. Consequently, 
mitral cells are predicted to signal the difference between the actual stimulus and an internal expectation, as 
opposed to directly and explicitly signaling the stimulus itself. We propose that learning shapes inhibitory inputs 
into the mitral cell to achieve the ideal balance with their receptor-dependent inputs. Thus, granule cell 
representations approach negative ‘mirror images’ of the corresponding receptor activation.   
We extend the SIR model to show how the mitral-to-granule cell network can implement a compressed sensing 
algorithm. The combinatorial pattern of activation of olfactory receptors carries a compressed representation of 
sparse vectors of molecular concentrations. By virtue of their vastly greater number, and their sparse 
connectivity, granule cells are able to decompress the pattern of receptor activation. In other words, granule cell 
activities are predicted to accurately recover information about concentrations of individual independent mixture 
components. Any mismatch of the decompression result is represented in the residual activities of mitral cells. 
The olfactory bulb circuit is uniquely suited to implement this algorithm, however the dendrodendritic mitral-to-
granule cell connections must have the capacity to learn the receptor affinities to the individual mixture 
components.  
Here, we derive, investigate, and experimentally test the predictions of a learning rule for storing information 
about olfactory receptor binding affinities in the strengths of dendrodendritic synapses. Incorporating this learning 
rule into the SIR model confers several extremely useful properties. First, we show that our model stores highly 
efficient representations of learned odors by competitively selecting a sparse basis set of “expert” granule cells. 
Second, we show that our model can simultaneously learn separable representations of each component of an 
odor mixture without exposure to those components in isolation. Finally, we show that these mechanisms allow 
a sophisticated adaptation strategy in which responses to select groups of mixture components can be 
modulated independently from other components present.  
Our model makes several very specific and counterintuitive predictions with regard to granule cell dynamics 
during odor learning. To test these predictions, we used in vivo electrophysiology to observe the dynamics of 
granule cells during an odor learning paradigm. We previously reported that stimulation of the noradrenergic 
brainstem nucleus locus coeruleus suppresses mitral cell responses to paired odors and also facilitates learning 
(Shea et al., 2008). Our data recapitulates the changes in granule cell responses we observe in our model; most 
cells are suppressed, while a minority show a dramatic increase in firing in response to the learned odor. Despite 
the widespread decrease in granule cell output, the data also suggest that the mitral cells paradoxically 
experience a net increase in granule cell inhibition. Our observation of these properties in vivo supports the 
physiological plausibility of key features of our model. 
 
METHODS 
Animals 
We performed experiments on adult (aged 6–12 weeks) male C57Bl/6 mice (Charles River). Mice were 
maintained on a 12h–12h light-dark cycle (lights on 07:00 h) and received food ad libitum. All procedures were 
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conducted in accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory 
Animals and approved by the Cold Spring Harbor Laboratory Institutional Animal Care and Use Committee. 
Electrophysiology 
Adult male sexually naive C57/Black6 mice (Charles River Laboratories) were initially anesthetized with 100 
mg/kg ketamine and 5 mg/kg xylazine. Subsequently, anesthesia was maintained with sevoflurane or isoflurane 
(~1% in pure O2). We measured respiration using a foil strain gauge (Omega Engineering) that was placed on 
the surface of one side of the animal’s abdomen and connected to a bridge amplifier (Omega Engineering). We 
performed in vivo, loose-patch recordings using borosilicate micropipettes (15–25 MΩ) filled with intracellular 
solution (125 mM potassium gluconate, 10 mM potassium chloride, 2 mM magnesium chloride and 10 mM 
HEPES, pH 7.2) containing 1.5% Neurobiotin. After each recording, we labeled cells using positive current 
injection (+500-700 pA; 0.5 Hz) of Neurobiotin for 15–25 min. All neurons were identified as granule cells by 
directly visualizing the Neurobiotin stained cell, or by unambiguously observing the tip of the electrode track 
within the granule cell layer. Thirty extracellularly recorded granule cells from throughout the MOB are included 
here. We also performed in vivo, whole-cell intracellular recordings using borosilicate micropipettes (6–10 MΩ) 
filled with intracellular solution (130 mM potassium gluconate, 5 mM potassium chloride, 2.5 mM magnesium 
chloride, 10 mM HEPES, 4 mM Na-ATP, 0.4 mM Na-GTP, 10 mM phosphocreatine, and 0.6 EGTA, adjusted to 
285 mOsm and pH 7.2)  Neuronal spiking and intracellular potentials were recorded using a BA-03X bridge 
amplifier (npi Electronic Instruments), low-pass–filtered at 3 kHz and digitized at 10 kHz. Data were digitally 
acquired using Spike2 software and analyzed offline using Spike2 and Matlab. 
Sensory stimulation 
Odor stimuli were delivered as described (Shea et al., 2008). Stimuli were selected from a set of monomolecular 
odors diluted to 1% v/v in mineral oil. An additional 1:10 flow dilution in our olfactometer resulted in a final 
concentration at the nose of 0.1% saturated vapor. Odorants were delivered to the nose (2 s delivery, 30 s 
interstimulus interval) via flow dilution into the oxygen stream (10% into 1.5 L/min O2) using a custom 64-channel 
olfactometer. In some experiments, sensory receptor neurons were directly optogenetically activated in mice that 
express Channelrhodopsin-2 in all olfactory sensory neurons (OMP-ChR2; Dhawale et al., 2010). In these cases, 
optogenetic activation was achieved by illuminating the prep with a 473 nm LED (Luminus Devices) connected 
to a fiber optic pipe (Edmund) for 1 s.  
LC stimulation 
Electrical stimuli were applied through monopolar tungsten microelectrodes (0.5–1 MΩ; Micro-Probe) and 
consisted of 5 s, 5 Hz trains of 200 μs, 50 μA biphasic pulses delivered to locus coeruleus ipsilateral to the 
recording electrode and beginning 1 s before stimulus onset. First, we measured baseline responses to sensory 
stimulation (either a single repeated odor or 1 s of 473 nm light) for 20 - 40 trials, and then we paired the sensory 
stimulation with a train of electrical pulses to LC. We continued to record responses to the sensory stimulus for 
another 20 - 40 presentations without electrical activation of LC. 
In vivo measurement of feedback inhibition in mitral cells 
Recurrent granule cell inhibition in mitral cells was measured in vivo as described (Abraham et al., 2010). A train 
of 20 brief pulses of positive somatic current injection was calibrated in amplitude and duration to reliably evoke 
20 individual action potentials (mean pulse amplitude: 289 ± 130 pA; mean pulse duration: 6.0 ± 2 ms). This train 
was applied to a mitral cell recorded in the whole-cell intracellular configuration from an anesthetized mouse. 
Trains were triggered by the respiratory signal according to a manually adjusted threshold in order to maintain a 
consistent phase relationship between current injection trains and the breathing rhythm. Membrane potential 
was manually held constant as needed with small adjustments to the holding current (mean range of adjustment: 
34 ± 30 pA). At least 10 trials were collected, and we measured the integral amplitude over 1.5 s of the ensuing 
after hyperpolarization (AHP). This electrophysiological event has previously been established to represent the 
magnitude of feedback inhibition from granule cells. Then, we presented 20 2 s trials of odor, each paired with a 
5 s train of 200 ms, 50 μA, electrical stimulation pulses at 5 Hz that began 1 s before the odor and extended 2 s 
after each of 20 trials of paired odor. Finally, we once again measured the integral amplitude of the post-stimulus 
(AHP). 
Data analysis  
All data were analyzed with Matlab (Mathworks). The times of maximum inspiration and expiration were extracted 
from the strain gauge signal, and neuronal firing rate was computed for each breath throughout the entire 
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recording for each cell. Odor-evoked response strength for each trial was defined as the mean firing rate during 
the breaths in which the cell responded (3.86 ± 1.4 breaths; range = 2 – 7) subtracting the mean firing rate during 
the preceding 10 breaths. LED-evoked response strength was defined as the mean firing rate during the 1 s light 
stimulus, subtracting the mean firing rate during the preceding 6 s. Changes in response strength were assessed 
for each experiment with an unpaired t test comparison of the pre-LC stimulation responses with the post-LC 
stimulation responses. These results were then subjected to an FDR procedure (Benjamini and Hochberg, 1995) 
to correct for multiple comparisons. For comparison across cells with different firing rates, we transformed the 
response strength for each trial into a Z-score. The Z-score was calculated relative to a distribution for that cell 
of firing rates during an equal number of randomly chosen breaths, subtracting the mean firing rate for the 
preceding 10 breaths. 
To quantify changes in the magnitude of the AHP after LC-odor pairing, we first corrected the membrane voltage 
signal to remove respiratory-coupled subthreshold activity (Abraham et al., 2010). All traces were median-filtered 
with a 20 ms kernel to remove action potentials. Segments of respiratory-coupled subthreshold membrane 
voltage traces were taken from between trials and subtracted from the traces of adjacent AHP trials. The 
corrected traces were averaged for the pre-LC stimulation trials and the post-LC stimulation trials. Odor 
responses during the pairing phase were calculated from averaged median- filtered traces from all odor trial that 
were not corrected for respiratory-coupled activity. The magnitude of averaged AHP traces were measured as 
the integral of the AHP with respect to baseline for 1.5 seconds from the end of the current injection train. The 
magnitude of averaged odor response traces were measured as the integral of the signal with respect to baseline 
during the 2 s odor presentation. 
 
