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Numerous types of biological branching networks, with varying shapes and sizes, are used to acquire and distribute resources. Here,
we show that plant root and shoot architectures share a fundamental design property. We studied the spatial density function of
plant architectures, which specifies the probability of finding a branch at each location in the 3-dimensional volume occupied by
the plant. We analyzed 1645 root architectures from four species and discovered that the spatial density functions of all
architectures are population-similar. This means that despite their apparent visual diversity, all of the roots studied share the
same basic shape, aside from stretching and compression along orthogonal directions. Moreover, the spatial density of all
architectures can be described as variations on a single underlying function: a Gaussian density truncated at a boundary of
roughly three standard deviations. Thus, the root density of any architecture requires only four parameters to specify: the total
mass of the architecture and the standard deviations of the Gaussian in the three ðx, y, zÞ growth directions. Plant shoot
architectures also follow this design form, suggesting that two basic plant transport systems may use similar growth strategies.

1. Introduction

Understanding how biological branching networks grow and
distribute branches in space has long fascinated mathematical
biologists [1]. These networks serve as the basis for acquiring
and distributing resources, for example, neural arbors that pro-
cess information [2–4], vascular networks that circulate blood
[5, 6], and plant architectures that transport sugars and nutri-
ents [7–9]. Due to basic similarities in their design and function
[10, 11], it is natural to ask whether there are quantitative fea-
tures shared by several of these networks [8, 12].

Many structural features of plant root architectures have
been studied, including root length and root depth [13], the
distribution of root hairs [14–16], the size and number of
lateral branches [17–20], and biomass allocation to fine
roots [21]. More global properties of root shapes have also
been analyzed [22], including allometric and fractal scaling
[23–25], root foraging precision [26, 27], and topological
morphology via persistent homology methods [28]. These
properties can affect numerous biological functions per-
formed by root architectures, including anchorage, carbon

sequestration, and search for water and nutrients in the
soil [29–33]. Identifying the molecular mechanisms that
drive the formation of different shapes can aid in uncover-
ing genotype-to-phenotype relationships [34] and in
breeding specific traits of interest in crops [35–39].

We focus here on branch density [40, 41] and the spatial
distribution of roots [42–44], which have numerous func-
tional implications. Water and nutrients in the soil are
ephemeral, distributed heterogeneously within a complex
chemical and physical environment and intensely competed
for by other organisms. Thus, when and where a plant grows
its roots have strong implications for its success in resource
capture and therefore its viability. In this foraging process,
a plant’s limited carbon resources are continually partitioned
between the growth of existing roots (elongation) and the
generation of new roots (branching), which is conditioned
by genetic mechanisms and both internal and external sig-
nals. The outcome of these iterative processes at any point
in time is reflected by the global properties of the root system
architecture, which is a complex 3D shape intimately tied to
root system function.
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Spatial distributions of root length, biomass, and density
reflect the topological and geometric properties of root sys-
tem architecture [45] and have been used extensively as
quantitative summaries to compare the genetic, environmen-
tal, and genetic x environmental differences in how roots for-
age. Significant understanding of root system architecture
has developed around mathematical models that fit observa-
tions of root systems to spatial density functions, beginning
with the simple linear model of Gerwitz and Page [46]. How-
ever, these models do not fit all data well; in part, because
observations from the field have almost exclusively consisted
of sparse, lower dimensional representations of much more
complex 3D root structures. Classic and still widely-used
methods include analysis of root fragments from slabs taken
from trench or monolith excavations, or from soil cores or
minirhizotron data [47]. Efforts to better approximate the
true root structure from these limited samples have used
angular distributions [48] or 3D structural simulations [49]
to produce better quantitative relationships between the
observable arrangement of roots as they intersect the 2D
plane of a slab, to the actual density distribution in 3D space.
Current architectural (reviewed by Dunbabin et al. [50]) and
density continuum models (reviewed by Dupuy et al. [51])
have been greatly aided by continued improvements in root
phenotyping and computer simulation, including the addi-
tion of soil chemical and physical parameters that shape out-
comes of root structure and resource foraging functions [52,
53]. Furthermore, describing root systems in terms of spatial
densities allow a direct comparison to shoot systems.

