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Abstract9

Contemporary high-throughput mutagenesis experiments are providing an increasingly detailed view10

of the complex patterns of genetic interaction that occur between multiple mutations within a single11

protein or regulatory element. By simultaneously measuring the e↵ects of thousands of combinations12

of mutations, these experiments have revealed that the genotype-phenotype relationship typically13

reflects genetic interactions not only between pairs of sites, but also higher-order interactions be-14

tween larger numbers of sites. However, modeling and understanding these higher-order interactions15

remains challenging. Here, we present a method for reconstructing sequence-to-function mappings16

from partially observed data that can accommodate all orders of genetic interaction. The main idea17

is to make predictions for unobserved genotypes that match the type and extent of epistasis found in18

the observed data. This information on the type and extent of epistasis can be extracted by consid-19

ering how phenotypic correlations change as a function of mutational distance, which is equivalent20

to estimating the fraction of phenotypic variance due to each order of genetic interaction (additive,21

pairwise, three-way, etc.). Based on these estimated variance components, we then define an empir-22

ical Bayes prior that in expectation matches the observed pattern of epistasis, and reconstruct the23

sequence-function mapping by conducting Gaussian process regression under this prior. To demon-24

strate the power of this approach, we present an application to the antibody-binding domain GB125

and provide a detailed exploration of a dataset consisting of high-throughput measurements for the26

splicing e�ciency of human pre-mRNA 5
0
splice sites for which we also validate our model predictions27

via additional low-throughput experiments.28

Introduction29

Understanding the relationship between genotype and phenotype is di�cult because the e↵ects of30

a mutation often depend on which other mutations are already present in the sequence [1–3]. Recent31

advances in high-throughput mutagenesis and phenotyping have for the first time provided a detailed32

view of these complex genetic interactions, by allowing phenotypic measurements for the e↵ects of tens of33

thousands of combinations of mutations within individual proteins [4–15], RNAs [16–20], and regulatory34

or splicing elements [21–24]. Importantly, it has now become clear that the data from these experiments35

cannot be captured by considering simple pairwise interactions, but rather that higher-order genetic36

interactions between three, four, or even all sites within a functional element are empirically common [2,37

12, 25–35] and indeed often expected based on first-principles biophysical considerations [12, 20, 25, 28,38
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34, 36]. However, the enormous number of possible combinations of mutations makes these higher-order39

interactions both di�cult to conceptualize and challenging to incorporate into predictive models.40

From a very basic perspective, data from combinatorial mutagenesis experiments provide us with41

observations of the e↵ects of specific mutations on specific genetic backgrounds, epistatic coe�cients42

between pairs of mutations on specific backgrounds, phenotypic values for individual genotypes, etc. The43

essential problem in modeling data like this then comes down to the question of how to combine these44

observed quantities to make phenotypic predictions for unobserved genotypes. That is, given that we45

have seen the results of a specific mutation in several di↵erent genetic backgrounds already, how should46

we combine these observations to make a prediction for the e↵ect of this mutation in a new background?47

Here, we provide an answer to this question based on the intuition that when making these predictions48

we should focus on the observed e↵ects of mutations that are nearby in sequence space to the genetic49

background we are making a prediction for, rather than observations of mutational e↵ects that are more50

distant. We do this by considering a key comprehensible aspect of higher-order epistasis, namely the51

decay in the predictability of mutational e↵ects, epistatic coe�cients of double mutants, and observed52

phenotypes, as one moves through sequence space. We show analytically that the shape of how precisely53

this predictability decays as a function of distance is completely determined by the fraction of phenotypic54

variance due to each order of genetic interaction (additive, pair-wise, three-way, etc.). Thus, rather than55

conceptualizing higher-order epistasis in terms of innumerable interaction terms between larger and larger56

number of sites, we suggest that: (1) we can understand a great deal about higher-order epistasis by con-57

sidering simple diagrams showing how the correlations between mutational e↵ects, epistatic coe�cients,58

etc. decay as a function of genetic distance; and (2) these same diagrams suggest a method for making59

phenotypic predictions by weighting our observations in terms of the degree of information they provide60

for mutations on a genetic background of interest.61

We implement these ideas in terms of a Gaussian process regression [37] framework with an empirical62

Bayes [38] prior. Specifically, we use the observed pattern of decay in phenotypic correlation as a function63

of genetic distance to estimate the fraction of variance due to each order of interaction in our observed64

data. We then use these point estimates of the variance components to construct a prior distribution over65

all possible sequence-to-function mappings where the expected decay in the predictability of mutational66

e↵ects matches that observed in the data. Finally, we conduct Bayesian inference under this prior,67

using Hamiltonian monte carlo [39] to sample from the resulting high-dimensional posterior distribution.68

The end result is a procedure that automatically weights the contributions of our observations to our69

predictions in the manner suggested by the overall form of higher-order epistasis present in the data,70

while simultaneously accounting for the e↵ects of measurement noise and quantifying the uncertainty in71

our predictions.72

To demonstrate the performance of this technique, we present an analysis of combinatorial mutagene-73

sis data from protein G [30], a streptococcal antibody-binding protein that has served as a model system74

for studies of the genotype-phenotype map in proteins, as well as a high-throughput dataset measuring75

splicing e�ciency of human 50 splice sites [40], which are RNA sequence elements crucial for the assembly76

of the spliceosome for pre-mRNA splicing. For this latter dataset, we also present low-throughput vali-77

dation of our model predictions as well as a qualitative exploration of the complex patterns of epistasis78

in splicing e�ciency observed in this system.79

Results80

The key question in phenotypic prediction is deciding how to combine the selective e↵ects, local81

epistatic coe�cients and individual phenotypic values observed in experiments, when assigning phenotypic82

values to unmeasured genotypes. For example, when we fit an additive or non-epistatic model [41], we are83

assuming that to the extent that the phenotypic e↵ects of observed mutations generalize across genotypes,84

the e↵ects of any specific mutation are the same no matter where it occurs. That is, in an additive model,85

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.10.14.339804doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.339804


�

0 1 2 3 4 5 6 7 8
-0.2
0

0.2
0.4
0.6
0.8
1

Hamming Distance

�

�

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Interaction order

V
ar
ia
nc
e
ex
pl
ai
ne
d

�

1 2 3 4 5 6 7 8

1

10-1

10-2

10-3

10-3

Order

�

�

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

Hamming Distance

� 1

�

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

Hamming Distance

� 2

�

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

Hamming Distance

� 3

Figure 1: Summary statistics of a simulated sequence-to-function mapping on sequences of length 8 with 4 alleles per
site. (A) Empirical distance correlation function (⇢), which is the correlation between the phenotypic values for all pairs
of sequences separated by the specified number of mutations. (B) Empirical variance components, equal to the fraction of
phenotypic variance due to each order of genetic interaction. (C) Mean square magnitude of individual genetic interaction
terms (�) as a function of interaction order. (D-F) Distance correlation of epistatic coe�cients (�k) of order k = 1-3. Note
that �1 measures the correlation of mutational e↵ects. All panels represent the expected summary statistics of a random
field model [43, 44] specified by the interaction term magnitudes shown in panel (C). Formulas for calculating these statistics
can be found in Materials and Methods.

the e↵ect of any given mutation is assumed to be constant across all genetic backgrounds, and fitting86

an additive model can be thought of as a generalization of the simple heuristic procedure of making87

predictions by: (1) averaging over all the times the e↵ect each possible point mutation is observed; and88

then (2) adding up these average e↵ects to make a prediction for any given genotype. In a similar way,89

it is easy to show that while a pairwise interaction model [42] allows the mutational e↵ects of individual90

mutations to vary across genetic backgrounds, the epistatic interaction observed in double mutants for91

any specific pair of mutations is again constant across backgrounds (see SI Appendix ). Thus, fitting a92

pairwise model is conceptually closely related to the heuristic of determining the interaction between a93

pair of mutations by averaging over the epistatic coe�cients for this pair of mutations that are observed94

in the data and then assuming that this pair of mutations has the same interaction regardless of what95

genetic background these mutations occur on.96

Putting the underlying strategies of additive and pairwise interaction models in these simple terms97

helps clarify the deficiencies of these models. Both models assume that only interactions between a98

certain number of mutations are relevant to prediction (i.e. additive e↵ects of single mutations in non-99

epistatic models and interactions between two sites in pairwise interaction models). And both models100

make assumptions that these interactions or mutational e↵ects are consistent over sequence space, first by101

pooling information across of all observed sequences to estimate these interactions or mutational e↵ects102

and then making predictions that extrapolate these observations to all of sequence space —even to areas103

of sequence space where we have little or no data.104

Here we would like to build a prediction method corresponding to a di↵erent heuristic, one that105

implements the intuitions that: (1) all orders of genetic interaction can be important and helpful in106

making predictions; and (2) observations of mutational e↵ects and epistatic coe�cients in nearby genetic107

backgrounds should influence our predictions more than observations in distant genetic backgrounds.108
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Higher-order epistasis and phenotypic prediction109

To implement a strategy of this type, it will be helpful to present some general results concerning110

higher-order epistasis. We first consider the case where all phenotypic values are known, before proceeding111

to our main problem of predicting unknown phenotypic values.112

Our first task is to understand the relationship between the overall smoothness of the sequence-113

function relationship, the amount of higher order epistasis, and the typical magnitude of epistatic in-114

teractions of various orders. These features of the sequence-function relationship are illustrated for a115

simulated complete sequence-function mapping in Figure 1A-C. Figure 1A shows the distance correlation116

function (ref. [26, 44, 45] and Materials and Methods), which plots how correlations between pheno-117

typic values drop o↵ as one moves through sequence space. Figure 1B shows the decomposition of the118

sequence-function relationship into variance components (Materials and Methods), where the variance119

due to a particular interaction order is equal to the increase in the R2 of a least squares fit when one120

e.g. adds pairwise terms to a model with only additive terms, three-way terms to a model with pair-wise121

and additive terms, etc., which in the literature is known as the (normalized) amplitude spectrum [26,122

44]. Figure 1C shows how large the individual interaction terms of a given order (ref. [26, 44, 46] and Ma-123

terials and Methods) tend to be, by plotting the mean square interaction size as a function of interaction124

order.125

Because our goal is to understand how to combine the mutational e↵ects, observed epistatic coe�-126

cients, etc., we can also plot how the predictability of these e↵ects drops o↵ as we move through sequence127

space [12, 47]. These are calculated for mutational e↵ects, local pairwise epistatic coe�cients, and local128

three-way interactions using Eq. 14 and shown in Figure 1D-F, respectively.129

These pictures, particularly the plots of correlations as a function of distance in genotypic space, are130

quite informative for our intuitive goal of determining how to combine our observations of mutational131

e↵ects, local epistatic coe�cients, etc. when making predictions. We see for example from Figure 1D132

that, for this particular sequence-function relationship, mutational e↵ects remain moderately correlated133

across all of sequence space, dropping from having a Pearson correlation coe�cient of roughly 0.5 in134

adjacent genetic backgrounds to a correlation coe�cient of roughly 0.2 in maximally distant backgrounds.135

