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High-throughput knockout screens based on CRISPR-Cas9 are widely used to evaluate the essentiality of

genes across a range of cell types. Here we introduce a probabilistic modeling framework, Analysis of CRISPR-

based Essentiality (ACE), that enables new statistical tests for essentiality based on the raw sequence read counts

from such screens. ACE estimates the essentiality of each gene using a flexible likelihood framework that ac-

counts for multiple sources of variation in the CRISPR-Cas9 experimental process. In addition, the method

can identify genes that differ in their degree of essentiality across samples using a likelihood ratio test. We

show using simulations that ACE is competitive with the best available methods in predicting essentiality, and

is especially useful for the identification of differential essentiality. Furthermore, by applying ACE to publicly

available CRISPR-screen data, we are able to identify both known and previously overlooked candidates for

genotype-specific essentiality, including RNA m6-A methyltransferases that exhibit enhanced essentiality in the

presence of inactivating TP53 mutations. In summary, ACE provides improved quantification of essentiality

specific to cancer subtypes, and a robust probabilistic framework for identifying genes responsive to therapeutic

targeting.
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Pathogenic mutations and genotype-specific cancer liabilities can now be tested at unprecedented scales,

owing to CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats — CRISPR-associated

protein 9) technology and large panels of diverse cell lines (1–10). These technologies allow genetic vul-

nerabilities to be demonstrated through direct perturbation, rather than through indirect associations from

population enrichment studies or gene expression levels. Furthermore, in comparison to previous screens

based on RNA interference, CRISPR knockout screens offer substantially improved sensitivity and speci-

ficity, due to increased effectiveness at disrupting targeted elements and reduced off-target effects (11–13).

In a typical CRISPR-Cas9 screen (Fig. 1a), the artificially expressed Cas9 nuclease introduces a double-

stranded break in native DNA, guided by homology with the separately infected single-strand guide RNA
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(sgRNA). The cell then repairs the double-stranded break, typically inserting or deleting several nucleotides

at the cut site in the process. The resulting genetic lesion often disrupts the function of the targeted region.

The genetically modified cell is allowed to proliferate for a series of divisions, after which the effects on

cell growth are measured by sequencing the sgRNA present in the final surviving population of cells. Lethal

sgRNA constructs that have disrupted sites critical for normal cell growth will be underrepresented in the

final population in contrast to ‘nonessential’ control sgRNAs. Moreover, differential essentiality can be de-

tected from different levels of sgRNA depletion between samples. Hundreds of different cell lines have now

been assayed in publicly available CRISPR knockout screens, offering an excellent opportunity to compare

gene essentiality between panels of cancer cell lines according to their oncogenic mutations.

Within the general paradigm of a CRISPR-Cas9 screen, several variations of experimental design are

possible. For example, many experiments evaluate the depletion of cells infected with lethal sgRNA by

sequencing both the initial infected and the final population of cells (14–17). In contrast, other experiments

streamline the process by sequencing only the initial pool of sgRNA constructs prior to infection (9, 18, 19),

and use the sgRNA abundances in this ‘master library’ as a proxy for the initial frequencies. However, the

sgRNA abundances in the master library vary by several orders of magnitude, and each biological replicate

represents a separate infection into a new pool of cells, making this proxy imperfect. Overall, the variation

in experimental design necessitates a flexible analytical framework that can robustly account for different

sources of experimental error.

Through deliberate selection of the cell lines used, a CRISPR-Cas9 screen can reveal genes that are

essential only in a specific oncogenic context, for example, in the presence of a loss-of-function mutation

of an important tumor suppressor such as TP53. These context-dependent essential genes in cancer —

sometimes called ‘non-oncogene addictions’ — are of particular interest because they may offer druggable

therapeutic targets even when irreversible loss-of-function mutations to oncogenes are present (20). A better

understanding of genotype-specific gene essentiality has the potential to enable patient-specific therapeutics

that are tailored to mutations present at the time of diagnosis. Non-oncogene addiction has recently achieved

prominence, for example, in the first round of chemical inhibitors for RNA epigenetic modifiers soon to enter

phase I trials (21).

However, statistical tests for identifying such context-dependent essentiality require special care. Not

only are they subject to reduced power because they require contrasting one subset of the data with another,
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but they can yield spurious results if the ‘test’ and ‘control’ subsets are not adequately matched in other

respects. Thus, rigorous testing frameworks are needed that efficiently make use of the data and control for

such biases.

Many of the statistical tests that have been applied to CRISPR-Cas9 screens rely on summary statistics

such as average read counts across samples, or log-fold changes of read counts between the initial and final

populations of cells. However, these summary statistics are incomplete descriptions of the raw data, leading

to inevitable loss of power. In addition, these tests can be difficult to adapt to alternative experimental de-

signs. For example, methods such as BAGEL and JACKS rely upon the log-fold change of read abundances

(1, 2, 8–10, 22), but these log-fold changes may be calculated with respect to read counts obtained from

either the initial infected population of cells or the master library, with potentially substantial impacts on the

power of the tests. Another issue is that some methods reduce the estimation of gene essentiality to a binary

classification of ‘essential’ or ‘nonessential’ genes (2, 4, 23), enabling the identification of clearly essential

genes but blurring the comparison of weak and strong effects. Finally, most methods do not test directly for

differential essentiality within sample subtypes (see Supplementary Fig. S1 for a comparison of methods).

In this paper, we introduce the Analysis of CRISPR-based Essentiality (ACE), a flexible probabilistic

method that directly estimates gene-level essentiality values by maximum likelihood, accommodates variable

experimental designs, and enables rigorous likelihood-based tests of both absolute and differential essential-

ity. The ACE model describes each experimental phase of the CRISPR screen — the master library infection,

the initial and final sequencing — as a separate probabilistic process forming a hierarchical Bayesian model.

The modularity of our framework permits the analysis of a variety of CRISPR-screen data sets while ac-

counting for differences in experimental design. We validate ACE using both simulations and published

sets of essential and nonessential genes. We then apply the method to publicly available data from Achilles

DepMap (9, 24) and demonstrate several compelling examples of differential essentiality in non-small cell

lung cancer, including both known and novel cases.

