
RESEARCH ARTICLE

Comparing DNA replication programs reveals

large timing shifts at centromeres of

endocycling cells in maize roots

Emily E. WearID
1*, Jawon SongID

2, Gregory J. ZyndaID
2, Leigh Mickelson-YoungID

1,

Chantal LeBlancID
3¤a, Tae-Jin Lee1¤b, David O. Deppong1, George C. AllenID

4, Robert

A. MartienssenID
3, Matthew W. VaughnID

2, Linda Hanley-Bowdoin1, William F. Thompson1

1 Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United

States of America, 2 Texas Advanced Computing Center, University of Texas, Austin, Texas, United States

of America, 3 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,

4 Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United

States of America

¤a Current address: Department of Molecular, Cellular and Developmental Biology, Yale University, New

Haven, Connecticut, United States of America

¤b Current address: Syngenta Crop Protection, Research Triangle Park, North Carolina, United States of

America

* emily_wear@ncsu.edu

Abstract

Plant cells undergo two types of cell cycles–the mitotic cycle in which DNA replication is cou-

pled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell

division. To investigate DNA replication programs in these two types of cell cycles, we pulse

labeled intact root tips of maize (Zea mays) with 5-ethynyl-2’-deoxyuridine (EdU) and used

flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a

mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that

most regions of the maize genome replicate at the same time during S phase in mitotic and

endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the

fact that endocycling is typically associated with cell differentiation. However, regions collec-

tively corresponding to 2% of the genome displayed significant changes in timing between

the two types of cell cycles. The majority of these regions are small with a median size of

135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root

tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chro-

mosomes. These regions covered the majority of the previously defined functional centro-

mere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate

mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In

contrast, the immediately adjacent pericentromere sequences are primarily late replicating

in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that

there is only a partial replacement of CENH3 nucleosomes after endocycle replication is

complete. The shift to later replication of centromeres and possible reduction in CENH3

enrichment after endocycle replication is consistent with a hypothesis that centromeres are

inactivated when their function is no longer needed.
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Author summary

In traditional cell division, or mitosis, a cell’s genetic material is duplicated and then split

between two daughter cells. In contrast, in some specialized cell types, the DNA is dupli-

cated a second time without an intervening division step, resulting in cells that carry twice

as much DNA. This phenomenon, which is called the endocycle, is common during plant

development. At each step, DNA replication follows an ordered program in which highly

compacted DNA is unraveled and replicated in sections at different times during the syn-

thesis (S) phase. In plants, it is unclear whether traditional and endocycle programs are

the same, especially since endocycling cells are typically in the process of differentiation.

Using root tips of maize, we found that in comparison to replication in the mitotic cell

cycle, there is a small portion of the genome whose replication in the endocycle is shifted

in time, usually to later in S phase. Some of these regions are scattered around the genome

and mostly coincide with active genes. However, the most prominent shifts occur in cen-

tromeres. The shift to later replication in centromeres is noteworthy because they orches-

trate the process of separating duplicated chromosomes into daughter cells, a function

that is not needed in the endocycle.

Introduction

Developmentally programmed DNA replication without nuclear breakdown, chromosome

condensation or cell division, a phenomenon known as endoreduplication or endocycling,

occurs in a wide variety of plants and animals [1–3]. In plants, endoreduplication is a systemic

feature [4] that is often an important step in the development of tissues and organs such as

fruit, endosperm, leaf epidermal cells and trichomes [5]. Initiation of endocycling is frequently

associated with a transition from cell proliferation to cell differentiation and expansion [6]. In

plant roots, cells at the tip divide actively by normal mitosis, while endocycling cells become

frequent further from the tip, in a zone associated with differentiation and increased cell size

[7, 8]. In the maize (Zea mays) root, the first 1-mm primarily contains actively dividing mitotic

cells [8, 9]. Mitotic activity continues in the region between 1 to 3-mm from the tip, but in this

region about 30% of the cells undergo a single endocycle. Instead of undergoing mitosis and

returning to a 2C nuclear DNA content, these cells replicate their DNA without undergoing

mitosis and transition directly from 4C to a final DNA content of 8C [8]. Beyond 3 mm, cell

differentiation predominates, and DNA replication activity becomes rare [8, 10]. Thus, while

not all differentiating cells undergo an endocycle, in those cells that do, the endocycle precedes

or accompanies cellular differentiation.

In animal systems, different cell types often exhibit differences in the temporal order of

DNA replication along the chromosomes, also called the “replication timing (RT) program”.

These differences in RT programs are likely related to changes in chromatin and gene expres-

sion during the differentiation process (e.g. [11–14]). However, as yet there is no information

concerning possible changes in RT programs associated with endoreduplication or differentia-

tion in plant systems. Other than in a few model systems (e.g. [15, 16]), it is difficult to separate

individual cell types from plant organs, and DNA replication occurs mainly in meristematic

regions, which are small and often difficult to access. In addition, plant cells do not maintain

their differentiated state when grown in suspension culture [17, 18]. Hence, there are few

opportunities to compare RT programs in individual cell types. However, the occurrence of

endocycling and differentiating cells near the apical meristem of maize root tips, in which we
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previously characterized the mitotic RT program [19], offers a unique opportunity to compare

the two modes of replication in an intact plant organ.

We developed a system to analyze DNA replication in maize roots [8, 20], using similar

approaches to those being applied in our work with Arabidopsis cell suspensions [21]. In this

system, newly replicated DNA is labeled in vivo with the thymidine analog, 5-ethynyl-2’-deox-

yuridine (EdU), and labeled nuclei are separated by flow cytometry into populations repre-

senting different stages of S phase. One key advantage of using EdU as the nucleotide analog

instead of 5-bromo-2’deoxyuridine (BrdU), which has traditionally been used in replication

timing by sequencing (Repli-seq) protocols [12], is the ability to sort nuclei on both DNA con-

tent as well as EdU content, followed by immunoprecipitation of EdU labeled DNA. This

modification allows for clean separation during flow sorting of non-replicating, unlabeled G1

and G2 nuclei from the labeled S-phase nuclei.

Cytological analysis of sorted, EdU-labeled nuclei showed that replication activities in early

and mid S are more closely interspersed in the maize nucleus than in animal cells [22, 23]. We

characterized the RT program in mitotic cells of the apical 1-mm root segment [19], using the

modified Repli-seq protocol [24]. In mitotic cells, we found evidence for a gradient of early

replicating, open chromatin that transitions gradually into less open and less transcriptionally

active chromatin replicating in mid S phase. We also confirmed cytological observations show-

ing that heavily compacted classical heterochromatin, including knobs and pericentromeres,

replicate primarily in late S phase [22, 25]. While these relationships between RT and chroma-

tin packaging are generally similar to those found in other systems, we did not find evidence

for megabase-scale replication domains like those that have been characterized in mammalian

cells (reviewed in [26] and references therein).

Although replication in the first 1-mm of the root is mostly mitotic, with DNA contents of

labeled nuclei ranging from 2C to 4C, flow cytometry profiles of nuclei derived from root tis-

sue between 1 and 3-mm from the tip also included a substantial population of nuclei with

DNA contents beyond 4C. Appearance of endopolyploid (8C) nuclei in this zone would be

expected, as some 4C nuclei are known to enter the endocycle rather than undergo division [7,

8]. Cytological analysis of replicative labeling showed that the spatiotemporal patterns of repli-

cation during the 4C to 8C transition in these endocycling nuclei are very similar to those in

mitotic nuclei [22]. However, it remained to be determined whether the entire genome is uni-

formly replicated during the endocycle, and whether the temporal program is altered in differ-

entiating cells when replication occurs without an intervening mitosis.

Both under-replication and over-replication (amplification) have been observed in multiple

animal systems during developmentally programmed endocycles, notably including Drosoph-
ila (reviewed in [27]). In addition to the well-known amplification of chorion genes and

under-replication of heterochromatin, under-replication also occurs in a number of euchro-

matic regions, with a degree of tissue specificity suggesting a possible role in differentiation

[28–30].

Even though endopolyploidy is common in plants, there are very few reports dealing with

over- or under-replication of specific sequences. Some orchids exhibit a phenomenon in

which only a fraction of the genome is endoreplicated [31, 32], but in most cases, endopoly-

ploid cells have DNA contents that are multiples of the 2C value. Both highly repetitive hetero-

chromatic regions and highly expressed genes are extensively endoreduplicated in maize

endosperm nuclei, as would be expected for uniform replication of the entire genome [33].

More definitively, whole genome sequencing in Arabidopsis showed that leaf nuclear DNA is

evenly endoreduplicated in wild-type plants, although the same series of experiments clearly

demonstrated selective over-replication in atxr5 and atxr6 mutants [34].
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To address the question of over- or under-replication and whether there are developmen-

tally associated changes in RT programs in the maize root tip system, we performed a detailed

comparison of RT dynamics in mitotic and endocycling cells. We found very little evidence

for over- or under-replication in endocycling cells, consistent with the few previous reports on

this topic from plant systems. We also found that the RT programs for the vast majority of the

genome are very similar. However, we found significant changes in timing for a number of

loci that together correspond to 2% of the genome. Most notably, we found major changes in

the RT of centromeres, which replicate mainly during mid S phase in mitotic cells but primar-

ily in late S phase of the endocycle.

Results

Separating endocycling from mitotic nuclei

As reported previously and described in Methods, we used a 20-min pulse of the thymidine

analog, EdU, to label newly replicated DNA in intact maize roots. This was followed by formal-

dehyde fixation and isolation of nuclei from defined segments of root tips (Fig 1A). Incorpo-

rated EdU was conjugated with Alexa Fluor 488 (AF-488) by “click” chemistry [35]. The nuclei

were then stained with DAPI and fractionated by two-color fluorescence activated flow sorting

to generate populations at different stages of the mitotic cell cycle or the endocycle [8, 20]. Fig

1B and 1C show flow cytometry profiles obtained for root segments 0–1 mm and 1–3 mm

from the tip, respectively. Fluorescent signals from nuclei that incorporated EdU during S

phase of a normal mitosis form an “arc” between 2C and 4C DNA contents (Fig 1B). Previous

EdU pulse-chase time course experiments in the 0–1 mm region showed that most labeled 4C

nuclei return to 2C as would be expected in a mitotic cycle (see Fig 1B in [36]). In the 1–3 mm

zone, a substantial fraction of labeled nuclei is undergoing endoreplication, forming a similar

arc with DNA contents ranging between 4C and 8C (Fig 1C). As seen in Fig 1C, the endocycle

arc is more prominent in nuclei preparations from 1–3 mm root segments. To analyze the

endocycle RT program, which is described in detail below, labeled nuclei representing early,

mid, and late S-phase fractions were separated using the sorting gates shown in Fig 1C, adjust-

ing the endocycle early gate to avoid contamination with mitotic nuclei in late S phase. Reanal-

ysis of the sorted nuclei confirmed that there was good separation between the nuclei

populations from the adjusted early sorting gate and the mid sorting gate (S1 Fig). To complete

the Repli-seq protocol, described in more detail below, the DNA was extracted from the nuclei

in each gate and sheared. The labeled, newly replicated DNA from each S-phase fraction was

then immunoprecipitated and sequenced.

The flexibility of the EdU labeling and flow sorting system also allowed us to collect unla-

beled nuclei, representing non S-phase cells with 2C, 4C and 8C DNA contents. These nuclei

were used to characterize selected histone marks following mitotic or endocycle replication

and to investigate the copy number of individual loci across the genome.