RESULTS 
Sparse odorant coding  
In mammalian olfactory systems, volatile odorant molecules are drawn into the nasal cavity by respiration, where 
they contact and activate a population of receptor neurons (Buck and Axel, 1991). In mice for example, each of 
these olfactory receptor neurons (ORNs) expresses one of ~1000 distinct olfactory receptor proteins (Chess et 
al., 1994). The set of odorant molecule binding affinities for the particular receptor protein an ORN expresses 
determines how that neuron will respond to odors (Araneda et al., 2000; Malnic et al., 1999; Ressler et al., 1994). 
ORNs expressing the same receptor protein type converge their outputs at a location in the olfactory bulb called 
a glomerulus, where they make synaptic contact with an exclusive set of mitral cells (Mombaerts et al., 1996). 
The exclusivity of this connection creates “channels” of mitral cells that convey the activity levels of individual 
receptor types to the olfactory cortex. 
The activity of all of the olfactory receptors in response to an odor is captured by these channels, and this 
population activity can be described as a vector  with each element  being the activity of the glomerulus with 
receptor type number . Given that most mammalian systems have ~1000 olfactory receptors, this vector 
constitutes a complex, high dimensionality representation. Complexity of the neural representation may be useful 
however, in light of the complexity of olfactory stimulus space. A single molecule can vary along many 
dimensions, such as the number of atoms, the type of atoms, and their structural arrangement. The complexity 
of single molecules is compounded by the fact that naturally encountered odors are typically mixtures of many 
different individual molecules. Consequently, we will henceforth use the term “odor” to denote a mixture of one 
or more individual odorant molecules. 
In this formulation, any odor can be quantitatively described as a list of all of the individual odorant molecules 
present in the stimulus and their abundance. We therefore define another vector , in which each element  
is the concentration of the -th molecule.  

Finally, if we describe the affinity between the molecule  and receptor type  in a matrix , we can 
hypothetically predict the response  for any arbitrary odor . Using the simplest receptor-binding model of a 
single binding site with no cooperativity, the law of mass action provides a relation between receptor activities  
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, molecular concentrations , and affinities : 

  ,  

      

Here  is the nonlinear function that describes the activation of a receptor. Because the response  is 
related to its input  via a simple monotonic function , we can assume that networks analyzing responses of 
receptor neurons have the linear component of the response  available to them. This enables us to think of 
ORNs as encoding  in a vector  with elements  linearly dependent on . 

The length of  corresponds to the number of available volatile molecules from which a target odor may be 
composed. This quantity greatly exceeds the number of receptor types in any olfactory system. Therefore, the 
encoding performed by ORNs, i.e. mapping of the vector  onto vector , would seem at first to require 
discarding much of the information content of the odor. Relief comes from the fact that for real world odors,  is 
sparsely occupied. Most odorant molecules are not present in any particular environment, greatly reducing the 
information content of . In fact, we can ask how many receptor types an olfactory system would need if its 
receptor encoding were to fully capture the information of a sparse vector of molecular concentrations . To be 
able to recover , the information content of ORN responses  has to match the information contained in . 
To find the amount of information contained in any vector  we can use a formula known from statistical physics  

	 	 		 (0)	

Here   is the number of combinations that the values of a given variable can take (here and below,  refers 
to a binary logarithm). For example, a binary string of length  can take  values, leading to the 
information content , i.e.  bits. 

