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Abstract

Background: Accurately predicting outcomes for cancer patients with COVID-19 has been clinically challenging.
Numerous clinical variables have been retrospectively associated with disease severity, but the predictive value of
these variables, and how multiple variables interact to increase risk, remains unclear.

Methods: We used machine learning algorithms to predict COVID-19 severity in 348 cancer patients at Memorial
Sloan Kettering Cancer Center in New York City. Using only clinical variables collected on or before a patient’s
COVID-19 positive date (time zero), we sought to classify patients into one of three possible future outcomes:
Severe-early (the patient required high levels of oxygen support within 3 days of being tested positive for COVID-
19), Severe-late (the patient required high levels of oxygen after 3 days), and Non-severe (the patient never required
oxygen support).

Results: Our algorithm classified patients into these classes with an area under the receiver operating characteristic
curve (AUROC) ranging from 70 to 85%, significantly outperforming prior methods and univariate analyses. Critically,
classification accuracy is highest when using a potpourri of clinical variables — including basic patient information,
pre-existing diagnoses, laboratory and radiological work, and underlying cancer type — suggesting that COVID-19
in cancer patients comes with numerous, combinatorial risk factors.

Conclusions: Overall, we provide a computational tool that can identify high-risk patients early in their disease
progression, which could aid in clinical decision-making and selecting treatment options.
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Background
At the time of this writing, SARS-CoV-2 infection
(COVID-19) continues to exact a substantial toll across
a wide range of individuals. Although previous studies
have uncovered factors that increase risk of severe
COVID-19 infection -- e.g., older age, obesity, or pre-
existing heart or lung disease [1–4] -- the clinical course

and outcome of patients with COVID-19 illness remains
variable and difficult for clinicians to predict. In cancer
patients, projecting outcomes can be more complex due
to uncertainty regarding cancer-specific risk factors; fur-
ther, physicians must balance the risk of an untreated
malignancy with the risk of severe infection due to spe-
cific anti-neoplastic therapies.
To help clinicians predict COVID-19 severity [5, 6],

we turned to robust machine learning methods to iden-
tify high-risk cancer patients based on their pre-existing
conditions and initial clinical manifestations. Prior work
using machine learning [7, 8] or other analytic
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techniques has focused on non-cancer patients primarily
from China or Italy [9–15]. In this study, we developed a
model to predict clinical outcomes (levels of oxygen sup-
port needed) in cancer patients, using only clinical vari-
ables that were available on or before COVID-19
diagnosis (called “time zero”). Importantly, these vari-
ables were selected purposefully, combining both data-
driven approaches and expert clinical opinion, and were
designed to minimize over-fitting of the model and to
increase clinical credibility. We gauged the prospective
of this approach to accurately identify cancer patients at
the greatest risk for impending severe COVID-19 illness,
in the hopes of improving outcomes through timely and
appropriate interventions.

Methods
Study population and clinical variables collected
We analyzed patients admitted to Memorial Sloan Ket-
tering Cancer Center with laboratory-confirmed SARS-
CoV-2 (COVID-19) infection during the first 2 months
of the pandemic, from March 10, 2020 (when testing
first became available at our institution) to May 1, 2020.
New York City was the first major metropolitan area in
the United States that experienced widespread COVID-
19 infections. Clinical treatment and risk-stratification
strategies at this time were far from established, particu-
larly in cancer patients, who may have a number of
underlying conditions that place them at greater risk of
severe outcomes. During this time, 40% of symptomatic
individuals in our hospital were hospitalized for COVID-
19, 20% developed severe respiratory illnesses, and 12%
died within 30 days of infection [6]. The Memorial Sloan
Kettering Cancer Center Institutional Review Board
granted a Health Insurance Portability and Accountabil-
ity Act (HIPAA) waiver of authorization to conduct this
study.
We aimed to study patients specifically hospitalized

for COVID-19 illness by including all patients admitted
between 5 days prior, to 14 days after, diagnosis of
SARS-CoV-2 infection. COVID-19 patients who were