Evidence for complete genome replication during the endocycle

Given the well documented examples of over- and under-replication during the endocycle in

animal systems, we investigated whether there are local copy number differences in the maize

genome after endocycle replication. To do this, we used the non S-phase 2C, 4C, and 8C nuclei

populations described above, and carried out whole genome paired-end sequencing. To gain a

better representation of the copy number of repeat regions in the genome, reads that could not

be uniquely mapped to a single location were included, but we retained only the primary align-

ment location for each read pair. This approach was used exclusively for the copy number

analysis, while all subsequent analyses included only uniquely mapping reads (see Methods
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Fig 1. Global comparison of mitotic cycle and endocycle replication timing programs. (A) Schematic of a maize

root showing the meristem zone (0–1 mm region) and transition zone (1–3 mm region) used for Repli-seq

experiments. (B and C) Flow cytograms of nuclei isolated from the 0–1 mm root segments (B) and 1–3 mm root

segments (C). Dots are pseudo-colored by density and black rectangles represent the sorting gates used to collect the

pre-replicative 2C reference sample and early (E), mid (M) and late (L) S-phase fractions from either the mitotic cycle

or endocycle. (D) Global scale view of replication timing (RT) for chromosome 10, comparing mitotic and

endocycling profiles in early, mid and late S phase. Uniquely mapping reads were aggregated in 3-kb windows,

normalized for sequencing depth, divided by the normalized 2C reference read counts, and Haar wavelet smoothed

(see Methods). The global RT profiles for mitotic and endocycling cells are very similar to each other for all ten

chromosomes. The schematic of chromosome 10 at the bottom shows the location of the centromere (black oval) and

the 10 Mb region that is expanded in panel E (red rectangle). (E) Expanded view of a 10 Mb region on chromosome 10

with overlaid mitotic and endocycle RT profiles. Unmappable or multi-mapping regions (“blacklist”) were identified

from the pre-replicative 2C reference sample and are indicated as tick marks in the bottom track. This example

illustrates the similarity between the mitotic and endocycle RT profiles that is observed throughout most of the

genome. Scale for all panels: 0–5 normalized replication signal.

https://doi.org/10.1371/journal.pgen.1008623.g001
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and S1 Text). The data for each ploidy level were examined for regions in which normalized

read frequencies in 5-kb windows differed between 8C and 4C or 4C and 2C nuclei, using pro-

cedures described by Yarosh et al. ([37]; S1 Text). We found about 5% of the 5-kb windows

had ratio values that fell outside of two standard deviations of the mean ratio for 4C and 2C or

8C and 4C (1.0 ± 0.2 S. D. for both; S2A and S2B Fig). However, these windows all either

occurred as singleton 5-kb windows scattered around the genome (S2C Fig) or coincided with

regions that had very low read mapping in the 2C sample, indicating they are likely the spuri-

ous result of making a ratio between windows with very few reads in both samples. As such,

there is very little evidence of meaningful over- or under-replication of genomic regions in

nuclei with different ploidy levels.

To further investigate whether there is complete replication of high-copy repeats that are

not well represented in the genome assembly, we used BLAST software to query all reads, not

just those that can be mapped to the genome, to determine the percentage of reads corre-

sponding to each of several consensus sequences for high-copy repeats (S1 Text). Analyzed

sequences included the knob repeats knob180 and TR-1 [38, 39], 5S and 45S rDNA repeats

[40], and centromere-associated CentC satellite repeats [41]. We also queried consensus

sequences for centromere retrotransposons of maize (CRM) families 1–4 [42–45]. In all cases,

we found the percentages to be similar in the 2C, 4C and 8C samples (S2D and S2E Fig), fur-

ther suggesting that there is little or no over- or under-replication.

Replication timing analysis

As described above, we sorted endocycling nuclei from the S-phase populations in Fig 1C, and

extracted and sheared the DNA in each fraction. EdU-containing DNA fragments were immu-

noprecipitated (IP) with an antibody to AF-488, resulting in sequence populations represent-

ing DNA replicating during early, middle, or late S phase of the endocycle. Given that EdU/

AF-488-labeled DNA is immunoprecipitated from a population of only EdU-labeled nuclei

(see Fig 1B and 1C), the level of unlabeled DNA background in each IP is substantially lower

than would be present if nuclei were sorted simply by DNA content. We also prepared DNA

from the unlabeled 2C nuclei pool to provide a reference dataset representing pre-replicative

nuclei. DNA from three biological replicates of each sample was sequenced to generate paired-

end reads.

To compare the RT programs in endocycling and mitotic nuclei, we mapped our previous

Repli-seq data for mitotic nuclei [19] and our new data for endocycling nuclei to the maize

B73 RefGen_v4 genome, which includes improved assemblies of centromeres and more com-

plete annotations of transposable elements (TEs) [46, 47]. Including only uniquely mapped

reads resulted in a read depth that varied between 65.7 million and 261.2 million reads per S-

phase fraction (including reads from 3 biological replicates per S-phase fraction). The data

from all S-phase samples for the mitotic cycle and endocycle were then randomly down-

sampled to the lowest read depth (65.7 million reads) to ensure comparable results (see Meth-

ods and S1 Spreadsheet).

We used the Repliscan analysis pipeline [24] to generate continuous normalized data pro-

files representing the intensity of replication activity across the genome (RT profiles) in early,

mid and late fractions of each S phase. These RT profiles were generated by aggregating the

Repli-seq read densities for each S-phase sample in 3-kb static windows, scaling the reads to

1× genome coverage, and then dividing by the scaled read counts from the unlabeled 2C refer-

ence data and smoothing by Haar wavelet transform (see Methods and [24]). Normalizing

with the pre-replicative 2C reference provided a uniform 2C copy number and corrected for

differences in sequence mappability and collapsed repeats that caused “spikes” in the data
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(illustrated for late replication in the endocycle in S3 Fig) while preserving replication signal

[24, 48]. The 3-kb windows identified as having no or extremely low read coverage in the 2C

reference sample (see Methods) were excluded from all analyses. These windows include both

unmappable and multi-mapping regions (“blacklist” windows, indicated by black tick marks

in Fig 1E). After these RT profile normalization steps, the result is an estimate of the intensity

of replication activity in each 3-kb window, which we refer to as “replication signal”.

Fig 1D shows that the global RT profiles are remarkably similar in endocycling and mitotic

nuclei, and overlays of the corresponding profiles show mostly minor differences (Fig 1E).

Pearson’s correlation coefficient values between corresponding S-phase fractions from the

mitotic and endocycle data are very high (r values of 0.91, 0.89 and 0.96 for early, mid and late,

respectively). These values are similar to those found between individual biological replicates

within each sample (S4 Fig).

Identifying regions of altered timing

Despite the global similarity of the RT programs of mitotic and endocycling cells, there are

regions scattered around the maize genome that show a shift in RT. To identify regions with

differences in RT (DRT), we first calculated the difference in normalized replication signal

between the mitotic and endocycle data at each genomic location for the early, mid and late

profiles separately (S1 Table; S5 Fig). We then constrained our analysis by focusing only on

regions where there was an equal and opposite DRT in at least one other S-phase fraction (for

example, regions in which a decrease in early replication signal in endocycling cells was associ-

ated with a corresponding increase in mid and/or late replication signal at the same location).

We allowed a gap distance of 6 kb when searching for regions with DRT to account for small

blacklist regions that break up larger regions of change. We found that 11% of the genome

showed a difference in replication signal of at least 10% of the total difference range for a given

S-phase fraction (absolute difference in replication signal� 0.4; S1 Table), with an opposite

difference in replication signal at the same threshold criterion at the identical location in

another S-phase fraction. Many of these regions are small, with the lower 50% of regions rang-

ing in size from 3 kb to the median size of 33 kb (S2 Table). Since the units of replication initia-

tion, elongation and termination (“replicons”) in monocot plants are estimated to be on

average 47 ± 13 kb in size [49], the biological relevance of RT differences across regions much

smaller than this is not clear. However, instead of implementing an arbitrary size cutoff, we

chose to focus on regions that were associated with at least one core region with a larger

(� 25%) DRT, as described in the next paragraph.

To identify these more robust RT differences, designated Regions of Altered Timing

(RATs), we identified regions in which the DRT was� 25% of the total difference range for a

given S-phase fraction (absolute difference in replication signal� 1.0; S1 Table), and which

also met the criterion of having an opposite DRT in at least one other S-phase fraction. To

highlight larger and contiguous regions of change, we included� 10% regions that were adja-

cent to the original� 25% regions. However, RATs had to have at least one core region where

the DRT was at least 25% (S2 Table) to be included in our analysis. Representative� 25%

and� 10% regions are indicated by various shades of red and blue bars in Fig 2 (additional

examples are in S6 Fig). Finally, we examined the RT profiles for the RATs in individual bio-

logical replicates to verify there was good agreement between the replicates (Figs 2B and S6).

By selecting only the most robust RATs we excluded other regions where RT changes are less

dramatic–for example those indicated by dashed boxes in Fig 2. In such regions, the DRT did

not meet our criteria of a� 25% difference in replication signal (box 2 in Fig 2A) and/or there

is not an equal and opposite (“compensated”) DRT (box 3 in Fig 2A).
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Robust RATs fall into two categories, those in which the strongest replication signal occurs

later in the mitotic cycle than it does in the endocycle (“Later-to-Earlier” shift), and those in

which the strongest replication signal occurs earlier in the mitotic cycle than in the endocycle

(“Earlier-to-Later” shift). In addition, we separately characterized a subset of the Earlier-to-

Later RATs that are located in functional centromeres (“Earlier-to-Later-CEN”) using centro-

mere (CEN) coordinates from [46]. Our stringent criteria identified RATs comprising only

about 2% of the maize genome (Table 1), with 233 of the 274 total regions (representing 1.6%

of the genome) in the Earlier-to-Later category. Non-CEN Later-to-Earlier and Earlier-to-

Later RATs have similar size distributions, with median sizes of 141 and 135 kb, respectively

(Fig 2C and Table 1). All of the CEN RATs fall into the Earlier-to-Later category and have a

median size of 132 kb, similar to the non-CEN RATs. It is important to note, however, that the

sizes of CEN RATs are underestimated because of numerous blacklist regions within the cen-

tromeres that break what are likely continuous RATs into several smaller parts in our analysis.

Even though maize centromeres are remarkably well sequenced [46], they still contain some

gaps and regions where reads cannot be uniquely mapped in the current B73 RefGen_v4

genome assembly. To account for this, we calculated an upper estimate of continuous RAT

size by incorporating the coverage from the multiple RATs called within each centromere as

Fig 2. Identifying regions of altered timing. (A) An example region (5 Mb) on chromosome 10 containing two robust Regions of Altered

Timing (RATs), indicated by boxes outlined with solid lines. The RAT in box 1 (red) shifts from Earlier-to-Later, and the RAT in box 4

(blue) shifts from Later-to-Earlier. Dashed boxes denote regions with some level of difference in RT (DRT) in which the magnitude of the

difference did not meet our� 25% criterion (box 2), or in which the change in one S-phase fraction was not compensated by an opposite

change in at least one other S-phase fraction (box 3). Annotated genes (purple) and unmappable or multi-mapping regions (“blacklist”,

black) are indicated as tick marks in the bottom tracks. (B) The same chromosome region as in (A) with the individual biological replicate

RT profiles overlaid to demonstrate that RATs are not caused by local regions of technical variation between replicates. Scale for panels A

and B: 0–5 normalized replication signal. (C) Boxplots representing the distribution of RAT sizes in the three categories: Later-to-Earlier,

Earlier-to-Later, and a subset of Earlier-to-Later RATs found in functional centromeres (CEN) [46]. Boxplot whiskers represent 1.5 x

interquartile range (IQR). The axis is broken to show two values that are much higher than the others and correspond to large RATs in CEN

9 and CEN 10. However, it is important to note that the sizes of CEN RATs are underestimated, because centromeres contain variable

numbers and sizes of blacklist regions, which break up what would probably be long continuous RATs (see Fig 4 and Table 2).

https://doi.org/10.1371/journal.pgen.1008623.g002
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well as coverage from RATs that extend past the previously determined CEN boundaries (“pre-

sumed CEN RATs”), and including the interspersed blacklist regions. This upper estimate of

CEN RAT size, which is addressed in more detail below, ranges from about 0.9–2 Mb in each

CEN (Table 2).

Non-centromeric RATs

We analyzed the non-CEN RATs for the content of genes and TEs, as well as the presence of

histone modifications and functional annotations related to the genes within RATs. To assess

whether the percentage of RATs containing genes differed from random expectation, we ran-

domly shuffled coordinates corresponding to the non-CEN Later-to-Earlier and Earlier-to-

Table 1. RAT summary table.

