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Abstract

Protein-protein interactions play a crucial role in almost all cellular processes. Identifying
interacting proteins reveals insight into living organisms and yields novel drug targets for
disease treatment. Here, we present a publicly available, automated pipeline to predict
genome-wide protein-protein interactions and produce high-quality multimeric structural
models.

Application of our method to the Human and Yeast genomes yield protein-protein interaction
networks similar in quality to common experimental methods. We identified and modeled
Human proteins likely to interact with the papain-like protease of SARS-CoV2’s non-structural
protein 3 (Nsp3). We also produced models of SARS-CoV2’s spike protein (S) interacting with
myelin-oligodendrocyte glycoprotein receptor (MOG) and dipeptidyl peptidase-4 (DPP4). The
presented method is capable of confidently identifying interactions while providing
high-quality multimeric structural models for experimental validation.

The interactome modeling pipeline is available at usegalaxy.org and usegalaxy.eu.
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Introduction

Obtaining a complete map of interacting proteins is crucial to decipher the inner workings of
living organisms. Among many other roles, proteins act in dynamic collaboration to fulfill
biological functions by catalyzing chemical processes. Commonly, interactions are elucidated
through a variety of experimental methods (Shoemaker, 2007, Zhou, 2016) which are capable of
evaluating an ever-larger number of putative protein pairs. Unfortunately, the overlap between
these methods is often limited which either indicates a high false positive rate or a low
coverage. Often 40 to 90% of the detected interactions do not overlap between different methods
(Mering, 2004, Rao, 2014). Also, high throughput methods do not provide structural insights
into the formed protein-protein complex. More reliable methods such as crystallography and
NMR spectroscopy do yield structural information but are labor intensive and as such only
applicable to a limited number of proteins. In a recent study we demonstrated that the gap
between low and high throughput methods can be bridged by identifying distantly related
protein-protein homologues with similar protein-protein interfaces (Gong, 2021). Application of
the SPRING method (Guerler, 2013) to Escherichia coli competitively identified protein-protein
interactions while producing accurate multimeric protein structure models of which 39 by now
have been confirmed in high-resolution experiments. Other studies applied our method to the
minimal synthetic genome syn3.0 (Zhang, 2021) and the mouse genome (Li, 2016). In the present
study we describe how we implemented our pipeline on Galaxy (Afgan, 2018), a web-based
computational workbench used by many scientists across the world to analyze large data sets.
This allows scientists to reproduce, share and embed the resulting interactome networks within
their own analysis pipelines. Given a set of query sequences and a list of known protein
structures, the pipeline employs SPRING with HHsearch (Steinegger, 2019), and TMalign
(Zhang, 2005) to detect and structurally model protein-protein interactions. We validate the
pipeline’s performance by comparing the resulting Human and Yeast protein networks with
experimental findings. Similar to the results for Escherichia coli, the method competitively
resolves Human and Yeast protein-protein interaction networks. As novel targets, we identified
Human proteins likely to bind the papain-like protease of SARS-CoV2’s non-structural protein 3
(Nsp3). We also obtained models for SARS-CoV2’s spike protein (S) in complex formation with
myelin-oligodendrocyte glycoprotein (MOG) and dipeptidyl peptidase-4 (DPP4). Some of the
detected interactions have already been experimentally confirmed in recent literature, others
provide novel insights into the pathology of SARS-CoV2. Notably, the interaction with DPP4
has been suggested to cause a higher mortality rate of diabetics contracting SARS-CoV2
(Valencia, 2020) while the MOG receptor is associated with the MOG antibody disease which
relapses in  SARS-CoV2 patients (Woodhall, 2020).
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Methods

Protein-Protein Interaction Analysis Pipeline

We present a Galaxy pipeline to predict and structurally model protein-protein interactions on
genomic scale. The pipeline takes the following inputs:

(1) An individual file or a pair of files containing multiple FASTA entries of protein coding
sequences. The pipeline will attempt to identify protein-protein interactions within the set of
query sequences.

(2) Text file containing the list of all Protein Data Bank (PDB) (Berman, 2000) entry identifiers to
be employed as a multimeric template library. This step can be skipped if the library has
already been constructed.