However, from Figure 1E we see that the predictability of interactions in double-mutants decays much136

more rapidly, and so our observations are only really informative in genetic backgrounds up to two137

mutations away, and Figure 1F shows that three-way interactions are only substantially informative in138

immediately adjacent genetic backgrounds. These results suggest that when making predictions it might139

e.g. be sensible to extrapolate our observations of mutational e↵ects throughout sequence space, but140

only allow our observations of interactions in local double mutant cycles to influence our predictions in141

relatively nearby genetic backgrounds.142

How can we convert these intuitions based on examining the decay in the consistency of observed143

interactions into a rigorous method of phenotypic prediction? The key in answering this question lies in144

the fact that all 6 panels of Figure 1 are actually intimately related with each other and with previously145

proposed methods for phenotypic prediction.146

In particular, it is classically known that the three pictures in Figure 1A-C in fact contain identical147

information, so that for any given sequence-function relationship, having any one of the panels in the148

top row of Figure 1 allows us to compute the other two (ref. [26, 43, 44], Materials and Methods). Here,149

we extend this result, showing that in fact having any of the pictures in Figure 1A-C allows us to draw150

all three panels in the bottom row of Figure 1 as well as their higher-order generalizations (i.e. how151

the predictability of local k-way interactions decays as we move through sequence space). Specifically,152

we show that the distance correlation function of k-th order epistatic coe�cients depends only on the153

variance components of order k and higher (Materials and Methods).154

Moreover, knowledge of any one panel in the first row of Figure 1 also defines a natural prior dis-155

tribution for sequence-function relationships that can be used to derive specific predictions from partial156

data. Given e.g. the fraction of variance due to each order of interaction shown in Figure 1B we can draw157
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epistatic interaction coe�cients from a zero-mean normal distribution with variance given by the values158

in Figure 1C, which results in a sequence-function relationship that in expectation produces the patterns159

of correlation shown in Figure 1A and Figure 1C-D.160

The above construction results in a natural family of priors for sequence-function relationships, where161

this prior distribution can be parameterized in terms of the fraction of variance due to each order of162

genetic interaction (i.e., the prior is a “random field model”, [43, 44]). Importantly, various previously163

developed methods can be subsumed as particular (limiting) cases of inference under this class of priors.164

For example, the additive model and our recently proposed method of minimum epistasis interpolation [48]165

both arise as particular limiting cases where the fraction of variance due to additive e↵ects goes to 1, and166

the pair-wise interaction model [42] arises as a limiting case where the total fraction of variance due to167

additive and pairwise e↵ects goes to 1 (see Supplemental Figure 1). Thus, in a rigorous manner we can168

view these previously proposed methods as encoding specific assumptions about how the predictability169

of mutational e↵ects, epistatic coe�cients and phenotypic values changes as we move through sequence170

space, where these assumptions take the form of particular shapes for the curves in Figure 1.171

Finally, a key fact about this family of priors is that they are Gaussian, and so under the assumption172

that experimental errors are normally distributed, we can do inference under this prior using Gaussian173

process regression (see [37] for a review), which allows us to write down analytical expressions for the174

corresponding posterior distribution. In particular, suppose our prior distribution is a mean zero Gaussian175

with covariance matrix K, y is our vector of observations and E is a diagonal matrix with noise estimates176

for each of our observations down the main diagonal. Then the posterior distribution for our vector of177

predicted phenotypes f is normally distributed with mean178

bf = K·B(KBB +E)�1y (1)

and covariance matrix179

K�K·B(KBB +E)�1KB· (2)

where KBB is the submatrix of K indexed by the set of observed sequences B, and KB· and K·B are the180

submatrices of K consisting, respectively, of the rows and columns indexed by members of B.181

Estimating variance components from partial data182

To summarize the previous section, if we know the fraction of phenotypic variation due to each order of183

epistatic interaction, then we can derive a simple method of making phenotypic predictions that uses the184

corresponding covariance structure to appropriately generalize from observed phenotypic e↵ects, double185

mutant epistatic interactions, phenotypic values, etc. While several existing methods of phenotypic186

prediction essentially come down to making specific assumptions about these variance components, our187

analysis suggests that a natural approach would be to make our predictions using variance components188

estimated from the data itself, i.e. an empirical Bayes approach in which we determine what prior to use189

by looking at the covariance structure of our observations. Conceptually, we want to make phenotypic190

predictions by assuming that the observed pattern of distance correlation of mutational e↵ects, local191

epistatic interactions, etc. generalize to regions of the sequence space with no data. Practically, we can192

implement this idea by doing inference under a prior consisting of random sequence-function relationships193

where the e↵ects of mutations and epistatic coe�cients decay in the same way as in our data.194

A naive implementation of this approach would be to simply use our observed distance correlation195

function to build the covariance matrix K for our prior by setting the covariance between for each pair196

of sequences at distance d equal to the covariance between sequences at distance d in our data. However,197

there is a subtle problem with this idea. To see what the di�culty is, it is helpful to take another look198

at the relationship between higher-order epistasis and the distance correlation function.199

A deep result from the literature on the mathematical theory of fitness landscapes states that the200

contribution of each particular order of interaction (e.g. additive, pairwise, three-way, etc.) to the distance201
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correlation function takes a very specific shape. Technically, these shapes are given by a set of orthogonal202

polynomials known as the Krawtchouk polynomials [26, 43, 49, 50], but for our purposes it is su�ces to203

look at the functions visually, as in Figure 2A and B. The orders of epistatic interactions split naturally204

into two groups with di↵erent qualitative interpretations, shown in panels Figure 2A and B, respectively,205

and which group an epistatic interaction falls into depends on whether the order of interaction is greater206

than or less than the expected distance between two random sequences (Materials and Methods).207

Epistatic interactions of order less than the distance between two random sequences contribute positive208

local correlations, so that genotypes that are near to each other in sequence space tend to have similar209

phenotypes. These are shown in Figure 2A, and we can see that the main qualitative e↵ect of increasing210

interaction order among this group is that these locally positive correlations decay increasingly rapidly.211

Epistatic interactions of order greater than or equal to the distance between random sequences con-212

tribute negative local correlations, i.e. they make mutationally adjacent sequences tend to have anti-213

correlated values (if the order is equal to the expected distance between random sequences, then the214

correlation at distance 1 is zero, but it will be negative at distance 2). These orders of interaction are215

shown in Figure 2B, and qualitatively they oscillate increasingly rapidly as the order increases.216

Now the distance correlation function itself is simply a weighted average of these curves, with the217

weights given by the mean square interaction terms of di↵erent orders (illustrated by Figure 2C). The218

fact that these weights need to be positive and sum to one puts strong constraints on the shape that219

the correlation function can take for a function defined over all of sequence space. For example, positive220

local correlations cannot decay any more slowly than they would for a purely additive model. However,221

for incompletely sampled sequence spaces, these constraints need not not hold (e.g. if the sampling222

consisted of several clusters of sequences with identical phenotypes separated from each other with missing223

sequences, one could have a perfect correlation within the smaller distance classes). Unfortunately, using224

such a function to define a the matrix K would not result in a valid prior (in particular, K would not be225

positive definite, see SI Appendix ). Thus, rather than using the observed covariance function to define226

our prior, we instead find the closest valid prior using weighted least squares, where the squared error for227

for the correlation at distance d is weighted by the number of pairs of sequences at distance d (Materials228

and Methods); this technique is formally equivalent to the idea of choosing a prior based on “kernel229

alignment” in the Gaussian processes literature, see ref. [51].230

Practical implementation231

One major challenge in solving Eq. 1 and 2 is that the computation involves inverting the m⇥m dense232

matrix KBB , a problem whose complexity scales cubically with m in time and quadratically with m in233

space. As a result, Gaussian process regression becomes computationally expensive when the training234

data size m is larger than several thousand [52].235

To circumvent this di�culty, we provide an implementation that leverages the symmetries of sequence236

space to allow practical computations for sequence spaces containing up to low millions of sequences. The237

basic strategy is to rephrase our problem so that the solution can be found iteratively using only sparse238

matrix-vector multiplication.239

In particular, notice that Eq. 1 can be solved by first finding a vector ↵ that satisfies (KBB+E)↵ = y.240

Also, notice that matrix KBB is a principle submatrix of K, so that we can write KBB = IT·BKI·B where241

I·B consists of the columns of the identity matrix I that correspond to our set of observed sequences B.242

Since the entries of K depend only on the Hamming distance between the corresponding sequences, K243

can expressed as a polynomial in the graph Laplacian (i.e. the matrix L whose i, j-th entry is -1 if i is244

adjacent to j, `(↵ � 1) if i = j, and 0 otherwise) that is, K =
P`

k=0 bkL
k [53, 54] for some b0, . . . , b`245

that we can find analytically and thus that Kv can be found by iteratively applying the sparse matrix L246

to v at most ` times. Using these results, we can rewrite our original equation (KBB + E)↵ = y using247

only sparse matrices as (IT·B(
P`

k=0 bkL
k)I·B + E)↵ = y, which we solve using the conjugate gradient248
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Figure 2: Superimposition of distance correlation functions for pure k-th order interactions for sequences of length 8 with 4
alleles per site. (A) Distance correlation function for locally correlated orders of genetic interaction (in this case, interaction
orders k=1–5 ). (B) Distance correlation function for locally anticorrelated components (in this case, k=6–8). (C) The
distance correlation function (solid line) is a weighted sum of elementary autocorrelation functions (gray lines) with the
weights (denoted as w in the figure legend) given by the variance components. Distance correlation function and variance
components are identical to those shown in Figure 1.

algorithm.249

Application to protein G250

We first apply our method to a dataset derived from a deep mutational scanning study of the IgG-251

binding domain of streptococcal protein G (GB1) [30]. This experiment attempted to assay all possible252

combination of mutations at four sites (V39, D40, G41, and V54; 204 = 160000 protein variants) that253

had been previously shown to exhibit high levels of pairwise epistasis [7]. The library of protein variants254

were sequenced before and after binding to IgG-Fc beads and the binding scores were determined as the255

log enrichment ratio (logarithm of ratio of counts before and after selection, normalized by subtracting256

the log ratio of the wild-type). Due to low coverage of the input library, the original data do not provide257

the binding score for 6.6% of the variants.258

We began by inferring the variance components of the GB1 landscape from the empirical autocor-259

relation function using our least squares procedure applied to all available data (93.6% of all possible260

sequences), Figure 3A (see Materials and Methods for details). In Figure 3B, we note that the major-261

ity of the variance in the data is estimated to be explained by the additive and pairwise components262