RAT category Count Median size (kb) Coverage (kb) % of genome

Non-centromere

Later-to-Earlier 41 141 6,291 0.30

Earlier-to-Later 192 135 26,907 1.28

Centromere

Earlier-to-Later-CEN 41 132 7,668 0.36

Earlier-to-Later total 233 135 34,575 1.64

RAT total 274 135 40,866 1.94

A summary of the region count, median size, total genome coverage, and percentage of the entire genome represented in each RAT category.

https://doi.org/10.1371/journal.pgen.1008623.t001

Table 2. Centromere RAT coverage and size estimates.

CEN CEN size

total (kb)a
CEN excluding

blacklist (kb)b
�10% DRT

coverage (kb)c
Final RATs

coverage (kb)d
Presumed CEN RAT

coverage (kb)e
RAT

countf
Continuous RAT

size (kb)g
% CEN covered by

continuous RATh

1 350 329 15 - - - - -

2 1980 1275 1139 986 220 7 2037 86.9

3 1150 667 498 453 - 6 897 78.0

4 1430 968 706 538 14 7 945 65.1

5 2280 1806 1440 1407 - 7 1782 78.2

6 800 764 390 - - - - -

7 300 285 45 - - - - -

8 1540 1210 1190 1046 10 7 1419 91.5

9a 1650 1602 1510 1510 71 4 1641 95.7

9b 400 334 18 - - - - -

10 1390 1306 1269 1221 192 3 1506 94.5

a Centromere size reported in [46], which includes unmappable regions of known size.

b Centromere size, excluding blacklist regions (unmappable and multi-mapping) that are >6 kb in size. A gap distance of 6 kb was allowed during RAT analysis.

c The combined coverage of regions with�10% DRT called within each centromere, not including blacklist regions >6 kb.

d The combined coverage of final RATs called within each centromere, not including blacklist regions >6 kb. Final RATs contained at least one core region with�25%

DRT (see Methods).

e In some centromeres, the called RAT extends past the previously reported CEN boundary. These areas are labeled ‘presumed CEN RAT’.

f The number of individual RATs called in each centromere.

g Continuous RAT size is defined by summing the coverage of CEN RATs, presumed CEN RATs, and the interspersed blacklist regions to generate an upper estimate of

full RAT size. This estimate still cannot take into account gaps in the centromere assemblies that are of unknown size.

h The percentage of the CEN size total that is covered by the estimated continuous RAT, without taking into account presumed CEN RATs outside CEN boundary.

A summary of the various estimates of coverage in individual centromeres of regions with DRT, and continuous RAT size.

https://doi.org/10.1371/journal.pgen.1008623.t002
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Later RATs around the genome 1000 times and calculated the percentage of randomly shuffled

regions that overlap genes in each of the 1000 sets. These “expected” random distributions

were compared to the observed percent overlap values found for Later-to-Earlier and Earlier-

to-Later RATs and a permutation P value was calculated (see Methods). We found that 93%

and 96% of Later-to-Earlier and Earlier-to-Later RATs, respectively, contain at least one anno-

tated gene and usually contain a small cluster of, on average, 2–3 genes (Fig 3 and S3 Table).

The observed 96% percent overlap of Earlier-to-Later RATs with genes is significantly greater

than expected by chance (permutation P value = 0.001; Fig 3). To assess which of these genes

are expressed, we used root-tip RNA-seq data that are not specific to mitotic or endocycle

cells, and found that although only 50% of the 682 genes found in non-CEN RATs are

expressed at a meaningful level (FPKM� 1), 83% and 91% of Later-to-Earlier and Earlier-to-

Later RATs, respectively, still contain at least one expressed gene (S3 Table). The observed

91% overlap of Earlier-to-Later RATs with expressed genes is also significantly greater than

expected by chance (permutation P value = 0.001; Fig 3). In contrast, we found only 51% and

68% of Later-to-Earlier and Earlier-to-Later RATs, respectively, contain genes not expressed

in the root (Fig 3). These values for non-expressed genes are not significantly different from

random expectation, indicating that the enrichment of genes in Earlier-to-Later RATs is

mainly driven by the expressed genes.

The significant enrichment of genes expressed in the root in Earlier-to-Later non-CEN

RATs suggests the possibility that these regions may be related to shifts in gene expression.

However, we were unable to directly compare expression of genes in RATs in mitotic and

endocycling cells because we could not obtain RNA of sufficient quality to sequence from

fixed, sorted nuclei. Instead, we assessed a selection of gene-associated histone post-

Fig 3. Permutation analysis of the percentage overlap of non-CEN RATs and genes. The percentage of RATs that

overlap genes, expressed genes or non-expressed genes was calculated for non-CEN RATS and corresponding 1000

randomly shuffled sets (see Methods). The observed percentage for Later-to-Earlier (blue line) and Earlier-to-Later

(red line) RATs are plotted alongside the expected percentage distribution of the 1000 random sets (grey violin plots

overlaid with boxplots). Permutation P values below the graph were calculated from the proportion of the 1000

random sets that had a percent overlap value greater than (up arrow) or less than (down arrow) the observed value.

Permutation P values� 0.001 are considered evidence that the observed percent overlap is significantly different than

random expectation.

https://doi.org/10.1371/journal.pgen.1008623.g003
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translational modifications in sorted non S-phase 2C, 4C and 8C nuclei. In our previous work

in maize root mitotic cells, we showed that trimethylation of H3 lysine 4 (H3K4me3) and acet-

ylation of H3 lysine 56 (H3K56ac) modifications tend to colocalize on active genes and are

associated with earlier replicating regions, while trimethylation of H3 lysine 27 (H3K27me3)

tends to be on repressed genes regardless of their RT [19]. For each ploidy level, we quantified

the percentage of genes within RATs that have each mark, as well as the fold enrichment rela-

tive to input for called peaks within genes. There are very few differences between ploidy levels

in the number of genes bearing these marks (S7D Fig), but there are some minor shifts in the

peak enrichment in 8C nuclei compared to 2C (S7A–S7C Fig). The clearest shift is a decrease

in H3K4me3 enrichment found on expressed genes in Earlier-to-Later RATs (S7B Fig), which

suggests these genes may have decreased expression in endocycling cells.

We also performed a gene ontology (GO) analysis for the genes found in non-CEN RATs

to ask if there are functional annotations enriched in genes that shift RT. For this analysis, we

focused on the genes that we identified as expressed in the root tip (S2 Spreadsheet). We found

44 significantly enriched GO terms for genes within Earlier-to-Later RATs, including biologi-

cal process and molecular function terms related to gene expression, DNA/RNA metabolism,

and the cell cycle (S8 Fig). A wide variety of significant cellular component GO terms were

also found, which may relate to various differentiation processes occurring in endocycling

cells. There are no significant GO terms for genes within Later-to-Earlier RATs, though the

presence of only 52 expressed genes in this RAT category made it difficult to fully assess signif-

icance. Taken together, these analyses of transcription-related histone modifications and func-

tional annotations suggest a role for gene expression changes in the Earlier-to-Later RATs.

Given that these regions are shifting to a later RT in the endocycle, a decrease in gene expres-

sion would be expected [19]. However, more work will be needed to confirm this hypothesis.

The general organization of the maize genome is genes clustered in “islands” interspersed

with blocks of transposable elements [50–52]. We used a permutation strategy similar to that

described above to estimate the significance of any differences in percent coverage of TEs and

individual TE superfamilies in non-CEN RATs. Observed coverage values were compared to

random expectation, estimated from 1000 randomly shuffled sets. The TE annotations were

from the recent B73 RefGen_v4 TEv2 disjoined annotation, where every bp is assigned to a

single TE [47]. We found no TE superfamilies with percent coverage values in non-CEN RATs

that are significantly different from random expectation at the permutation P value threshold

of 0.001, although one TE superfamily, RLG/Gypsy, is very close to the threshold for being

called significantly depleted in Earlier-to-Later RATs (permutation P value = 0.002; S9 Fig).

RLG/Gypsy elements make up 32% of the coverage of Earlier-to-Later RATs, and from 32–

40% of the coverage of the randomly shuffled sets. We also found that the percent AT content

in RATs is similar to that of the genome as a whole, with median values of 55% and 56% for

Later-to-Earlier and Earlier-to-Later RATs, respectively, compared to a median value of 55%

for the whole genome (S10 Fig). Taken together, there is no evidence of a difference in AT con-

tent or a major enrichment or depletion in the coverage of specific TE superfamilies in non-

CEN RATs, with the possible exception of a minor depletion of RLG/Gypsy element coverage

in Earlier-to-Later RATs. Given that RLG/Gypsy elements have by far the most abundant cov-

erage across the B73 reference genome [46], this minor depletion may be related to the

increased presence of genes in Earlier-to-Later RATs (Fig 3).

Centromeric RATs

Functional centromeres are defined by their content of nucleosomes containing the centro-

mere-specific histone variant known as CENH3 in plants and CENP-A in animals. CENH3/
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CENP-A makes up only a small percentage of the total H3 population in centromeres, but

plays an important role in recruiting kinetochore proteins [53–55]. Maize is unusual among

higher eukaryotes in that a majority of centromeric reads can be uniquely mapped [56]. In our

Repli-seq data, for example, we found that on average 45% of all reads that map to centromeres

could be uniquely mapped to a single location (S11 Fig). Only these uniquely mapping reads

were used for further analysis. In addition, most of the maize centromere assemblies are rela-

tively intact, and functional centromeres have been located by mapping ChIP-seq reads for

CENH3 [46]. When combined with our replication timing data, these features of the maize

system create a unique opportunity to assess RT programs for centromeres.

Our analysis found large, robust RATs across seven of the ten centromeres (Figs 4C, 4D

and S12). These seven centromeres (CEN 2, 3, 4, 5, 8, 9 and 10) were previously classified as

“complex” because they contain a mixture of retrotransposons with some centromere satellite

repeat arrays (CentC; [56, 57]). In the RefGen_v4 genome assembly, CEN 9 has two called

CENH3-binding regions [46], which we refer to as CEN 9a and 9b (Fig 4C; grey bars). Interest-

ingly, we only found robust RATs in the larger CEN 9a, with the smaller CEN 9b showing very

little RT shift (Fig 4C and Table 2). The cumulative coverage of RATs in each complex CEN

ranges from 0.45–1.5 Mb (Table 2). However, because each centromere includes blacklist

regions that vary in size and number, automated analysis did not identify the true sizes of the

RATs. Therefore, we also calculated an upper estimate of continuous RAT size in each centro-

mere, including the multiple RATs called by automated analysis as well as the interspersed

blacklist regions. We also included coverage from CEN RATs that extend somewhat past the

previously determined CEN boundaries (“presumed CEN RAT”). This upper estimate ranges

from about 0.9–2 Mb in different centromeres, and covers between 65–95% of the previously

defined functional centromere for the seven complex CENs (Table 2).

Upon inspecting the RT profiles for each of the complex CENs we found the strongest repli-

cation signals occurring mainly in mid S in mitotic cells, but changing to primarily late S in

endocycling cells. It is also noteworthy that though replication occurs mainly in mid S in

mitotic cells, there are some distinct peaks of early replication inside or directly adjacent to the

called centromere (indicated by black arrowheads in Figs 4 and S12) in all but one (CEN 5) of

the complex centromeres. These early peaks remain in the endocycle, though usually there is

some reduction in early signal with a concomitant increase in mid signal at the same location.

The remaining three centromeres (CEN 1, 6, and 7) were previously characterized as “sim-

ple” because they mainly contain large arrays of the CentC repeat [56, 57]. In our analysis, the

simple centromeres showed, at most, small RT shifts that did not meet our criteria for a robust

RAT (Table 2, Figs 4A, 4B and S12). However, CentC repeats are not well represented in the

reference genome assembly, so it is not possible to analyze RT profiles for the complete simple

centromeres. Portions of CEN 7 that are present in the assembly replicate mainly in mid S

phase in both mitotic and endocycling cells (S12 Fig), while sequences in the assemblies for

CEN 1 and CEN 6 are mostly late replicating in both types of cells, with some minor RT

changes across small regions (Fig 4A and 4B and Table 2).