(3) PDB70 threading library files as provided by the developers of HHsearch. These files are
used to perform single-chain threading and can be obtained from
http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/.

The following outputs are generated:

(1) Tabular file containing all identified interactions with their corresponding  templates and
Zcom scores (Wong, 2021).

(2) Tabular file containing the details of the produced multimeric structural models and the
corresponding model properties, i.e. SM-score, TM-score, a knowledge-based contact energy
term Econtact and the fraction of inter chain clashes.

(3) Collection containing dimeric structural models for each interaction, including the
structures of the identified templates from the PDB.

(4) Bar chart displaying the prediction accuracy in comparison to experimental results derived
from the BioGRID database.

Available Workflows

We build two analysis workflows, one for intra-genome and another for inter-genome
protein-protein interaction prediction (see Table 1). The source code of the entire pipeline,
including data preparation and interaction prediction logic is written in Python 3 and publicly
available at https://github.com/guerler/springsuite under the GNU License. All methods can be
executed locally or using the Galaxy web interface on usegalaxy.org and usegalaxy.eu.
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Table 1. Galaxy workflows available at usegalaxy.org and usegalaxy.eu.

Workflow Input data

Intra-genome interaction prediction FASTA file of  protein coding sequences

Inter-genome interaction prediction Pair of FASTA files containing protein coding sequences

Data Preparation

The presented pipeline utilizes all protein-protein interfaces available in the PDB as a template
library for interface homology detection (Figure 1). The data preparation starts by using the
DBkit tool in Galaxy to download all PDB entries and store them as a ffindex/ffdata database
pair. As of November 29th, 2020 this amounted to 170,860 files. Then the SPRING Cross tool is
applied which scans each PDB entry for protein-protein interfaces and stores the corresponding
interacting PDB chain identifiers in a 2-column lookup table as a pairwise index of all
interactions. In more detail, the SPRING Cross method proceeds by using the PDB REMARK
350 entries to build all bio units available in a given PDB entry. Then all C-alpha atom distances
between two separate chains within the same bio unit are determined. If more than five
distances below 10Å are detected for a pair of PDB chains, the corresponding PDB chain
identifiers are deemed as interacting and added as a new row to the resulting 2-column lookup
table. This yields a complete set of 988,784 interacting PDB chain identifier pairs contained in
the PDB which we will use as a multimeric template library.

In a consecutive step the SPRING Map tool is applied which uses PSI-BLAST (Altschul, 1997) to
detect close homologues of the PDB70 database for each PDB chain identifier listed in the
columns of the lookup table. The identifiers of matching PDB70 entries are added in two
additional columns to the lookup table. This allows us to apply HHsearch on a non-redundant
subset of the PDB, containing entries with less than 70% sequence identity to each other.
Although possible, expanding the monomeric threading database by including every PDB chain
would significantly impact the database preparation time without improving the overall
prediction performance. We used the PDB70 database issued on November 18, 2020 containing
58,900 entries. If a PSI-BLAST E-value equal to zero is used, 257,698 interaction frameworks
which exactly match the sequences in the PDB70 are detected. With an E-value threshold of
0.001, the resulting 4-column lookup table contained 900,772 interaction frameworks suitable for
the monomers available in the PDB70 database.
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Figure 1. Schematic overview of the presented pipeline, illustrating the main input data sets, tools and
outputs.

Interaction Prediction

The pipeline’s interaction prediction logic uses SPRING with HHsearch and TMalign, and was
designed to exploit the redundancy of available protein-protein interfaces in order to predict
and model novel protein tertiary structures.

Initially each query sequence Q is threaded by HHsearch against the PDB70 monomeric
template library to identify a set of putative templates (Ti, i=1,2,…) each associated with a
Z-score (Zi). The Z-score is defined as the number of standard deviations by which the raw
alignment score differs from its mean. A higher Z-score indicates a higher significance and
usually corresponds to a better alignment.