not hospitalized, or who were admitted outside of this
window were not included. Analysis of disease severity
of this patient cohort was previously reported by Robi-
lotti et al. [6] and Jee et al. [16]; however, these studies
did not develop nor apply machine learning predictive
models to forecast future outcomes.
An overview of our analysis is shown in Fig. 1. For

each patient, we extracted and curated 267 clinical vari-
ables (Table S1). These included 6 basic patient variables
(e.g., age, sex, race, BMI); 26 cancer-related variables
(e.g., the underlying cancer type, cancer-related medica-
tions); 195 variables indicating pre-existing diagnoses
(using ICD-9-CM and ICD-10-CM diagnostic code
groups; e.g., I1: hypertensive diseases, J4: chronic lower
respiratory diseases); 27 clinical laboratory variables (e.g.,
D-dimer, albumin, lactate dehydrogenase); and 13 radi-
ology variables (e.g., patchy opacities, pleural effusions).
Importantly, we only used clinical variables that were

collected on or before a patient’s COVID-19 diagnosis
date. For clinical laboratory values, only the most recent
value was used. To reduce redundancy, groups of highly
correlated variables (Pearson r > 0.90) were removed,
and one random variable from the group was kept. Vari-
ables could be either mutually exclusive (e.g., indicator
variables for a patient having an abnormal vs. a normal
X-ray), or overlapping (e.g., having a hematologic cancer
and leukemia). Overlapping (hierarchical) variables were
included to provide the algorithm with multiple resolu-
tions to find discriminating risk factors.

Defining patient outcomes
Patients were grouped into three possible outcomes
based on whether and when they required high levels of
oxygenation support, which we defined as oxygen deliv-
ered via a non-rebreather mask, high flow nasal cannula
(HFNC), bilevel positive airway pressure (BiPAP), or
mechanical ventilator. When the oxygen content in a pa-
tient’s blood falls below normal limits, it puts the patient
at risk of organ failure and death. COVID-19 can cause
significant lung injury, which impairs the ability of

Fig. 1 Overview of the study. a Data for 348 inpatients at Memorial Sloan Kettering Cancer Center were analyzed. For each patient, up to 267
clinical variables were collected, including basic patient information, cancer history, ICD medical history, laboratory work, and radiology work.
Variables were only collected up to the patient’s COVID-19+ date (time zero). b Variables are inputted into a machine learning algorithm (a
random forest classifier), which learns to predict patient outcomes based on interactions between multiple variables. c Three possible patient
outcomes. Of the 348 patients, 206 did not require high levels of oxygen support, 71 required oxygen support within 3 days of being tested
positive for COVID-19, and 71 patients required oxygen support after 3 days
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oxygen to enter the circulatory system. In those in-
stances, supplemental oxygen is administered through a
variety of delivery methods. Patients requiring high oxy-
gen support within 3 days (0 to 3 days relative to
COVID-19) were deemed “severe-early”. Patients requir-
ing high oxygen support after 3 days (4 days after
COVID-19 or later) were deemed “severe-late”. Patients
not requiring high oxygen (i.e., patients who remained
on room air and/or standard nasal cannula) for at least
30 days after COVID-19 were deemed “non-severe”.
Overall, our dataset included 348 inpatients: 206 Non-

severe, 71 Severe-early, and 71 Severe-late (Table 1).

Machine learning algorithms and validation
To predict patient outcomes, we employed a random
forest ensemble machine learning algorithm, consisting
of multiple independent classifiers, each trained on dif-
ferent subsets of training variables [17]. These classifiers
collectively estimate the patient’s most likely outcome.
Our random forest model consisted of 500 decision
trees, trained using the information gain criterion, and
each with a maximum depth of 10 decision nodes and a
minimum of 1 sample per leaf. These parameters were
selected after performing a standard grid search with the

number of trees = {100,500,1000}, max-depth = {10,20,
None}, and minimum samples per leaf = {1,2,5}. Param-
eter optimization improved AUROC by only ~ 4% com-
pared to a model trained using default scikit-learn
parameters. Thus, our reported performance is unlikely
a result of overfitting model parameters.
The model was evaluated using 10-fold stratified