Because of the issues with computationally identifying continuous RATs we chose to focus

the following set of analyses on the entire CENH3-binding region of each chromosome

(excluding blacklist regions). We calculated the difference in early, mid and late replication

signal (endocycle minus mitotic) from RT profiles by averaging across 100-kb static windows.

For comparison, we also calculated the replication signal differences in pericentromeres,

which were arbitrarily defined as the ± 1 Mb flanking the CENH3 region. We inspected all RT

differences in the centromeres and pericentromeres by not requiring that the DRT be compen-

sated by an opposite shift in the other S-phase fractions. Early and mid replication signals

across the complex centromeres decrease and late replication signals increase in endocycling
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Fig 4. Large RATs correspond to functional centromeres. Our analysis found large RATs, sometimes broken by blacklist regions (black tick

marks at the bottom of each panel) at each of the seven “complex” maize centromeres. The remaining three “simple” centromeres (on

chromosomes 1, 6, and 7) showed various levels of DRT that did not meet the criteria for calling RATs in our initial analysis. (A–D) Each 5-Mb

region shown contains early (E), mid (M) and late (L) RT profiles with mitotic and endocycle data overlaid (scale: 0–5 normalized replication

signal). The difference in late replication signal (endocycle minus mitotic; labeled “L DRT”) for windows where the difference was

compensated by an equal and opposite difference in the early and/or mid profiles is also shown. Late replication signal differences

compensated at the� 10% threshold (light red), and those compensated at the� 25% threshold (dark red) are shown, but only regions that

contained at least one� 25% shift were classified as robust RATs in our initial analysis. Two examples of simple centromeres, CEN 1 (A) and

CEN 6 (B), and two examples of complex centromeres, CEN 9 (C) and CEN 10 (D) are presented. The black arrowheads in panels C and D

denote example regions with a peak of early replication signal within or adjacent to the centromere that also shows an increase in mid

replication signal in the endocycle (for other examples, see S12 Fig). Colored boxes below the RT profiles denote Earlier-to-Later RATs (red)

and the functional centromere (grey; [46]). Chromosome 9 contains two called CEN regions labeled 9a and 9b. The colored tick marks

correspond to elements of centromeric retrotransposons of maize (CRM) families 1–4 (orange; [47]), gene annotations (purple; [46]), and

mappable CentC satellite repeats (teal; [57]). Blacklist regions are indicated by black tick marks in the lowest track. (E and F) DRT (endocycle—

mitotic) between late RT profiles for each centromere (E) and corresponding pericentromere (F; ± 1 Mb) were calculated in 100-kb static

windows. In panel F, asterisks indicate DRT values from windows where an Earlier-to-Later-CEN RAT extends past the called CEN boundary

[46] into the pericentromere (also see Table 2); open circles indicate windows that contain a non-CEN Earlier-to-Later RAT that met our

compensation criteria. DRT values between early and mid profiles are shown in S13 Fig.

https://doi.org/10.1371/journal.pgen.1008623.g004
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cells, reflecting a large shift toward late replication. The DRT values for the late profile in cen-

tromeres and pericentromeres are shown in Fig 4E and 4F, respectively, while the DRT values

for early and mid profiles are shown in S13 Fig. Interestingly, the DRT tapers off towards the

edges of the functional centromere (see profiles in Figs 4C, 4D and S12), and there is striking

congruity in the replication signals for mitotic and endocycling cells in the immediately adja-

cent pericentromere regions (Fig 4A–4D). The few RT shifts in pericentromeric regions are

smaller in size and much less dramatic than those in the centromere proper (Fig 4F). More-

over, very few (8%) of pericentromeric windows with DRT are compensated by an equal and

opposite shift in the other S-phase profiles (S4 Table), suggesting many of these uncompen-

sated differences may result from technical variation rather than from meaningful biological

differences. In contrast, nearly all (85%) of the centromeric windows have compensated RT

shifts.

Genomic elements and features in centromeres

Maize centromeres contain varying amounts of tandemly arrayed CentC repeats (single repeats

of 156 bp in length; [41]) as well as several CRM retrotransposon families interspersed with ele-

ments from a few other retrotransposon families [44, 52, 58, 59]. CentC repeats and CRM ele-

ments are also present in the adjacent pericentromeres where there is no CENH3 binding [52,

58]. In RefGen_v4, there are also fifty annotated genes within centromeres. We asked if all of

these sequence elements in centromeres behave similarly in the mitotic to endocycle transi-

tion, or if certain elements show larger RT shifts than others. We also asked if all three types of

sequence elements show similar RT changes in centromeres versus pericentromeres. Given

that the replication signal values were aggregated in 3-kb windows, we only included elements

that covered at least half a window (1.5 kb) in our analysis. Fig 5 summarizes data on these

questions for the complex centromeres, while data for the simple centromeres are shown in

S14 Fig. Similar results were found when all elements were included (S14 Fig).

The results for the two dominant CRM families, CRM1 and CRM2, are similar (S14 Fig), so

these families were grouped together in Fig 5C. When present in centromeres, all three major

classes of elements–genes, CRM1/2, and CentC repeats–clearly replicate later during the endo-

cycle than in the mitotic cycle (Fig 5). In contrast, genes and CRM elements in the pericentro-

mere show little or no timing shifts. A full analysis of the replication times of CentC repeats in

pericentromeres is hampered by the limited representation of this repeat class in the genome

assembly (Figs 5D and S14E).

Chromatin features in centromeres

We also examined activating (H3K56ac and H3K4me3) and repressive (H3K27me3) histone

H3 post-translational modifications to look for epigenetic changes in centromeres after endo-

cycle replication. It was previously reported that some H3K4me3 and H3K27me3 peaks of

enrichment occur in the centromere, mainly associated with genes [60]. We asked whether

genes that have these modifications continue to have them after mitotic and endocycle replica-

tion, and found very few changes in the number of genes with these modifications at each

ploidy level (S15 Fig). There was also very little change in the fold enrichment of these histone

marks in centromere genes when comparing 2C, 4C and 8C nuclei.

We also investigated the levels of dimethylation of histone H3 lysine 9 (H3K9me2) enrich-

ment in each centromere after mitotic and endocycle replication. Previous work indicated

there is a depletion of H3K9me2 in centromeres relative to adjacent pericentromeres [61, 62],

which we observed as well (S16 Fig). Traditional peak calling tools are not effective for

H3K9me2 because of its even distribution across the maize genome. Instead, we estimated the
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fold enrichment relative to the corresponding DNA input control by calculating the percent of

total H3K9me2 ChIP reads in a given centromere region (using coordinates from [46]) and

dividing by the percent of total input reads corresponding to that centromere in three biologi-

cal replicates. We found a similar H3K9me2 average depletion for all centromeres and for 2C,

4C and 8C nuclei relative to their corresponding input (averages for individual CENs 0.75–

0.88, 0.83–0.91 and 0.85–0.93 for 2C, 4C and 8C nuclei, respectively), although values for 4C

and 8C nuclei were consistently slightly higher than those for 2C nuclei (S16A Fig). The maize

CENH3 N-terminal tail lacks some of the conserved motifs found in canonical histone H3 (see

S3 Table in [63]), so H3K9me2 enrichment is likely to occur in the interspersed H3 nucleo-

somes. Altogether, we found very little change in centromeres between non S-phase 2C, 4C

and 8C nuclei in the histone H3 post-translational modifications we assessed by ChIP-seq.

Centromeric histone H3 in mitotic and endocycling centromeres

Unlike the canonical histone H3, CENH3 is not replaced in a replication dependent manner

in higher eukaryotes, resulting in a dilution of CENH3 relative to centromeric DNA during S

Fig 5. Comparing replication times for genomic features in complex centromeres and corresponding

pericentromeres. (A–D) Boxplots comparing replication signals during mitotic and endocycle S phases for

centromeres, pericentromeres (± 1 Mb), and genomic features within them. The panels show the distributions of

replication signals in early (E), mid (M), and late (L) S for all 3-kb windows (A), annotated genes (B), CRM1/2
elements (C), and mapped CentC repeats (D) in centromeres and pericentromeres. For panels A and C, colored violin

plots are overlaid, while for panels B and D, individual data points are shown because of the smaller number of data

points. The number of windows or elements included in each analysis is indicated above each graph. Only elements

that covered at least 50% of a 3-kb window were included in each analysis, though results were similar when all

elements were included (S14 Fig). Boxplots for all elements in simple centromeres, as well as for the individual CRM1
and CRM2 families are in S14 Fig.

https://doi.org/10.1371/journal.pgen.1008623.g005

PLOS GENETICS Replication timing shifts at centromeres of endocycling cells in maize roots

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008623 October 14, 2020 15 / 37

https://doi.org/10.1371/journal.pgen.1008623.g005
https://doi.org/10.1371/journal.pgen.1008623


phase [64, 65]. New CENH3 is incorporated into nucleosomes after the completion of S phase,

but the timing of its integration into centromeric chromatin differs for plants, flies and

humans (reviewed in [66]). In the plants tested thus far, deposition of CENH3 has been

reported to occur between late G2 and metaphase [67–70].

Because mitosis does not occur in the endocycle and centromere function is presumably

not required, we speculated that CENH3 might remain at low levels following DNA replication

in endocycling cells. This hypothesis is supported by cytological studies of Arabidopsis endo-

polyploid nuclei showing the CENH3 signal does not increase in parallel with the total DNA

content or the signal for 180-bp centromeric repeats [68, 69]. To test this hypothesis with

maize centromeres, we used a maize anti-CENH3 antibody [58] for ChIP-seq analysis of

CENH3 binding in sorted non S-phase 2C, 4C and 8C populations of nuclei. It is important to

note that the 4C nuclei come from a mixture of cells, some of which will return to the mitotic

cycle, while others will remain at 4C, and still others will continue on to the endocycle (at least

15% of nuclei in the combined 0–3 mm region). We asked whether the location or level of

CENH3 enrichment changed after DNA replication in the mitotic cycle or the endocycle. For

visualization of CENH3 localization, ChIP-seq uniquely mapping read counts from three bio-

logical replicates for each ploidy level were aggregated in 3-kb windows and normalized to the

level of a uniform 1× genome coverage, so that corresponding windows in the different ploidy

level profiles were comparable. The normalized read count in each 3-kb window was then

divided by the normalized read count for input DNA of the corresponding ploidy to calculate

a fold enrichment value for CENH3 binding sequences in that window. The spatial distribu-

tion of CENH3 enrichment across the centromeres remained the same in 2C, 4C, and 8C cells.

This is illustrated for CEN 9 and CEN 10 in Fig 6A and 6B, and data for the rest of the centro-

meres are shown in S17 Fig. There are also a few small spikes of CENH3 enrichment outside

the called centromere (e.g. seen in Fig 6 and S17 Fig, but also occasionally further out on the

arms). These spikes also remain in the same location between 2C, 4C and 8C cells. Some of

them could be related to misassembly of the reference genome. However, if real, these ectopic

CENH3 peaks are less numerous and more persistent in G2 (4C) than those recently observed

in HeLa cells [71].