(56% and 36% of total variance, respectively). The third-order component is estimated to have a small263

but non-negligible contribution (8% of total variance), and the estimated contribution of the 4th order264

component is negligible.265

We can use the results from the previous section to understand the practical meaning of these estimates266

for our task of phenotypic prediction. For example, in Figure 3C, we plot the correlation of mutational267

e↵ects as a function of Hamming distance [47] (Materials and Methods). We observe that the correlation268

of the e↵ect of a random mutation is 0.72 between two genetic backgrounds that di↵er by one mutation269

and 0.32 for two maximally distinct backgrounds (Hamming distance = 3). This decay is characteristic270

of non-additivity and shows that while the e↵ects of point mutations remain positively correlated across271

sequence space, the extent of this correlation is approximately twice as high in nearby sequences as272

opposed to maximally distant sequence, and that therefore when making predictions we should be giving273

local observations of mutational e↵ects approximately twice as strong a weight as distant observation of274

mutational e↵ects.275

At a broader scale, our analysis above also provides qualitative insights into the overall structure of the276

sequence-function relationship. For example, we stated above that the orders of epistatic interaction can277

be divided into the locally correlated and the locally anti-correlated groups, depending on whether the278

order of the interaction is greater than or less than the expected distance between two random sequences.279

Random protein sequences of length 4 di↵er at (1 � 1
20 )4 = 3.8 sites on average, so interaction orders280

1 through 3 correspond to the sequence-function relationship being locally correlated, whereas order 4281

controls the strength of local anti-correlation. Thus, our estimated variance components suggest that282

the GB1 sequence-function relationship is dominated by locally positive correlations, with essentially no283
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anti-correlated component.284

Within our overall inference procedure, the estimated variance components discussed above are used285

to construct a prior probability distribution over all sequence-function relationships where in expectation286

mutational e↵ects, epistatic interactions and observed phenotypes generalize across sequence space in287

the same manner as observed in the data. The next step is to use the observed data to update this288

prior distribution, which was based solely on the coarse summary statistics encapsulated in the distance289

correlation function, using the fine-scale information from the individual observations. An immediate290

question is the extent to which the statistical features of the resulting posterior distribution are similar291

or di↵erent from that of the prior. We drew 2000 samples from the resulting posterior distribution292

and plotted the results in Figure 3A-C using error bars to indicated 95% credible intervals. We find293

that the posterior gives very tight estimates of the variance components and correlation structure of the294

true sequence-function relationship, but that these estimates di↵er somewhat from the prior, with the295

3rd order interactions being roughly 1.6 times as strong in the posterior (Figure 3B), which results in a296

slightly faster decay in the predictability of mutational e↵ects as we move through sequence space (Figure297

3C). Thus, we conclude that our prior distribution provided a qualitatively reasonable estimate of the298

overall statistical features of the data.299

Obviously, another important question is the performance of the predictions made by our method.300

Since the GB1 landscape is relatively well sampled, we were able to assess this performance for a large301

range of sampling regimes, from quite sparse to extremely dense, by using our method to make predictions302

for randomly sampled held-out data with increasing amounts of training data (critically, the variance303

component estimates were re-computed for each of these random samples in order to provide a realistic304

test of the entire inference pipeline in the low-data regime). For comparison we also fit an additive model305

using ordinary least squares, regularized pairwise and 3-way regression models. Since both L1 and L2306

regularized regression have been used to model data of sequence-function relationships [32, 42, 55], here307

we fit the pairwise and three-way models using elastic net regression (Materials and Methods) where308

the penalty term for model complexity is a mixture of L1 and L2 norms [56] with the relative weight309

of the two penalties chosen through crossvalidation. This allows us to compare our method against the310

regression models fitted using regularization most appropriate for the a particular training dataset. In311

addition to the linear regression models, we also fit a global epistasis model [36] where the binding score312

is modeled as a nonlinear transformation of a latent additive phenotype on which each possible mutation313

has a background-independent e↵ect (Materials and Methods).314

We compared the predictive accuracy of these five models by plotting out-of-sample R2 against a wide315

range of training sample size, Figure 3D. We first note that the out-of-sample R2 of the additive model316

and the global epistasis model stay constant regardless of training sample size, consistent with their low317

number of model coe�cients and flexibility. The low R2 of the global epistasis model also indicates a318

substantial degree of specific epistasis (i.e. interactions between specific subsets of sites, [27]). In terms319

of the regression models that do include these specific interactions, the pairwise model is among the top320

models for low training sample size, but fails to improve beyond 20% training data, while the 3-way321

model performs strongly with a large amount of data, but under-performs when data are sparse. We see322

that our empirical variance component regression (VC regression) method performs equivalently to the323

pairwise model at low data density and similar to the three-way model at high data density (remaining324

marginally superior at very high sampling), and thus provides the strongest overall performance.325

Application to human 50 splice site data326

To provide an application of our method to a nucleic acid sequence-function relationship, we turn to327

an analysis of a high-throughput splicing assay that attempted to measure the activity of all possible 50328

splice sites [40]. The 50 splice site (50ss) is a 9-nucleotide sequence that spans the exon-intron junction. It329

comprises 3 nt at the end of the upstream exon (denoted as positions -3 to -1) and 6 nt at the beginning330

of the intron (coded +1 to +6). The consensus 50ss sequence in humans is CAG/GUAAGU, with the331
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Figure 3: Analyses of the GB1 combinatorial mutagenesis dataset. (A) Distance correlation of phenotypic values. (B)
Variance components. (C) Distance correlation of mutational e↵ects. In A-C, gray represents statistics of the prior distri-
bution inferred from the full dataset consisting of 149361 genotypes (93.6% of all possible sequences), black represents the
posterior statistics estimated based on 2000 Hamiltonian Monte Carlo samples. Error bars indicate 95% credible intervals.
(D) Comparison of model performance in terms of out-of-sample R2 for a range of training sample sizes calculated for
5 replicates. Additive models were fit using ordinary least squares. Pairwise and 3-way regression models were fit using
elastic net regularization with regularization parameters chosen by 10-fold cross-validation (Materials and Methods). Global
epistasis model assumes the binding score is a nonlinear transformation of an unobserved additive phenotype and was fitted
following ref. [36]. Error bars represent one standard deviation.
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Figure 4: Analyses of the SMN1 50ss combinatorial mutagenesis dataset. (A) Distance correlation function of the splicing
phenotype (PSI). (B) Variance components. (C) Distance correlation of mutational e↵ects. Gray represents statistics of
the prior distribution inferred from the full dataset consisting of 30732 genotypes (93.8% of all possible splice sites), black
represents the posterior statistics estimated using 2000 Hamiltonian Monte Carlo samples. Error bars indicate 95% credible
intervals.

slash denoting the exon-intron junction. At the beginning of the splicing reaction, the 50ss is recognized332

by the U1 snRNP of the spliceosome through direct base pairing between 50ss and the U1 snRNA [57],333

whose 50 sequence is complementary to the consensus 50ss sequence. In ref. [40], the authors used a334

massively parallel splicing assay to estimate the splicing e�ciency of 94.8% of the 32768 possible 50ss335

sequences of the form NNN/GYNNNN for intron 7 of the gene SMN1 using a minigene library in human336

cells. Splicing e�ciency was measured in units of relative percent spliced in (PSI), defined as the ratio337

of read counts corresponding to exon inclusion to total read counts (including both exon inclusion and338

exon skipping) divided by the ratio for the consensus sequence and then expressed as a percentage.339

In Figure 4A, we first show the distance correlation function of PSI for the observed sequences. These340

correlations appear to drop o↵ quite rapidly, with sequences di↵ering at 5 or more positions having341

PSIs that are essentially uncorrelated. The associated estimated variance components are shown in342

Figure 4B. These indicate that pairwise interaction accounts for the largest proportion of the sample343

variance (42.2%), but there are also substantial higher-order interactions with the variance due to 5-way344

interactions (13.7%) being comparable to those of the additive and three-way component. The orders of345

genetic interactions corresponding to locally negative correlations (order > 6, since the Hamming distance346

between two random sequences is equal to 3
4 ⇥8 = 6) are estimated to play a relatively small but perhaps347

non-neglible role, accounting for 2.2% of the total variance. In Figure 4C, we found the correlation348

of mutational e↵ects for two backgrounds that di↵er by one mutation is roughly 50% but decays to349

roughly zero for distant genetic backgrounds. Sampling from the posterior distribution, we see that the350

statistical characteristics of the splicing landscapes again have very small credible intervals and remain351

similar to those estimated using our least squares procedure, with a slightly increased contribution of352

pair-wise and third order interactions and a decreased contribution of the five-way interactions. Overall,353

the splicing landscape appears to be dominated by interactions of order 2 through 5, resulting in positive354

correlations between the splicing activity of nearby genotypes but a relatively limited ability to generalize355

our observations to distant regions of sequence space, consistent with the mechanistic intuition that356

mutations that e.g. substantially decrease U1 snRNA binding in the context of a functional splice site357

are likely to have no impact in an already non-functional sequence context.358

We next compare the predictive power of our method against the four models used earlier on the359

GB1 dataset, namely the additive model, the global epistasis model, and the pairwise and three-way360

interaction models fit using elastic net regularization. We first compare the predictive power of the five361

models by randomly assigning a subset of our data as training examples corresponding to 80% of all362

possible sequences (i.e. we assigned 26,214 of the observed sequences as training data). Figure 5A-E363

shows the scatter plots of the true PSI vs. out-of-sample predictions for the five models in the order of364

increasing R2. First, we see that the additive model performs poorly with an out-of-sample R2 = 0.15.365

The inclusion of pairwise interaction terms substantially improves the performance with an out-of-sample366

R2 = 0.48. Unlike the GB1 dataset, the global epistasis model exceeds the pairwise model in performance367

by a large margin with R2 = 0.60. This is followed by the three-way interactions model (R2 = 0.67).368
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Figure 5: Model performance for the SMN1 50ss combinatorial mutagenesis dataset. Additive models were fit using ordinary
least squares. Pairwise and 3-way regression models were fit using elastic net regularization with regularization parameters
chosen by 10-fold cross-validation (Materials and Methods). Global epistasis model models PSI as a nonlinear function
of an unobserved additive phenotype and was fitted following ref. [36]. was fit following ref. [36]. (A-E) Scatter plots
of out-of-sample predictions for the additive model, pairwise regression, global epistasis model, three-way regression, and
variance component regression using one training dataset consisted of 80% of all 50ss (n = 26215) assigned as training data.
(F) Out-of-sample R2 of the five models plotted against a range of training sample sizes. Error bars represent one standard
deviation calculated for 5 replicates for each sample size.
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Figure 6: Manual validation of predicted PSI for 40 unmeasured SMN1 50ss. (A) Gel images of manually validated
sequences. For each lane, the top band corresponds to mRNA product containing exon 7 (exon inclusion), while the bottom
band correspond to mRNA product without exon 7 (exon skipping). Percent spliced in (PSI) is indicated below each lane.
Gel images are representative of triplicates. (B) Scatterplot showing measured PSI values versus PSI values predicted by
the variance component regression. Horizontal error bars correspond to one standard deviation of the posterior distribution.
Vertical error bars correspond to one standard deviation around the mean PSI estimated using three replicates in the manual
validation. Since the low-throughput PSIs are inherently restricted to the range 0–100, in this analysis we capped the raw
predicted PSIs to lie in this same range.