1.1. Our Contributions. Here, we use tools from probability
theory to study the spatial density function of root architec-
tures, which describes the probability of finding a branch at
each point in the 3D volumetric space occupied by the root
system. Our goal is to uncover statistical properties of this
function, to study how this function varies across 4 species
comprising 10 genotypes, and to determine if there are fea-
tures of this function shared by all architectures studied. Spe-
cifically, we analyzed 1645 3D root architectures from four
species (rice, corn, tomato, and Arabidopsis), including sev-
eral genotypes per species. Using statistical moments to char-
acterize the spatial density function of each architecture, we
found that all functions are population-similar, i.e., all 1645
architectures analyzed had the same underlying shape and
thus could be superimposed on top of each other, modulo
compression and stretching along each direction. We then
derived an analytical form of the spatial density function
and discovered that all root architectures can be closely
approximated by a 3D Gaussian function truncated at
approximately 3.3 standard deviations. This means that, for
each architecture, root density is highest at the center of mass
and then decays like a Gaussian function until the boundary
of the root system is reached at 3.3 standard deviations from
the center. The truncation corresponds to the boundary of
the plant, outside of which there is zero density, since plants
have a finite spatial domain. This result also implies that the
root density of any architecture requires only four parame-
ters to specify: the total mass of the architecture and the stan-
dard deviations of the Gaussian in the three growth

directions. We also find species-specific variation in this
property, which suggests functional specialization across
genotypes despite following the same general design tem-
plate. Finally, prior work found that a Gaussian function
truncated at 2.0 standard deviations closely approximated
the spatial density function of hundreds of 3D shoot architec-
tures [54]. To our knowledge, this highlights one of the first
shared structural features of plant architectures above and
below ground.

2. Results

2.1. Dataset of 3-Dimensional Root System Architectures.
Phenotyping root system architectures in their natural habi-
tat remain technologically challenging due to soil and partic-
ulates that obfuscate visibility. To overcome these physical
barriers, several phenotyping methods have been proposed,
each of which employs a different trade-off in terms of accu-
racy, coverage, throughput, and cost [18, 34]. These methods
are based, for example, on ground-penetrating radar [55–57],
electric resistivity tomography [56, 58, 59], minirhizotrons
[60–64], shovelomics [65, 66], soil coring [67], X-ray tomog-
raphy [68–71], magnetic resonance imaging [42, 72, 73], and
3D laser scanning [74, 75].

Here, we used a controlled environment, gel-based opti-
cal imaging platform that allows the 3D architectures of
freely-growing root systems to be measured noninvasively
in large numbers [35, 75–78] (Supplementary Methods
(available here)). This method outputs a point-cloud repre-
sentation of an architecture (Figure 1(a)). Overall, we col-
lected 1645 architectures from four species, with multiple
genotypes per species.

(1) Rice [35]. We collected two genotypes ofOryza sativa
(Bala and Azucena), as well as a third group repre-
senting the F6 recombinant inbred lines of the paren-
tal cross Azucena x Bala with 171 different families.
The recombinant inbred lines provide additional
genetic and phenotypic variation within the rice pop-
ulation. In total, there were 36, 29, and 421 individual
Azucena, Bala, and Azucena x Bala plants, respec-
tively. Most individual plants were imaged roughly
three times on days 12, 14, and 16, respectively, total-
ing 1358 root architectures.

(2) Corn. We collected four genotypes of maize (Zea
mays L. ssp.mays): B73, Mo17, IHP, and ILP. In total,
we analyzed 106 architectures, each captured on
growth day 6.

(3) Arabidopsis thaliana [79]. We collected two geno-
types: Col-0 and tob1-1 (containing a mutation in
an auxin biosynthesis pathway gene). In total, we
analyzed 133 architectures representing 31 individual
plants, each imaged on approximately days 9, 11, 13,
15, 17, 21, and 25.