To compare total CENH3 content of entire centromeres at different ploidy levels, we calcu-

lated the percent of total CENH3 reads found in a given centromere and made a ratio to the

percent of total reads from the corresponding input DNA in that centromere separately for

each biological replicate, as described above for H3K9me2. The CENH3 average fold enrich-

ment relative to total DNA content is similar for 2C and 4C nuclei in each of the complex cen-

tromeres (Fig 6C), with an average 4C/2C enrichment ratio of 1.1 (S5 Table). However,

CENH3 enrichment decreases with the increase in ploidy from 4C to 8C (Fig 6C). As noted

above, the 4C nuclei come from a mixed population of cells, only a fraction (ca. 15% in the

combined 0–3 mm root region) of which will enter the endocycle. Because of this ambiguity,

we chose to focus on the CENH3 enrichment in 8C nuclei. In these nuclei, we found, an aver-

age 8C to 2C enrichment ratio of only 0.7 (S5 Table). CENH3 enrichment values for simple

centromeres were lower and slightly more variable, likely because of assembly issues. In both

cases, however, the ratio of CENH3 enrichment in 8C cells to that in 2C cells is higher than

0.5, the ratio that would be expected if there was no incorporation of new CENH3 after endo-

cycle replication, but smaller than the 1.0 ratio expected if there was full replacement (S5

Table). It is worth noting that these data refer to post-replication 8C nuclei, which exited S

phase prior to the time of analysis, and that post-replication 4C nuclei show no dilution of

CENH3 relative to DNA content. Thus, our data are consistent with a hypothesis in which the

average CENH3 to DNA ratio in the 8C population is only partially restored after completion

of S phase.
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Discussion

The maize root tip includes a naturally occurring developmental gradient, with cells in the

meristem region (ca. 0–1 mm) primarily undergoing mitotic cell cycles, while a subpopulation

of cells in the transition zone (ca. 1–3 mm) enters a developmentally programmed endocycle

prior to further differentiation [8, 9]. Even though endocycling is very common in plants and

Fig 6. CENH3 localization and enrichment in mitotic and endocycling centromeres. We profiled CENH3 binding

by ChIP-seq in flow sorted, non S-phase nuclei with 2C (before mitotic replication), 4C (after mitotic replication) and

8C (after endocycle replication) DNA contents. (A and B) CENH3 localization patterns for 2C, 4C and 8C nuclei in

CEN 9a and 9b (A) and CEN 10 (B). Scale in both panels is 0–120 fold CENH3 enrichment relative to input. Colored

boxes below the CENH3 profiles denote the previously identified functional centromere (grey; [46]), and Earlier-to-

Later-CEN RATs (red). Tick marks in the bottom two tracks indicate blacklist regions (black) and mapped CentC
repeats (teal). (C) We used the ChIP-seq datasets from 2C, 4C and 8C nuclei to estimate the CENH3 average fold

enrichment relative to DNA content for complex centromeres by calculating the percent of total CENH3 reads found

in a given centromere (using coordinates from [46] and dividing by the percent of total input reads corresponding to

that centromere. Black dots represent the individual values from biological replicates. Data for simple centromeres are

shown in S17B Fig.

https://doi.org/10.1371/journal.pgen.1008623.g006
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plays essential roles in differentiation and the development of specialized tissues, cell size

increases, and stress responses [2, 5, 72, 73], replication timing (RT) programs have not yet

been characterized for alternative cell cycles, such as the endocycle.

We generated whole genome Repli-seq data for root cell nuclei undergoing DNA replica-

tion in either the mitotic cycle or the endocycle, making use of in vivo EdU labeling of intact

root tips and two-color fluorescence activated nuclei sorting. By doing so, we avoided potential

artefacts caused by cell synchronization [74] and chromosome aberrations often found in

plant and animal cell cultures (e.g. [75–77]). We present replication timing activity profiles

(RT profiles) for early, mid and late replication separately, instead of collapsing the data into

an early:late ratio as many studies do. The rationale for this approach is that, for roughly one

third of the maize genome, we previously found heterogeneity in mitotic RT–e.g. regions of

the genome in which root tip cells exhibit significant replication activity in both early and mid

S, or both mid and late S [19]. An additional advantage to presenting the RT profiles separately

is the ability to assess whether there are concomitant or “compensated” changes in a region at

multiple stages of S phase. This compensation criterion helped us separate RT shifts that could

be subject to technical error, such as alterations in flow sorting gates, from shifts that are more

likely to represent meaningful changes in the population preference to replicate a replicon or

cluster of replicons at a particular time in S phase.

The current study sought to investigate whether the mitotic RT program is maintained as

endocycling cells transition from 4C to 8C, despite the need to replicate twice as much DNA

and the initiation of various root cell differentiation pathways. Extending our previous

cytological observation that spatiotemporal patterns of replication are similar in mitotic and

endocycling cells [22], we found that RT programs at the sequence level are also very similar.

Pearson’s correlation coefficient values comparing data from the two types of cell cycles were

nearly identical to those for biological replicates within each type. The high level of similarity

is particularly noteworthy in the case of the early RT profiles, given that the flow sorting gate

for early replicating nuclei in the endocycle had to be adjusted to minimize contamination

from late replicating mitotic nuclei (Fig 1C). This overall conservation of the RT program in

the endocycle is consistent with a recent study in Drosophila follicle cells which found no

regions of differential RT between mitotic and endocycling cells [78]. Additionally, the global

maintenance of RT in the two types of cell cycles in maize roots suggests that the process of re-

establishing the RT program must be similar in both. In animal systems, re-establishment of

the RT program has been shown to occur in G1 of each cell cycle at a “timing decision point”

[79], however the details of this process have not been studied in plants.

Most plants fully replicate their genome during endocycles [80], although there are a few

exceptions (e.g. various orchid species; [31, 32]). We found very little evidence for over- or

under-replication occurring in endocycling maize root cells, unlike the distinctive over- and

under-replication found in Drosophila endocycles (reviewed in [27] and references therein).

Our result is consistent with earlier cytological reports that whole chromosomes, as well as

repetitive knobs and centromeres, are completely replicated in the highly endopolyploid maize

endosperm [33].

In contrast to the global maintenance of the RT program, we observed a small fraction of

the maize genome that exhibits some difference in RT (DRT) between the two types of cell

cycles. Approximately 11% of the genome showed compensated DRT at a stringency level

of� 10% difference in replication signal (see Methods). However, with the notable exception

of centromeric regions, which are discussed in more detail below, we chose to characterize

only the most robust Regions of Altered Timing (RATs), defined by the criteria of containing

a core region with compensated DRT at a stringency level of� 25% difference in replication

signal. These robust non-centromeric RATs comprise only 1.6% of the genome (centromeric
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RATs comprise an additional 0.4% of the genome), and the size range of individual non-cen-

tromeric RATs (39–387 kb, median 138 kb) is consistent with our previous observation that

regions of coordinate replication in maize are ~50–300 kb in size [19]. This may include from

one to a few replicons, based on previous estimates of replicon size in monocot plants [49].

The first 1-mm of the maize root contains the meristem and precursors for at least ten dif-

ferent cell types. Only some of these cell types enter the endocycle prior to cell elongation [9].

If there are differences in the RT programs of different cell types, some or all of the non-cen-

tromeric RATs may be associated with shifts in the relative contribution of different cell types

to the two samples of nuclei, rather than to endocycling per se. Research in metazoans has

revealed ~8–20% of their genomes can shift RT between cell types [11–13, 81–83]. In mam-

mals, these RT shifts generally involve large regions or “domains” in the megabase size range

(reviewed in [26]). These RT domains are much larger than the non-centromeric RATs in

maize, even though the maize genome is similar in size to the human and mouse genomes.

However, in the much smaller Drosophila genome, regions that show RT shifts between cell

types are more similar in size to the maize non-centromeric RATs [81, 83].

The vast majority of the non-centromeric RATs involved RT shifts from Earlier-to-Later,

with a significant enrichment for genes expressed in the root tip, but not for non-expressed

genes (FPKM < 1). This result suggests the possibility that RT shifts may be related to shifts in

gene expression. Unfortunately, we have been unable to follow transcriptional changes in

endocycling nuclei directly, as we have so far not been able to isolate RNA of sufficient quality

to characterize transcripts from fixed, sorted nuclei. However, our analysis of activating and

repressive histone modifications uncovered only minor changes in the enrichment and loca-

tion of these marks within RAT genes after endocycle replication. The lack of notable changes

in the proportion of RAT genes bearing H3K56ac and H3K4me3 modifications after the endo-

cycle suggests that these histone marks are permissive to changes in RT. Nonetheless, the

direction of the change in H3K4me3 enrichment on genes in Earlier-to-Later RATs after

endocycle replication (S7B Fig) is consistent with the hypothesis that a shift to later RT may

accompany a decrease in gene expression. Many studies have identified a correlation between

RT and transcriptional activity (reviewed in [26]), but there are also multiple examples of these

processes being uncoupled (e.g. [14, 84]).

In the case of centromeres, it is easy to imagine that the large shifts to later replication are

related specifically to endocycling, because endocycling cells presumably no longer require

functional centromeres. Though often broken by unmappable and multi-mapping (“blacklist”)

regions in the genome assembly, centromeric RATs when combined across blacklist regions

are much larger in size (0.9–2 Mb) than the non-centromeric RATs and cover the majority of

each of the seven complex centromeres (Table 2). These seven centromeres, which are well

assembled in the maize B73 RefGen_v4 genome, contain satellite repeats interspersed with ret-

rotransposons [46, 56], enabling almost 50% of our sequencing reads that map to these centro-

meres to be uniquely positioned. In most species, in which centromeres contain large numbers

of tandemly arrayed satellite repeats, it is difficult to map centromeric sequence reads to

unique positions and, thus, to fully assess centromeric RT patterns [85]. Though yeast centro-

meres replicate in early S phase [86–89], most higher eukaryotes replicate centromeres asyn-

chronously through mid to late S phase [64, 90–95]. Many of the reports in higher eukaryotes

are based on cytological observations, membrane hybridization, or PCR data with limited res-

olution. Even a recent genomic analysis of centromeric RT in human cell lines was signifi-

cantly limited by the quality of the human centromere assemblies, and could only uniquely

map ~15% of centromeric reads [85]. Centromere replication in plant species, assessed mostly

by cytological methods, has variously been reported to occur in early, mid or late S [96–99],

though it is often unclear if the analysis was of sufficient resolution to distinguish the RT of
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centromeres from that of adjacent pericentromeres. In contrast, we have provided a high-reso-

lution analysis of the distribution of replication times across maize centromeres, and com-

pared RT of centromeres to adjacent pericentromeres.

These analyses revealed several features shared by the RT programs of the seven complex

maize centromeres. For example, in mitotic cells there are a few distinct peaks of early replica-

tion (e.g. arrowheads in Fig 4 and S12 Fig), flanked by mainly mid replication activity that is,

in turn, flanked by regions of late replication at the edges of the functional centromere. Except

for these few early regions, which show an increase in mid replication activity in the endocycle,

entire centromeres and the genes, retroelements and CentC repeats within them–undergo a

shift to late replication in the endocycle. As a result, the RT of the complex centromeres in the

endocycle becomes much more similar to that of the immediately adjacent pericentromeric

regions, which replicate primarily in late S phase in both mitotic and endocycling cells. Late

replication of pericentromeres is expected based on our previous cytological observations in

mitotic and endocycling nuclei [22] and the typical replication time of highly compacted het-

erochromatin in many systems.

The presence of distinct peaks of early replication in or adjacent to functional centromeres

(arrowheads in Fig 4 and S12 Fig) is noteworthy because they signify a population preference

for replication initiation in early S phase at these loci. This observation is of particular interest

because in the yeast Candida albicans, centromeres contain a replication origin that is the first

to initiate on its respective chromosome and plays a role in centromere specification [89].

Work in other yeasts has shown evidence that the phenomenon of early firing origins in and

near centromeres is present across a range of yeast phylogeny and that the presence and func-

tion of the centromere itself influences RT [100–102]. In maize, there is no evidence that these

early regions in and adjacent to centromeres are the first to replicate on the entire chromo-

some, but they are earlier replicating than their surroundings. Origin mapping experiments

(e.g. [103–105]) would be required to distinguish whether these early regions contain single or

small clusters of origins, and the location of any other origins in centromeres that may initiate

in mid or late S phase.