Finally, the variance component regression substantially outperforms the other models with R2 = 0.79.369

To see how these various models perform when greater or lesser amounts of data are available, we370

compared the predictive power of the five models by plotting their out-of-sample R2 against a wide range371

of training sample sizes, Figure 5F. The rank order of the models is largely consistent throughout the372

sampling range. More importantly, we see that the variance component model adapts to increasing data373

density at a much faster rate than the other models. For example, at the sampling density (training374

sample size < 20% of all possible sequences), the three-way model has similar performance as our model.375

However, the performance gap between the two models quickly widens as the training data become dense.376

The variance component model is able to achieve a final R2 = 0.83 with 93% of the sequence space assigned377

as training data (n = 30474), compared with the three-way model R2 = 0.72. This di↵erence in model378

performance is consistent with the observation of substantial contribution of higher-order interactions379

(k > 3), which the low-order regression model is unable to accommodate.380

Another question is the qualitative nature of the genetic interactions captured by our model. We381

note that the global epistasis model provides a remarkably good fit to the data, considering that it has382

only a few more parameters than a simple additive model. In Supplemental Figure 2, we see that the383

global epistasis model approximates the splicing landscape with a sigmoid-like function that maps an384

unobserved additive trait to the PSI scale. This is as we might expect under a simple biophysical model385

where each position in the splice site makes a context-independent contribution to the binding energy of386

the U1 snRNA with the 50ss, and then this binding energy is mapped via a nonlinear function to PSI [3].387

However, we also note that this simple model fails to capture some important features of the data, most388

notably a group of false-negative sequences that are predicted to be non-functional by the global epistasis389

model but experimentally show moderate to high measured PSI (Supplemental Figure 3A). Using the390

variance component regression, we were able to accurately predict these outlier sequences (Supplemental391

Figure 3B). We thus conclude that while the global epistasis model provides a good intuitive first-pass392

understanding of the splicing landscape, our empirical variance component regression is able to capture393

more of the fine-scale features of the sequence-function relationship measured here.394

Although predictions on held-out data provide one means of testing model performance, a stronger395

test is to conduct low-throughput experiments to validate the predictions of our method on sequences396

that were not measured in the original experiment. The SMN1 dataset provides a suitable case study397

for this application, since the original dataset does not report the PSI of 2036 sequences (6.2% of all398

possible 50ss) due to low read counts. To assess the predictive power of our method for these truly399

missing sequences, we first made predictions for all unsampled sequences using all available data. We400
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then selected 40 unsampled sequences whose predicted values are evenly distributed on the PSI scale. The401

true PSIs of these sequences were then measured using a low-throughput experiment [40], see Materials402

and Methods, Figure 6A. Overall, our method achieves a reasonable qualitative agreement with the low403

throughput measurements PSI (Figure 6B), but di↵ers systematically in that the transition between404

nearly 0 and nearly 100 PSI is more rapid in the low-throughput measurement than in our predictions.405

Intuitively, we can understand the source of this discrepancy in terms of the geometry of the splicing406

landscape, which features a bimodal distribution of PSIs with separate modes near 0 and 100 [40] and a407

sharp transition between these two sets of sequences in sequence space (Supplemental Figure 2). Because408

phenotypic observations generalize farther in most regions of sequence space than they do near this409

boundary between low and high PSI, our method tends to smooth anomalously sharp features of this410

type, resulting in out-of-sample predictions that are more smoothly graded, rather than threshold-like,411

in the vicinity of this boundary.412

Structure of the SMN1 splicing landscape413

Besides making accurate phenotypic predictions, it is important to understand the qualitative features414

of a sequence-function relationship, both with regard to how the underlying mechanisms result in the415

observed genetic interactions and how these genetic interactions a↵ect other processes, such as molecular416

evolution and disease. For simple models, such as pairwise interaction models or global epistasis models,417

extracting these qualitative insights can often be achieved by examining the inferred model parame-418

ters. Here, we take a di↵erent approach and attempt to understand these major qualitative features by419

constructing visualizations based on the entire inferred activity landscape. Because we have previously420

conducted a detailed analysis of this type for the GB1 dataset [see 48] we will focus on the inferred421

activity landscape for 50ss.422

In particular, our visualization method [58] is based on constructing a model of molecular evolution423

under the assumption that natural selection is acting to preserve the molecular functionality measured424

in the assay. The resulting visualization optimally represents the expected time it takes to evolve from425

one sequence to another (Materials and Methods), and naturally produces clusters of genotypes where426

the long-term evolutionary dynamics are similar for a population starting at any genotype in that cluster427

(e.g., genotypes on the slopes leading up to a fitness peak will tend to be plotted near that peak). To428

make such a visualization for our splicing data, we first inferred the full SMN1 splicing landscape using429

Empirical Variance Component Regression and built a model of molecular evolution based on the MAP430

estimate (Materials and Methods). Then we used the subdominant eigenvectors of the transition matrix431

for this model as coordinates for the genotypes in a low-dimensional representation; these coordinates are432

known as di↵usion axes [59] since they relate closely to how the probability distribution describing the433

genotypic state of a population evolving under the combined action of selection, mutation, and genetic434

drift is likely to di↵use through sequence space [58, 60].435

The resulting visualization is shown in Figure 7A and Supplemental Figure 4, where genotypes are436

points (colored by the number of times that particular 50ss is used in the human genome, Materials and437

Methods) and edges connect genotypes connected by single point mutations. It turns out that each of438

the first three di↵usion axes has a simply interpretable meaning. Figure 7B plots the estimated PSI439

against Di↵usion Axis 1, showing that Di↵usion Axis 1 separates functional splice sites (large positive440

values) from non-functional splice sites (negative values). Di↵usion Axes 2 (Supplemental Figure 4) and441

3 then separate di↵erent groups of functional splice sites from each other. Figure 7A shows two major442

branches of functional splice sites that are separated along Di↵usion Axis 3. Examination of sequence443

composition within each branch reveals that the major distinction between the two clusters lies at position444

+3, where sequences in the bottom cluster retain the consensus base A, while the top sequences possess445

+3 mutations that are predominantly G. To see the meaning of Di↵usion Axis 3, we cut away to show446

only the most highly functional sequences (818 sequences with PSI > 80%) and plot these sequences447

using di↵usion Axes 2 and 3, Figure 7C. This figure shows a hierarchy of clusters of functional sequences.448
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Figure 7: Visualization of the SMN1 splicing landscape reconstructed using Empirical Variance Component regression.
Genotypes are plotted using the dimensionality reduction technique from [58] (see “Methods”). (A) Visualization of all
32768 splice sites using Di↵usion Axes 1 and 3. Two splice sites are connected by an edge if they di↵er by a point mutation.
(B) Di↵usion Axis 1 largely corresponds to the separation of low and high PSI splice sites. (C) Visualization of all 818
splice sites with predicted PSI > 80% using Di↵usion Axes 2 and 3. In A-C, splice sites are colored according to the number
of times that sequence is used as a splice site in the hg38 reference genome. Gray dots represent splice sites not present
as functional splice sites (65.9% of all possible splice sites). (D) Abstracted version of panel C. Splice sites are grouped by
mutational states (consensus vs. mutated) at positions -1, -2, +3, +4, +5, and +6. Each dot corresponds to a group of
sequences with a prescribed pattern of consensus or mutated states on the six sites. Two groups are connected by an edge
if they di↵er in mutational state at exactly one site. Gray lines represent di↵erences at position -1, +3, and +5. Black lines
represent di↵erences at positions -2, +4, and +6. Only groups containing splice sites with > 80% PSI are shown, resulting
in six (in)complete cubes with black edges, each representing a combination of mutational states on the three major sites -1,
+3, and +5. The incompleteness of a cube indicates the absence of a combination of mutational states at position -2, +4,
and +6. Note that no cubes contain both the -1 and +5 mutation, indicating a major incompatibility between mutations
at these two sites.
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Examining the sequences within each of these small clusters revealed that the small clusters correspond449

largely to whether a consensus or mutant nucleotide was present at each of positions -2, -1, +3, +4, +5,450

and +6, (Figure 7D). We see then that Di↵usion Axis 2 encodes whether or not mutations are present451

at the -1 and +5 positions, where functional genotypes with mutant nucleotides at the +5 position are452

plotted at negative values on Di↵usion Axis 2, functional genotypes with mutant nucleotides at the -1453

position are plotted at positive values on Di↵usion Axis 2, and functional genotypes with mutations at454

neither position are plotted in between.455

The above analysis reveals a complex pattern of genetic incompatibilities between mutations at po-456

sitions -2, -1, +3, +4, +5, and +6, as some but not all combinations of mutations at these positions457

are compatible with high splicing activity (see also Supplemental Figure 5). The overall structure is458

dominated by a major incompatibility between mutations at the -1 and +5 positions, since no sequences459

with mutations on both -1 and +5 have strong splicing activity (> 80% PSI). This is consistent with460

previous findings of a negative interaction between -1 and +5 based on genomic comparisons [61–63],461

maximum entropy model fitting [64], and high-throughput splicing assays [40]. As a result of this interac-462

tion, a population constrained by natural selection to maintaining splicing function with a non-consensus463

nucleotide at the -1 position must typically evolve a consensus nucleotide at -1 before it can evolve to464

a sequence with a mutation at +5, resulting in long waiting times to evolve from a sequence with a -1465

mutation to sequences with a +5 mutation.466

The next most prominent structure revealed in Figure 7D corresponds to having a G mutation at the467

+3 position (upper portion of y-axis in Figure 7D), so together we consider positions -1, +3 and +5 as468

being the major mutations. Whereas having either a single -1 or +5 mutation is compatible with having469

many di↵erent combination of minor mutations at positions -2, +4, and +6 (complete cubes on the bottom470

half of Figure 7D), in a +3 mutant background combined with either a -1 or +5 mutation, we observe471

complex interactions between these minor mutations. In particular, in the -1+3 mutant background,472

the only additional minor mutation compatible with maintaining functionality is -2. However, in the473

presence of +3+5 mutations we see a di↵erent pattern where in this background only a +6 mutation474

can be tolerated, but in the presence of this additional +6 mutation, a mutation at the +4 position also475

changes from being intolerable to sometimes being tolerable.476

How can we explain this complex pattern of genetic interactions? The overall structure of the splicing477

landscape with a flat, nonfunctional region where mutations have little e↵ect and then a functional region478

where they have greater e↵ects is typical of non-specific epistasis and especially compatible with a global479

epistasis model. Moreover, the pattern of interactions between the major -1, +3 and +5 mutations can480

also be accounted for by a global epistasis model with a sharp threshold-like nonlinearity where -1 and481