(4) Tomato. We collected two genotypes of Solanum
lycopersicum: wildtype cultivar “Moneymaker” and
an RNAi line in a nitrogen metabolism gene [80].
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In total, we analyzed 48 architectures representing 19
individual plants, each imaged on approximately
days 6, 8, 10, 12, and 14.

The plant species chosen represent two major forms of
root systems—tap-rooted (tomato, Arabidopsis) and
fibrous-rooted (corn, rice)—with fundamentally different
developmental patterning. Further, three of the species are
important agriculturally (tomato, rice, corn), and one is a tra-
ditional model system (Arabidopsis). Thus, these species are
phylogenetically and developmentally diverse and relevant
economically and scientifically. Moreover, the dataset con-
tains multiple genotypes per species and multiple time-
points per plant, and it contains architectures ranging over
two orders of magnitude in size, from 2,011 to 317,933 cloud
points. Thus, this dataset represents a strong benchmark for
testing whether a statistical property is shared by a broad
class of root architectures.

2.2. Describing Root Architectures Using Statistical Moments.
To characterize how roots are distributed in space, we studied
the root system’s spatial density function (Figure 1(b)). This
function describes the density of points in the 3D volumetric
territory occupied by the roots. The methods used to study
the spatial density function are briefly summarized below;
full technical details can be found in the Supplement and in
prior published reports [54, 81].

Finding properties of the spatial density function that can
be compared across many diverse architectures is a formida-
ble challenge due to noise and variability in architecture sizes.
For example, grid-counting techniques, which define density
as the total sum of points in each voxel, can be highly sensi-
tive to noise and other shifts in form (e.g., rotations and

translations). Further, using a small size for each voxel will
generate density functions that are sparse and difficult to
compare, whereas large-sized voxels may not provide suffi-
cient spatial resolution to make detailed comparisons.

To overcome these challenges, we define the spatial density
function by its statistical moments [81]. Knowing all of the
moments of a distribution is equivalent to knowing the function
that generates the distribution, and the accuracy of the
description increases with more moments calculated [82].
Lower order moments capture coarse features of the archi-
tecture—e.g., the 0th moment is the total mass of the root
system, the 1st moment divided by the total mass is the cen-
ter of mass, and the 2nd moment is the rotational inertia—-
whereas higher order moments capture more intricate
details, including the shape of individual branches. Further,
using moments to study the spatial density function avoids
reliance on template matching or other assumptions about
the number of functional forms for architectures [83, 84].

To calculate moments, we start with a 3D point cloud of
the architecture (Figure 1(a)). A point cloud is a set of n
points in a Cartesian coordinate system, where each point
pi = ðxi, yi, ziÞ is the 3D position of the point on the surface
or interior of the object (root system). Following standard
probability theory, the kth product moment is defined as:

mk = 〠
n

i=1
xi − �xð Þk yi − �yð Þk zi − �zð ÞkΔ3, ð1Þ

where �x denotes the center of mass of the root system in the x
-direction (i.e., the mean of the x-coordinates of each point),
and Δ3 is the volume of a voxel in mm3. The resolution of
the camera system and the resulting density of points varied

(a) Root system architectures (b) Gaussian spatial density function

Figure 1: Point clouds of root system architectures and example Gaussian spatial density function. (a) Example architecture point clouds for three
rice species (Azucena, Bala, and an F6 recombinant inbred), corn,Arabidopsis, and tomato. The moments (m0 and the size, σxyz) are shown in log10
format. (b) The gray dots show a 2-dimensional projection of a rice (Bala) architecture with its empirical spatial density function above, exemplifying
a truncated Gaussian density function. The truncation corresponds to the boundary of the root system in each direction x, y, and z; outside this
boundary, there is zero density. Root density is highest at the center of mass (red square) and then decays as you move outward.

