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Abstract

Background: The concentrations of distinct types of RNA in cells result from a dynamic equilibrium between RNA
synthesis and decay. Despite the critical importance of RNA decay rates, current approaches for measuring them
are generally labor-intensive, limited in sensitivity, and/or disruptive to normal cellular processes. Here, we introduce
a simple method for estimating relative RNA half-lives that is based on two standard and widely available high-
throughput assays: Precision Run-On sequencing (PRO-seq) and RNA sequencing (RNA-seq).

Results: Our method treats PRO-seq as a measure of transcription rate and RNA-seq as a measure of RNA
concentration, and estimates the rate of RNA decay required for a steady-state equilibrium. We show that this
approach can be used to assay relative RNA half-lives genome-wide, with good accuracy and sensitivity for both
coding and noncoding transcription units. Using a structural equation model (SEM), we test several features of
transcription units, nearby DNA sequences, and nearby epigenomic marks for associations with RNA stability after
controlling for their effects on transcription. We find that RNA splicing-related features are positively correlated with
RNA stability, whereas features related to miRNA binding and DNA methylation are negatively correlated with RNA
stability. Furthermore, we find that a measure based on U1 binding and polyadenylation sites distinguishes
between unstable noncoding and stable coding transcripts but is not predictive of relative stability within the
mRNA or lincRNA classes. We also identify several histone modifications that are associated with RNA stability.

Conclusion: We introduce an approach for estimating the relative half-lives of individual RNAs. Together, our
estimation method and systematic analysis shed light on the pervasive impacts of RNA stability on cellular RNA
concentrations.

Keywords: RNA half-life, RNA splicing, Epigenomics, PRO-seq, Structural equation modeling

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: asiepel@cshl.edu
†Amit Blumberg and Yixin Zhao contributed equally to this work.
1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY, USA
Full list of author information is available at the end of the article

Blumberg et al. BMC Biology           (2021) 19:30 
https://doi.org/10.1186/s12915-021-00949-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-021-00949-x&domain=pdf
http://orcid.org/0000-0002-3557-7219
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:asiepel@cshl.edu


Background
Gene regulation is an exquisitely complex process that
operates at all stages of gene expression, ranging from
pre-transcriptional chromatin remodeling to post-
translational modification of proteins. However, the
concentration of RNA molecules in the cell appears to
serve as the primary target of many regulatory mecha-
nisms. Many studies of gene regulation focus on the
production of RNA, often at the stages of transcrip-
tional pre-initiation, initiation, or release from pausing
into productive elongation. RNA concentrations, how-
ever, result from a dynamic equilibrium between the
production of new RNA molecules and their decay [1–
7]. Indeed, bulk differences in RNA concentrations
across types of transcription units (TUs) often result
from differences in RNA decay rates rather than differ-
ences in production rates. For example, protein-coding
mRNAs, on average, are relatively stable (having low
rates of decay), whereas lincRNAs are less stable, and
enhancer RNAs (eRNAs) and other short noncoding
RNAs tend to be extremely unstable [3, 6, 8, 9]. Among
protein-coding genes, mRNAs associated with house-
keeping functions tend to be stable, whereas those asso-
ciated with regulation of transcription and apoptosis
tend to have much shorter half-lives, probably to enable
RNA concentrations to change rapidly in response to
changing conditions [4, 6, 7, 10, 11]. In some cases,
RNA decay is accelerated by condition- or cell type-
specific expression of microRNAs or RNA-binding pro-
teins [3, 12].
Over several decades, investigators have developed

numerous methods for measuring RNA decay rates or
half-lives [13–15]. A classical approach to this prob-
lem is to measure the decay in RNA abundance over
time following inhibition of transcription, often using
actinomycin D [1, 7, 16]. More recently, many studies
have employed a strategy that is less disruptive to cel-
lular physiology, based on metabolic labeling of RNA
transcripts with modified nucleotides. In this ap-
proach, the relative proportions of labeled and un-
labeled transcripts are quantified as they change over
time, following an initial introduction or removal of
labeled nucleotides [6, 15]. Today, metabolic labeling
is most commonly accomplished using the nucleotide
analog 4-thiouridine (4sU), which is rapidly taken up
by animal cells and can be biotinylated for affinity
purification [2, 3, 8, 17–19]. Related methods use
chemical conversion of 4sU nucleotide analogs to
allow identification by sequencing and avoid the need
for affinity purification [10, 20]. In most of these
assays, sample preparation and sequencing must be
performed in a time course, making the protocols
labor-intensive and dependent on the availability of
abundant and homogeneous sample material (typically