+5 mutations have large e↵ects and +3 mutations have moderate e↵ects such that the combination of482

a +3 mutation with a -1 mutation brings the sequence near the threshold, but a -1 together with a +5483

mutation brings the sequence over the threshold, resulting in a loss of functionality (consistent with our484

inferred global epistasis fit, Supplemental Figure 2).485

However, the more complex interactions involving the minor mutations are qualitatively incompatible486

with the global epistasis model. This is because under global epistasis any mutation that is tolerated in a487

weaker background must also be tolerated in a stronger background. So if +3+5 is a stronger background488

than -1+3, and the -2 mutant is tolerated in the -1+3 background, then it should also be tolerated in489

the +3+5 background. However, we observe that the e↵ect of a mutation at position -2 when -1 and +3490

are mutated is often tolerated (median e↵ect of �18.6 PSI, calculated for sequences with consensus bases491

on all other positions), but when +3 +5 are mutated the -2 mutation typically has a much larger e↵ect492

(median e↵ect is �93.8 PSI for sequences with consensus bases on all other positions), which always results493

in a PSI < 80. However, if -1+3 is the stronger background, then it should also tolerate a mutation at494

the +6 position, which it does not. Rather, the tolerability of the +6 mutation in the +3 +5 background495

appears to be due to a specific interaction between the +5 and +6 mutations, where +6 mutations496

have little or no e↵ect in any background where a +5 mutation is present (Supplemental Figure 6). In497
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particular, we find that the deleterious e↵ect of mutations at +6 over all functional backgrounds with498

the consensus +5G (median = �43.0, calculated in backgrounds with PSI > 80) is almost completely499

abrogated in functional backgrounds where +5 is mutated (median = �2.0, calculated in backgrounds500

with PSI > 80). This observation would be consistent with the biophysical hypothesis that the major501

mutation at +5 results in the dissociation of all distal nucleotides from the 3’ end of the RNA-RNA502

duplex, and hence any further mutation at +6 has little deleterious e↵ect, since +6 is no longer involved503

in direct base-paring with the U1 snRNA [c.f., 65].504

Finally, the functionality of +4 mutations in the +3+5+6 mutant background but not in the appar-505

ently stronger +3+5 background is also highly incompatible with the global epistasis hypothesis. We506

found two specific highly functional 50ss sequences with this combination of mutations, CAG/GUUGUA507

and AAG/GUGGAC. The first sequence has been found to bind to U1 snRNA through a noncanonical508

binding geometry known as an asymmetric loop [66] where an uneven number of unpaired nucleotides are509

found in an internal loop, allowing the 30 GUA of the splice site to form 3 additional basepairs with the510

U1 snRNA. The second sequence (AAG/GUGGAC) does not seem to correspond to any known alterna-511

tive binding geometry. However, it does naturally occur 14 times in the human genome as a putatively512

functional splice site (Materials and Methods). Furthermore, we have verified its functionality via a low-513

throughput method (mean PSI ± 1SD = 96.9 ± 5.33, n = 3, Supplemental Figure 7), suggesting that it514

operates via some unknown mechanism.515

In summary, we conclude that the 50ss activity landscape contains many qualitatively di↵erent types516

of genetic interactions. At a coarse level, the splicing landscape can be understood in light of the global517

epistasis model, where interactions between major mutations arise due to a threshold e↵ect. At a finer518

level, however, we discover that the e↵ect of a mutation can be strongly modulated by other mutations519

in ways that are incompatible with the global epistasis model, where PSI is modeled as a nonlinear520

function of an underlying additive phenotype, both in the form of specific pairwise interactions such as521

the interaction between the +5 and +6 positions, but also highly complex interactions associated with522

substantial changes in the physical geometry of U1 snRNA binding [66].523

Discussion524

In this paper, we address the problem of how to model the complex genetic interactions observed in525

high-throughput mutagenesis experiments in order to predict phenotypic values for unmeasured geno-526

types. Our method is based on the simple idea that the type and extent of epistasis that we predict527

outside our observed data should be similar to the type and extent of epistasis observed in the data528

itself. We show that this information about the type and extent of epistasis can be extracted from how529

correlations between phenotypic values decay as one moves through sequence space, and that: (1) this530

same distance correlation function also determines the degree to which our observations of mutational531

e↵ects, double mutant epistatic coe�cients, and observed interactions between three or more mutants532

generalize across increasingly distant genetic backgrounds; and (2) the distance correlation function can533

be parameterized in terms of the fraction of phenotypic variance due to each order of genetic interaction534

(i.e. the ` variance components, where ` is the sequence length). By estimating these variance components535

from the data, we can construct a prior distribution over all possible sequence-function relationships that536

is concentrated on the subset of sequence-function relationships where the e↵ects of mutations generalize537

in the same manner as occurs in our observed data. Conducting Bayesian inference under this prior then538

produces phenotypic estimates that reflect the belief that the extent and types of epistasis in unobserved539

regions of sequence space are similar to the extent and type of epistasis in regions of sequence space that540

we have already observed.541

One way to understand our contribution here is to see it as an integration between practical Gaussian542

process-based methods for analyzing sequence-function relationships [67] and the classical spectral theory543

of fitness landscapes [43, 44, 46], which provides the most sophisticated mathematical theory of genetic544
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interactions currently available. Within this theoretical literature, the so-called “random field models”545

identical to the family of priors we propose have been extensively studied [26, 43, 44], and we have546

leveraged this existing knowledge to craft priors that encode comprehensible beliefs about the structure547

of sequence-function relationships that overcome the inherent di�culty of understanding these high-548

dimensional objects.549

Our results here also provide some significant additions to the spectral theory of fitness landscapes550

that help to provide a more intuitive view of this complex area of mathematical theory. First, we suggest551

that higher-order epistatic interactions can be qualitatively classified into two types, corresponding to552

interactions that result in locally positive correlations or locally negative correlations. The idea of an anti-553

correlated component to a sequence-function relationship has been discussed previously in the literature554

in terms of the “eggbox” component [12, 47] which is perfectly anti-correlated between adjacent genotypes555

(i.e., whether the phenotypic value is high or low flips with each step one takes through sequence space,556

similar to the alternating peaks and valleys of an egg carton). Our analysis shows that there is actually a557

whole set of orders of genetic interaction with a similar character, corresponding to all orders of genetic558

interaction higher than the average number of di↵erences between two random sequences. However, our559

main interest is in the components that produce locally positive correlations (which appear more likely to560

arise under most conceivable physical mechanisms), with the balance between these higher-order locally561

correlated components controlling how precisely phenotypic correlations decay with increasing Hamming562

distance.563

Second, we defined a summary statistic �k which, beyond simple phenotypic correlations, measures564

how mutational e↵ects (k = 1) or epistatic coe�cients (k > 1) decay as one moves through sequence565

space. The correlation of mutational e↵ects as a function of distance between genetic backgrounds has566

been previously termed �, which is used to measure the ruggedness of the landscape [12, 47]. Here we567

generalize this measure to epistatic coe�cients of any order, and show that the distance correlation of568

epistatic coe�cients of order k is in fact determined solely by the components of the landscape of order569

larger than k (see SI Appendix, where we provide a simple formula showing the relationship between570

di↵erent orders). This result can also help us understand why our method outperforms pairwise and571

three-way epistatic models. Specifically, we show that models that include only up to k-th order epistatic572

interactions in fact make the very strong assumption that any observed k-th order interactions generalize573

across all genetic backgrounds. Incorporating higher-order interactions is then equivalent to relaxing this574

strong assumption and allowing these lower-order interactions to change as one moves through sequence575

space.576

The method we propose here also has some commonalities with minimum epistasis interpolation [48],577

another method we recently proposed for phenotypic prediction that includes genetic interactions of578

all orders. The most important di↵erence is based on the criterion for parsimony being employed in579

each instance. Minimum epistasis interpolation attempts to find a reconstruction that minimizes the580

expected squared epistatic coe�cient between a random pair of mutants introduced on a random genetic581

background. Thus, minimum epistasis interpolation is based on imposing an a priori assumption that582

the sequence-function relationship should be simple in the sense of being locally smooth (i.e. locally non-583

epistatic). In contrast, empirical variance component regression takes the view that a reconstruction is584

parsimonious if the extent and type of epistasis present in the reconstruction are similar to the extent585

and type of epistasis present in the data itself. Depending on the needs of the user, both minimum586

epistasis interpolation and empirical variance component regression can be conducted either in a Bayesian587

manner or as a form of L2-regularized regression [68] (where our MAP estimate is equivalent to the588

L2 regularized solution, SI Appendix ). From a regularization perspective, the main di↵erence between589

these methods is that they penalize the di↵erent orders of genetic interaction di↵erently, either with a590

quadratically increasing penalty in the case of minimum epistasis interpolation, or a penalty determined591

by the empirically estimated variance components in the case of minimum epistasis interpolation592

One potential limitation of our approach is our choice to select the hyperparameters based on the593
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point estimates supplied by our training data, i.e. by kernel alignment [51]. It may well be possible594

to produce more accurate predictions by choosing hyperparameters by maximizing the evidence [37]595

or via a hierarchical Bayesian model where we integrate over our uncertainty in the values of these596

hyperparameters. However, here we prefer a simpler empirical Bayes procedure, because it corresponds597

better to the underlying philosophy of the method, in that we estimate the extent and type of epistasis598

present in our observations and then directly incorporate these estimates into our prior.599

Another limitation concerning variance component regression is that it is unable to explicitly model600

any overall nonlinearity of the measurement scale, i.e. it does not explicitly model nonspecific or global601

epistasis [3, 27, 28, 36, 69–71]. Rather, empirical variance component regression must learn any such602

global structure based on consistent patterns in the observations themselves. For instance, whereas the603

global epistasis model is able to easily handle the saturation of PSI at 0 and 100, empirical variance com-604

ponent regression must learn these flatter regions based on the consistent minimal e↵ects of mutations605

in a particular region of sequence space, rather than via an overall nonlinearity that is assumed by the606

structure of the model. Incorporating the possibility of such global nonlinearities would be an important607

extension to the methods presented here, particularly when the underlying latent trait being modeled is608

the true object of scientific interest, rather than the observed phenotype (e.g. in the case of nonlinearity609

due to the measurement process, or where the latent trait has a specific biophysical meaning such as610

a binding energy). However, empirical variance component regression as presented here may still be611

preferred if the primary interest is in the specific phenotype being measured, since the e↵ects of a physi-612

ological biophysical nonlinearity on the generalizability of mutational e↵ects and epistatic interactions is613

itself an issue of considerable scientific interest.614

A final limitation concerns the applicability of the method we propose to very large datasets. In our615

implementation, we take advantage of the isotropic property of the prior distribution (i.e. that covariance616

depends only on Hamming distance) and the highly symmetric graph structure of the sequence space,617

which allows us to express the covariance matrix and its inverse as polynomials in the highly sparse618

matrix known as the graph Laplacian, which makes inference possible on sequence spaces containing up619

to low millions of sequences. However, due to the exponential growth of biological sequence space as a620

function of sequence length, this still limits us to nucleic acid sequences of length 11 or less, and amino621

acid sequences of length 5 or less. Using the kernel trick [72], it is possible to work with much longer622

sequences, but at the cost of only being able to accommodate up to low tens of thousands of observed623

sequences, due to the resulting dense kernel matrix. Although we provide analyses of datasets in the624

current manuscript that contain tens to hundreds of thousands of sequences, more work is needed to625

scale the methods proposed here to even larger datasets and sequence spaces.626
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Methods627