3Plant Phenomics



from root to root depending on the experimental setup. We
calculate moments for even values of k (to ensure all moments
are positive) and thus leave out the absolute value sign. Fol-
lowing the definition, the 0th moment is equal to the total
mass —m0 =∑n

i=1Δ
3— which is used to normalize for size.

2.3. Are Root System Architectures Population-Similar? We
first describe the goal of our analysis intuitively, and then,
we formalize these notions mathematically.

Our first goal is to use architecture moments to test if
all spatial density functions are population-similar. This
asks: do all density functions have the same shape, modulo
stretching and compression of the architecture along one
or more directions? Whether two root systems share the
same density function can be difficult to assess visually.
For example, two root systems may have the same shape,
but one may be stretched along the y (up-down) direction
to forage deeper in search for water, whereas another root
system may develop lateral roots that stretch along the x
direction. Similarly, two architectures scaled to be the
same size could superimpose exactly, but this may be dif-
ficult to tell when comparing a large versus a small root
system.

Population similarity is different than the commonly stud-
ied property of self-similarity [1, 8, 84]. “Self-similarity” is
often associated with having the property that a single struc-
ture looks similar at all magnification scales (e.g., it is fractal).
Population-similarity considers not a single structure, but
rather a population of structures, and asks whether all of them
can be viewed as variations, via stretching or compression, of a
single form [81]. In other words, different root spatial density
functions are population-similar if they can be “transformed”
into one another by expanding or contracting root density
along orthogonal spatial dimensions [54].

The concept of equivalence across stretching translates
mathematically in terms of a density function f ðx ; λÞ that
measures the probability that an object of size λ has mass at
3D position x. The density function depends explicitly on
spatial location x and the overall scale, λ, of the architecture.
Without loss of generality, we conventionally define spatial
location for each architecture with respect to its center of
mass. However, we do not know the length scale, λ, of each
architecture because, unless we are generating the architec-
tures ourselves, we only measure the consequences of chang-
ing λ, not λ itself.

To rewrite everything in terms of measurable quantities,
consider the mathematical definition of equivalence across
stretching:

f x ; λð Þ = cλb f R x/λ ; 1ð Þ: ð2Þ

This formulation expresses all possible architectures in
terms of a single reference architecture, f R, that is stretched
(divided) by a factor of λ and scaled (multiplied) by a power
law, λb. The key advantage of this formulation is the separa-
tion between how the architectures change size and shape,
reflected in the power law and f R terms, respectively. As
detailed above, the density function itself is experimentally

inaccessible, but we can measure its moments from the point
cloud data using Eqn. (1). Moments of the theoretical density
function may also be calculated as

log mk

m0

� �
~ k log σxyz

� �
+ c, ð3Þ

where the information about population similarity is
encoded in the first term, and the form of the reference archi-
tecture is encoded in the single parameter, c. See Supplemen-
tary Information for further derivations of the population
similarity test and power-law scaling.

Eqn. (3) forms the basis to determine the degree to which
root spatial density functions are population similar. This
involves two steps:

(1) The first step is to plot, log ðmk/m0Þ versus log ðσxyzÞ
for various values of k and for each architecture. If,
for each value of k, the two have a linear relationship
(with a different slope for each k), then the architec-
tures share the same function. The term σxyz repre-
sents a typical measure of size that is computable
using only the moments themselves, and no other
quantity (Supplementary Methods). This measure is
also proportional to another commonmeasure of size,
the convex hull volume, i.e., the smallest convex poly-
tope that encloses all the cloud points (Figure 2(a)).

(2) The second step is to plot the slope of the lines gener-
ated in the first step versus k, the moment order. The
difference between the slope of this line and 1 denotes
the degree to which the architectures are all popula-
tion similar [81].