Results

Model Overview. ACE makes use of a hierarchical Bayesian model design to integrate information at the

sample, gene, and individual sgRNA levels, with separate parameters at each level (see Fig. 1). The model

is structured to account separately for the major sources of uncertainty at each stage of the experimental
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Fig. 1. CRISPR-Cas9 Negative Selection Screen and Probabilistic Graphical Model. (a) The initial pool of Cas9-expressing cells
is infected with a lentiviral sgRNA master library. The initial sgRNA abundances are measured by sequencing either the newly infected
population of cells, the master library, or both. Cells are allowed to grow, and final sgRNA abundances are obtained by sequencing the
surviving cells. (b) Graphical model illustrating how information is pooled across samples (s) and sgRNAs targeting each gene (g ∈G) to
infer each gene’s essentiality, φG. From top-left to bottom-right, mg represents the fraction of the master library consisting of sgRNA g; cs
represents the number of cells in sample s (estimated by the user); nsg represents the number of cells initially infected with sgRNA g (such
that nsg ≤ cs); dsg represents the corresponding number of surviving cells after cell growth; and xsg and ysg represent the read counts
obtained by sequencing g in the initial and surviving cells, respectively. The numbers of infected cells prior to (nsg) and following (dsg)
growth are assumed to be related by the deterministic function dsg = f(nsg;φG, εg) = nsg(1−εgφG) (indicated by factor-graph notation).
The efficiency εg is determined by logistic regression and the gene essentiality values φG are estimated by maximum likelihood (see
Methods). The prior distribution for nsg and the sampling distributions for xsg and ysg are assumed to be Poisson. The scaling factors
γs and γ′

s accommodate global properties of sequencing depth and cell growth, and are estimated in pre-processing (see Methods).
Shaded nodes represent variables observed in the data, unfilled nodes represent latent variables, and smaller solid circles represent free
parameters.

process. In addition, if samples are partitioned into ‘test’ and ‘control’ groups, ACE can estimate gene

essentiality within each sample group separately, allowing for the detection of differential essentiality (dis-

cussed further below).

As illustrated in Fig. 1b, the structure of the ACE model reflects the experimental design of a CRISPR-

Cas9 screen. The initial number of infected cells nsg, for each sgRNA g and sample (replicate) s, is assumed

to be Poisson-distributed with an expected value given by the relative frequency of guide g in the master

library, mg, scaled by the number of cells, cs, infected in the assay. Estimates of both mg and cs are provided

by the user. The final number of infected cells, dsg, is then assumed to be given by a scaled version of the

initial number, dsg = nsg(1− εgφG), where εg ∈ [0,1] denotes the editing efficiency of sgRNA g and φG ≤ 1

denotes the essentiality of gene G. These initial and final numbers of infected cells are not observed directly

(they are latent variables) but are indirectly sampled via the sequencing process, resulting in observed read

counts of xsg and ysg, respectively, which are provided by the user as inputs to the inference procedure.

We assume Poisson-distributed read counts xsg and ysg, and sum over possible values of the latent variable
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nsg in the likelihood calculation (see Methods). Notably, the combination of the Poisson prior and the

Poisson sampling distribution adequately captures the observed overdispersion in the read count data (see

Supplementary Fig. S2). Independence is assumed across samples and replicates. The free parameters of the

model are estimated by numerical maximization of the likelihood function (see Methods). The ACE software

reports estimates of not only the essentiality of each gene, φG, but also the efficiency of each sgRNA, εg.

A value of φG = 1 represents complete essentiality (driving dsg = nsg(1− εgφG) to zero in the case of

efficient editing, εg = 1), whereas a value of φG = 0 represents complete nonessentiality (allowing dsg =

nsg even when εg > 0). Notably, however, our definition of φG also allows for negative values, reflecting

increased cell growth after inactivation of gene G. Such an increase might occur, for example, if a tumor

suppressor gene were deactivated by guide RNAs. In practice, negative estimates of φG are fairly frequently

observed, either by random chance or from true increases in cell growth.

To pool information across sgRNAs and ensure identifiability of εg and φG, we determine εg by logistic

regression based on a user-defined set of features, and treat the regression coefficients only as free parameters

(Methods). The efficiency of a class of sgRNA has been shown to be strongly correlated with a number of

genomic features, including local GC content, proximity to heterochromatin, number of base mismatches,

and abundance of off-target sites (18, 25–28). However, for simplicity and efficiency, we have used only

the GC content of the sgRNA (one of the strongest predictors of efficiency) in our initial implementation.

Nevertheless, ACE can easily be extended to consider additional features.

The two sample-specific scaling factors, γs and γ′s, determine the relationships between the numbers of

infected cells and the expected sgRNA counts in the initial and final data sets, respectively. These param-

eters apply globally to all sgRNAs and all genes. Rather than including these parameters in the numerical

optimization of the likelihood function, we find it adequate to estimate them in preprocessing based on a

median-of-ratios normalization. Notably, γs is primarily a reflection of sequencing read depth, whereas γ′s

is determined by both read depth and sample-specific factors in cell growth (see Methods). In the case

where the bulk distribution is strongly influenced by essential genes, as when a library has a large number of

essential targets, γ′s can alternatively be estimated from designated negative controls.

Differential Essentiality. In the case of differential essentiality, ACE compares two (log) likelihoods for each

gene G: a likelihood maximized under the constraint that the essentiality, φG, is the same in designated
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‘test’ and ‘control’ sample categories, and a likelihood that allows for different values of φG in these two

categories. These sample categories can be selected by the user to examine differences, for example, in cell

lines with and without mutations in KRAS, or lung- versus liver-derived sample panels. The two per-gene

likelihoods are then compared in a likelihood ratio test, with significance assessed by comparison with an

empirical null distribution based on simulated data (see Methods). In this way, ACE performs a rigorous

test of the alternative hypothesis that gene G exhibits different degrees of essentiality in the test and control

categories against a null hypothesis of equal essentiality.