Unlike complex centromeres, the three simple centromeres of maize show less drastic RT

changes that occur over smaller regions. These simple centromeres are not as well assembled

as the complex centromeres [56, 57], and we cannot assess RT for the possibly large portions

of these centromeres not present in the genome assembly. One potential interpretation of our

results is that the simple centromeres have distinct RT programs that show less timing shift in

the endocycle, possibly related to their different sequence composition. Alternatively, the miss-

ing portions of the simple centromere assemblies could be replicating more like the complex

centromeres. Because simple centromeres are known to primarily contain large CentC arrays

[56, 57], the second hypothesis is supported by our analysis of mapped CentC satellite repeats

in all centromeres, which showed that, as a group, these repeats consistently shift RT from mid

to late. Another piece of evidence comes from our analysis of complex centromeres, which

showed that the magnitude of the RT change tapers off toward the outer edges of the func-

tional centromere. One can speculate that the simple centromere assemblies are comprised

mostly of the sequences at the edges of the actual centromere, which would still be anchored to

nonrepetitive regions in the genome assembly. As in complex centromeres, these edge

sequences might have a smaller RT shift than internal sequences. Future cytological experi-

ments, using a combination of flow sorted, EdU-labeled nuclei and techniques for identifying

maize chromosomes [106, 107] could help address questions related to the RT of simple

centromeres.

The centromere-specific histone variant, CENH3 (also called CENP-A in animal systems)

plays an important role in recruiting kinetochore proteins [53–55]. In metazoans, it has been
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shown that CENP-A is distributed among sister centromeres during replication, but the full

complement of new molecules is not redeposited until later [65, 108]. However, there are dif-

ferences in the timing of deposition of CENH3/CENP-A among eukaryotes. Deposition occurs

from S phase to G2 in yeasts, while in plants and protozoans it occurs from late G2 to meta-

phase, and in metazoans it occurs mostly during G1 (with the exception of some Drosophila
cell types in metaphase to G1; reviewed in [55, 66, 70]). These interesting differences between

phylogenetic groups in the timing of CENH3/CENP-A deposition suggest there may also be

differences in the mechanisms and regulation of deposition that need to be explored further

[69]. In our analysis of CENH3 enrichment relative to DNA content in maize root cells, the

population of 4C nuclei appear to have a full complement of CENH3, which would be consis-

tent with the previous results for plant species. This result supports a hypothesis that the sub-

population of 4C cells entering the endocycle also carry a full complement of CENH3. If this

hypothesis is correct, our data for 8C nuclei imply that CENH3 is only partially replaced after

DNA replication in the endocycle. Because the population of 8C nuclei we analyzed likely rep-

resents a mixture of cells that recently exited the endocycle S phase and others that exited

some time ago we cannot determine whether CENH3 is fully restored in some cells and not

others, or if it might be fully restored at a later time. However, our data suggest that the ratio of

CENH3 to DNA is not immediately restored in the 8C population, and that the lower ratio is

widely distributed across all ten centromeres.

It is unlikely that endocycling cells will ever re-enter the mitotic cycle [1, 109, 110], and it is

not clear why endocycling cells would maintain or redeposit CENH3 nucleosomes at all unless

CENH3 has roles outside of mitotic cell division. A recent study in Drosophila midgut cells

found that CENP-A is required in post-mitotic and differentiated cells, and proposed that the

loading of CENP-A in endocycling cells is essential for maintaining chromosome cohesion

[111]. This possibility has not yet been tested.

Centromeres are considered to be epigenetically specified, as there are no unique sequences

in the functional centromere that are not also found in the adjacent pericentromere (e.g.

reviewed in [53, 112]). With this in mind, we tested whether changes in enrichment levels of

CENH3 nucleosomes, or several modifications to canonical H3 nucleosomes, could explain

the large shift to later replication of centromeres in endocycling cells. These studies only

uncovered very small changes in activating and repressive histone H3 modifications in centro-

meres after endocycle replication. The magnitude of the change in CENH3, while somewhat

larger, was not on the scale of the change in RT. It is possible that more significant changes

might be found in epigenetic factors that we did not investigate, for example changes in DNA

methylation patterns or other histone post-translational modifications. A variety of modifica-

tions to CENP-A nucleosomes have been identified, (reviewed in [113]), but very little is

known about CENH3 modifications in plants [114, 115], highlighting an area for future

research. Experiments in human cells identified cell cycle related interchanges of acetylation,

monomethylation and ubiquitination at the lysine 124 residue of CENP-A [116, 117]. Muta-

tions of this residue led to replication defects and alterations to centromeric RT [117].

An interesting question for future investigation is whether changes in chromatin conforma-

tion or 3D positioning in the nucleus are associated with the large shift in centromeric RT. In

mammals, RT is considered a functional readout of large-scale chromatin structure [14, 26,

82], and regions that shift RT have been shown to also change 3D localization [118]. Likewise,

a study in mouse showed that when late replicating pericentric heterochromatin was experi-

mentally repositioned to the nuclear periphery, a location where mid replicating chromatin is

usually found in that system, the RT of those regions was advanced [119].

Additionally, we speculate that centromere transcription could play a role in the shift to

later replication of centromeres in the endocycle. Non-coding transcription has been reported
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to occur in centromeres across a wide range of eukaryotes, and has also been found to be

essential for centromere function ([112] and references therein). Furthermore, in human cells,

when centromere RNAs transcribed from alpha satellite repeats are specifically degraded, cells

arrest before mitosis and have reduced CENP-A levels [120]. In maize, low level transcription

has been detected from CentC satellite repeats as well as CRM retroelements, and there is evi-

dence that centromere transcripts are involved in the function of the kinetochore complex and

centromere chromatin organization [121–123]. As noted above, technical limitations pre-

vented us from assessing transcripts from endocycling cells. However, it seems possible that a

reduction in centromere transcription during the endocycle could contribute to the observed

reduction in CENH3 and potential dismantling of the kinetochore function. Outside the cen-

tromere region, reduced transcription is often associated with late replication [19, 26]. Future

work addressing the technical challenge of sorting maize nuclei for transcript profiling will be

needed to test this hypothesis.

One further interesting possibility arises from the observation that small regions in or adja-

cent to the 7 complex centromeres exhibit early replication during the mitotic cycle which is

reduced in the endocycle. In mitotic cells, regions flanking these early peaks often show strong

mid-S replication with relatively little replication in late S. In endocycling cells there is still

very little late replication at the actual locus of the early peak, but late replication is enhanced

in the flanking centromere regions. These small, early-replicating regions are reminiscent of

the early replicating origins described in and near centromeres in several types of yeast [89,

101] as well as the “initiation regions” identified in very early S phase recently described in

Arabidopsis by Wheeler et al. [105]. Strikingly, some of the Arabidopsis very early initiation

regions occur in centromeric/pericentromeric heterochromatin of Arabidopsis chromosomes.

It is possible to imagine that these early replicating regions at maize centromeres contain

early-firing origins that drive replication of bulk centromeric chromatin during mid-S in

mitotic cells, but that in endocycling cells, initiation activity in these regions is reduced. Alter-

ations in chromatin conformation, subnuclear positioning, or other factors could mediate

such a reduction in early initiation activity, which in turn could cause, or contribute to, the

reduction in overall centromere transcription hypothesized in the previous paragraph.

The three speculative hypotheses presented above are not mutually exclusive, and in fact

can easily be imagined to work synergistically together. We believe all three deserve further

investigation as appropriate techniques can be developed. Investigating the interplay of chro-

matin environment, subnuclear organization, transcription and DNA replication in plant sys-

tems has proven difficult in the past. Numerous reasons for these difficulties exist, for example,

plants have cell walls and are rich in nucleases, actively dividing cells are sequestered in tiny

meristematic regions, and many genomes have a high content of retrotransposons and other

repeats. As a result, understanding of such critical areas has lagged behind that in yeast and

animal systems. However, with recent progress in assembling genomic resources and antici-

pated advances in the ability to isolate individual cell types [124], perform sophisticated analy-

ses of genome conformation [125, 126] and follow individual chromosome regions using

elegant cytological paints [107], the maize root tip system is poised to contribute to rapid prog-

ress in these and many other important areas of plant genome biology.

Methods

Plant material

Seeds of Zea mays inbred line B73 (GRIN NPGS PI 550473) were germinated on damp paper

towels and grown for three days. Seedling roots were labeled by immersion in sterile water

containing 25 μM EdU (Life Technologies) for 20 min, using growth and experimental
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conditions described previously [8, 19, 20]. Biological replicate material was grown indepen-

dently and harvested on different days. For the endocycle Repli-seq experiment, after rinsing

roots well with sterile water, the 1–3 mm segments (Fig 1A) were excised from primary and

seminal roots. The root segments were fixed, washed and snap-frozen as described previously

[20].

Flow cytometry and sorting of root nuclei

Details of the flow sorting for Repli-seq analysis were described previously [19, 20]. Briefly,

nuclei were isolated from the fixed root segments, and the incorporated EdU was conjugated

to AF-488 using a Click-iT EdU Alexa Fluor 488 Imaging Kit (Life Technologies). The nuclei

were then resuspended in cell lysis buffer (CLB) [20] containing 2 μg/mL DAPI and 40 μg/mL

Ribonuclease A and filtered through a CellTrics 20-μm nylon mesh filter (Partec) just before

flow sorting on an InFlux flow cytometer (BD Biosciences) equipped with UV (355 nm) and

blue (488 nm) lasers. Nuclei prepared from the 1–3 mm root segments were sorted to collect

populations of EdU/AF-488-labeled nuclei with DNA contents in three defined sub-stage

gates between 4C and 8C, corresponding to early, mid and late S phase of the endocycle. The

early endocycle gate was shifted slightly to the right to exclude mitotic nuclei in late S phase

(Fig 1C). For each biological replicate, between 50,000 and 200,000 nuclei were sorted from

each fraction of the endocycle S phase. A small sample of nuclei from each gate was sorted into

CLB buffer containing DAPI and reanalyzed to determine the sort purity (S1 Fig). Sorting and

reanalysis details for the mitotic nuclei are described in [19].

For ChIP-seq experiments, roots were labeled with EdU, and nuclei were isolated from 0–3

mm (H3K27me3 and H3K4me3) or 0–5 mm (H3K56ac) root segments and conjugated to AF-

488 as described above. The 2C, 4C and 8C unlabeled, non S-phase populations of nuclei were

sorted into 2× extraction buffer 2 (EB2) [127] using the same sorting conditions as in Wear

et al. [19]. After sorting, the 2× EB2 was diluted to 1× with 1× STE. All flow cytometry data

were analyzed using FlowJo v10.0.6 (TreeStar, Inc.) as described in Wear et al. [19].

DNA and chromatin immunoprecipitations

For endocycle Repli-seq samples, reversal of formaldehyde cross links, nuclear DNA purifica-

tion and isolation, DNA shearing, EdU/AF-488 DNA immunoprecipitation with an anti-

Alexa Fluor 488 antibody (Molecular Probes, #A-11094, lot 895897), and DNA fragment puri-

fication were performed as described in Wear et al. [19].

ChIP procedures were performed as in Wear et al. [19] except the chromatin was sheared

using a Covaris S220 ultrasonicator to an average fragment size of 200 bp using a peak incident

power of 140 W, 10% duty cycle, and 200 cycles per burst for 6 min. Three percent of the chro-

matin volume was set aside to use as the input control for each of the 2C, 4C and 8C samples

and frozen at -70˚C until the formaldehyde cross link reversal step. The antibodies used for

ChIP were as follows: Zea mays anti-CENH3 antibody at a 1:250 dilution (gift from R.K.

Dawe) [58], anti-H3K9me2 antibody at a 1:25 dilution (Cell Signaling Technologies; 9753, lot

4), anti-H3K56ac antibody at a 1:200 dilution (Millipore; 07–677, lot DAM1462569), anti-

H3K4me3 antibody at a 1:300 dilution (Millipore; 07–473, lot DAM1779237) and anti-

H3K27me3 antibody at a 1:300 dilution (Millipore; 07–449, lot 2,275,589). See S18 Fig for anti-

body validation experiments for anti-H3K9me2 and anti-CENH3.