Considering all possible target sequence pairs, the SPRING Min-Z tool uses the previously
described 4-column lookup table to select interaction frameworks which are shared by the
monomeric templates of a query pair. The Z-score of the framework is defined as Zcom which is
the smaller of the two monomeric Z-scores. A more detailed description of this algorithm is
provided in Gong et al. 2021 and Guerler et al. 2013.

Interaction Validation

The accuracy of predicted protein-protein interactions is evaluated using the SPRING MCC tool.
This tool compares the set of interactions from SPRING with interactions obtained from
experimental methods contained in the Biological General Repository for Interaction Data sets
(BioGRID) (Oughtred, 2020). BioGRID is an open access database that contains protein
interactions curated from primary biomedical literature for all major model organism species
and Humans. The SPRING MCC tool accesses the BioGrid Tab 3.0 format columns 24 and 27,
containing the UniProt (UniProt Consortium, 2021) accession identifiers of interacting protein
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pairs. The method only operates on interactions identified for sequences which are available in
the UniProt database.

Initially, the SPRING MCC tool produces a `negative` data set of non-interacting protein pairs
by randomly sampling protein-protein interaction pairs from the set of query protein sequences.
If a UniProt localization file is provided, the non-interacting pairs can be determined by
sampling protein sequences from different subcellular regions. This approach can reduce the
false-negative rate of the resulting negative data set.

Subsequently, the protein-protein interaction sets identified by each experimental method are
considered to be truly interacting, constituting the `positive` data sets for the cross-validation
process. Each method is compared to all other methods using the positive data sets and a
negative data set of equal size. The resulting Matthew’s correlation coefficients (MCC) are
plotted using the Matplotlib library (Hunter, 2007). An example of such a plot is shown in
Figure 2, displaying the results for the Human and Yeast interactome validation. The legend
lists the experimental methods used to determine the corresponding positive data set.

Structural Modeling

If a pair of proteins, Chain A and Chain B, is deemed to potentially interact e.g. Zcom > 25, the
complex structure is constructed by structurally aligning the top-ranked monomer templates of
Chain A and Chain B to all putative interacting frameworks using the SPRING Model tool
which utilizes TM-align. The structural alignment is built on the subset of interface residues.
The resulting models are evaluated by the recently established SPRING model score (Vangaveti,
2020):

SM-score = TM-score - w0 Econtact

where TM-score is the smaller TM-score returned by TM-align when aligning the top-ranked
monomer models of Chain A and Chain B to the interaction framework; Econtact is a
residue-specific, atomic contact potential derived from 3,897 non-redundant structure interfaces
from the PDB using the formula of RW (Zhang, 2010). The weight parameter w0 is set to 0.01
through a training set of protein complexes to maximize the modeling accuracy of the interface
structures. The final model is evaluated for clashes and removed if more than 10% of the
resulting C-alpha atom contacts share a distance of less than 5Å between the interacting pair of
protein structures.

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.03.17.435706doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435706
http://creativecommons.org/licenses/by/4.0/


Results

Performance Validation with Human and Yeast Interactomes

The pipeline’s performance is validated on 20,610 raw protein coding gene sequences from the
Human Reference Genome (UP000005640) of the UniProt database. This process evaluates ~212
million possible pairs to identify the set of interacting protein-protein pairs. Each interaction is
ranked by the Zcom score and Matthew’s correlation coefficient (MCC) is determined with regard
to a negative data set of non-interacting protein pairs produced by the SPRING MCC tool and
positive data sets derived from each experimental method. The negative data set has been
sampled to contain proteins from different subcellular regions. Figure 2 displays the
cross-validation performance results in comparison to ten experimental methods available in
the BioGRID database. Note that we applied SPRING on the raw protein coding sequences
without separating the individual proteins using the CDS record provided by GenBank
(Benson, 2014). In total the 20,610 protein coding genes encode for about 75,776 individual
proteins.

We repeated the same experiment using the Yeast genome (UP000002311) to identify
protein-protein interaction networks. In total 6,045 protein coding genes were parsed through
the pipeline evaluating ~18 million possible protein-protein interactions using the public Galaxy
instance at https://usegalaxy.org. The results are shown in the right panel of Figure 2.