Summary statistics628

This section defines various summary statistics used in the paper, including the quantities plotted in629

Figure 1. We also show how di↵erent quantities can be transformed from one to another. Here we simply630

list the main results without proof. Detailed derivations can be found in SI Appendix.631

Given an alphabet A of size ↵, we use A` to denote the sequence space which is the set of all tuples of632

A, equipped with a metric that is the Hamming distance D, such that D(x, x0) measures the number of633

mutations that separate the two sequences x, x0 2 A`. Given a sequence space of size G = ↵`, a landscape634

f is a function that maps every sequence x 2 A` to its phenotypic value. Throughout this paper, we use635

the boldface f 2 RG to denote the G-dimensional column vector indexed by sequences in A` and f to636

denote the function which allows us to evaluate the phenotype of a sequence f(x) such that f(x) = fx.637

We define the autocovariance function of f as [43, 44, 49]:638

C(d) =
1

Nd

X

x,x0:D(x,x0)=d

(f(x)� f)(f(x0)� f), (3)

where Nd = ↵`
�`
d

�
(↵ � 1)d is the number of ordered pairs of sequences at Hamming distance d and f is639

the mean phenotypic value. We can also define the autocorrelation function by normalizing C(d) with640

the empirical variance:641

⇢(d) =
C(d)

C(0)
. (4)

Now suppose we only have noisy observations y = fB + e on a subset of sequences B ⇢ A`. Here e642

is the noise vector which we assume is drawn from a normal distribution: e ⇠ N (0,E), with E being643

a diagonal matrix. We can still extract the empirical covariance function by averaging over pairs of644

sequences in B for di↵erent distance classes. Specifically, let D(B) = (D0,D1, . . . ,D`) be the distance645

distribution of the set B, where Di is the number of pairs of ordered sequences that are at Hamming646

distance i. Define the empirical autocovariance function647

c(d) =

8
<

:

1
|B|

P
x2B(y(x)� y)2 � �2 d = 0

1
Dd

P
{x,x02B:D(x,x0)=d}(y(x)� y)(y(x0)� y) d = 1, · · · , `.

(5)

For d = 0, we substract the mean variance of the noise components �2 from the raw empirical variance648

1
|B|

P
x2B(y(x) � y)2 so that c(0) is not inflated by the observation noise. The noise component is not649

accounted for when d > 0 since we assume the noise distribution is independent with mean zero, making650

the contribution from noise to c(d) for d > 0 negligible. Note that C(d) and c(d) coincide if we have data651

for all sequences and the data is noise-free.652

The space of all possible sequence-function relationships form a G-dimensional vector space isomorphic653

to RG and can be naturally decomposed as `+ 1 orthogonal subspaces,654

RG = V0 � V1 � · · ·� V`. (6)

Here Vk corresponds to the space of functions of pure k-th order interactions and has dimension mk =655 �`
k

�
(↵ � 1)k (SI Appendix ); in particular, Vk is the eigenspace of L associated with the eigenvalue ↵k.656

Next let fk be the projection of f onto Vk so that f =
P`

k=0 fk. Since the di↵erent components fk are657

orthogonal, we find kfk2 =
P`

k=0 kfkk2. We can now define a quantity that measures the contribution of658

fk to the total variance in f659

⌦k =
kfkk2P`
i=1 kfik2

=
kfkk2

kf � fk2
. (7)
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⌦k measures the amount of variance in f that is due to k-th order interactions alone, and therefore is660

known as the empirical variance component or amplitude spectrum of order k of the landscape f [26, 44].661

Recall that Vk is a mk-dimensional subspace. Now let Qk 2 RG⇥mk be a matrix whose columns form662

an orthonormal basis for Vk. Since fk 2 col(Qk), we can express it as fk = Qkak, where ak =
⇥
ak,i

⇤
1imk

663

is a vector containing mk =
�`
k

�
(↵� 1)k entries know as the Walsh coe�cients of order k. Therefore, the664

quantity665

�k ⌘ kfkk2

mk
=

aTkQ
T
kQkak
mk

=
kakk2

mk
=

Pmk

i=1 a
2
k,i

mk
. (8)

is equal to the mean squared k-th order Walsh coe�cient of f . In the special case when k = 0, �0 =666

kf0k2

m0
= kf0k2, since m0 is equal to 1. Here f0 is the projection onto V0, the constant subspace, which is667

spanned by the unit vector u = ↵� `
21, where 1 is the vector of all ones. Therefore, we find668

�0 = kf0k2 = k(fTu)uk2 = (fTu)2 = (↵� `
2

X

x

f(x))2 = ↵`f
2
. (9)

Next, it can be shown that any function � with unit norm drawn from the subspace Vk has the same669

autocovariance function [43]:670

C�(d) =
1

mk
w`

k(d), (10)

where w`
k(d) is the known as the Krawtchouk polynomial [43, 44, 73] and is given by671

w`
k(d) =

1

↵`

X̀

q=0

(�1)q(↵� 1)k�q

✓
d

q

◆✓
`� d

k � q

◆
. (11)

Since fk 2 Vk and has norm kfkk2, its autocovariance function is672

Cfk(d) =
kfkk2

mk
w`

k(d) = �kw
`
k(d), (12)

The landscape f is a linear combination of orthogonal components fk. It turns out its autocovariance673

function is simply the sum of autocovariance functions of the components fk [43]:674

Cf (d) =
X̀

k=1

Cfk(d) =
X̀

k=1

�kw
`
k(d). (13)

Therefore, knowing the �k, or equivalently the ⌦k together with the variance C(0) of the full landscape,675

allows us to write down the autocovariance function Cf (d). Conversely, Eq. 13 also allows us to solve for676

the �k for k > 0 if we are given the autocovariance function.677

Given a pair of alleles on a site, we can calculate the e↵ect of mutation from one allele to the other678

in all genetic backgrounds. Therefore, we can naturally measure the covariance of mutational e↵ects679

as a function of distance between background sequences [47] similar to how we measure phenotypic680

correlation using C(d). Here we generalize this notion of distance covariance of mutational e↵ects to681

epistatic coe�cients of any order < l, which is a generalization of the classical epistatic coe�cient to682

k � 2 sites (SI Appendix ). Specifically, we define �k(d) as the distance covariance of k-th order epistatic683

coe�cients averaged over the whole landscape (SI Appendix ) and show that �k(d) can be expressed in684

terms of the autocovariance function C(d) or, alternatively, the list of �i truncated so as to begin with685

�k:686

�k(d) = 2k
kX

q=0

(�1)q
✓
k

q

◆
C(d+ q) = 2k

X̀

k0=k

�k0w`�k
k0�k(d). (14)
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To summarize, we have defined a number of summary statistics and shown how to transform between687

them for any complete landscape f . In situations where we only have the noised incomplete observation688

y, we cannot directly calculate the underlying �k and ⌦k. However, we can still calculate the empirical689

autocovariance function c(d). We can then estimate the �k using a least squares technique that we outline690

below. The �k’s then allow us to calculate all summary statistics listed above.691

Gaussian process regression692

Given noisy observations on a subset of all possible sequences, our aim is to reconstruct the full693

landscape f so that the reconstructed landscape reflects the statistical features of the observed data.694

Since the underlying landscape f is unknown, we use a Bayesian strategy by treating it as a random695

function that is drawn from a Gaussian prior, that is696

f ⇠ N (µ,K), (15)

where µ 2 RG⇥1 and K 2 RG⇥G are the mean vector and covariance matrix, respectively. Throughout697

this paper, we assume the prior distribution has mean zero, i.e. µ = 0.698

To derive the covariance matrix K, we start out by defining simple distributions for the Walsh coe�-699

cients of di↵erent orders k. Specifically, we assume the Walsh coe�cients are independent and Gaussian700

with mean 0 and identical variance for each order k. Let ak 2 Rmk be the random vector containing all701

k-th order Walsh coe�cients, then702

ak ⇠ N (0,�kImk). (16)

It is easy to check that the random vector f =
P`

k=0 Qak is also Gaussian and has mean 0. Further-
more, its covariance matrix is

K = Ef

h
(f � µ)(f � µ)T

i
= Ea0,a1,··· ,a`

2

4
X̀

j=0

Qjaj(
X̀

k=0

Qkak)
T

3

5 =
X

j,k

QjEaj ,ak

h
aja

T
k

i
QT

k (17)

=
X̀

k=0

�kQkQ
T
k =

X̀

k=0

�kWk. (18)

Here Wk = QkQT
k is a G⇥G matrix whose entries are given by the Krawtchouk polynomial [44, 73]703

and only depends on the Hamming distance between sequences:704

Wk(x, x
0) = w`

k(d(x, x
0)). (19)

Therefore, we have defined a family of Gaussian prior distributions for f with covariance matrix705

K =
P`

k=0 �kWk, where �k > 0 serve as hyperparameters of the prior distribution, which can be706

specified a priori or inferred from the data. Furthermore, since the columns of Qk are orthonormal,707

Wk = QkQT
k is the projection matrix to the space of k-th order interactions. As a result, the matrix708

K defined above is guaranteed to be positive-definite if �k > 0 for all ` � k � 0, therefore is a proper709

covariance matrix.710

Because the Wk(x, x0) only depend on the Hamming distance between pairs of sequences, the covari-711

ance of this prior distribution likewise is a function of the Hamming distance between sequences. In other712

words, we have defined a Gaussian isotropic random field [26, 43, 44]. This allows us to summarize the713

covariance structure of our prior distribution by the following kernel function714

K(d) =
X̀

k=0

�kw
`
k(d). (20)
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Note that Eq.20 is very similar to Eq.13. The main di↵erence is that here �k > 0 are hyperparameters715

for the prior that specify the variance of Walsh coe�cients of order k, whereas in Eq. 13, �k is the mean716

square Walsh coe�cient of a specific landscape. Note that we also include the 0 order term �0 in717

Eq.20 because we assume that the prior distribution has zero mean and the mean of a sample from the718

distribution is normally distributed with variance �0. In fact, the expected empirical autocovariance719

function di↵ers from the kernel function by a constant:720

Ef

⇥
Cf (d)

⇤
= K(d)� ↵�`�0. (21)

We write I = A`\B as the set of all missing sequences. Throughout this paper, we also use B and I to721

denote columns and rows of matrices that are indexed by A`. For example, KBB is the m⇥m submatrix722

of K generated by selecting rows and columns corresponding to B, while K·B denotes the G⇥m matrix723

whose columns correspond to sequences in B.724

Recall that y = fB + e 2 Rm is the vector of observations for the subset B, where e is a vector of725

observation noise so that e ⇠ N (0,E) with E being a diagonal matrix. The distribution of y is726

y ⇠ N (0,KBB +E). (22)