If the total number of odorant molecule types is , and the number of molecular components that are typically 
present in a mixture is , the information content of sparse vector  can be estimated from the number of 
combinations that the vector can take. This quantity  is, for the most part, determined by the identities of non-
zero components of  , i.e. ,  

								 		

Likewise, we can compute the information capacity of an olfactory system containing receptor types with 
binary responses as: . For this type of receptor encoding to capture all of the information in , we find 
the following constraint on the number of receptor types :  

                       (0)	

Because  is only present in the log, we can accept a wide range of uncertainly in our estimate for the number 
of odorant molecules.  
From looking at the number of molecules under 300 Dalton in PubChem, we estimate the number of odorant 
molecules to be on the order of 10 million. Psychophysical studies suggest that human observers can detect 
roughly 12 monomolecular components from a mixture, and therefore we use K~10. This makes our estimate 
for the number of olfactory receptors necessary to discover components in the mixture . Remarkably, 
this estimate indicates that the receptor ensembles of both human ( ) and mouse ( ) have 
sufficient information capacity to recover the full concentration vector .  
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Reconstructing sparse odorant stimuli  

Since the information capacity of the olfactory stimulus representation  likely well exceeds the information 
capacity of the stimulus , it is possible for the olfactory system to fully recover  from receptor responses . 
In other words, the brain has sufficient capacity available to recover the complete concentration vector and 
therefore, the odor identity. A potential algorithm for achieving this comes from the concept of compressed 
sensing (Baraniuk, 2007; Donoho and Tanner, 2005, 2006). In principle, recovering the million-dimensional 
vector  from a thousand-dimensional vector , such that , would necessitate solving a system of very 
few equations with a large number of unknowns. Compressed sensing suggests that this can be accomplished 
if  is sparse by finding the solution with the minimum  norm, i.e. the smallest, most parsimonious solution. 
Thus, the olfactory system is expected to solve the following problem: 

 																																						 	 (1)  	

 for    and .  (2)	

The latter inequality imposes the requirement for a solution with only non-negative elements, because 
concentrations of individual molecules cannot be negative. How can the brain solve this problem? Instead of 
solving this problem exactly, we can consider solving an equivalent ridge regression problem    

                                     

where   

     (2)	

The minimum is expected to be found for the vectors the  norm of  with non-negative components, i.e. 

. The first term in the function   here describes the solution of the equation , while the second term 
is the error of the solution. When  is minimized a compromise is found between these two constraints, i.e. 
vector  that satisfies the equation  reasonably well and has a small measure  due to the first term. 
The coefficient   here describes the relative importance of these two constraints. A small  would make the 
solution of the equation  more precise, because the error in solving this equation [second term in 
equation (2)] is more costly. Thus, when , the solution of problem (2) will approach the compressed 
sensing solution (1). Thus, for sufficiently small , one can substitute solving the compressed sensing problem 
(2) with the ridge regression problem (2).  
How could the olfactory system solve the ridge regression problem (2)? We previously showed (Koulakov and 
Rinberg, 2011) that the reciprocal circuitry between granule cells and mitral cells in the olfactory bulb allows 
granule cells to dynamically minimize the following function, also known as the Lyapunov function:  

    (2)	

In equation (6),  is the activity of granule cell ,  is the synaptic weight between granule cell  and mitral 
cell , and  is the receptor input into . In this equation, is the granule cell firing threshold assumed to be 
the same for all cells. We also disregarded the term , which can be made small by increasing the 

granule cell activation gain . Note the similarity between equation (2) and equation (2). In comparing the two 
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equations, it is clear that granule cell activity   plays the same role in equation (2) as the concentration vector 
 does in equation (2).  

	 	 	(3)	

Indeed, in the first term of both equations (2) and (2), both  and  are under a parsimony constraint. In the 
second term of (2) and (2), both  and   are multiplied by a matrix to minimize the squared error of 
approximation of . In addition to playing a similar mathematical role,  and  also share a positivity 
constraint. , the vector of odorant molecule concentrations, must be positive as negative concentrations are 
non-physical. Granule cell activities , defined by firing rate, also cannot go below zero. The lengths of the two 
vectors are similar. The length of vector  is equal to the number of granule cells, which have been estimated 
to be on the order of a few million. Our estimate on the number volatile molecules on PubChem, and therefore 
the length of , is on the same order. It is therefore plausible that the mitral-granule cell network in the olfactory 
bulb can perform the reconstruction (2), with the ensemble of granule cell activities representing the brain’s 
reconstruction of , the concentration vector of the odor stimulus. 
The granule cell network can reconstruct odor stimuli 
The structure and dynamics of the granule-mitral cell network suggest the possibility that this network performs 
sparse reconstruction of the concentration vector . To make this possible, the synapses between granule and 
mitral cells, , should learn the affinity matrix .  

	 		 	 	 	 	 (4) 

In that case, the granule cell network Lyapunov function (2) and the ridge regression reconstructing the 
concentration vector (2) are identical.  Therefore, in this paper we investigate how the synapses between granule 
and mitral cells, , could learn the affinity matrix .  

In our previous work (Koulakov and Rinberg, 2011), we showed that granule cell activities minimize the Lyapunov 
function given by equation (2), thus following a form of gradient descent of the cost function. To find the learning 
rules for network weights  we can use a similar principle. To find the learning rule for synapses , we use 
stochastic gradient descent on the Lyapunov function with respect to the synapse weights , yielding: 

	

	

		 (5)   

Here, 𝜂 is the learning rate and   is the activity of the mitral cell , and  denotes averaging over an 
ensemble of stimuli. Because the update rule depends only upon the activities of mitral cell  and granule cell 

, it can be performed locally within each mitral cell and granule cell synapse in a Hebbian fashion. According to 
this learning rule, synapses of active granule cells will change until , which is possible if  for 

every odor, or .  