Figure 2. Human (left) and Yeast (right) protein-protein prediction results and comparison. Showing
Matthew’s correlation coefficients (MCCs) as produced by comparing SPRING predictions with different
protein-protein interaction experiments available in the BioGRID database. Each experimental method
serves as a positive validation set for every other method.
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A more detailed analysis regarding the prediction performance of the presented pipeline versus
experimental methods has been recently published for the Escherichia coli genome (Gong, 2021).
The pipeline predicted several protein complex structures which were later experimentally
verified by crystallography.

For all three genomes, our pipeline was able to implicitly identify individual protein sequences
and achieve an overall performance which is comparable if not better than existing experimental
methods.

SARS-CoV2 protease (Nsp3) and Ubiquitin

We next applied the Galaxy pipeline to the genome of SARS-CoV2 which causes a novel severe
acute respiratory syndrome and has been declared a pandemic  (Naqvi, 2020). The SARS-CoV2
genome contains 13 to 15 open reading frames with ~30 thousand nucleotides, including 11
protein-coding genes. Our pipeline identified Human substrates for the papain-like protease of
SARS-CoV2 which is part of the non-structural protein 3 (Nsp3) (see Fig. 3).

Table 2 shows a list of the highest ranking fifteen substrates with matching multimeric
templates and model quality attributes i.e. SM-score, TM-score, Econtact and Zcom. The two highest
ranking interactions were identified for ISG15 (SM-score=1.11) and ANKUB (SM-score=1.10).
ISG15 has recently been experimentally confirmed as a substrate (Shin, 2020) and ANKUB was
suggested in a computational cleavage enrichment study (Prescott, 2020).

Figure 3. Putative ubiquitin-like substrates (colored) of SARS-CoV2 papain-like protease (green).
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Table 2. SARS-CoV2 papain-like protease substrates. Top scoring Human protein complex models for
SARS-CoV2 papain-like protease of Nsp3.

UniProt ID Name PDB
entry

Reference SM TM Econtact Zcom

ISG15 Ubiquitin-like protein 6XAA Klemm, 2020 1.11 0.96 -15.07 38.3

ANKUB Ankyrin repeat 5BZ0 Daczkowski, 2017 1.10 0.87 -23.39 27.3

UBB Ubiquitin B 6XAA Klemm, 2020 1.09 0.93 -16.52 66.9

ELOB Elongin-B 4WUR Hilgenfeld, 2016 1.06 0.85 -20.81 31.1

MIDN Midnolin 5W8T Daczkowski, 2017 1.03 0.85 -18.02 45.6

TMUB1/B2 Transmembrane 5TL7 Daczkowski, 2017 1.02 0.82 -20.45 41.4

SUMO3 Ubiquitin modifier 3 5W8T Daczkowski, 2017 1.02 0.83 -18.78 43.1

UBL7 Ubiquitin-like protein 7 5WFI Mesecar, 2018 1.02 0.80 -21.48 36.1

NF2IP NFATC2-interacting
protein

5BZ0 Daczkowski, 2017 1.02 0.78 -23.89 24.5

UBC Polyubiquitin C 6XA9 Klemm, 2020 1.02 0.87 -14.99 162.9

RD23A/B UV repair protein Rad23 5WFI Mesecar, 2018 1.01 0.77 -24.14 45.5

IQUB Ubiquitin-like domain 5WFI Mesecar, 2018 0.99 0.77 -21.67 35.2

UBD Ubiquitin D 5W8T Daczkowski, 2017 0.98 0.84 -13.66 42.6

SARS-CoV2 Spike protein (S) and Myelin-oligodendrocyte Glycoprotein

We also identified Human proteins interacting with SARS-CoV2’s spike protein (S). The
top-ranking interaction was found for angiotensin (ACE2/ACE), which is widely known to be
the primary receptor for SARS-CoV2 (Peng, 2020, Zhou, 2020).