cross-validation, in which 90% of the dataset (approxi-
mately, 313 patients) were used to train the model, and
the remaining 10% of the dataset (35 patients) were used
to test the model. This process was repeated 10 times,
such that each subject was assigned to the test set
exactly once. This procedure also ensured that each fold
had a class (outcome) distribution that approximately
matched that of the complete dataset. We report area
under the receiver operating characteristic (AUROC)
and average precision scores for each class separately
using a one-vs.-rest classification scheme [18].
The importance of each clinical variable towards perform-

ance was assessed using permutation testing [17], in which
values for each variable (column) were randomly permuted
over the observations and then model performance was re-
assessed using cross-validation; the drop in performance
was used as a measure of the variable’s importance.

Table 1 Clinical characteristics (n = 348) and performance statistics. Age and lab values are shown as mean ± std.

Clinical variable Severe-late Severe-early Non-severe

Basic patient information # of patients 71 71 206

Male (%) 49.3 49.3 50.0

Age (years) 62.6 ± 13.9 69.8 ± 12.9 60.3 ± 16.9

Labs Absolute Lymphocyte Counts (K/mcL) 3.57 ± 17.04 1.30 ± 2.02 2.45 ± 14.00

D-Dimer (mcg/mL) 6.58 ± 7.26 3.52 ± 2.90 2.16 ± 1.75

Interleukin 6 (pg/mL) 469.60 ± 816.95 116.50 ± 90.25 62.62 ± 47.35

Ferritin (ng/mL) 1016.36 ± 1045.78 983.09 ± 1279.56 467.76 ± 541.13

Platelets (K/mcL) 171.31 ± 114.04 196.04 ± 112.71 218.33 ± 118.85

Cancer-related Lymphoma (%) 11.3 5.6 1.9

Lung (%) 5.6 21.1 6.8

Leukemia (%) 19.7 8.5 5.3

Diagnosis (ICD) I1 - Hypertensive diseases (%) 52.1 71.8 56.8

I4 - Cardiac disorders (%) 31.0 35.2 26.2

J4 - Chronic lower respiratory disease (%) 19.7 28.2 17.5

Radiology Retic. Opacities (%) 16.9 29.6 14.6

Effusions (%) 12.7 15.5 7.8

Airspace Opacity (%) 32.4 81.7 38.3

Performance AUROC (Our method) 0.704 0.829 0.710

AUROC (Yan et al.) 0.456 0.634 0.499

AUROC (Huang et al.) 0.600 0.638 0.604

Avg. Precision (Our method) 0.366 0.578 0.772

Avg. Precision (Yan et al.) 0.190 0.315 0.588

Avg. Precision (Huang et al.) 0.291 0.326 0.691
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The machine learning algorithms, statistical analyses,
and visualization procedures were implemented in py-
thon (v3.6.12) using the scikit-learn (v0.22.2) and mat-
plotlib (v3.3.3) packages.

Comparison of performance to prior work
Previous machine learning studies have reported impres-
sive performance predicting COVID-19 outcomes for
non-cancer patients using only a few clinical variables.
For example, Yan et al. [7] (Nature Mach. Intell., 2020)
report 90 + % performance using just three variables
(lactate dehydrogenase, C-reactive protein, and absolute
lymphocyte count). Huang et al. (Lancet, 2020) reported
statistical significance for 10 clinical variables (white
blood cell count, absolute neutrophil count, absolute
lymphocyte count, prothrombin time, D-dimer, albumin,
total bilirubin, lactate dehydrogenase, troponin I, and
procalcitonin). Other studies also used many of the same
clinical variables [10, 13, 14]. For a fair comparison, and
to test whether variables previously identified as import-
ant could also well-predict outcomes for cancer patients,
we trained random forest classifiers on our dataset using
only the variables used by Yan et al. and Huang et al.,
respectively.