Simulation Study. To evaluate the ability of ACE to infer sgRNA-, sample-, and gene-specific parameters,

we devised a simulation method to generate artificial CRISPR-screen data sets. To ensure that our simulated

data resemble data from real CRISPR screens as closely as possible, our simulator, called empiriCRISPR,

mimics the variation in read counts observed in a reference experiment and makes minimal assumptions

about the process by which the data are generated (see Methods and Supplementary Fig. S3). Importantly,

empiriCRISPR is fully independent of the probabilistic model and parameter inference used in ACE.

Benchmarking of Absolute Essentiality Predictions. Using empiriCRISPR, we generated data sets of 5,250

genes in which the essentiality of each gene ranged from complete nonessentiality (φG = 0) to complete

essentiality (φG = 1). To ensure a fair comparison with methods that rely on a median-based normalization

method, we took care to include an adequate number of nonessential genes in each data set, simulating 3,150

genes with φG = 0 (60% of all genes). The remaining 40% of genes consisted of 300 genes at each of

several intermediate values of φG and 600 genes at φG = 0.99 (see Fig. 2a). For each choice of simulation

parameters, three replicates were simulated with four sgRNAs targeting each gene and an average of 300

reads per sgRNA. As a template data set for empiriCRISPR, we used a collection of previously published

genome-wide CRISPR screens in which both the master library and initial infected sgRNA abundances were

sequenced along with the depleted samples (16). The master library was generated through random selec-

tion of sgRNA from the template screen, followed by simulation of read counts according to the variation

observed in the template.

We first compared ACE’s estimates of essentiality with an estimator based on the average fold change

(AFC) in read counts (see Methods), which has been used in several previous studies (17, 29) (see Fig. 2a).

The ACE estimates are approximately unbiased and exhibit relatively low variance (see also Supplementary
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Fig. S4). By contrast, the AFC-based estimates display a downward bias, particularly at low simulated values

of φG, and show substantially greater variance. Notably, the simple AFC-based method often yields negative

estimates of φG even when the true φG is positive.

Many methods do not provide a numerical estimate of the essentiality of a gene, but instead focus on

a binary classification of genes into ‘essential’ and ‘nonessential’ categories. To compare ACE with these

methods, we simulated data sets containing 300 genes at each of several values of φG, together with 3,150

nonessential genes. For each of these experiments, we then compared the performance of ACE in binary

classification with BAGEL (1), JACKS (8), and a classifier based on simply thresholding the AFC statistic.

We summarized the performance of all methods using Receiver Operating Characteristic (ROC) curves and

the Area Under the ROC Curve (AUC) metric (Fig. 2b and (c)). We found that all methods performed

similarly well at high values of φG, with the AFC-based method performing slightly worse, but in the harder

scenarios where φG takes moderate to low values (φG < 0.5), JACKS and ACE performed significantly

better than the others. However, JACKS slightly outperformed ACE on this task, apparently because it

makes particularly efficient use of the negative controls in defining a null distribution.

Benchmarking of Differential Essentiality Predictions. To test the detection of differential essentiality, we

simulated CRISPR-screen data in two samples (‘test’ and ‘control’) that included 300 genes at each of several

values of φGtest that were essential only in the ‘test’ sample (see Methods). To represent uniformly essential

genes, both samples also included 300 genes at strong (φG = 0.99) and 300 genes at moderate (φG = 0.5)

essentiality, as well as a large collection (3,150) of nonessential genes (φG = 0). Similar to the previous

tests, we compared the performance of ACE with BAGEL, JACKS, and a simple AFC-based method in the

detection of the differentially essential genes. Because the other methods do not support direct tests for

differential essentiality, we devised tests based on the results of two separate tests for essentiality. After

some experimentation, we settled on using the ratio of p-values for the test and control panels for JACKS,

and the absolute difference in the Bayes Factors for the test and control panels for BAGEL (see Methods).

We found that ACE’s likelihood ratio test for differential essentiality did result in substantially better

power than the competing methods (Fig. 3). All methods had reasonably good power when φGtest was large

(≥ 0.6) with JACKS performing somewhat more poorly than the others; but at values of φGtest < 0.6, ACE

showed a clear advantage. Even when φGtest = 0.2, ACE was able to detect 67% of differentially essential
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Fig. 2. Detection of Absolute Essentiality in Simulated Data. (a) Inferred essentiality values (φ̂) for 300 genes simulated in three
replicates at each essentiality value shown (φ). Simulated data sets also included 3,150 nonessential genes (φG = 0; not shown), 300 of
which were provided to each method as negative controls. Black horizontal bars indicate true values (φ̂ = φ). (b) Performance in binary
classification (essential vs. nonessential) of simulations of 300 ‘essential’ genes at various values of φG and 300 ‘nonessential’ genes.
Performance reported as the Area under the Receiver Operating Characteristic (ROC) curve. Only initial and final read counts from the
simulation were used for all methods. (c) Full ROC curves for each of the simulated essentiality values. ‘ACE’ — our probabilistic method
(thresholded on log likelihood ratios), ‘AFC’ — method based on average fold changes in sgRNA abundance (thresholded on z-scores;
see Methods). ‘BAGEL’ — Bayesian Analysis of Gene Essentiality (2) (thresholded on reported Bayes Factors); ‘JACKS’ — Joint analysis
of CRISPR/Cas9 knockout Screens (8) (thresholded on reported p-values).

genes (Fig. 3b).
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Fig. 3. Detection of Differential Essentiality in Simulated Data. (a) Performance in binary classification of differential essentiality
for 300 genes that were ‘essential’ (at various levels of simulated essentiality φ) in ‘test’ samples and ‘nonessential’ (φ = 0) in ‘control’
samples. Both samples also included 300 genes at strong (φG = 0.99) and 300 genes at moderate (φG = 0.5) essentiality, as well as a
large collection (3,150) of nonessential genes (φG = 0). 300 genes from each of these uniformly essential sets were used as negative
controls. (b) Fractions of differentially essential genes correctly detected by ACE (at a Bonferroni-corrected empirical p < 0.05) at various
values of simulated essentiality φ. (c) Full ROC curves for each of the simulated differential essentiality levels. In all cases, three replicates
of the control and test samples were simulated for each value of φ. Methods are as described in Fig. 2.
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Analysis of Real Data.