The second highest ranking model was detected for the interaction with the
myelin-oligodendrocyte glycoprotein (MOG, see Fig. 4). MOG is a protein located on the
surface of myelin sheaths in the central nervous system (Kezuka, 2018). Our pipeline modeled
the monomeric structure of MOG with the highest ranking homologue in the PDB70 database
which is PDB entry 4PFE (Eshaghi, 2015) at a Z-score of 102.2. We compared the resulting
monomeric model with the model provided by Mesleh et al. in 2002. Both models resolve MOG
as a beta-barrel and share significant similarity at a TM-score of 0.70. Additionally several
suitable multimeric template frameworks were identified. The corresponding PDB entries are
7C8V (Li, 2020), 6XC2 (Yuan, 2020), 6XC4 (Yuan, 2020), 7BZ5 (Wu, 2020) and 7C01 (Shi, 2020).
All of these structures, except 7C8V, were crystalized with a potent neutralizing antibody of
SARS-CoV2. Table 3 shows the identified template frameworks and the resulting model scores.
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The results indicate two distinct putative binding modes which may occur in tandem (see Fig.
4C).

The MOG receptor is associated with MOG antibody disease (MOGAD), a neuro-inflammatory
condition that may cause inflammation of the optic nerve, the spinal cord and brain. Recent
research has shown that SARS-CoV2 does trigger a relapse of MOGAD (Woodhall, 2020).

A B

C

Figure 4. Putative binding modes of SARS-CoV2 receptor-binding domain (green) and (A) the
top-ranking model of myelin-oligodendrocyte glycoprotein (cyan) with the homologue template of PDB
entry 7C8V (pink) and (B) a cluster of secondary models (orange). (C) Display of both binding modes in
complex with SARS-CoV2 receptor-binding domain.
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Table 3. Multimeric frameworks identified for myelin-oligodendrocyte glycoprotein. Top scoring protein
complex templates for the interaction between SARS-CoV2 spike protein (S) and myelin-oligodendrocyte
glycoprotein receptor domain (MOG).

PDB entry Reference Name SM TM Econtact Zcom

7C8V Li, 2020 Sybody SR4 0.90 0.82 -8.57 45.8

6XC2 Yuan, 2020 Neutralizing Antibody
CC12.1

0.86 0.83 -3.53 55.2

7C01 Shi, 2020 Neutralizing Antibody 0.86 0.83 -3.28 55.3

7BZ5 Wu, 2020 Neutralizing Antibody 0.85 0.83 -2.79 55.3

6XC4 Yuan, 2020 Neutralizing Antibody
CC12.3

0.84 0.81 -2.54 53.4

SARS-CoV2 Spike protein (S) and Dipeptidyl Peptidase-4

High-scoring models were also generated for dipeptidyl peptidase-4 (DPP4, see Fig. 5),
confirming the computational modeling results presented by Li et al. 2020. DPP4 is a cell surface
glycoprotein receptor involved in T-cell activation and assumed to play a role in cell adhesion,
migration and tube formation (Durinx, 2000).

Figure 5. Putative binding mode between SARS-CoV2 (S) receptor-binding domain (RBD) (navy) and
dipeptidyl peptidase-4 (DPP4) (cyan) with known MERS-CoV and DPP4 critical binding sites highlighted
(red). The multimeric template framework is PDB entry 4L72 (pink), with the MERS-CoV
receptor-binding domain (RBD) (orange).
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Additionally, inhibiting DPP4 prevents glucagon release while increasing insulin secretion to
decrease blood glucose levels (McIntosh, 2005). DPP4 is known to interact with MERS-CoV
(Wang, 2013). The highest scoring template frameworks for DPP4 were PDB entry 4KR0 (Lu,
2013) with a Zcom score of 216.30 and PDB entry 4L72 (Wang, 2013) with 213.4. The resulting
dimeric models are very similar to each other. The multimeric template matched the individual
models with a TM-score of 0.62, a mean contact energy of -6.7 and SM-score of 0.69.

Several sites are known to significantly contribute to the interaction between DPP4 and
MERS-CoV’s receptor-binding domain (RBD). These are DPP4 residues K267, R336, R317, and
Q344 (Song, 2014, Li, 2020, see Fig. 5) along with polymorphic sites as outlined in Table 4. Our
method illustrates that SARS-Cov2’s S protein interacts with sites on DPP4 shared by
MERS-CoV in addition to novel interaction sites (see Table 4). Additionally, half of fourteen
critical binding sites (Letko, 2018) have been identified as polymorphic in Humans. Taken
together, binding propensities between SARS-Cov2’s S protein and DPP4 might vary based on
the population.