Experimental setup and rationale
Wynants et al. [8] recently reviewed 16 prognostic
models for predicting COVID-19 severity and concluded
that every study had a high or unclear risk of bias. To
try and minimize bias in our analytic approach, we
followed three guidelines suggested by the authors:

(a) Practices to reduce model over-fitting. We used
stratified cross-validation, a standard practice in
machine learning, to test how well a trained model
can predict outcomes on patients it has never seen
before. Evaluating models in this way helps to en-
sure that predictive patterns learned by the model
can generalize to new patients whose outcomes are
unknown.

(b) Using a hybrid of expert clinical opinion and data-
driven approaches to select variables. The authors of
our study include both clinicians and computer
scientists, who collaborated closely to home-in on a
set of relevant clinical variables. As an example,
using a completely data-driven approach, we found
that a class of medications, atypical antipsychotics,
correlated highly with disease severity; in fact, in-
cluding these medications in our model would have
increased our reported results by ~ 4–5%. However,
these medications are frequently given to elderly pa-
tients with dementia, and we felt these medications
were very unlikely to directly cause severe COVID-
19, and far more likely to be confounded by

functional status. So, we removed this variable.
Thus, we began with a purely data-driven approach
to identify candidate variables, and then iteratively
eliminated those that seemed tenuous from a clin-
ical perspective. Our final model was trained using
only 55 of the 267 variables (Table S1).

(c) Only including patients who had sufficient time to
experience their outcome by the end of the study.
We evaluated hospitalized patients diagnosed with
COVID-19 from March 10 to May 1, 2020, and
evaluated outcomes from March 10 until May 15,
2020, to ensure at least 2 weeks of follow-up for all
patients.

Results
From March 10, 2020 to May 1, 2020, there were 348 in-
patients at Memorial Sloan Kettering Cancer Center in
New York City. Below, we test several models for pre-
dicting disease severity in this cancer patient cohort.

Univariates and bivariates weakly correlate with COVID-
19 patient outcomes
Figure 2a-f shows that neither of six clinical variables
commonly associated with COVID-19 severity (age, C-
reactive protein, D-dimer, albumin, lactate dehydrogen-
ase, BMI) are by themselves able to discriminate the
three patient outcomes. Some laboratory variables can
only stratify between non-severe and severe-early pa-
tients (e.g., Fig. 2b, C-reactive protein), indicating that
these labs may only be valuable for prognosing immedi-
ate risk as opposed to future risk. Others laboratory vari-
ables may be more discriminative but were only
available for a fraction of patients at time zero (e.g., Fig.
2c, D-dimer). Overall, none of the variables we tested
were significantly different between all three outcome
groups (non-severe, severe-early, severe-late).
We next tested whether interactions between two vari-

ables could be used to increase prediction accuracy.
While there are hundreds of pairs of variables to test,
Fig. 2g-i shows three representative plots using pairs of
commonly used labs, none of which show any clear clus-
tering of patients by outcome (i.e., clustering of the
same-colored dots together).

Improved prediction using machine learning
To test if a combinatorial approach, which takes interac-
tions between numerous risk factors into account, may
improve projections of COVID-19 severity, we trained
an ensemble machine learning algorithm using a wide
range of clinical variables (Methods). Clinical variables
included those related to the patient’s underlying cancer
diagnosis and treatment, laboratory work, radiological
work, pre-existing diagnoses (ICD code history), and
other basic patient information. We validated our model
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using stratified cross-validation: a portion of the patients
were used to train the model, and then the model was
evaluated on the remaining or left-out patients, whose
outcomes are known but are never provided to the
model.
Our model accurately predicted outcomes for COVID-

19 cancer patients who required high levels of oxygen
support within 3 days of COVID-19 diagnosis (AUC =
0.829 for severe-early patients; Fig. 3a). The model
achieved fair accuracy in the more challenging instances

of predicting severity that occurs after 3 days (AUC =
0.704 for severe-late patients) or that never occurs dur-
ing the length of the patient’s disease (AUC = 0.710 for
non-severe patients). The model maintains an AUC of
greater than 0.8 if “severe-early” was defined as all pa-
tients that required oxygen support within 4 days of
diagnosis (instead of 3 days), but performance then be-
gins to drop at longer time horizons: AUC = 0.823 for
≤4 days (81 patients); AUC = 0.790 for ≤5 days (88 pa-
tients); and AUC = 0.727 for ≤6 days (99 patients). These