Without loss of generality, we will order our sequences so that the m sequences in B whose phenotypes727

are known come first. The joint distribution of the full landscape f and y is then728


f
y

�
⇠ N (


0G

0m

�
,


K K·B
K·B KBB +E

�
). (23)

The posterior distribution for f is also Gaussian and is given by well-known formula for Gaussian729

process regression [37]730

f |y ⇠ N (K·B(KBB +E)�1y,K�K·B(KBB +E)�1KB·), (24)

where K·B(KBB + E)�1y = bf is know as the maximum a posterior (MAP) estimate. The posterior731

variance for a single sequence x can be calculated as732

�2
x = Kxx �KxB(KBB +E)�1KBx , (25)

where KBx = KT
xB 2 Rm is the column vector containing the covariance between the genotype x and733

every genotype in the training data B.734

Inference of hyperparameters for the prior distribution735

To use Gaussian process regression, we must choose the covariance matrix K, or equivalently a kernel736

function K(d) for d = 0, 1, · · · , `. According to Eq. 17, the kernel function K(d) of our prior distribution737

must take the form K(d) =
P`

k=0 �kw`
k(d), for d = 0, 1, · · · , `. In this paper, we take an Empirical738

Bayes procedure to infer the hyperparameters �k directly from the data. First, recall that c(d) is the739

empirical autocovariance function extracted from the data y (Eq. 5). So our overall goal is to find the740

hyperparameters �k so that the kernel function K(d) aligns as well as possible with c(d). Here, we provide741

a naive method as well as a regularized least square method for estimating �k to accommodate various742

possible scenarios in the inference procedure. In the naive method, we directly solve the linear equation743

c(d) + y2 =
X̀

k=0

�kw
`
k(d), d = 0, 1, · · · , ` (26)

for the hyperparameters �k’s, where y2 is added to allow us to infer the 0-th order hyperparameter �0,744

since c(d) does not contain the mean of the data. This procedure is equivalent to using c(d) + y2 as the745
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kernel function K(d) for our prior distribution. However, an important constraint for �k is that they746

must be nonnegative, since they are the eigenvalues of the covariance matrix K =
P`

k=0 �kWk. While it747

has been shown that when B is the whole sequence space, the �k’s solved using the equation above must748

be nonnegative [43], no such guarantee exists when B is a proper subset of A`.749

Another possible scenario where solving Eq. 26 is impossible is when the data does not contain750

all possible distance classes, i.e., Di = 0 for some i. Therefore, we introduce a second method using751

regularized least squares to estimate the �k. This method is similar to a machine learning technique752

called kernel alignment [51]. Briefly, our strategy is to match the empirical second moment matrix yyT
753

using a nonnegative linear combination of the basis matrices Wk’s and the noise variance matrix E.754

Mathematically, we achieve this by minimizing the squared Frobenius norm (k · kF ) of the di↵erence755

between the target matrix yyT and the submatrix KBB =
P`

k=0 �kWkBB756

kyyT � (
X̀

k=0

�kWkBB +E)k2F = �TM�� 2�Ta+ constant, (27)

where Mi,j = hWiBB ,WjBB iF and ai = hWiBB ,yy
T � EiF .757

To ensure the nonnegativity of �k, we parametrize it as �k = exp(⌘k). Furthermore, we introduce a758

regularization term
P`�1

k=2 k2⌘k�⌘k�1�⌘k+1k2 equal to the sum of squared second order finite di↵erences759

in ⌘. This term is added to the cost function in Eq.(27) to penalize the deviation of �1, · · · ,�l from a linear760

function on the log scale. We then find the optimal b� = exp(b⌘) by solving the following minimization761

problem762

b⌘ = argmin⌘2R`+1(e⌘)TMe⌘ � 2aT e⌘ + �
`�1X

k=2

k2⌘k � ⌘k�1 � ⌘k+1k. (28)

Here � > 0 is the regularization parameter. In practice, we can choose the optimal � using 10-fold763

crossvalidation. Since the vector ⌘ has only ` + 1 entries, the solution is readily found using generic764

minimization algorithms.765

Posterior sampling using Hamiltonian Monte Carlo766

Eq. 25 allows us to calculate the posterior variance for individual sequences. However, since the767

evaluation of this function is as costly as the MAP estimate, in practice we can only acquire the posterior768

variance for a subset of sequences of high interest. In this section we outline an alternative method for769

estimating the posterior covariance matrix by directly sampling from the posterior distribution in Eq. 24.770

Specifically, suppose f (l), (l = 1, · · · , n) is a set of n samples drawn from the posterior distribution using771

a Markov chain whose stationary distribution is our posterior distribution, then we can approximate the772

posterior covariance matrix with the finite sum773

K�K·B(KBB +E)�1KB· = E
h
(f � bf)(f � bf)

i
⇡ 1

n

nX

l=1

(f (l) � f)(f (l) � f)T , (29)

where f is the mean vector taken over all samples f (l).774

A major challenge for sampling from the posterior distribution is posed by the typical high dimension-775

ality of the sequence space. Specifically, as the dimension of the sample space increases, the region of high776

probability of the posterior distribution (the typical set) becomes increasingly singular and concentrated777

in space [39, 74]. As a consequence, the di↵usive behavior of popular naive random walk algorithms778

such as MCMC either leads to high rejection rates or highly autocorrelated samples, both making the779

exploration of the probability distribution extremely slow.780
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In this paper, we employ the Hamiltonian Monte Carlo (HMC) sampling method [39, 74]. HMC is a781

gradient-based algorithm that is able to take advantage of the local geometry of the typical set, making782

it more suitable for sampling from high dimensional probability distributions. HMC first introduces an783

auxiliary momentum parameter to complement each dimension of our target probability space. The total784

energy (the Hamiltonian) of the system is then defined as the sum of the potential energy given by the log785

probability of the posterior and the kinetic energy, which is equal to the squared norm of the momentum786

vector in our case. The algorithm proceeds using a Markov chain consisting of alternate random updates787

to the momentum vector and deterministic integration of Hamiltonian dynamics that leaves the total788

energy unchanged. In practice, this integration is discretized and performed using the so-called leapfrog789

method [39]. Since the numerical errors accumulated during the leapfrog steps lead to changes in total790

energy at the end of the integration, a Metropolis step at the end of the numerical integration is used to791

keep the Markov chain reversible. Together, this sampling scheme allows the HMC algorithm to make792

large jumps in probability space while keeping the rejection rate small.793

The HMC algorithm relies on the gradient of the log posterior probability to perform the Hamiltonian794

dynamics integration. To derive the gradient, first define the precision matrix for the posterior distribution795

796

eK = (K�K·B(KBB +E)�1KB·))
�1. (30)

Since the log probability of a sample f is log(f |y) = � 1
2 (f � bf)T eK(f � bf) + costant, we find797

1

2
r log p(f |y) = � eKf + eKbf . (31)

Next, we can simplify the expression for eK by expanding the inverse using the Woodbury identity.798

This gives799

eK = K�1 +


E�1 0
0 0

�
. (32)

Since Eq. 17 is also the eigendecomposition of K (SI Appendix ) and all �k’s are constrained to be800

positive, the inverse of K exists and is equal to K�1 =
P`

k=0
1
�k

Wk. Therefore, the evaluation of Eq. 31801

involves multiplying the sample f by a diagonal matrix and the matrix K�1, which can be greatly sped802

up using a representation of K�1 as a polynomial in the sparse graph Laplacian L.803

Finally, we employ the dual averaging algorithm [75] to find the optimal step size for the leapfrog804

integrator during an initial tuning phase, so that the average rejection rate of the Metropolis steps is805

near the optimal value of 0.65 [75].806

Regularized regression807

We use the following linear model to fit additive, pairwise and 3-way interaction models:808

bf(x) =
X

j

�j�j(x), (33)

where the �j(x) are an indicator variables encoding the presence or absence of particular alleles at809

particular sites in x. For the additive model, each �j(x) encode the presence or absence of a given810

allele on a given site. For the pairwise and three-way models, �j(x) encode the presence or absence of811

combinations of allelic states for each possible pair of sites or triple or sites, respectively. We can express812

Eq.(33) in matrix notation813

bf = X�. (34)

Given m observations, the dimension of X is m ⇥ `↵ for the additive model, and m ⇥
P2

k=0

�`
k

�
↵k and814

m⇥
P3

k=0

�`
k

�
↵k for the pairwise and three-way model, respectively.815
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We fit the additive model using ordinary least squares. The pairwise and three-way regression models816

were fitted using elastic net regularization, where the penalty of model complexity is a mixture of L1 and817

L2 norms. Specifically, we find our solution by minimizing818

min�2Rpky �X�k2 + �
⇣
(1� ↵)k�k22 /2 + ↵k�k1

⌘
, (35)

where the penalty for model complexity is controlled by ↵, which represents a compromise between lasso819

(↵ = 1) and ridge (↵ = 0) regressions. The parameter � controls the overall strength of the penalty.820

Both ↵ and � were chosen by 10-fold cross validation for each training sample. Elastic net regressions821

were fit using the R package glmnet [76].822

Processing of the SMN1 dataset823

The SMN1 raw dataset consists of enrichment ratio (number of output reads/number of input reads)824

across three libraries, each containing three replicates. Previous analysis discarded two replicates due to825

low sample quality. Since no library e↵ect was detected [40], we consider the enrichment ratios across 7826

replicates as independent samples. Depending on its presence or absence in each input sample, a splice827

site can have zero to 7 measured enrichment ratios. Out of the 32768 possible splice sites, 2036 are not828

represented in any replicates, and therefore are considered missing data.829

We assume the enrichment ratios across replicates for a given genotype are log-normally distributed.830

First, for sequences with all positive ratios across n replicates (1 < n  7), we use the bias corrected831

geometric mean [77] as the estimate of the median enrichment ratio using the formula832

µ = exp(y � b�2/2n), (36)

where y and b�2 are the arithmetic mean and sample variance of the log-transformed enrichment ratios,833

respectively. For sequences containing zero enrichment ratios where the above equation is inapplicable,834

we simply calculate the median of the enrichment ratios across replicates.835

We then estimate the variance for the log-normal distribution using the standard formula836

�2 = (exp(b�2)� 1) exp(2bµ+ b�2) (37)

For sequences with zero ratios and/or with only 1 replicate, we use the modified formula837

�2 = (exp(b�2)� 1) exp(2µ0 + b�2), (38)

where µ0 is the log of the median of the enrichment ratios and b�2 is the mean b�2 for all sequences with838

only positive ratios and at least two replicates.839

Low-throughput validation of unsampled SMN1 50ss840

To assess the predictive accuracy of our method for the activity of truly unsampled splice sites, we841

selected 40 50ss absent in the SMN1 dataset that are evenly distributed on the predicted PSI scale. We842

quantified the splicing activities of the selected 50ss in the context of a SMN1 minigene that spans exon 6-8843

with the variable 50ss residing in intron 7. The minigene construct is the same as the one used to generate844

the high-throughput data [40] (minigene sequence is available at https://github.com/jbkinney/845