Table 4 shows sites on DPP4 that are critical in binding MERS-CoV’s receptor-binding domain (RBD) and
sites predicted to interact with SARS-CoV2’s RBD. Sites on DPP4 that are known to be polymorphic in the
Human population are highlighted. The results indicate that SARS-CoV2 interacts with sites on DPP4
known to be critical and additional novel sites.

Sites on DPP4 Interacting Virus Critical, Polymorphic or Novel

K267 MERS-CoV Critical and Polymorphic

R317 MERS-CoV Critical and Polymorphic

R336 MERS-CoV Critical

Q344 MERS-CoV Critical

T186 SARS-CoV2 Novel

T282 SARS-CoV2 Novel

S334 SARS-CoV2 Novel
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Conclusion

Accurate identification of protein-protein interactions is essential to decipher cellular processes
and detect novel drug targets. In the present work we implemented a Galaxy pipeline using the
SPRING method which detects and structurally models protein-protein interactions by
identifying distantly related protein complex structures with similar protein-protein interfaces.

The presented pipeline yields insights into the biochemical activity of SARS-CoV2 by
identifying distant homologues with similar binding interfaces to Human proteins. For the
papain-like protease of the non-structural protein 3 (Nsp3), we detected several ubiquitin-like
substrates of which some have been experimentally confirmed. The method produced a
top-ranking model for SARS-CoV’s spike protein (S) and dipeptidyl peptidase-4 (DPP4) in
alignment with existing literature. Our method produced novel complex models between the S
protein and myelin-oligodendrocyte glycoprotein (MOG). Here two top-ranking binding modes
were produced. Experimental exploration will be needed to determine what impact these novel
binding sites might play in pathogenicity, immune evasion, and adaptation. The prediction
confidence relies on the accuracy of the homology match between templates, the structural fit
and a knowledge-based contact potential, providing likely binding modes and interaction
partners for further investigation. Only additional experimental validation can determine which
or if any of the predicted binding modes occur in nature.

A limitation of our method is that it may produce high-confidence models between proteins
which are localized in different subcellular regions. Existing literature has shown that such
cross-interactions occur in a significant number of cases. In the present work we avoid filtering
predicted protein interaction pairs by their corresponding subcellular locations since this would
bias the obtained Matthew’s correlation coefficients. Identifying an accurate set of truly
non-interacting protein pairs is critical and particularly challenging for the evaluation of
protein-protein interactions. Randomly sampling protein pairs across a genome may lead to the
inclusion of interacting protein pairs. A more accurate method is to sample non-interacting sets
by pairing proteins from different subcellular regions as presented here. Yet another common
suggestion is to exclude homologue protein pairs from the non-interacting set all together in
order to avoid the inclusion of interacting pairs. This however is not an option due to the nature
of the presented method which relies on homology detection to predict protein-protein
interactions.

Another limitation is that homology modeling does rely on experimental templates. All of the
fifteen most confident models derived for Human proteins interacting with Nsp3’s protease rely
on four crystallographic complex structures.
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This pipeline demonstrates the ability to detect interactome networks for a range of organisms.
The increasing number of resolved co-crystal structures in the PDB, will continually improve
the model quality and coverage over time (Chandonia and Brenner, 2006). Since the pipeline
includes all data preparation steps no manual adjustment is required once new data has been
published to the PDB. Galaxy enables users to employ the pipeline within their own
methodologies and add or modify steps as required using Galaxy’s web-based workflow editor.
Users are now able to reproduce and share the resulting interactome networks. The present
contribution expands the repertoire of Galaxy tools to structural modeling methodologies,
making them available for a large number of users. Recent advances in protein structure
prediction and modeling (Kryshtafovych, 2019) complements existing sequence analysis tools
and provides novel targets for drug discovery and elucidating biochemical processes through
structural insights.
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