Fig. 2 Individual clinical variables weakly correlate with patient outcomes. a-f Each panel shows a variable (y-axis) grouped by patients in each of
the three outcomes (x-axis). The number of patients (n) for which the variable was measured is shown for each group. For example, there were
206 non-severe patients, and their average age was 60.3 years old. Each bar shows average; error bars show standard deviation. a Age, b) C-
reactive protein, c) D-dimer, d) Albumin, e) Lactate dehydrogenase, f) BMI. g-i Each panel shows an interaction between two variables (x and y
axes). Each patient is represented by a colored dot (red = non-severe, blue = severe-early, green = severe-late). * = P < 0.01, ** = P < 0.001,
*** = P < 0.0001, Welch’s two-sample T-test

Fig. 3 Machine learning algorithms improve COVID-19 outcome prediction in cancer patients. AUROC plots for a) Our method, b) Yan et al.
(2020), and c) Huang et al. (2020). AUROCs are reported for each class separately using a one-vs.-rest evaluation scheme. Diagonal dotted line
shows random prediction (AUROC of 0.500). Perfect prediction lies at the upper left of the plot (black dot)
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results suggest that prediction is only reliable within a
3–4 day window from the time of diagnosis.
Prior work has reported that a small set of clinical var-

iables can serve as a robust “signature” of COVID-19
disease severity [1, 7] (Methods). However, we found sig-
nificantly worse performance using these variables (Fig.
3b-c). For example, for severe-early patients, Yan et al.
(3 variables) and Huang et al. (10 variables) achieved
AUCs of 0.634 and 0.638, compared to 0.829 for our
method. Similarly, for non-severe patients, the two stud-
ies achieved AUCs of 0.499 and 0.604, compared to
0.710 for our method. AUROC scores can be unreliable
when used on datasets, such as ours, with imbalanced
class sizes. We thus also computed average precision
scores (a summary statistic of the precision-recall curve)
and found similar gains for our method compared to
prior works (Table 1).
Other machine learning algorithms trained on our

data performed worse than the random forest classifier.
For example, a logistic regression classifier achieved
AUROCs of 0.610 (not-severe), 0.681 (severe-early), and
0.528 (severe-late). Similarly, a support vector classifier
achieved AUROCs of 0.600 (not-severe), 0.728 (severe-
early), and 0.503 (severe-late).

Identifying multi-variable interactions that are useful for
predicting patient outcomes
Figure 4a shows the top 30 variables that were most dis-
criminative in classifying patient outcomes. These were
variables which, if effectively removed from the analysis,
would result in a drop in performance (Methods). For
example, ferritin and interleukin 6 were the two most
important individual labs. Because we used dozens of

variables, and many variable combinations may be corre-
lated, we do not expect the loss of one or a few variables
to make a significant difference in performance. None-
theless, many of these variables have been previously
identified in the COVID-19 literature (e.g., interleukin 6
[19, 20], C-reactive protein [21]). Interestingly, there are
also variables the model used that are less discussed in
the literature, including ferritin [12, 22]. Our study also
highlights the importance of variables related to cancer
diagnoses and treatments on COVID-19 severity; for ex-
ample, whether the patient had leukemia or lung cancer
was particularly discriminative.
Variables from all five categories (cancer-related,

basic patient information, ICD codes, laboratory work,
radiological work) are represented in Fig. 4a,
highlighting how each clinical category contributes
complementary information towards projecting
COVID-19 severity. Indeed, classifying patient out-
comes using variables from each category individually
reduces accuracy compared to when using all vari-
ables together (Fig. 4b). For example, training the
model using only cancer variables produced an aver-
age AUROC of only 55.2%. On the other hand, using
all variables except cancer-related variables dropped
performance by 5.7%. The former means that the
underlying cancer type, by itself, is not a very valu-
able predictor, but the latter suggests that when the
cancer type is combined with clinical variables from
other categories, its contribution becomes more pro-
nounced and is unique. Similarly, using only radiology
variables produced an average AUROC of 60.6%, and
using all variables except for radiology variables
dropped performance by 6.0%.