Identification of Essential Genes. We next sought to evaluate the performance of ACE in detecting previ-

ously identified essential genes from real data. We focused on 688 genes that have been classified as essential

in at least two previous studies (1–3), based on both RNAi and CRISPR screens (19). For negative controls,

we used 634 genes that are not widely expressed according to public RNA-seq data (see Methods). We used

ACE to evaluate the essentiality of both gene sets using the CRISPR-screen data from Achilles DepMap. No-

tably, this data set includes sequence data representing only the sgRNA master library and the post-depletion

sgRNA abundances. To ensure a similar genetic background between samples, we focused on 92 unique cell

lines that all originate from lung adenocarcinoma, a subtype of non-small cell lung cancer (NSCLC).

Considering the many differences in methods and data sets, we found that ACE’s characterization of these

genes was fairly concordant with previous results. The genes previously identified as essential (positive

controls) yielded both clearly elevated estimates of essentiality (φ̂) and clearly elevated log likelihood ratios

(LLRs) in a test for non-zero essentiality relative to the negative controls (Fig. 4a). At a LLR threshold

defined such that only 5% of the negative controls exceeded it (i.e., with empirical p = 0.05), 90.5% of the

positive controls were predicted to be essential. In an ROC analysis based on the same data, ACE was able to

distinguish the positive and negative controls with high accuracy (AUC = 0.97; see Supplementary Fig. S5).

Detection of Known Cases of Genotype-Specific Essentiality. One possible application of ACE’s test for

differential essentiality is to identify significant differences in essentiality between distinct genetic back-

grounds. For example, cases of synthetic lethality may appear as genes that are essential in test samples in

which another gene is mutated and nonessential in control samples in which that gene is intact. Conversely,

other genes may be found to be essential in the presence of the wildtype but not the mutant genotype. To ex-

plore this possibility, we contrasted cell lines annotated by the Cancer Cell Line Encyclopedia (CCLE) with

variants of two very well-known cancer-related genes, the tumor suppressor TP53 and the proto-oncogene

KRAS (see Methods) (30, 31).

We restricted ourselves to NSCLC samples in all cases, to avoid spurious signals unrelated to the muta-

tions of interest. Moreover, we structured our test specifically to identify genes that were significantly more

(rather than less) essential in the test samples than in the control samples. As in the previous analysis, we

used data from Achilles DepMap (9, 24).
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Fig. 4. Identification of known genotype-specific essentiality. (a) Estimates of essentiality per gene (φ̂; x-axis) and essentiality log
likelihood ratios (Ess. LLR; y-axis) from ACE based on genome-wide CRISPR-screen data from the Achilles DepMap Project. Results
are shown for 688 ‘essential’ genes (Pos. Controls; red) identified in references (1–3) and 634 nonessential genes (Neg. Controls; blue;
see Methods for details). The LLR metrics are relative to a null hypothesis of φ̂ = 0. (b) Estimated essentiality per gene in wild-type
TP53 (φ; x-axis) vs. log likelihood ratio (LLR) for differential essentiality in wild-type vs. mutant TP53 based on DepMap data for NSCLC
Adenocarcinoma (9). Several high-scoring genes are highlighted with labels, including MDM2 (see text). (c) Top 10 genes identified as
differentially essential in NSCLC samples having wildtype TP53, ordered by differential essentiality log likelihood ratio (Diff. Ess. LLR).
(d) Top 10 genes identified as differentially essential in NSCLC samples having mutant KRAS. In panels (b)–(d), the horizontal dashed
lines indicate Bonferroni-corrected empirical p-values of 0.05. Genes highlighted in red in panels (c) and (d) are discussed in the text.

In the case of TP53, we first defined the test samples as ones with ‘wildtype’ copies of TP53, with no

annotated mutations, and the control samples as ones in which TP53 has ‘damaging’ mutations (denoted

here as ∆TP53; see Methods). This test for a wildtype-dependent increase in essentiality yielded a clear

outlier: the gene MDM2 (Fig. 4b and (c)). It is well known that cell lines with wildtype TP53 require an

intact copy of MDM2 to negatively regulate the TP53 protein and allow for cell proliferation (32, 33). This

result therefore provides support for the biological validity of our test for differential essentiality.

In the case of KRAS, which becomes oncogenic in the presence of gain-of-function mutations and is
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known to drive aggressive tumorigenesis (34), we defined the samples in the opposite way: with test samples

containing a missense mutation in KRAS (∆KRAS), the majority of which are activating gain-of-function

mutations (35), and control samples with no annotated SNP (WTKRAS). Samples containing wildtype TP53

were additionally excluded to remove the signal from MDM2. As predicted, the KRAS gene itself emerged

as having, by far, the strongest signal for a mutation-dependent increase in essentiality (Fig. 4d), further

validating our method.

Test for Non-Oncogene Addictions in TP53 Mutants. Finally, we swapped the ‘test’ and ‘control’ samples

for TP53 — using ∆TP53 samples for the ‘test’ and wildtype samples for the ‘control’ — with the goal

of discovering novel non-oncogene addictions. As discussed above, such addictions may suggest new drug

targets in cases of undruggable loss-of-function mutations. This test of increased essentiality in the presence

of damaging TP53 mutations identified several candidate genes (Fig. 5a and Supplementary Fig. S6).

Notably, the top candidates included two genes encoding RNA m6-A methyltransferases, METTL14, and

METTL16. A third gene, METTL3, encoding the heterodimeric partner of METTL14, also scored highly

for differential essentiality (Fig. 5b). These three genes were assigned moderately high scores for differen-

tial essentiality according to the CERES method from the Achilles Project, but CERES did not rank any of

them among its top 100 differentially essential genes (Fig. 5d). This difference in ranking between ACE

and CERES possibly reflects ACE’s improved power for detecting differential essentiality. All three methyl-

transferases are expressed at a moderate to high level across the TP53-mutant cell line panel, according to

CCLE expression data (Fig. 5c and Supplementary Fig. S7) (24, 30, 31).