Even if roots are population-similar, they may be gener-
ated by different population-similar functions, such as a uni-
form, an exponential, or a Gaussian spatial density. Each
species or genotype may also belong to its own functional
class; e.g., tomato architectures may have a uniform spatial
density, whereas corn architectures may have a Gaussian
density. This test can determine how many different classes
of population-similar functions are required to describe the
root architectures because architectures from one class will
fall on one line, and architectures for another class will fall
on a different line, for each value of k. Thus, this test quan-
tifies the degree to which architectures are population-
similar and the number of functional classes of architectures.

For the first test, we plotted log ðmk/m0Þ versus log ðσxyzÞ
for k = 0, 2,⋯, 20 for all 1645 architectures (Figure 2(b)).
Strikingly, we found that for each moment order k, all archi-
tectures lied on the same line, suggesting that all architectures
share the same functional form. As a reminder, the function
describes the spatial density of roots, which is a probability
distribution that specifies, at each point in 3D space, the
probability of finding a branch at that point. Deviation from
the line increases with higher moment orders because higher
moment orders have a much larger range of values (from
approximately 1020 to 10100), and because they capture
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increasingly fine branching structures. Nonetheless, each line
closely approximated the data (R2 > 0:952 for each of the 11
least-squares regression lines).

For the second test, we plotted the slopes of the lines cal-
culated in the first test versus k, the moment order
(Figure 2(c)). The slope of this line was 1:020 ± 0:007, mean-
ing that the root architectures deviate by only ≈2% from
being truly population-similar. We tested the robustness of
this result in three ways. First, we repeated the second test
using both even and odd moments between 0 and 20; this
yielded a nearly identical slope of 1:021 ± 0:007, suggesting

that enoughmoments are being considered. Second, we com-
puted the slope for all species together, while only sampling
100 random Azucena x Bala plants, instead of using all
1175 of them; we found a similar slope of 1:026 ± 0:009, sug-
gesting that the strong representation of Azucena x Bala
plants in our dataset does not unduly bias our results. Third,
we computed the slope for each species with at least 100
architectures independently and found some species-
specific differences in scaling, as expected, but qualitatively
similar results: Arabidopsis (1:070 ± 0:022), rice
(1:052 ± 0:010), and corn (0:908 ± 0:038).
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Figure 2: Root architectures are population-similar and have Gaussian spatial densities. (a) Log-log plot showing that a moments-derived
measure of architecture size (standard deviation, x-axis) is highly correlated with a common measure of size (convex hull volume, y-axis).
(b) Step one of the population-similarity test, plotting the log of mk/m0 (y-axis) versus the log of architecture size (x-axis) for all 1645
architectures. Only even moment orders between 0 and 20 are plotted. Each root architecture has one dot for each moment order. Straight
lines are the least-squares fit for each moment order. (c) Step two of the population-similarity test, plotting the moment order (x-axis)
versus the slope of the corresponding line from panel (b) (y-axis). For each moment order, error bars correspond to 99% confidence
intervals for each corresponding regression line in panel (b). Error in the legend shows the standard error, computed using bootstrapping.
(d) Plots of the intercepts of the lines in panel (b) versus moment order. The intercepts of the data (roots) closely overlaps with the
intercepts for a Gaussian spatial density function truncated at 3.3 standard deviations. Intercepts for the uniform and truncated Gaussian
spatial densities were computed analytically [81].

5Plant Phenomics



Notably, we grew tomato plants in “nonoptimal” growth
conditions and found significant deviation from population
similarity (Figure S1), suggesting that population similarity
is not inevitable under every growth regime and may
indeed be an actively generated property.

2.4. What Is the Functional Form of Root Spatial Densities?
The tests above indicate that all 1645 architectures are
population-similar and share a single density function. Next,
we seek to find a function with few parameters that gives us a
sufficient statistical description of the root spatial density
function. For all population-similar functions, the plot of
moment order versus slope (Figure 2(c)) will have a slope
of 1 [81]. Thus, the only other parameter of the line (the
intercept) must provide information about the actual form
of the function.