Fig. 4 Important clinical variables identified by the model. a The top 30 variables (y-axis) and their importance (x-axis), defined using permutation
testing. The category of each variable is listed next to its name: B = Basic patient information, C = Cancer-related, I = ICD codes, R = Radiology, L =
Laboratory. b The performance of the classifier (y-axis) when trained using variables from each category separately. For example, using only
radiology variables, the random forest classifier achieved an AUROC, averaged over all three classes, of 60.6%. “All” shows the combination of all
variables, achieving an average AUROC of 74.7%
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Discussion
We used machine learning algorithms to identify clinical
variables predictive of severe COVID-19 illness in cancer
patients at time zero. We achieved an AUC ranging
from 70 to 85%, with high performance for classifying
patients with an immediate risk of decompensation (se-
vere-early, ≤ 3 days), and fair performance for patients
with less immediate risks (severe-late, > 3 days) or no
risk at all (not-severe). Our tool is designed to comple-
ment (not replace) a clinician’s experience and judge-
ment and may be most helpful to untangle complex
interactions among multiple risk factors.
Following the guidelines of Wynant et al. [8], we com-

bined data-driven variable selection with expert clinical
opinion to reduce overfitting and minimize bias in the
model. Had we included all variables, our model’s per-
formance would increase by at least 5%, but we deliber-
ately did not report these results and instead opted to
build a model with more clinical credibility. In addition,
our study was meant to tackle two real-world challenges
in treating COVID-19 patients. First, we used the time
of COVID-19 diagnosis (time zero) as a landmark; we
only provided to our model data available on or before
time zero in order to represent the information available
to providers at the time of presentation and diagnosis.
As a result, there may be a lack of consistency in what
clinical variables are available for the model to use. For
example, even though D-dimer are commonly associated
with COVID-19 severity [23], very few of our patients
(16.1%, 56/348) had available D-dimer labs on the date
of their COVID-19 diagnosis. Second, patients enter the
hospital at different points in their disease progression,
and we did not attempt to correct for these differences.
A useful model, we reasoned, needs to deal with this
lack of synchronicity to be practical.
There are several advantages and disadvantages to the

machine learning approach taken here. On the plus side,
automated models can help evaluate a large pool of clin-
ical variables as risk factors for disease severity, and has
potential to go beyond conventional modelling ap-
proaches, which are generally limited to evaluation of
only a handful of variables. Further, evaluating the model
using cross-validation reduces the probability of overfit-
ting and highlights a model’s prognostic ability. On the
downside, the model seeks variables that are correlated
with patient outcomes, and these variables are not ne-
cessarily causal drivers of the disease. For example, corti-
costeroids given to severe COVID-19 patients are
known to affect blood glucose levels, and our model
makes no attempt to distinguish the directionality of the
interaction between the two. We attempted to overcome
this by using a hybrid of expert clinical opinion and
data-driven approaches to select variables in a purpose-
ful manner, though it remains a challenge to

differentially weigh the importance of clinical experience
versus data.

Conclusions
Moving forward, several challenges remain in bringing
clinical machine learning to the bedside for COVID-19
treatment. First, we analyzed a modestly-sized dataset of
348 cancer patients; larger, more comprehensive datasets
of cancer patients are needed to test the true generality
of our approach. Second, better algorithms are needed
to forecast future outcomes (severe-late and non-severe);
e.g., time-series analyses of how clinical variables change
over time may provide one avenue forward. Third,
models should aid clinicians in the real-time process of
deciding which diagnostic tests to order on a patient
based on the putative discriminative power of the test
results. Ideally, models would interact with clinicians in
a back-and-forth manner to home-in on the clinical vari-
ables most critical for accurate forecasting [24].
To better prepare us for the next outbreak -- be it a

second wave of COVID-19 or something else altogether
-- we hope that physicians, epidemiologists, and com-
puter scientists will continue working together to under-
stand and build useful models to predict an individual’s
susceptibility to disease.
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