Several studies have noted CRISPR sgRNA cutting in multiple regions can reduce cell proliferation, re-

gardless of the essentiality of the sites targeted. To ensure that the signatures of essentiality in METTL3,

METTL14, and METTL16 are not merely reflective of changes in copy number, we compared gene duplica-

tions between mutant and wildtype TP53 sample panels (Supplementary Fig. S8). Copy number variation

was similar between the two panels, suggesting that differences in gene essentiality are driven by biologi-

cal activity of the genes themselves. In addition, flanking genomic regions of METTL14 and METTL16 do

not contain known oncogenic drivers, eliminating the possibility that CRISPR-induced lesions are simul-

taneously influencing a nearby essential gene (Supplementary Fig. S9). Overall, our findings suggest that

METTL3, METTL14, and METTL16 are promising candidates for non-oncogene addiction in the absence of
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Fig. 5. RNA Methyltransferase Genes Associated with TP53. (a) Top 10 genes (by differential essentiality log-likelihood ratio) showing
increased essentiality in NSCLC cell lines that harbor ‘damaging’ mutations in TP53 (∆TP53) according to the CCLE, suggesting pos-
sible non-oncogene addictions. The RNA m6-A methyltransferases METTL14 and METTL16 (green) are of particular interest (see text).
(b) Estimated essentiality of RNA methyltransferase genes in ∆TP53 samples (x-axis) vs. log likelihood ratio in ∆TP53 vs. wild-type TP53
samples (y-axis). (c) Gene expression data from the CCLE, processed by the Achilles DepMap, for the ∆TP53 cell line panel highlighting
the differentially essential methyltransferase genes from panel (b). MDM2 is shown as a positive control and nonessential ZNF366 is
shown as a negative control. The distribution of all genes is shown in gray. (d) Comparison of differential essentiality candidates and
controls based on ACE and the CERES method from Project Achilles (see Methods for details). An asterisk indicates a result applies for
values associated with MDM2 only in the presence of wildtype TP53; other genes were tested for essentiality specific to cell lines with a
damaging mutation in TP53 (∆TP53). In panels (a) and (b), the horizontal dashed lines indicate Bonferroni-corrected empirical p-values
of 0.05.
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functional TP53.

Discussion

In this paper, we have introduced a new probabilistic modeling and inference method, called ACE, for

detecting essential genes and estimating levels of essentiality from CRISPR negative selection screens. As

we have shown, ACE uses a hierarchical Bayesian model to account for the uncertainty associated with each

major stage of a CRISPR screen and enable maximum-likelihood estimation of gene-level essentiality. It

also supports likelihood ratio tests for both absolute and differential essentiality.

While the number of known essential genes is growing, simulations remain critical in providing an ob-

jective gold standard to evaluate the performance of computational methods. To test ACE and compare it

with other available methods, we developed a new simulator, called empiriCRISPR. Our strategy with em-

piriCRISPR was not to generate simulated data according to a process-based model — which would tend

not to account for all of the sources of noise in real data, and would be difficult to define without heavily

overlapping the assumptions of ACE itself — but instead to mimic the empirical properties of real data sets

as closely as possible. In this way, we were able to generate ‘authentic-looking’ data sets of arbitrary size

with known sets of essential genes at known levels of essentiality. We showed that ACE performs quite well

on these data sets despite their realistic ‘noise’ characteristics.

To our knowledge, ACE is the first method to support a direct likelihood-based test for differential es-

sentiality between designated ‘test’ and ‘control’ sample panels. This test can be useful in a variety of

applications, including tests for differences in essentiality in the presence of mutant and wild-type versions

of known cancer genes. In comparison to indirect tests for differential essentiality — derived from separate

analyses of ‘test’ and ‘control’ panels — ACE appears to offer improved power according to our simulation

study (see Fig. 3). Notably, it is straightforward to define one-sided variants of this test to detect increased or

decreased essentiality in the ‘test’ relative to ‘control’ panels. The framework also extends naturally to tests

of more complex hypotheses (e.g., test essentiality > 0 and control essentiality ≤ 0). According to standard

statistical theory, these will all be well-powered tests, provided they are applied to sufficiently abundant data

for the asymptotic properties of likelihood ratio tests to become apparent.

As illustrated by the major revisions of ‘core essential gene’ sets over the past 10 years, the definition of

‘essential genes’ is inevitably somewhat subjective and arbitrary. In reality, essentiality occurs on a spectrum
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and depends on the particular genetic background, cell-type, and conditions tested. As a result, candidate

‘essential’ genes require carefully designed experiments for validation, and researchers should be cautious

about relying upon published sets of genes labeled ‘essential’. Estimates of φG in ACE are also limited,

in that they reflect an ‘average’ essentiality across all samples analyzed, so users must take care to choose

a panel of samples that ensures a level of diversity appropriate for the biological question of interest. For

example, a diverse collection of tissue samples or cell lines may be most suitable for the identification of

universally essential genes, whereas a set of patient-derived tissue samples may be best for personalized

tumor therapeutics. Notably, because it is a relative metric, differential essentiality may in some cases

generalize better than absolute essentiality. We anticipate that findings of differential essentiality may be of

interest to researchers exploring genetic vulnerabilities even in other tissues and cancer subtypes.

Among the genotype-dependent differentially essential genes identified by ACE, we found the RNA

methyltransferase genes METTL3, METTL14, and METTL16 to be particularly interesting. RNA m6-A

modifications have recently been found to be critical in the maintenance of leukemic cell growth (36). These

genes have been previously implicated in other cancer types, and RNA m6-A methyltransferases in general

have been a topic of recent interest in the new field of cancer epitranscriptomics, with several phase I trials

targeting METTL3 due to begin in 2021 (21). METTL3, in particular, was recently identified as interacting

with TP53 mRNA and inducing drug resistance in a biochemical assay in SW48 colon cancer cells (37).

Another study found METTL3 expression to be essential in NSCLC adenocarcinoma, although only two cell

types were examined (38). METTL3 mRNA knockdown with siRNA has also been shown, by M6A-seq, to

result in an enrichment of methylation changes in genes in the p53-signaling pathway (39). Finally, patients

with genetic alterations of m6A regulatory genes have been found to have an increase in TP53 mutations,

albeit only with sample sizes of n = 5 (40). Thus, there is abundant indirect evidence suggesting that these

genes deserve further investigation as possible candidates for addiction in the absence of functional TP53.