If the ensemble of granule cell activities represents the reconstruction of the concentration vector , then this 
can be rewritten as . Because, by definition, , it follows that granule cells will change 

until and therefore . That means that a biologically plausible local learning rule 
between granule and mitral cells would produce a network that reconstructs a representation of the odor stimulus 
by the granule cells. 
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For the reverse synapse, , from mitral cells to 
granule cells, we use a similar learning rule	

	 	(5)
	

These two learning rules, (5) and (5), guarantee that 
the forward and reverse synapses are proportional, 
which is sufficient for the Lyapunov function (2) to 
apply.  
The learning rule for corticobulbar synapses 
We also propose learning rules for corticobulbar 
synapses onto granule cells. We argue that these 
synapses define the overall firing threshold for 
granule cell ,  which can vary across cells and is 
experience-dependent. With this assumption, we can 
modify net cortical input for each granule cell without 
explicitly including cortical cells in our network. If we 
rewrite the cost term of the Lyapunov function (the 
first term of equation 3) to depend on . Then the 
Lyapunov function becomes: 		

   (5)	

As in equation (5), we find the learning update rule by 
taking the derivative of the Lyapunov function: 

. This rule decreases the 

thresholds of highly active granule cells more rapidly 
than those of less active cells. As a result, learning is 
expected to cause these granule cells to increase 
their odor-driven firing, and to thereby minimize mitral 
cell responses more efficiently. 
The emergence of expert granule cells 
The dynamics of granule-mitral cell networks 
described by the Lyapunov function (5) and learning 
rules defined by equation (5) have a simple geometric 
representation, which we will now describe. Let us 
assume that the thresholds for granule cells firing are 
very small, due for example to the sort of learning 
described above. Minimizing the Lyapunov function 
(5) with respect to the set of granule cell activities , 

forces the second term, , towards zero. This term is an  norm of mitral cell outputs, or 

the difference between their excitatory inputs, , and inhibitory input from granule cells . The dynamics 
of the mitral-granule cell network, therefore, force mitral cell responses towards zero. This, consequently, 
encourages the inhibitory inputs from granule cells  to match the excitatory stimulus input onto mitral 
cell , thus establishing a balance between excitation and inhibition by the inputs of mitral cells.  
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Figure 1. Sparse incomplete representations. This example describes an 
olfactory system with three mitral cells and five granule cells. (A) Vector  
(red) represents the inputs received by mitral cells from receptor neurons. 
Components of vector  represent inputs from individual glomeruli. The 

set of vectors  (black) represents synaptic strengths of individual 

granule cells, numbered by index , with all mitral cells. (B) The granule 

cell representation of mitral cell input, , is limited to the 

convex cone formed by  vectors (grey shaded area), due to non-

negativity of granule cell activities . For vectors  outside the cone, 

only the blue vectors , which constitute the nearest face of the cone, 
are active in the representation. The difference between the true mitral cell 

inputs  and the granule cell representation  is contained in the vector 

of mitral cell responses  and is sent to the cortex. 
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Figure 2. Learning in granule cell synapses. (A) Synaptic weight vector of 

granule cell , , will only change if the cell responds to the given 

odorant, i.e. is on the face of the cone closest to the mitral cell input . 
The direction and magnitude of the weight vector update (small blue 
arrows) are determined by the responses of the mitral cells  and granule 

cell activity respectively. (B) As a result, the vector  nearest to  will 
change the most. (C) After several rounds of updates, a single “expert” 
granule cell dominates the representation of . 
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The contribution of granule cells can be visualized 
using a set of vectors . Each of these vectors 
corresponds to a particular granule cell number  
and is defined by all the weights of its synaptic 
contacts with mitral cells. The number of elements in 
vector  is therefore equal to the number of mitral 
cells, while the total number of these vectors is equal 
to the number of granule cells. The ensemble of 
weight vectors  is simply another way to represent 
the mitral-to-granule cell connection weight matrix 

. Because the number of elements in each vector 

 is equal to the number of mitral cells, we can 
visualize the ensemble of  vectors in the same 
space as the mitral cell input  (Figure 1A). The 
representation of the granule cell input onto mitral 
cells is a linear combination of these  vectors,

 (Figure 1B). From equation (5), as 

described above, the dynamics of the granule cell 
network drive this vector to match .  

The requirement for granule cell activity to be positive 
constrains the set of possible solutions for 
reproducing . In other words, since , the 
granule cell reconstruction can only be formed from 
positive combinations of . Geometrically, this 

means that the reconstruction  is constrained to 
the cone with edges  (shaded region in Figure 
2B). For inputs  inside the cone, granule cells can 
build an exact representation of vector , i.e. 
, barring corrections introduced by costs in equation 
(5). In this case, the activity of mitral cells is zero, i.e 

 [equation (5)]. If the input into mitral cells from 
receptor neurons  is outside the cone, the 
representation of  formed by the granule cells is 
given by the vector nearest to  on the cone’s hull. 
Only the vectors forming the corresponding face of 
the hull (blue in Figure 2B) are needed to represent 
this best possible solution. In this case, the 
unmatched mitral cell output  r represents the error 
of the solution, or the distance between the ideal solution  and the closest conic hull vector . Only granule 
cells corresponding to vectors forming the nearest hull face will contribute activity to the representation. As a 
result, population responses of granule cells will be sparse. Because the representation of inputs  by the 
granule cells is frequently incomplete, i.e.  and , we called this model the Sparse Incomplete 
Representations or SIR model (Koulakov and Rinberg, 2011).  
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Figure 3. Simulation of granule cell learning. We simulated mitral cell 
receptor inputs as recognizable images (A). The difference between the 
receptor input and the granule cell representation is the resulting mitral 
cell activity. As learning progresses, mitral activity sparsifies and the GC 
representation becomes more accurate (B). Mean granule cell activity 
decreases during learning, while expert granule cell activity goes 
increases.  
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This geometric formulation of our model can incorporate 
weight updates specified by the learning rule (4) as well. The 
learning rule (4) postulates that vectors  themselves can 
change. The direction of change is determined by the vector 
of mitral cell responses . The rate of change is proportional 
to the response magnitude of a given granule cell . Thus, 
only weights of granule cells with non-zero responses to the 
odorant will be updated and the weights of more active cells 
will be updated more drastically. Since responses of granule 
cells are sparse, only a small population of granule cells is 
involved in learning each odorant. These granule cells are 
situated on the face of the cone that is nearest to the mitral 
cell input vector  (Figure 2A). Interestingly, the nearest  
will change the most, as its respective granule cell activity 
will be strongest. Therefore, with each successive iteration, 
the vector  nearest to  will increasingly dominate the 
representation (Figure 2B). As this process continues, one 
granule cell with synaptic weights  will become the sole 
contributor to the representation of  (Figure 2C). We refer 
to this granule cell as an “expert” granule cell with respect to 
representing the odor. In practice, this correspondence of 
one granule cell to one input vector  is unlikely because 
no single granule cell will have synaptic access to all mitral 
cells. As a result, the degrees of freedom for each  will be 
limited to the number of mitral cells accessed by granule cell 