Library construction and sequencing

For Repli-seq and ChIP-seq samples, the final purified DNA was used to construct paired-end

libraries as described [19]. After adapter ligation, all samples underwent 17 cycles of PCR. For
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each Repli-seq or ChIP-seq experiment, individual samples from three biological replicates

collected on different days were barcoded, pooled and sequenced on either the Illumina HiSeq

2000 or NextSeq platforms. However, in the case of the Repli-seq mitotic late-S samples and

CENH3 ChIP 4C samples, one biological replicate failed during library generation or sequenc-

ing, resulting in data from only two biological replicates. Repli-seq and ChIP-seq read map-

ping statistics are shown in S1 Spreadsheet.

Replication timing data analysis

Trimming and quality control of 100-bp paired-end Repli-seq reads were carried out as

described previously [19], and reads were aligned to the maize B73 RefGen_v4 reference

genome [46] (Ensembl Plants release 33; ftp://ftp.ensemblgenomes.org/pub/plants/release-33/

gff3/zea_mays/) using BWA-MEM v0.7.12 with default parameters [128]. Redundant reads

resulting from PCR amplification were removed from each of the alignment files using Picard

(http://broadinstitute.github.io/picard/) and SAMtools [129]. Properly paired, uniquely map-

ping reads (MAPQ score > 10) were retained with SAMtools [129] for downstream analysis.

The resulting mitotic Repli-seq data were more than 3× the sequencing coverage of the endo-

cycle Repli-seq data (S1 Spreadsheet). Repli-seq results are robust at various sequencing depths

[24], but to ensure that the mitotic and endocycle data were comparable, the reads were down-

sampled by a uniform random process using a custom python script incorporating the BED-

Tools suite [130] to a total of 65.7 million reads per S-phase fraction (S1 Spreadsheet). We

preferred this to normalization so that any possible sampling bias due to sequencing depth

would be similar in all samples.

Repli-seq data were analyzed using Repliscan [24]. Individual biological replicates of Repli-

seq data were independently analyzed, and after finding good correlation between replicates

(Pearson correlation coefficients from 0.80–0.99; S4 Fig) the replicates were aggregated by sum

and normalized to 1× genome coverage using the reads per genomic content (RPGC) method.

The following changes from the Repliscan default parameters described in [19] were used.

Read densities were aggregated in 3-kb windows across the genome (parameter -w 3000).

Additionally, we customized the cutoff for reducing type one errors which excluded genomic

windows with extremely low coverage in the 2C reference sample. To identify these low read

mapping windows, which we labeled “blacklist”, Repliscan natural log-transformed the read

counts from the pre-replicative 2C reference sample and windows with read counts in the

lower 2.5% tail of a fitted normal distribution were excluded from all samples (parameter—

pcut 2.5–100). The upper 2.5% tail containing extremely high coverage windows or “spikes”

was not removed at this step, because we found that these data spikes were adequately normal-

ized in the subsequent step of dividing each 3-kb window in the S-phase samples by the 2C ref-

erence data–which also normalized for sequencing biases and collapsed repeats (S3 Fig). The

data were then Haar wavelet smoothed [24] to produce the final profiles for early, mid and late

S-phase replication signals in the mitotic cycle and endocycle. Processed data files, formatted

for the Integrative Genomics Viewer (IGV) [131], are available for download from CyVerse

(formerly the iPlant Collaborative; [132]) via the information in S1 Spreadsheet.

Identifying regions of altered replication timing

The difference between normalized replication signal profiles of mitotic and endocycle Repli-

seq data for early, mid, and late S was calculated in 3-kb windows, and the maximum negative

and positive differences were then calculated for each chromosome and averaged. Regions

showing a DRT of� 25% (absolute difference in replication signal� 1.0) or� 10% (absolute

difference in replication signal� 0.4) of the total range of differences in each profile were
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identified (S1 Table; S5 Fig) using the data filter tool in SAS JMP Pro v14 (SAS Institute Inc.).

Windows were kept in the analysis only if their DRT were “compensated” by opposite DRT

of� 25% or� 10%, respectively, in one or both of the other two S-phase fractions. For exam-

ple, a decrease in early replication signal in endocycling cells must be compensated by an

increase in mid and/or late S-phase signal in the same cell population. Adjacent 3-kb windows

with DRT that met either the� 10% or� 25% threshold were merged, keeping the two files

separate, using mergeBED in the BEDTools suite, and allowing a 6 kb gap distance (parameter

-d 6000) [130]. This initial step resulted in many very small regions being identified (S2 Table).

As a second step, if� 10% regions were immediately adjacent to� 25% regions, they were

merged together using mergeBED to highlight larger regions of contiguous change (S2 Table).

Only regions that contained at least one� 25% region were kept for further analysis, and

termed regions of alternate timing (RATs). By requiring a� 25% DRT core region to be

included, all of the stand-alone, extremely small regions (< 24 kb) were effectively filtered out,

without the requirement of an arbitrary size filter. RATs were categorized into three groups: 1)

later in mitotic to earlier in endocycle (Later-to-Earlier), 2) earlier in mitotic to later in endo-

cycle (Earlier-to-Later) and 3) a subset of the Earlier-to-Later RATS that were located in the

previously identified functional centromeres (Earlier-to-Later-CEN) (coordinates from [46]).

There were no Later-to-Earlier-CEN RATs. For a list of RAT regions, including genomic coor-

dinates and genes within them, see S2 and S3 Spreadsheets.

ChIP-seq data analysis

ChIP-seq reads for H3K27me3, H3K4me3, H3K56ac (100-bp paired-end reads), H3K9me2

and CENH3 (150-bp paired-end reads) were trimmed, mapped to maize B73 RefGen_v4.33,

and filtered to retain only properly-paired, uniquely-mapped reads (MAPQ score> 10) as

described above for Repli-seq reads. The 2C ChIP and input data for H3K27me3, H3K4me3,

H3K56ac is from [19], while the 4C and 8C ChIP data was generated for this study, see S1

Spreadsheet. For details on peak calling and analysis for H3K27me3, H3K4me3, H3K56ac, see

S1 Text.

For visualization of CENH3 localization in 2C, 4C and 8C nuclei, read counts for individual

biological replicates of CENH3 or input samples were scaled to 1× genome coverage using the

reads per genomic content (RPGC) method. Biological replicate data had good agreement

(Pearson’s correlation coefficient values between biological replicates of 0.97–0.99; S1 Spread-

sheet), and were merged and scaled again to 1× coverage so the samples would be comparable.

CENH3 scaled read counts in each 3-kb window were divided by the scaled read counts from

the input sample for the corresponding ploidy level, resulting in CENH3 fold enrichment val-

ues relative to input.

To compare CENH3 enrichment relative to DNA content in 2C, 4C and 8C cells over entire

centromeres, we calculated the percent of total CENH3 reads found in a given centromere

(using coordinates from [46]), and divided by the percent of total input reads corresponding

to that centromere. This was done separately for individual biological replicates; we then calcu-

lated the mean fold enrichment estimates. H3K9me2 fold enrichment over entire centromeres

and pericentromeres was calculated in the same way.

Genomic features

The maize filtered gene set Zm00001d.2 annotation from B73 RefGen_v4 [46] was down-

loaded from Ensembl Plants (ftp://ftp.ensemblgenomes.org/pub/plants/release-33/gff3/zea_

mays/). The updated B73 Refgen_v4 TEv2 disjoined annotation [47] was downloaded from

http://mcstitzer.github.io/maize_TEs. Coordinates for mapped CentC satellite repeat regions
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are described in Gent et al. [57]. The percent AT content was calculated in 3-kb static windows

across the genome.

Analysis of features in RATs and random permutation analysis

We tested the association of various genomic features with the non-CEN RAT categories by

determining the overlap of a particular feature with each RAT type. The coordinates for geno-

mic features (genes, expressed genes, TE superfamilies) were intersected with RAT coordinate

intervals using intersectBED (parameters -wa -wb) in the BEDtools suite [130]. The percent of

RATs containing a feature or the percent coverage of TE superfamilies were then computed.

The number of genes per RAT was also determined using intersectBED (parameter -u).

For comparison, the coordinates for the non-CEN Earlier-to-Later and Later-to-Earlier

RAT sets were randomly shuffled around the genome, excluding functional centromeres,

using BEDTools shuffle [130]. These random sets preserved the number of regions and region

size of the original RAT sets, and are labeled “EtoL shuffle1” and “LtoE shuffle1” for the Ear-

lier-to-Later and Later-to-Earlier RATs, respectively (e.g. S7, S8 and S10 Figs). When there

appeared to be differences in the observed overlap values with genomic features between non-

CEN RATs and their corresponding random shuffle sets, a permutation or feature randomiza-

tion test, as described in [19] was used to assess the statistical significance of the observed

value. To do so, the coordinates for the non-CEN RAT sets were randomly shuffled around

the genome 1000 times, as described above, to generate an “expected” distribution. Permuta-

tion P values, calculated as described in [19], that were� 0.001 were considered evidence that

the observed percent coverage value is significantly different than random expectation.

Analysis of features in centromeres and pericentromeres

For comparison to CEN regions (coordinates from [46]), pericentromeres were arbitrarily

defined as the ± 1 Mb flanking each CEN. In the case of chromosome 9, the pericentromere

included the ± 1 Mb flanking both CEN 9a and 9b. Replication signal values in CENs and peri-

centromeres were intersected with genes, CRM1 and CRM2 families and mapped CentC regions

using intersectBED (parameters -wa -wb) in the BEDtools suite [130]. Only elements that cov-

ered at least half of a 3-kb window of Repli-seq data were included in Fig 5, while elements with

any amount of overlap were included in S14 Fig. Additionally, if a single gene or CRM element

spanned more than one of the 3-kb windows, the replication signals were averaged using mer-

geBED (parameter -o mean) to compute a single value for the entire gene or element.

Supporting information

S1 Text. Supplemental Methods.

(DOCX)

S1 Fig. (related to Fig 1) Assessment of purity of flow sorted endocycling nuclei. Maize root

tip nuclei were isolated from the 1–3 mm root region and sorted on a BD InFlux flow sorter. A

small sample from each of the three S-phase sort gates was re-analyzed to determine the purity

of the sorted nuclei. Histograms of relative DNA content (DAPI fluorescence) from re-ana-

lyzed sorted nuclei are overlaid for early (E), mid (M), and late (L) S-phase gates from the

endocycle arc to show the separation between sorted samples. Similar separation was found

for sorted early, mid and late nuclei from the mitotic cycle (see S1 Fig in [19]). The histogram

of relative DNA content for the entire unsorted nuclei population (black line) is shown for ref-

erence.

(PDF)
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S2 Fig. (related to Fig 1) Genomic copy number analysis. Whole genome sequence data

from sorted non S-phase 2C, 4C and 8C nuclei were used to assess copy number per DNA con-

tent across the genome. To better represent the copy number of repeat regions, the primary

alignment location for each read pair–even those that map to multiple locations–were included

in the analysis. (A and B) Histograms of the normalized read frequency ratios, calculated in

5-kb static windows, for 2C/4C (A) and 8C/4C (B) nuclei. The black dashed lines indicate the

overall mean and the red dashed lines indicate ± 2 S. D. from the mean. (C) The 8C/4C read

frequency ratios plotted as a function of genomic location, which shows that the values out-

side ± 2 S. D. all occur as singleton 5-kb windows. (D and E) We used consensus sequences for

45S rDNA and knob180 (D), and for 5S rDNA, TR-1, CentC and CRM1–4 families (E) to indi-

vidually query all of the trimmed whole genome sequence reads using BLAST software and a

non-stringent E value to allow for variants of each repeat (S1 Text). The mean percentage of

total reads that align to each repeat type was calculated for three biological replicates of 2C, 4C

and 8C data. Black dots represent the individual biological replicate values. The apparent slight

under-replication of several elements (e.g. knob180 and CRM2) is not statistically significant.

(PDF)

S3 Fig. (related to Figs 1 and 4) Example of Repli-seq data processing with Repliscan. An

example region from CEN 10 is shown to illustrate that the pre-replicative 2C reference data

effectively normalizes spikes of signal in the S-phase data. (A and B) Read densities were calcu-

lated in 3-kb windows for the 2C reference (A) and each S-phase sample (endocycle late profile

shown; B). After excluding blacklist regions (e.g. unmappable and multi-mapping regions),

reads were scaled for overall sequence depth in each sample. (C) Scaled reads in each S-phase

sample were normalized by making a ratio to 2C reference scaled reads in each 3-kb window.