More generally, we anticipate that improved tests for differential essentiality, such as the ones introduced

here, combined with rapidly growing CRISPR-screen data sets, will enable the detection of many new cases

of genotype-dependent differences in essentiality, including both synthetic lethality and non-oncogene ad-

diction.
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Methods

Initial Infection. The initial abundance nsg of each sgRNA g within sample s is assumed to be given by a

Poisson distribution with mean µ1 = csmg, where cs is the total number of cells infected in the screen and

mg is the relative frequency of g in the master library:

P
(
nsg|cs,mg

)
= Pois

(
nsg|µ1 = csmg

)
. (1)

The value mg for each sgRNA g is estimated as the fraction of sequence reads corresponding to g in the

sequence data for the master library. If multiple replicates are available, an average is taken. The parameter

cs is either provided by the user or a default value of 1000 is assumed.

Initial Read Counts. The sgRNA sequencing counts xsg from the initial infected population nsg are as-

sumed to follow a Poisson distribution with mean µ2 = γsnsg, where γs is a scaling parameter that captures

the relationship between sequencing depth and the number of cells infected:

P
(
xsg|γs,nsg

)
= Pois

(
xsg|µ2 = γsnsg

)
. (2)

Final Read Counts. Following several rounds of cell division, the final abundance of each sgRNA g is

assumed to be dsg = nsg(1− εgφG), where φG is the essentiality of the gene G that is targeted by g, and εg is

the efficiency of g. This process is assumed to be deterministic; we assume that the number of infected cells

is sufficiently large and sufficiently many cell divisions have occurred that stochastic effects can be ignored,

and uncertainty in the value of dsg can absorbed by the distributions for nsg and ysg. The final read counts

ysg are then assumed to follow a Poisson distribution with mean µ3 = γ′sdsg, where γ′s is the final read count

scaling factor:

P
(
ysg|dsg,γ′s, εgφG

)
= Pois

(
ysg|µ3 = γ′sdsg

)
= Pois

(
ysg|µ3 = γ′snsg(1− εgφG)

)
. (3)

The scaling factor γ′s not only captures the relationship between sequencing depth and the number of cells

that remain after cell growth, but also can accommodate sample-specific differences in the growth rate of all
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cells (independent of sgRNA).

Guide-Specific Effects. The sgRNA-specific efficiency εg is derived from a general feature vector by lo-

gistic regression:

εg = exp(ω ·Fg)
1 + exp(ω ·Fg)

, (4)

where Fg is a feature vector and ω is a corresponding vector of real-valued coefficients. In this paper, we

used a ten-dimensional vector Fg whose elements are indicators (via “one-hot” encoding) for the decile of

GC content of each sgRNA’s template guide. The corresponding 10-dimensional weight vector ω was treated

as a free parameter and estimated by maximum likelihood. In this way, we effectively estimate a separate

efficiency value for each GC decile, based on pooled information from all guides within that decile. As noted

in the text, users may instead wish to use richer feature vectors such as those described in other recent studies

(25, 41–45).

Estimation of Sample Scaling Parameters. Following the ’median-of-ratios’ approach used by DESeq2

(5), the sample scaling parameters γs and γ′s are not treated as free parameters in the maximization of the

likelihood, but instead are set in a preprocessing step based on the raw read counts xsg and ysg for negative

controls. Specifically, the scaling parameter is set equal to the median of the ratios of each sgRNA’s read

count to a guide-specific reference value, which in this case is the expected number of infected cells, csmg:

γs = median
g∈Gneg

( xsg
csmg

)
, γ′s = median

g∈Gneg

( ysg
csmg

)
, (5)

where g ∈Gneg indicates all sgRNAs targeting genes in the designated set of negative controls. If no master

library is available, the initial abundance of sgRNA ḡ is approximated from the initial read counts as the

average across samples:

mḡ ≈
1
S

∑
s

xsḡ∑
g xsg

, (6)

where S is the total number of samples. The user may choose to use the median ratio across all genes

rather than only the negative controls, if desired.
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Full Model Likelihood. Substituting from equations 1–3, the full likelihood function can be expressed as:

L(φ.,ω.; x..,y..,m., c.,γ.,γ
′
.) =

∏
G

∏
g∈G

∏
s

cs∑
nsg=0

Pois
(
nsg|csmg

)
Pois

(
xsg|γsnsg

)

×Pois
(
ysg|γ′snsg(1− εgφG)

) (7)

where εg is implicitly a function of ω as defined by equation 4. Here and below we use “dot” notation to

indicate sets of all relevant indices (e.g., x.. = {xsg | for all samples s and sgRNAs g}).

The likelihood function must sum over the number of infected cells nsg, which cannot be directly ob-

served. This summation step can be accelerated by an approximation that bundles summands together, for

example, into groups of 10 cells. Weight vector ω is initialized to treat all sgRNA as 100% effective for the

first optimization of φG.

When ω is held fixed, the full likelihood decomposes by gene, such that each φG can be estimated sepa-

rately; and similarly, when the φG values are held fixed, the likelihood decomposes by the efficiency features

f , owing to our “one-hot” design for the feature vector. Thus, we estimate each φG and component of ωf

iteratively, to enable parallelization by gene and feature category. Specifically, we repeatedly carry out the

following optimizations until convergence (for each gene G and feature f , respectively):

φ̂G = argmax
φG

{
L(φG, φ̂¬G, ω̂; x..,y.., θ)

}
ω̂f = argmax

ωf

{
L(φ̂.,ωf , ω̂¬f ; x..,y.., θ)

}
(8)

where φ¬G denotes the set {φg | g 6= G}, ω¬f denotes the set {ωf ′ | f ′ 6= f}, and θ denotes the remaining

parameter set.