. Therefore, we predict that: 1) The activation pattern 
evoked by real world odor requires the existence of a 
minority of strongly responsive “expert” granule cells, and 2) 
Overall granule cell population activity will be sparse.  
Learning the representations of simple odorants  
We next wished to confirm the plausibility of a small cohort 
of granule cells learning to represent an odorant. Therefore, 
we devised a model simulating the learning dynamics of the 
MOB in response to distinguishable patterns of receptor 
inputs. These patterns were chosen from a commonly used 
set of visually distinguishable images, six of which are 
shown in Figure (3A). These were intended to each 
represent an input pattern associated with a simple odor. 
The prediction of the model outlined above is that, after 
learning, each pattern will be represented by a sparse 
subset of active granule cells that we call “experts”.  
Our simulations show that, when an odor is first presented, 
mitral cell outputs closely resemble their inputs (Figure 3B). 
However, with repeated presentation of a single input , 
mitral cell responses decrease as the granule cell 
representation becomes more accurate (Figure 3B). A group 
of granule cells is initially active, corresponding to the 
nearest face of the conic hull of GC-MC synaptic weight 
vectors  (Figure 2A). In later presentations, most of the 
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Figure 4.  The model can learn components from mixtures. 
Training on inputs generated from adding, with random 
coefficients, two randomly selected images from nine 
component images. After 500 iterations of training, we tested 
the model on the component images alone (A). We used the 
same procedure for inputs with three components (B). After 
each iteration, we presented the nine component images 
individually, calculating the mean correlation between the input 
and GC representation across all nine images. Increasing the 
number of components decreases the mean correlation (C). 
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granule cell activities drop to zero (Figure 3C). Yet, a small group of granule cells becomes increasingly active. 
These sparse, highly responsive granule cells closely match our predicted sparse population of “expert” cells. 
Despite the fact that only a few granule cells are active, the resulting granule cell representation is very close to 
the mitral cell receptor input, resulting in a weak mitral cell response after learning (Figure 3B). We conclude that 
granule cell weights can learn the representations of simple odors in mitral cell inputs within an unsupervised 
learning paradigm.   
Learning components of mixtures  
Real world odor scenes are complex and dynamic. Most odors are mixtures in which multiple components are 
rapidly fluctuating due to turbulent airflow or changing distance to odorant sources. Because the relative 
proportions of these components are variable, representing odor stimuli with expert granule cells tuned to narrow 
and specific input configurations presents a challenge. For example, in the extreme case, if each odor stimulus 
has its own expert granule cell, the network would need one granule cell for each possible mixture. This would 
be very inefficient and impractical in light of the fact that the number of possible mixtures greatly exceeds the 
number of granule cells. It would be much more efficient for expert granule cells to learn representations of 
individual mixture components. In that case, the network would represent exponentially more stimuli using linear 
combinations of granule cells. Therefore, we extended our simulations to test whether the learning rules 
described above can enable the network to learn components of mixtures, despite having never been exposed 
to them in isolation.  
We trained the network with complex odors composed of linear combinations of components drawn from an 
ensemble of input patterns similar to the images shown in Figure 3A. Each pattern was intended to represent an 
individual simple odorant that can potentially be present in the environment. Out of the nine components, in each 
presentation, we selected two (Figure 4B) or three (Figure 4C) images to form a mixture. Each component was 
added with a random coefficient to simulate a fluctuating odor environment. Thus, at no time, was an individual 
simple odor component presented to the network. Moreover, randomly generated mixtures were never repeated. 
Then we measured the accuracy of the representations of the individual components.  
We found that the network learns to represent the complex odorants despite the fact that each of the mixtures 
presented to the network is unique. The network is able to successfully represent mixtures because inhibition 
from granule cells, at the end of training, almost precisely cancels mitral cell inputs, leading to weak responses 
of mitral cells to odorants. We tested this for both two- and three-odorant mixtures (Figures 4A and B 
respectively). We find that, after several presentations, the network learns to accurately reproduce the nine 
component images despite having never encountered them alone. We conclude that the learning rules described 
above enable the model network to represent mixtures as linear combinations of learned representations of their 
individual components. This shows that our model is not just mirroring odorant inputs but is instead able to extract 
and learn the components in a dynamic stimulus.   
Granule cell dynamics during odor learning 
These simulations make two surprising predictions about changes in the activity of granule cells during learning. 
First, our model predicts that learning sparsens the population of granule cells that respond to the learned odor. 
This results from enhancement of the output of a minority of ‘expert’ granule cells, and the suppression of the 
output of other granule cells. Second, our model predicts that despite a widespread reduction in many granule 
cells’ output, there is an increase in net inhibitory input to mitral cells that respond to the learned odor. We used 
in vivo extracellular and intracellular electrophysiology methods in granule cells and mitral cells to test these two 
predictions. During our recordings, we facilitated synaptic plasticity and learning associated with odors by 
electrically stimulating a noradrenergic input to the olfactory bulb. 
In two previous studies, we showed that stimulating the noradrenergic brainstem nucleus locus coeruleus (LC) 
while simultaneously presenting an odor, triggered long-term changes to the responses to that odor (Eckmeier 
and Shea, 2014; Shea et al., 2008). For example, pairing LC stimulation with an odor in anesthetized mice 
causes a consistent and enduring decrease in the responses of mitral cells. This firing decrease is dependent 
on circuitry and noradrenaline release in the olfactory bulb. Importantly, although the mice were anesthetized, in 
subsequent behavior experiments, mice that are presented with the odor that was paired to LC stimulation exhibit 
signs that they remember that odor (Eckmeier and Shea, 2014; Shea et al., 2008). Therefore, LC-mediated 
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noradrenaline (NA) release facilitates memorization of odors by modifying olfactory bulb circuits. We therefore 
used this approach to observe the dynamics of granule cell firing rates during odor learning, 
We first used ‘loose patch’ in vivo 
electrophysiology methods to record 
individual granule cells in the main olfactory 
bulb of anesthetized adult male mice 
(Cazakoff et al., 2014). Responses were 
evoked in the granule cells either with 2-
second pulses of monomolecular odors, or 
with 473 nm light activation in mice 
expressing the optogenetic tool 
Channelrhodopsin-2 (ChR2) in olfactory 
sensory neurons (Dhawale et al., 2010). We 
measured responses to odor or light 
stimulation (see Methods) for 20 - 40 trials, 
and then we monitored changes in the 
response as we paired each sensory stimulus 
with a brief train of electrical pulses to LC for 
another 20 - 40 trials, and beyond. Data from 
several example experiments are depicted in 
Figure 5. 
Figure 5A and 5C are 2-dimensional 
peristimulus time histograms (PSTHs) that 
depict the activity of two different granule 
cells in response to more than 100 trials of 
odor presentation. The lower two panels 
show PSTHs of the mean baseline-
subtracted firing rate before and after LC-
odor pairing. Most commonly, sensory 
responses of granule cells were dramatically 
suppressed by LC-odor pairing, as in Figure 
5A. A smaller population showed robustly 
increased firing in response to sensory 
stimulation, as in Figure 5C. Figure 5B and 
5D are scatter plots of the trial by trial 