15_splicing). The minigenes containing variable 50ss were inserted in to the pcDNA5/FRT expression846

vector (Invitrogen). 1µg of minigene plasmid was then transiently transfected into HeLa cells, which847

were collected after 48 hr. RNA was isolated from the minigene-expressing HeLa cells using Trizol (Life848

Technologies) and treated with RQ1 RNase-free DNase (Promega). cDNA was made using Improm-849

II Reverse Transcription System (Promega), following the manufacturer’s instructions. The splicing850

isoforms were then amplified with minigene-specific primers (F: CTGGCTAACTAGAGAACCCACTGC;851
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R: GGCAACTAGAAGGCACAGTCG) and P32-labelled dCTP using Q5 High-Fidelity DNA Polymerase852

(New England Biolabs) following the manufacturer’s instructions. PCR products were separated on a853

5.5% non-denaturing polyacrylamide gel and were detected using a Typhon FLA7000 phosphorimager.854

Finally, we used ImageJ (NIH) to quantify isoform abundance. All 50ss were assessed in triplicates.855

Visualization of the SMN1 splicing landscape856

To derive a low dimensional representation of the splicing landscape, we consider a population evolving857

in continuous time under weak mutation [79–81] with natural selection acting to maintain splicing activity.858

We first used our method to reconstruct the full landscape consisting of 65536 sequences corresponding to859

all combinations of alleles at the eight variable positions of the 9-nt splice site. Note that the reconstructed860

landscape also includes sequences with A or G at the +2 position, which do not constitute valid splice861

sites. Since these sequences are nonetheless accessible through mutation, we include them but set the PSI862

of all such sequences to be zero. Next, exon-exon junction sequencing in the original study revealed that a863

secondary GU at the -2 and -1 positions can be preferentially used over the GU or GC at position +1 and864

+2 [40], leading to a frameshift in the mature mRNA. Therefore, we set the PSI of all such sequences to865

be zero. Last, to ensure an appropriate degree of realism for the evolutionary Markov chain, we truncate866

all predicted PSI values to be between 0 and 100. We model evolution as a continuous-time Markov chain867

where the population moves between sequences at each fixation event based on fitness values given by868

the modeled PSI. The rate matrix Q of the Markov chain is869

Qx,x0 =

8
>><

>>:

1
↵�1

c(f(x0)�f(x))
1�e�c(f(x0)�f(x)) d(x, x0) = 1

�
P

x00 6=x Qx,x00 x = x0

0 otherwise,

(39)

where c is the conversion factor that transforms PSI to scaled fitness (Malthusian fitness ⇥Ne). We choose870

c so that the expected PSI at stationarity is equal to 80. Time is scaled so that the total mutation rate per871

site is equal to 1. We use the right eigenvectors of Q associated with the 3 greatest nonzero eigenvalues872

as coordinates to embed the splicing landscape in three dimensions, where each eigenvector is scaled so873

that the weighted mean of its squared entries is equal to the relaxation time of the associated eigenmode874

where the weights are given by the frequency of each genotype at stationarity (see [58] for details). This875

allows our low-dimensional representation of the landscape to optimally capture the expected time for a876

population to evolve between sequences [58]. Note that although we included sequences with A or G at877

position +2 when calculating the embedding coordinates, for simplicity we omitted these sequences when878

plotting the final visualization.879

Acquisition of human 50 splice sites880

Human 50ss were extracted from GENCODE Release 34 (GRCh38.p13) (available at https://www.881

gencodegenes.org/human/).882

Code availability883

We developed vcregression, a python command-line interface that implements the Empirical Vari-884

ance Component method described here (available at https://github.com/davidmccandlish/885

vcregression).886
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[20] Júlia Domingo, Guillaume Diss, and Ben Lehner. “Pairwise and higher-order genetic interactions931

during the evolution of a tRNA”. In: Nature 558.7708 (2018), p. 117.932

[21] Justin B Kinney et al. “Using deep sequencing to characterize the biophysical mechanism of a933

transcriptional regulatory sequence”. In: Proc. Natl. Acad. Sci. U.S.A. 107.20 (2010), pp. 9158–934

9163.935

[22] Alexander B Rosenberg et al. “Learning the sequence determinants of alternative splicing from936

millions of random sequences”. In: Cell 163.3 (2015), pp. 698–711.937

[23] Philippe Julien et al. “The complete local genotype–phenotype landscape for the alternative splicing938

of a human exon”. In: Nat. Commun. 7 (2016), p. 11558.939

[24] Shengdong Ke et al. “Saturation mutagenesis reveals manifold determinants of exon definition”. In:940

Genome Res. 28.1 (2018), pp. 11–24.941

[25] Daniel M Weinreich et al. “Should evolutionary geneticists worry about higher-order epistasis?” In:942

Curr. Opin. Genet. Dev. 23.6 (2013), pp. 700–707.943

[26] Johannes Neidhart, Ivan G Szendro, and Joachim Krug. “Exact results for amplitude spectra of944

fitness landscapes”. In: J. Theor. Biol. 332 (2013), pp. 218–227.945

[27] Tyler N Starr and Joseph W Thornton. “Epistasis in protein evolution”. In: Protein Sci. 25.7 (2016),946

pp. 1204–1218.947

[28] Zachary R Sailer and Michael J Harms. “Detecting High-Order Epistasis in Nonlinear Genotype-948

Phenotype Maps”. In: Genetics 205.3 (2017), pp. 1079–1088.949

[29] Zachary R Sailer and Michael J Harms. “High-order epistasis shapes evolutionary trajectories”. In:950

PLoS Comput. Biol. 13.5 (2017), e1005541.951

[30] Nicholas Wu et al. “Adaptation in protein fitness landscapes is facilitated by indirect paths”. In:952

eLife 5 (2016), e16965.953

[31] Julian Echave and Claus O Wilke. “Biophysical models of protein evolution: understanding the954

patterns of evolutionary sequence divergence”. In: Annu. Rev. Biophys. 46 (2017), pp. 85–103.955

[32] Frank J Poelwijk, Michael Socolich, and Rama Ranganathan. “Learning the pattern of epistasis956

linking genotype and phenotype in a protein”. In: Nat. Commun. 10.1 (2019), pp. 1–11.957

[33] Aneth S Canale et al. “Evolutionary mechanisms studied through protein fitness landscapes”. In:958

Curr. Opin. Struct. Biol. 48 (2018), pp. 141–148.959

[34] Daniel M. Weinreich et al. “The Influence of Higher-Order Epistasis on Biological Fitness Land-960

scape Topography”. In: J. Stat. Phys. 172.1 (2018), pp. 208–225. issn: 00224715. doi: 10.1007/961

s10955-018-1975-3. url: https://doi.org/10.1007/s10955-018-1975-3.962

[35] Jay F Storz. “Compensatory mutations and epistasis for protein function”. In: Curr. Opin. Struct.963

Biol. 50 (2018), pp. 18–25.964

[36] Jakub Otwinowski, David Martin McCandlish, and Joshua B Plotkin. “Inferring the shape of global965

epistasis”. In: Proceedings of the National Academy of Sciences 115.32 (2018), E7550–E7558.966

[37] Carl Edward Rasmussen and Christopher K I Williams. Gaussian processes for machine learning.967

Vol. 1. MIT press Cambridge, 2006.968

[38] Bradley P Carlin and Thomas A Louis. Bayes and empirical Bayes methods for data analysis.969

Vol. 88. Chapman & Hall/CRC Boca Raton, 2000.970

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.10.14.339804doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.339804


[39] Radford M Neal et al. “MCMC using Hamiltonian dynamics”. In: Handbook of markov chain monte971

carlo 2.11 (2011), p. 2.972

[40] Mandy SWong, Justin B Kinney, and Adrian R Krainer. “Quantitative Activity Profile and Context973

Dependence of All Human 5’ Splice Sites”. In: Mol. Cell (2018).974

[41] R A Fisher. “The Correlation Between Relatives on the Supposition of Mendelian Inheritance”. In:975

Trans R Soc Edinburgh 52.02 (1918), pp. 399–433.976

[42] Trevor Hinkley et al. “A systems analysis of mutational e↵ects in HIV-1 protease and reverse977

transcriptase”. In: Nature Genetics 43.5 (2011), pp. 487–489.978

[43] Robert Happel and Peter F Stadler. “Canonical approximation of fitness landscapes”. In: Complex-979

ity 2.1 (1996), pp. 53–58.980

[44] Peter F Stadler and Robert Happel. “Random field models for fitness landscapes”. In: J. Math.981

Biol. 38.5 (1999), pp. 435–478.982

[45] Manfred Eigen, John McCaskill, and Peter Schuster. “The molecular quasi-species”. In: Adv. Chem.983

Phys 75 (1989), pp. 149–263.984

[46] Edward D Weinberger. “Fourier and Taylor series on fitness landscapes”. In: Biol Cybern 65.5985

(1991), pp. 321–330.986

[47] Luca Ferretti et al. “Measuring epistasis in fitness landscapes: The correlation of fitness e↵ects987

of mutations”. In: Journal of Theoretical Biology 396 (2016), pp. 132–143. issn: 10958541. doi:988

10.1016/j.jtbi.2016.01.037.989

[48] Juannan Zhou and David M McCandlish. “Minimum epistasis interpolation for sequence-function990

relationships”. In: Nature communications 11.1 (2020), pp. 1–14.991

[49] Peter F Stadler. “Landscapes and their correlation functions”. In: J. Math. Chem. 20.1 (1996),992

pp. 1–45.993

[50] Peter F Stadler. “Fitness landscapes”. In: Biological Evolution and Statistical Physics. Springer,994

2002, pp. 183–204.995

[51] Tinghua Wang, Dongyan Zhao, and Shengfeng Tian. “An overview of kernel alignment and its996

applications”. In: Artificial Intelligence Review 43.2 (2015), pp. 179–192.997

[52] John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. “Fast Gaussian process methods for998

point process intensity estimation”. In: Proceedings of the 25th international conference on Machine999

learning. 2008, pp. 192–199.1000

[53] Peter F Stadler. “Random walks and orthogonal functions associated with highly symmetric graphs”.1001

In: Discrete mathematics 145.1-3 (1995), pp. 229–237.1002

[54] DG Higman. “Intersection matrices for finite permutation groups”. In: Journal of Algebra 6 (1967),1003

pp. 22–42.1004

[55] Daniel M Weinreich et al. “The influence of higher-order epistasis on biological fitness landscape1005

topography”. In: Journal of Statistical Physics 172.1 (2018), pp. 208–225.1006

[56] Hui Zou and Trevor Hastie. “Regularization and variable selection via the elastic net”. In: Journal1007

of the royal statistical society: series B (statistical methodology) 67.2 (2005), pp. 301–320.1008

[57] Yasushi Kondo et al. “Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein1009

particle, reveals the mechanism of 5 splice site recognition”. In: Elife 4 (2015), e04986.1010

[58] David M McCandlish. “Visualizing fitness landscapes”. In: Evolution 65.6 (2011), pp. 1544–1558.1011
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