Finally, to evaluate whether an estimated value of φ̂G is significantly different from zero, we compare the

component of the maximized likelihood function for that gene to the corresponding component when φG is

held fixed at zero. Specifically, we compute a test statistic T as,

T = ln
L(φ̂G)

L(φG = 0) , (9)

where L(φG) represents the component of the likelihood corresponding to geneG. We compute an empirical

p-value for T based on the equivalent test statistics for the designated negative control genes.
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Adaptation for Alternative Experimental Designs. The likelihood function can easily be adapted to

settings in which data is unavailable for either the master library or the initial sgRNA abundances. In the

case where the master library information is missing, we simply use a uniform prior for values of nsg,

P (nsg|cs) = 1
cs

. When the initial infected sgRNA abundances are unavailable, we remove the corresponding

portion of the likelihood function, effectively treating x.. as missing data:

L(φ.,ω.; x.. = ∅,y..,m., c.,γ.,γ
′
.) =

∏
G

∏
g∈G

∏
s

cs∑
nsg=0

Pois
(
nsg|csmg

)
Pois

(
ysg|γ′snsg(1− εgφG)

)
(10)

Test for Differential Essentiality. To identify genes with significant differences in essentiality between a

‘test’ set of samples, St, and a ‘control’ set, Sc, we employ the following likelihood ratio test. Let L(φG)

represent the component of the likelihood function relevant to gene G that has been maximized in the stan-

dard way, with one version of the φG parameter shared across both St and Sc. By contrast, let L(φtG)L(φcG)

represent the corresponding component of the likelihood optimized such that separate versions of the essen-

tiality parameter, φtG and φcG, are used for samples St and Sc, respectively. The likelihood ratio test statistic

T ′is then given by,

T ′ = ln L(φtG)L(φcG)
L(φG) . (11)

For this test, all samples are used to calculate the sample-specific parameters γs and γ′s, and the sgRNA-

specific parameter εg; only φtG and φcG are re-estimated to compute T ′. As with the test for absolute essen-

tiality, an empirical p-value is computed for T ′ based on the distribution of values computed for the negative

controls. In some analyses, we further require that φtG > φcG and otherwise set T ′ to 0.

Essential and Nonessential Controls. The set of essential genes used for validation was defined as those

genes that were included in at least two of three previously published sets of essential genes (1–3). The set

of nonessential genes was obtained from 604 total RNA-seq datasets for 128 cell lines, in vitro differentiated

cells, primary cells, and tissues accessed from the Encyclopedia of DNA Elements (ENCODE) data portal

on August 29, 2019 (see Supplemental Data Table 1 for accession info of all cell lines used). For the

nonessential set, we chose genes expressed at ≤ 1 TPM in all cell lines.

Data from Cancer Dependency Map (DepMap). For our analysis of real data from the Cancer Depen-

dency Map (DepMap) Consortium, we focused on genome-wide CRISPR-screen data from Project Achilles,
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produced by the Broad Institute (9). This dataset uses the Avana library and includes 1374 publicly available

screens at time of writing. Only the pre-infection master library and the post-depletion sgRNA abundances

were sequenced, with one to four replicates per cell line available.

To retain a similar genetic background between sample panels, samples were compared from the same

tissue type and lineage, specifically cell lines originating from lung Non-Small Cell Lung Cancer (NSCLC)

Adenocarcinoma. The Achilles Project dataset includes 220 replicates of 92 unique samples of these cell

lines. Following the Achilles DepMap convention (46), we assume a gene has lost function (indicated as

∆) in all CCLE cell lines annotated as containing mutations that introduce single nucleotide polymorphisms

(SNPs), deletions, or insertions in the start codon; deletions or insertions that introduce a frameshift mutation;

mutations that introduce a premature stop codon or a de novo, frameshifted start codon; or mutations that

disrupt a splice site (30, 31).

ACE results were compared with CERES published p-values available for each Achilles DepMap sample.

As in ref. (9), the CERES differential essentiality test statistic was calculated using a one-sided Student’s t-

test to compare the by-sample p-values of the test and control sample panels, and then was corrected by the

rank-based false discovery rate.

empiriCRISPR Simulation of CRISPR Knockout Screens. empiriCRISPR simulates each gene using a

series of gamma distributions to represent each stage of a CRISPR knockout screen (infection, initial and

final sequencing). CRISPR knockout screens from (16) were used as the empiriCRISPR template, and initial

master library abundances were selected by sampling the template master sgRNA library. empiriCRISPR

adjusts the gamma distribution parameters by minimizing the adjusted mean squared error of the summary

statistics of simulated data with the median of 5 summary statistics of the template screens, shown in Fig. S3.

The abundance of each sgRNA construct was assumed to be independent from all other sgRNA used in the

experiment. Unless otherwise noted, simulations used 300 genes per essentiality value, 4 sgRNA per gene,

and 3 samples.

Package Software. ACE is implemented as an R package (R 3.5.0, (47)) using the data.table (48) and R6

(49) packages. Optimization is performed using R’s optim package with the ‘Brent’ method. Both the ACE

and empiriCRISPR github repositories can be found at https://github.com/CshlSiepelLab.
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Estimation of Essentiality from Mean Log-Fold Change. The ‘average fold change’ (‘AFC’) score for

each gene G was calculated as follows:

AFC = 1−
g∈G∏
g=1

S∏
s=1

(
λsτneg

(0.5 +ysg)
(0.5 +xsg)

) 1
SG
, τ−1

neg =
g∈Gneg∏
g=1

S∏
s=1

(
λs

(0.5 +ysg)
(0.5 +xsg)

) 1
SGneg

, (12)

where a pseudocount of 0.5 was added to both initial (xsg) and final (ysg) read counts to prevent undefined

values. Each sample was normalized by λs to bring the total read count of each sample to a total of 10

million reads, and final fold changes were adjusted according to τneg, the mean fold change in all negative

controls Gneg. Consistent with our ACE notation, an AFC value of zero has no impact on cell growth or

proliferation.