 

 

Figure 6. Repeatedly pairing sensory stimuli with electrical activation of LC sparsens the response of granule cells to paired stimuli. (A) Scatterplot 
of data from 20 experiments in which activation of OSNs by either odors or ChR2 stimulation were paired with LC stimulation. Each point in the plot 
represents the mean pre-LC pairing sensory response strength compared with the mean post LC-pairing sensory response strength, expressed as a 
Z score (see Methods). Circles denote responses to odors and squares denote responses to optogenetic activation of OSNs. Filled points designate 
experiments where the post-LC pairing responses were significantly different from the pre-LC pairing responses, as assessed with a two-tailed 
unpaired t-test (p < 0.05), subject to an FDR analysis correcting for multiple comparisons. (B) Scatterplot of data from 10 experiments in which either 
sham LC stimulation was performed or LC stimulation was paired to a blank odor. The panel is organized as in A. (C) Histogram of the ratio of post-
pairing response strengths to pre-pairing response strengths for all experiments in A and B. Red bars denote LC pairing experiments and blue bars 
denote control experiments. Filled bars designate significant changes, as identified in A and B. 

	

Figure 5. Repeatedly pairing odors with electrical stimulation of the noradrenergic 
brainstem nucleus locus coeruleus (LC) leads to either long-term suppression or long-
term enhancement of sensory responses in granule cells. (A) Two-dimensional 
peristimulus time histogram (PSTH) depicting the response of an individual granule cell 
to 117 consecutive 2 s trials of odor presentation. Each row represents one trial, and 
each bin in the row represents the firing rate (spikes/s) for one respiratory cycle. The 
vertical white bar denotes the onset of the first breath after the odor is presented. The 
gray bar on the right indicates that for trials 40-79, each odor presentation coincided 
with a 5 s, 5 Hz train of 50 μA electrical pulses applied to the ipsilateral LC. The train 
began 2 s prior to odor onset. The lower panels are PSTHs that depict the mean spike 
rate response for trials prior to the LC-odor pairing (‘pre’) and for trials after the odor 
LC-pairing (‘post’). (B) Scatterplot depicting the trial by trial response strength over the 
whole experiment, computed as the mean firing rate during the stimulus minus the 
mean baseline firing rate. The gray shaded region denotes the LC-odor pairing trials. 
The horizontal red bars indicate the mean firing rates for the pre and post pairing 
epochs. (C, D) Data from a different granule cell that showed increased odor responses 
after LC-odor pairing over a total of 115 odor trials, organized as in A and B. 
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response strength in each experiment, 
computed as spikes/s above baseline during 
the response (see Methods.) 
As our model predicted, the data from granule 
cells show that their responses sparsen after 
pairing sensory stimulation with LC-activation. 
Sparsening occurs because the majority of 
cells show suppression of responses, and a 
minority show strengthened responses. In 
total, we collected similar data from 20 
granule cells, and the results of these 
experiments are depicted in the scatter plot in 
Figure 6A. Each point in the plot represents 
the mean pre-LC pairing sensory response 
strength compared with the mean post LC-
pairing sensory response strength, each 
expressed as Z scores. In 12 experiments, we 
collected responses to odor presentation, and 
in the remaining 8 experiments, responses 
were collected to optogenetic activation of 
OSNs. Filled points denote experiments 
where the post-LC pairing responses were 
significantly different from the pre-LC pairing 
responses, as assessed with a two-tailed 
unpaired t-test (p < 0.05), subject to an FDR 
analysis correcting for multiple comparisons 
(Benjamini and Hochberg, 1995). Of 20 LC-
pairing experiments, 15 showed significant 
changes in response strength after LC-
pairing, including 11 experiments in which 
responses were suppressed and 4 
experiments in which responses were 
increased. Notably, 3 of the sites that did not 
change after LC pairing were all 3 sites which 
responded to the odor with firing suppression, 
suggesting that LC activity only affects 
positive, excitatory responses in granule cells. 
Changes in response strength were 
uncommon in experiments in which odor 
responses were measured before and after 
sham LC stimulation (4 experiments) or 
before and after LC stimulation was paired 
with an odor blank (6 experiments) (Figure 
6B). Of these 10 cases, 3 showed significant 
changes in granule cell response strength (1 
decrease and 2 increases.) Figure 6C is a 
histogram of the ratio between post-LC pairing 
responses and pre-LC pairing responses for 
27 experiments in which the pre-LC pairing 
sensory responses were excitatory, comparing LC pairing sites (red) to control sites (blue.) These data show 
that noradrenaline release in the olfactory bulb, which facilitates odor memories, results in a bimodal distribution 
of effects characterized by predominantly dramatic response suppression, but with strong response 
enhancement at a minority of sites. This result therefore matched the predicted sparsening of granule cell 
responses during learning. 