(D) Replication signal profiles were smoothed using a Haar wavelet transform to remove noise

without altering peak boundaries.

(PDF)

S4 Fig. (related to Fig 1) Pearson’s correlation coefficient values between individual biolog-

ical replicates of mitotic and endocycle Repli-seq data. (A and B) Biological replicates (BR)

of early (E), mid (M) and late (L) Repli-seq data for the mitotic cycle (Mit; panel A) and endo-

cycle (En; panel B) was analyzed independently using Repliscan [24]. The agreement between

biological replicates was assessed by calculating Pearson’s correlation coefficients. (C) The

Pearson’s correlation coefficients for E, M, L data between mitotic cycle and endocycle.

(PDF)

S5 Fig. (related to Fig 2) Boxplots of differences in early, mid and late replication signal

profiles for each chromosome. Differences in replication timing (DRT) signal were calculated

by subtracting the mitotic signal from the endocycle signal for early (E), mid (M) and late (L)

S-phase fractions in each 3-kb window across the genome. The distributions of DRT signal val-

ues are represented as violin plots for each chromosome. Median values are indicated by col-

ored squares and 1.5 x IQR of the distribution is indicated by colored whisker lines. Dashed

lines indicate the thresholds used in subsequent steps for identifying RATs (� 10% and� 25%

of the total difference range; S1 Table).

(PDF)

S6 Fig. (related to Fig 2) Additional examples of non-CEN RATs. (A–F) Example regions

on chromosomes 1 (A), 3 (B), 4 (C), 5 (D), 6 (E) and 7 (F) that include RATs. See main text

Fig 2 legend for description. Dashed boxes denote regions with some level of DRT in which

the magnitude of the difference did not meet our� 25% criterion (boxes labeled “a” in panels

A, B, C and F), or in which the change in one S-phase fraction was not compensated by an
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opposite change in at least one other S-phase fraction (boxes labeled “b” in panels C and D).

(PDF)

S7 Fig. (related to Fig 2) Activating and repressive histone marks in non-CEN RATs. To

assess whether changes in selected histone modifications related to gene transcription and

chromatin accessibility occur in RATs, ChIP-seq data was generated for H3K56ac and

H3K4me3 (active transcription and early replication) and H3K27me (repressive transcription

and facultative heterochromatin) from sorted non S-phase 2C, 4C and 8C nuclei. (A–C) The

distributions of fold enrichment values for H3K56ac (A), H3K4me3 (B) and H3K27me3 (C)

peaks in expressed and non-expressed genes (see S1 Text) in 2C, 4C and 8C nuclei are plotted

as boxplots for Later-to-Earlier and Earlier-to-Later RATs and their corresponding randomly

shuffled sets (see Methods). Asterisks indicate statistically significant differences by the non-

parametric Steel-Dwass-Critchlow-Fligner test at the following P value levels: ���, P< 0.0001;
��, P< 0.001; �, P< 0.01. The increase in the fold enrichment of H3K56ac for expressed genes

in Earlier-to-Later RATs (panel A) may be associated with increases in peak enrichment we

observed near the 3’ end of some genes. (D) The count and percentage of expressed and non-

expressed genes with each histone modification shown in the boxplots in panels A–C. The 8C/

2C ratio of genes with each mark is also shown to demonstrate there is very little change in the

number of genes with each mark. The total number of expressed and non-expressed genes in

each RAT or random category are shown at the bottom for reference.

(PDF)

S8 Fig. (related to Fig 2) Gene ontology analysis of genes in non-CEN RATs. Using the

Plant GO slim ontology subset, we identified 44 significant GO terms in the biological process

(P), molecular function (F), and cellular component (C) GO categories that were enriched in

expressed genes (S1 Text; S3 Spreadsheet) in Earlier-to-Later RATs. Genes in the correspond-

ing randomly shuffled set shared a few of the significantly enriched cellular component terms

as genes in Earlier-to-Later RATs, suggesting that these terms may be related to common com-

ponents of the root, and not RATs specifically. The total number of expressed genes in each

input gene list was as follows: Later-to-Earlier RATs, 52; LtoE shuffle1 random regions, 68;

Earlier-to-Later RATs, 292; EtoL shuffle1 random regions, 275.

(PDF)

S9 Fig. (related to Fig 3) Permutation analysis of the percent coverage of TE superfamilies

in non-CEN RATs. The percent coverage of all TEs and individual TE superfamilies annotated

in the B73 RefGen_v4 genome was calculated for Earlier-to-Later (A and B) and Later-to-Ear-

lier (C and D) non-CEN RATs and corresponding 1000 randomly shuffled sets (see Methods).

The observed percentage for RATs (red or blue lines) are plotted alongside the expected fre-

quency distribution of the random sets (grey violin plots overlaid with boxplots). Permutation

P values below the graphs were calculated from the proportion of the 1000 random sets that

have percent coverage values greater than (up arrow) or less than (down arrow) the observed

value. No overlap was observed between Later-to-Earlier RATs and the RIT/LINE RTE super-

family, thus no P value was calculated.

(PDF)

S10 Fig. (related to Fig 2) AT content composition in non-CEN RATs. (A) The distributions

of percent AT content, calculated in 3-kb static windows, for Later-to-Earlier and Earlier-to-

Later non-CEN RATs and the corresponding random shuffle sets are plotted as boxplots. Val-

ues outside the boxplot whiskers (1.5 x IQR) are represented as grey dots. The dashed line indi-

cates the genome wide median value.

(PDF)
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S11 Fig. (related to Fig 4) Uniquely mapping Repli-seq reads in centromeres. The average

percentage of centromeric reads that map to unique locations is shown for each Repli-seq sam-

ple. Black dots represent the individual values for biological replicates.

(PDF)

S12 Fig. (related to Fig 4) Replication signal profiles and RATs in complex and simple cen-

tromeres. 5-Mb regions are shown for complex CENs 2, 3, 4, 5, and 8 and simple CEN 7. See

main text Fig 4 legend for description.

(PDF)

S13 Fig. (related to Fig 4) RT differences in centromeres and pericentromeres. DRT values

(endocycle minus mitotic) were calculated from early (A and D), mid (B and E) and late (C

and F) RT profiles for each centromere and corresponding pericentromere (± 1 Mb) in 100-kb

static windows. In panels D, E, and F asterisks indicate DRT values from windows where an

Earlier-to-Later-CEN RAT extends past the called CEN boundary [46] into the pericentro-

mere; open circles indicate windows that contain a non-CEN Earlier-to-Later RAT that met

our compensation criteria.

(PDF)

S14 Fig. (related to Fig 5) Replication times for all genomic features in complex and simple

centromeres and corresponding pericentromeres. (A–E) The distributions of replication sig-

nals in early (E), mid (M), and late (L) during mitotic and endocycle S phases for all 3-kb win-

dows (A), annotated genes (B), CRM1 elements (C), CRM2 elements (D), and mapped CentC
repeats (E) in centromeres and pericentromeres (± 1 Mb). All elements within centromeres

and pericentromeres are included, not just those that cover at least half of a 3-kb window, as in

Fig 5. See main text Fig 5 legend for further description.

(PDF)

S15 Fig. (related to Figs 4 and 5) Activating and repressive histone mark peaks of enrich-

ment in centromeres. ChIP-seq data were generated for H3K56ac, H3K4me3 (active transcrip-

tion) and H3K27me (repressive transcription) from 2C, 4C and 8C nuclei. (A–C) The fold

enrichment values for peaks in expressed and non-expressed genes for H3K56ac (A), H3K4me3

(B) and H3K27me3 (C) in 2C, 4C and 8C nuclei. Red lines indicate the median value. (D) The

number of expressed and non-expressed genes with each mark in 2C, 4C and 8C nuclei.

(PDF)

S16 Fig. (related to Figs 4–6) H3K9me2 fold enrichment relative to DNA content in com-

plex and simple centromeres. We used the ChIP-seq datasets from 2C, 4C and 8C nuclei to

estimate the H3K9me2 average fold enrichment relative to DNA content by calculating the

percent of total H3K9me2 reads found in a given centromere (A and B) using coordinates

from [46] or pericentromere (C and D) and dividing by the percent of total input reads corre-

sponding to that centromere or pericentromere. Black dots represent the individual values

from biological replicates.

(PDF)

S17 Fig. (related to Fig 6) CENH3 localization and enrichment in mitotic and endocycling

centromeres. (A) CENH3 localization patterns for 2C, 4C and 8C nuclei for CEN 1–CEN 8.

(B) CENH3 average fold enrichment relative to DNA content for complex and simple centro-

meres. See main text Fig 6 for CEN 9 and CEN 10 localization patterns and legend description.

(PDF)
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S18 Fig. (related to Fig 6) ChIP-qPCR antibody validations for anti-CENH3 and anti-

H3K9me2 antibodies. The percentage of input (% IP) was calculated for various antibody

dilutions and primer sets for the Zea mays anti-CENH3 antibody (A) and anti-H3K9me2 anti-

body (B). Black dots in panel A represent the individual values from two biological replicates.

Positive control primer sets (CRM2 and Copia retrotransposons) and negative control primer

sets (18S rDNA and Actin1 UTR) were used. The no antibody control (NoAB) values are too

small to see on the graph. See S1 Text for Supplemental Methods.

(PDF)

S1 Table. (related to Fig 2) Replication timing signal differences and thresholds. The differ-

ence in replication signal between mitotic and endocycle profiles (endocycle minus mitotic)

was calculated for each 3-kb window across the genome. The maximum negative difference

value, which indicates a higher signal in the mitotic cycle, and the maximum positive differ-

ence value, which indicates a higher signal in the endocycle, are shown for early and late pro-

files. The average total difference range between these two values was used to calculate

percentage thresholds for identifying RATs (see S2 Table and main text).

(DOCX)

S2 Table. (related to Fig 2) Summary statistics of preliminary RAT calling steps. The

thresholds from S1 Table (� 10% or� 25%) were used to identify regions with DRT in early

or late S phase that were compensated by difference(s) with an opposite sign in one or both of

the other two S-phase fractions (early + mid or mid + late) with greater than or equal to the

same magnitude. The count, minimum, maximum and median region size, and the total cov-

erage of the B73 RefGen_v4 genome are shown. Final robust RATs included at least one core

region with a� 25% DRT, but immediately adjacent regions of� 10% DRT were merged

together with the� 25% regions to identify larger regions of contiguous change.

(DOCX)

S3 Table. (related to Figs 2 and 3) Gene summary in non-CEN RATs. The percent of RATs

that contain genes, the total number of genes and expressed genes and the mean gene count

per RAT are shown.

(DOCX)

S4 Table. (related to Figs 4 and 5) Compensated differences in RT in complex centromeres

and corresponding pericentromeres. We calculated the total number of 3-kb windows in

complex centromeres and pericentromeres (± 1 Mb), as well as the number of windows that

show DRT values that are compensated (threshold� 10%) by equal and opposite shifts in the

other two S-phase fractions.

(DOCX)

S5 Table. (related to Fig 6) CENH3 average fold enrichment relative to DNA content in

centromeres. CENH3 fold enrichment relative to DNA content and the ratio of enrichments

between 4C and 2C and 8C and 2C are shown for each centromere. Fold enrichment values are

the mean ± S. D. of three biological replicates for 2C and 8C and two biological replicates of 4C.

See main text Fig 6 legend for further description. Two sets of theoretical ratio values are also

presented. The first set, labeled “proportional redeposition”, corresponds to the hypothesis that

CENH3 is diluted relative to total DNA during replication, and is then redeposited to a level

proportional to the DNA content during the subsequent gap phase. The second set, labeled “no

redeposition”, corresponds to an alternate hypothesis that CENH3 is diluted relative to total

DNA during replication, and is not redeposited in the subsequent gap phase.

(DOCX)
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