Estimation of Essentiality using BAGEL. We applied the BAGEL (Bayesian Analysis of Gene Essential-

ity) method (1) using software version 0.91 (last modified 09/2015). Simulated data was analyzed using 4%

of genes as positive and negative controls, with simulated essentiality scores of 0.99 (99% depletion) and

0.05 (5% depletion) respectively. Differential essentiality was calculated as the difference of Bayes Factors

between separate analysis of test and control sample panels, as performed in (1). For the analysis of real

data, we used all genes identified as essential or nonessential in our earlier analysis.

Estimation of Essentiality using JACKS. We applied the JACKS (Joint Analysis of CRISPR/Cas9

Knock-out Screens) method (8) version 0.2 (downloaded 11/2019). Differential essentiality was evaluated

by running JACKS separately for the test and control sample panels, using the built-in hierarchical prior

option and the same negative control genes provided to other methods for both real and simulated data. The

test statistic for differential essentiality was indicated by the absolute difference in p-value between test and

control panels, as used in (8).
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Supplementary Section 1: Supplemental Figures

Supplementary Figure S1. Methods for Identifying Differential Essentiality in CRISPR Screens. Many methods have been developed
to analyze CRISPR screening data, but none are designed to test for differential essentiality between sample subtypes as a part of their
inference framework. Some, such as BAGEL and CERES, test for significant differences in essentiality after parameter inference, but do
not test whether the data is best described by a single essentiality parameter (‘Tests for Differences Between Subtypes’ column). Directly
modeling count data, as opposed to relying upon summary statistics such as log-fold change, enables ACE to adapt to variations in
experimental design, and leverage information from all available data (‘Directly Models Count Data’ column). Providing a quantification of
essentiality, as opposed to fitting a binary essential/nonessential classification, enables researchers to more intuitively estimate phenotype
(‘Estimates Essentiality’ column).
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Supplementary Figure S2. Illustration of Dispersion of ACE Distribution Function. Read count data is known to have a high
dispersion similar to a Negative Binomial distribution (5). The values shown here reflect the probability density of different values of
read counts in a CRISPR screen, as described by a Poisson distribution with point estimates of the mean (green), a Negative Binomial
distribution with point estimates of the mean and a variance equal to twice the mean (blue). The ACE model integrates over all possible
numbers of infected sgRNA, resulting in a probability density (red) similar to the Negative Binomial.
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Supplementary Figure S3. Simulated Data for Evaluation of ACE Performance. The genome-wide CRISPR screen performed by
Martin et. al 2017 (16) was used as our EmpiriCRISPR template, as this work sequenced the sgRNA master library used as well as
the initial and final samples. The sequenced master library provided the initial sgRNA abundances in the simulation, and all metrics
shown were calculated in the initial and depleted counts. Shown are approximately 2300 guides targeting globally nonessential genes,
as identified using ENCODE expression data (see Methods), and a randomly selected matching subset of nonessential sgRNA from
simulated read counts. Mean and total read counts were calculated within each sample, while variation and covariation metrics were
calculated for each guide across samples. ‘Paired’ indicates covariance was calculated between initial and depleted samples, with each
sgRNA paired with the depleted sample produced by the same master library transfection; ‘Unpaired’ have been paired with samples from
a different transfection replicate.
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Supplementary Figure S4. Error in Estimation of Gene Essentiality. Gene essentiality φG was calculated using ACE and average fold
change (AFC; see Methods) across three replicates of simulated count data. 300 genes were simulated at each essentiality level shown;
results from an additional 3,150 nonessential genes are not shown.

Hutton et al. | ACE bioRχiv | 29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2020. ; https://doi.org/10.1101/868919doi: bioRxiv preprint 

https://doi.org/10.1101/868919
http://creativecommons.org/licenses/by-nc-nd/4.0/


AUC =  0.97

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1−Specificity

S
en

si
tiv

ity

Supplementary Figure S5. ACE Classification of Established Essential and Nonessential Genes in Achilles DepMap CRISPR
Screens. All 220 CRISPR screens performed in 92 different NSCLC Adenocarcinoma cell lines in the Achilles DepMap project (9) were
used by ACE to estimate the likelihood of essentiality of 688 essential genes.
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Supplementary Figure S6. Genes Essential in NSCLC Adenocarcinoma cell lines with a ‘damaging’ mutation in TP53. All genes
evaluated by genome-wide CRISPR screens in NSCLC cell lines by the DepMap Project Achilles are shown. On the x-axis is the ACE
estimate of essentiality in cell lines with a nonsense or frameshift mutation indicated as ’damaging’ in TP53 (∆TP53 Panel; see Methods).
On the y-axis is the test statistic indicating whether this essentiality is significantly different from cell lines with wildtype TP53, calculated
with a log likelihood ratio test comparing a shared versus a unique essentiality between the two sample panels. The horizontal line
indicates the Bonferroni-correct empirical p-value <0.05.
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Supplementary Figure S7. Expression Levels of Differential Essentiality Candidates. CCLE reported expression levels of differential
essentiality candidates METTL3, METTL14, and METTL16 in cell lines used by the Achilles DepMap project with annotated nonfunctional
(a) and presumed functional (b) variants of TP53 (9, 30, 31). MDM2 is shown as a positive control for gene essentiality; ZNF366 as a
negative control.
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Supplementary Figure S8. ACE Essentiality Estimates Avoid Copy Number Sensitivity by Pooling Across Sample Panels. (a) The
ACE estimated essentiality of each gene (y-axis), with the median copy number of that gene across all NSCLC Adenocarcinoma samples
with a mutation in TP53 used to infer the essentiality value (x-axis). (b) The differential essentiality test statistic of each gene between
wildtype and ∆TP53 cell lines, determined by ACE. On the x-axis is the difference in median copy number between the compared panels
of cell lines. In red are METTL3, METTL14 and METTL16. The black line indicates the best linear relationship given a gaussian error
model. (c) Copy number variation across each sample panel for the three candidate differentially essential methyltransferases, with MDM2
as a positive control, and ZNF366 as a negative control for differential essentiality. The range in copy number largely overlaps for all genes
in these sample panels.
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Supplementary Figure S9. Differentially Essential Gene Candidates Independent of Flanking Genes. The majority of METTL3 (a),
and all of METTL14 (b), and METTL16 (c) do not overlap with other coding genes. Image from the UCSC genome browser.
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