Figure 7: Pairing LC stimulation with odor-evoked depolarization in mitral cells 
strengthens granule cell inhibitory feedback. (A) Schematic of the experiment. 
Initially, a train of 20 brief pulses of positive somatic current injection, calibrated in 
amplitude and duration to reliably evoke 20 individual action potentials, was applied 
to a mitral cell recorded in the whole cell intracellular configuration from an 
anesthetized mouse. At least 10 trials were collected, and we measured the integral 
amplitude of the ensuing after hyperpolarization (AHP). This electrophysiological 
event has previously been established to represent the magnitude of feedback 
inhibition from granule cells. Then, we presented 20 2 s trials of odor, each paired 
with a 5 s train of 200 ms, 50 μA, electrical stimulation pulses at 5 Hz that began 1 
s before the odor and extended 2 s after each of 20 trials of paired odor. Finally, 
we once again measured the integral amplitude of the post-stimulus. (B) Example 
data from a cell that responded with depolarization to the paired odor and also 
shows an increase in the integral AHP following odor-LC pairing. Left, the mean 
AHP prior to odor-LC paring (black) is compared with the same feature after pairing 
stimulation of LC with a depolarizing odor. Right, the mean subthreshold membrane 
voltage response to the paired odor. (C) Example data from a different cell that did 
not respond to the paired odor and also showed no change in AHP. Organized as 
in (B). (D) Example data showing the mean AHP evoked before and after sham 
stimulation in LC. The AHP amplitude was unchanged. (E) Scatterplot showing the 
change in the integral amplitude of the AHP in 14 experiments in which either LC 
stimulation was paired with an odor or was not performed. The difference between 
the LC stimulation and sham stimulation groups is significant (unpaired t test, p < 
0.01). (F) The magnitude of the change in the AHP amplitude after LC-odor pairing 
is significantly correlated with the integral amplitude the mean membrane potential 
response (Pearson’s correlation, r = -0.87, p < 0.01). 
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The second prediction of our model is that although most granule cells are suppressed, the net inhibition onto 
mitral cells that represent an odor is increased after learning. We used whole-cell intracellular recordings from 
mitral cells to show that pairing an odor with LC stimulation increases inhibitory feedback onto mitral cells that 
are depolarized by the odor. Previous work has shown that depolarization of mitral cells evokes a sustained 
‘after hyperpolarization’ (AHP) that reflects inhibitory synaptic feedback from granule cells (Isaacson and 
Strowbridge, 1998). Measurement of this event has been used in vivo to quantify the strength of granule cell 
feedback onto mitral cells (Abraham et al., 2010). We therefore used whole-cell intracellular recording methods 
to determine whether and how LC-odor pairing affects inhibitory synaptic feedback onto mitral cells. 
We found that pairing an odor with electrical stimulation of LC led to increased inhibitory feedback from granule 
cells specifically onto mitral cells that were responsive to the paired odor. Figure 7A depicts the structure of the 
experiment. The black and red traces depict representative measurements of the integral magnitude of the AHP 
following a train of 20 action potentials evoked by brief pulses of somatic current injection. The vertical 
arrowheads are pointing to the AHP in each trace. This measurement was made before and after either 20 trials 
of an odor paired with electrical stimulation of LC as described above, or an equivalent time during which no 
electrical stimulation of LC was performed (sham stimulation). Example data in Figure 7B shows that when LC 
stimulation was coincident with an odor that reliably depolarized the mitral cell, the integral amplitude of the AHP 
was increased. However, when the mitral cell was not depolarized by the odor, as in Figure 7C, the AHP was 
unaffected. Figure 7D shows data from a mitral cell that underwent sham stimulation, and the AHP was 
unchanged. Figure 7E is a scatter plot comparing the net change in the integral area of the AHP following LC 
odor pairing and sham stimulation. Because the AHP is a hyperpolarizing event, a net negative change in this 
quantity represents stronger inhibition. The scatter plot in Figure 7F shows that among the mitral cells that were 
subjected to LC odor pairing, the magnitude of the increase in inhibitory synaptic feedback was significantly 
correlated with the magnitude of the depolarizing response to the paired odor. This strongly implies that mitral 
cells responding to the learned odor are specifically targeted for this synaptic modification by NA. 
 