To determine the form of the function, we compared the
intercepts from Figure 2(c) to the intercepts of two simple
density functions: a 3D uniform function and a 3D Gaussian
function truncated at a spherical boundary. A uniform func-
tion implies that root density is equal everywhere within the
volume occupied by the root system. A Gaussian function
implies that root density is highest at the center of mass
and then decays as you move outward, with the rate of decay
controlled by the standard deviations in each orthogonal
direction. The truncation (boundary) of both functions cor-
responds to the edge of the volume that the root system
occupies, outside of which there is zero density.

Strikingly, we found that all the root architectures can be
described as a 3D Gaussian truncated at approximately 3.3
standard deviations from the center of mass (Figure 2(d)).
We compared the goodness of fit of this function by compar-
ing the intercepts of the root architectures to the intercepts of
the uniform function and to a Gaussian function with a
higher and lower standard deviation—both of which are
poorer fits (Figure 2(d)). Indeed, a difference of only one
standard deviation (2.3 or 4.3) significantly departs from
the data.

In summary, we derived a simple, statistical description of
the spatial density function of all 1645 architectures. A trun-
cated Gaussian density function (Figure 1(b)) implies that
only 4 parameters are required to describe statistically how
roots are distributed in space: the center of mass and the stan-
dard deviations in each of the three spatial growth directions.

2.5. Is There Variation in This Property across Species or
Genotypes? Our results suggest a statistical similarity across
many diverse architectures, but it is also to be expected that
there exists some variation in spatial densities across species
or genotypes. Differences in the apparent visual similarities
of root architectures can have profoundly different impacts
on a plant’s growth.

To explore this, we focused on scatter around the regres-
sion lines for each moment order to test if this scatter repre-
sented noise or systematic differences in architectures from
different species or genotypes (Supplementary Methods).
We studied scatter around the k = 0 line, corresponding to
the total mass of the root system (m0) versus its volume
(σxyz). Recall that this measure of volume is derived entirely

from the moments and highly correlates with the convex hull
volume (Figure 2(a)). Mass and volume showed a linear rela-
tionship on a log-log plot, indicating that as total mass
increases, the volumetric space occupied increases according
to power law. Thus, roots below the regression line have a
smaller total mass for the same volumetric space, and roots
above the regression line have a larger total mass for the same
volume. Scatter in any of the 11 moment lines can be studied
in this manner, but we chose mass and volume because they
are relatively easy to interpret.

We found systematic differences in the mass-to-volume
relationship across species and across some genotypes within
the same species. For example, Figures 3(a) and 3(b) show
that 100.0% of tomato WT/Moneymaker plants lay below
the regression line, indicating that they had a smaller mass
than other root systems, despite occupying the same volume.
Figures 3(c) and 3(d) shows that 88.46% of the root systems
from the corn B73 and Mo17 genotypes lie above the regres-
sion line, whereas the other two corn genotypes (IHP and
ILP) lie roughly equally above and below the line. We found
similar differences across genotypes of rice, with one geno-
type (family 182 of Azucena x Bala) laying entirely above
the regression line and another genotype (family 16 of Azu-
cena x Bala) laying almost entirely below the regression line
(Figures 3(e) and 3(f)).

3. Discussion

We studied the spatial density functions of 1645 root systems
and found that all architectures were population-similar.
Population similarity means that the root density function
of all architectures can be transformed into one another by
stretching or compressing along orthogonal spatial direc-
tions. We also found that a single function, a 3D Gaussian
truncated at roughly 3.3 standard deviations, closely
describes the spatial densities of the architectures studied.
This, as opposed to having different functions for different
genotypes or species, was not an expected result. There are
clearly other, more complicated functions that may also fit
this data, but our goal here was to find a simple function with
relatively few parameters that provided a robust fit. Evolu-
tionarily, developing the regulatory circuits to generate and
fine-tune a single functional form appears to be parsimoni-
ous, and uncovering the molecular mechanisms driving this
form is a natural next question.