DISCUSSION 
Here we have used complementary modeling and in vivo electrophysiology approaches to argue that the 
mammalian main olfactory bulb essentially implements a compressed sensing algorithm. We previously 
proposed a model for the olfactory bulb in which odor-evoked input patterns in mitral cells are spatially and 
temporally sparsened by counteracting incomplete suppression from a negative, mirror image representation 
among the inhibitory granule cells. We termed this representation a ‘Sparse Incomplete Representation’ (SIR) 
(Koulakov and Rinberg, 2011). Here we extend this model by adding a learning rule that allow the network to 
adjust its synaptic connections to better represent new odors. This computation allows the bulb to efficiently 
represent sparse but high-dimensional stimuli. It also makes it possible for the network to learn separable 
representations of the independently fluctuating components in a complex mixture, without ever encountering 
them in isolation.  
Dynamics of granule cells during learning 
When we observed the dynamics of the granule cells during learning, we observed two paradoxical and 
seemingly contradictory features. First, as the granule cell representation of an odor stimulus is learned, a large 
fraction of granule cells drop out of participation in the population response. This emerges in our model as a 
competitive selection process focuses the network on to an efficient representation by the granule cells that, due 
to their specific connections, most closely and economically match the stimulus features. We refer to these cells 
as ‘expert’ granule cells. The broader set of ‘non-expert’ granule cells fall away from this representation. The 
result of this network dynamic is sparsening of the population response. Notably, when we artificially facilitate 
odor memorization in vivo, a similar sparsening is evident in the data. Specifically, when we pair a sensory 
stimulus with LC activation, the great majority of granule cells either strengthen their response significantly, or 
they lose their response almost completely. We note that we observed more apparent ‘expert’ granule cells when 
we employed broad optogenetic activation, which presumably reflects the increased size of the activated 
receptor population. 
Second, our model further predicts that, despite the loss of granule cell activity, the inhibition sensed by the 
responsive mitral cells undergoes a net increase. We also observed this pattern in our in vivo recordings. We 
used an established method for quantifying the net inhibitory synaptic feedback onto mitral cells in vivo (Abraham 
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et al., 2010). By measuring this quantity before and after LC-
facilitated odor learning, we showed that inhibitory feedback was 
strengthened in mitral cells. Importantly, this was only observed 
when the test odor evoked a depolarizing response in the 
recorded mitral cell. Indeed, the magnitude of the change in 
inhibitory feedback was correlated with the magnitude of the 
depolarizing odor response. Taken together, these empirical 
observations are consistent with the granule cell population 
dynamics we observed in our simulations. 
Computational advantages to compressed sensing of odors 
We propose that there are at least three major computational 
advantages to the neural circuit algorithm we outlined here. First, 
our model provides an elegant solution for the ‘curse of 
dimensionality’. Unlike visual stimuli, which are organized 
topographically in two-dimensional space, and auditory stimuli, 
which are organized tonotopically according to frequency, odor 
stimuli occupy a high dimensional space that is defined by their 
suite of chemical features. While any given odorant will likely 
possess a relatively small number of these features, the number 
of potential features these may be drawn from is vast, with each 
requiring a dedicated sensor. Therefore, representational 
bandwidth is limited by the number of receptors available. On the 
other hand, this bandwidth can be expanded with more 
promiscuous and broadly tuned receptors. The costs of this 
solution are mitigated by the inherent sparseness of real-world 
odor scenes, and by the representational capacity of the large 
network of inhibitory granule cells. Given the sparse set of 
chemical features present in any odor, granule cells can 
effectively represent virtually any combination of those features. 
Thus, the olfactory bulb compresses an efficient representation 
of sparse odor stimuli that is highly distributed among its array of 
receptors. The bulb then decompresses the information carried 
by the receptors by competitive selection of a minimal basis set 
of granule cells tuned to activity among specific combinations of 
glomeruli. This feature mitigates the need for an impractically 
large number of different receptor types. 
The second computational advantage to this coding mechanism is that it allows the olfactory bulb to learn the 
components of an odor without experiencing them in isolation. This capacity is attributable to sensitivity of the 
granule cells to covariation in concentration among the sets of features that correspond to each component. This 
is arguably essential for robust odor perception, since real world odor scenes are composed of components that 
are rarely, if ever, encountered alone. 
The third advantage is the capacity for component-specific adaptation or suppression. This network property 
could be useful in several respects depicted in Figure 8. It could give the piriform cortex (PCx), through its 
regulation on the granule cell network, control over background subtraction by adapting out the response to 
irrelevant or expected odors without discrupting the representations of target foreground odors (Figure 8A). 
Moreover, representing stimuli as mirror images in an inhibitory neural population results in a computation of the 
difference between the granule cell representation and the sensory input from the glomeruli. Therefore, the 
output of the olfactory bulb, carried by the mitral cells, signals the error in the granule cell representation. This 
error signal is highly energetically efficient and allows the olfactory bulb to encode a far greater dynamic range 
before encountering the biophysical constraints on neuronal firing. Maximizing dynamic range is important in 
light of the fact that odorants can vary in concentration over many orders of magnitude. Computing a difference 

Figure 8. Potential functional significance of sparse odor 
representations in granule cells for odor recognition. (A) 
The SIR model may facilitate selective adaptation to known 
background odorants. In environments where such 
odorants are known to be potentially present, cortical 
feedback inputs (red) may lower the threshold for activating 
the subset of “expert” granule cells responsible for their 
representation. Thus, the patterns of mitral cell activation by 
these background odorants are suppressed (light blue). 
Only the patterns of mitral activation induced by foreground 
odorants (darker blue) reach the cortex. Thus, the model 
can remove specific patterns of mitral cell activity 
associated with odors that are irrelevant for the animal’s 
behavior. This adaptation mechanism is pattern-specific, 
leaving mitral cells open for transmitting information about 
foreground odorants even though their reponses to adapted 
odors are inactivated by the “expert” granule cells. (B) As 
an alternative, the SIR model may enable the piriform cortex 
(PCx) to compare a sample odor against a learned odor 
expectation. In this mechanism, cortical feedback 
projections to a cohort of “expert” GCs attempt to match and 
cancel odorant-induced mitral cell activity. When nearly 
complete inactivation is achieved, PCx receives weak or 
negligible inputs, indicates that the odor was identified 
correctly (no error signal).  
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error signal is also a highly sensitive mechanism that enables the olfactory bulb to encode very small differences 
between an expected odor and the actual stimulus. 
Role of granule cells in odor perception and learning 
The results of our modeling and experiments are consistent with the long-standing notion that granule cells figure 
prominently in odor discrimination and memories. Several lines of evidence support this idea. First, positively 
and negatively regulating GC activity can respectively improve or degrade performance in a fine odor 
discrimination task (Abraham et al., 2010; Lepousez and Lledo, 2013; Nunes and Kuner, 2015; Nunez-Parra et 
al., 2013). Second, odor learning alters rhythmic synchronous population activity (Beshel et al., 2007; Freeman 
and Schneider, 1982; Martin et al., 2004; Ravel et al., 2003), which appears to critically involve granule cells 
(David et al., 2015; Kay et al., 2009; Neville and Haberly, 2003; Nusser et al., 2001; Osinski and Kay, 2016; Rall 
and Shepherd, 1968). Third, noradrenaline-dependent olfactory memories are characterized by stimulus-specific 
suppression of activity in the mitral cells (Shea et al., 2008; Sullivan et al., 1989; Wilson et al., 1987) and 
increased GABA release (Brennan et al., 1995; Brennan et al., 1998; Kendrick et al., 1992). For example, NA 
appears to be important for individual recognition memories that require sensitive discrimination between highly 
overlapping representations (Brennan and Keverne, 1997). The circuit dynamics we observe in our model and 
our experimental data suggest that the stimulus-specific suppression of mitral cell odor responses triggered by 
LC stimulation is achieved through inhibitory feedback from a sparse population of granule cells. Computationally, 
this implements a subtractive comparison between the odor signature of a given social partner and a memorized 
template corresponding to a familiar individual. Hypothetically, the result of this computation is the residual 
mismatch between otherwise highly overlapping representations. Notably, in several studies, the participation of 
granule cells seems to be of greater importance to this kind of “difficult” discrimination (Abraham et al., 2010; 
Nunez-Parra et al., 2013). 
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