The density property revealed in this work was identified
by a large-scale analysis of entire, nonsimulated, 3D root sys-
tem architectures across multiple species. Therefore, the
growth property incorporates actual heterogeneities in root
growth, since it was biologically produced. We pooled data
from different species to test if this property may be shared
by a diverse set of architectures and thus a useful root pheno-
typing trait; a per-species analysis, where each species was
analyzed separately, also showed similar trends. While all
root systems we examined fit under the Gaussian function
truncated at approximately 3 s.d., the clustering of species
and/or genotypes in groups that deviated from this function
is of great interest and highlights potential differences in
underlying genetic mechanisms that pattern growth. We
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Figure 3: Species- and genotype-specific variation in the spatial density function. (a) Log-log plot of the volume versus mass for all 1645
architectures. Green dots correspond to the tomato WT/Moneymaker architectures, and black transparent dots correspond to all other
architectures. (b) Histogram of the distances to the regression line in panel (a) for all tomato WT/Moneymaker architectures; 100.0% of
the architectures lie below the regression line. (c, d) Similar plots for four genotypes of corn. (e, f) Similar plots for two recombinant
inbred lines of rice (families 182 and 16). Overall, some of the scatter around the regression lines relates to differences in genotype and species.
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consider this a new trait, or phenotype, from which to evalu-
ate root system architecture comprehensively and to con-
strain architecture modeling schemes.

A previous analysis of 557 shoot architectures—compris-
ing three species (tomato, tobacco, sorghum), each grown in
several growth conditions (ambient light, high-light, high-
heat, drought, shade), and across roughly 20 developmental
time-points per plant—found that the spatial density of shoot
architecture branches could also be described by a Gaussian
function truncated at approximately 2.0 standard deviations
[54], instead of 3.3 standard deviations found here. The trun-
cation amount indicates how many standard deviations away
from the center of mass there exists nonzero root density.
The higher truncation means that root architectures are more
spread-out (relative to their mass) than shoot architectures.
There is substantial interest in understanding the growth
strategies that root systems use to forage (e.g., [24]), and
our results provide a new constraint on this process and per-
haps a property common with shoot foraging.

Finally, there are many biological branching structures
where Gaussian spatial densities are not observed (e.g., blood
vessel networks [6], sand dune morphologies [85, 86], and den-
drites of retinal ganglion cells [87]), indicating that these prop-
erties should not be considered the null hypothesis. Indeed,
given that along with providing support, the main drive for a
plant to construct roots is to gather nutrients from the soil,
the most obvious design would be space filling (i.e., a uniform
spatial density). When an engineer designs anchors for a build-
ing, they extend supports equally in a compact space. When a
landscape designer spreads irrigation, they do so evenly over
the space. Why then have evolutionary processes selected
Gaussian distributions in these species, with density concen-
trated near the center and fewer roots spaced out over an
extended region? One possibility is that Gaussian functions bal-
ance maximal reach of supporting structures with efficiently
gathering resources, e.g., as observed in river systems [88].
Alternatively, the Gaussian densities may simply reflect the
competition between roots for space since overlapping Gauss-
ians generate a maximally “flat” combined distribution, as
observed in retinal ganglion cells [89]. The well-known central
limit theorem that generates Gaussians for random, indepen-
dent processes does not apply here because the roots are self-
avoiding and cannot overlap each other. In such a case, the
expected distribution for a random process is strongly non-
Gaussian [90]. While the details of the growth process remain
to be discovered, our results show that the roots expend
resources to array themselves in a specific structure.

Prior work also did not find a similarity between plant-
fungus interaction networks below ground and plant-
animal interaction networks above ground [91]. Of course,
we do not expect every architecture to abide by this rule
(e.g., vine-like root systems that do not branch), and it
remains to be seen how these properties are affected by
changing environmental conditions and across the thou-
sands of other species of plants in the natural world. None-
theless, this property appears to be relevant to at least 4
species—including twomonocots and two dicots, comprising
10 genotypes—and thus may represent a broader principle of
plant architecture design.
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