a cell culture). Many of these methods also have lim-
ited sensitivity for low-abundance transcripts. Owing
to a variety of limitations, estimates of RNA half-lives
tend to vary considerably across assays, with median
half-lives often differing by factors of 2–3 or more [6,
15]. As yet, there exists no general-purpose assay for
RNA half-life that is as robust, sensitive, or versatile
as RNA-seq [12, 21, 22] is for measuring cellular
RNA concentrations, or PRO-seq [23] and NET-seq
[24] are for mapping engaged RNA polymerases.
Recently, it has been shown that changes to RNA

half-lives can be identified in a simpler manner, by
working directly from high-throughput RNA-seq data
[12, 21, 22, 25]. The essential idea behind these
methods is to treat RNA-seq read counts obtained
from introns as a surrogate for transcription rates,
and read counts obtained from exons as a surrogate
for RNA abundance. Changes in half-life are then in-
ferred from changes to the ratio of these quantities,
under the assumption of a steady-state equilibrium
between RNA production and decay. This approach
assumes intronic read counts are representative of
pre-mRNA abundances, when in fact they may derive
from a variety of sources, and it can require a correc-
tion for differences in RNA processing rates [21].
Moreover, the dependency on intronic reads limits
the method to intron-containing transcription units
that are transcribed at relatively high levels. Neverthe-
less, this simple approach requires no time course,
metabolic labeling, transcriptional inhibition, or in-
deed any experimental innovation beyond standard
RNA-seq, making it an inexpensive and effective
strategy for identifying genes undergoing cell type- or
condition-specific decay [12, 21, 22].
In this article, we show that this same general ap-

proach—but using a measure of nascent transcription
based on PRO-seq rather than intronic RNA-seq
reads—results in improved estimates of relative RNA
half-life. Our approach requires only two standard
and widely applicable experimental protocols—PRO-
seq and RNA-seq. It applies to intron-less as well as
intron-containing transcription units, it requires no
correction for RNA-processing rates, it makes efficient
use of the available sample material and can be ex-
tended to tissue samples using ChRO-seq [26], it is
relatively nondisruptive to the biological processes
under study, and it is sufficiently sensitive to assay
TUs expressed at low levels, including many noncod-
ing RNAs (see Additional file 1: Table S1 for a sum-
mary of advantages [26, 27]). We show, through a
series of analyses, that these combined RNA-seq and
PRO-seq measurements are a powerful means for
assaying RNA stability that can reveal possible deter-
minants of RNA decay.
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Results
Matched PRO-seq and RNA-seq measurements are generally
well correlated but suggest reduced stability of noncoding
RNAs
We first compared PRO-seq and RNA-seq measurements
for various TUs from across the human genome, to assess
the degree to which transcriptional activity, as assayed by
PRO-seq, is predictive of steady-state RNA concentrations,
as assayed by RNA-seq. We obtained previously published
PRO-seq [28] and rRNA-depleted poly-A+ RNA-seq data
for K562 cells (see the “Methods” section), and pooled the
two replicates available for each data type after verifying
high concordance between them (Additional file 2: Figure
S1). We also collected new PRO-seq and total-RNA RNA-
seq data for K562 cells and obtained similar results (see the
“Methods” section), but we focus here on the previously
published data, which exhibited somewhat reduced tech-
nical and biological noise (see the “Discussion” section).
When analyzing these data, we considered all annotated

TUs in GENCODE [29], dividing them into mRNA
(n = 11,011), lincRNA (n = 1143), antisense (n = 1066), and
pseudogene (n = 590) classes. We quantified expression by
the total number of mapped reads in transcripts per mil-
lion (TPM), a measure that normalizes by both library size
and TU length, and discarded TUs with insufficient read
counts from either assay. Notably, we excluded the first
500 bp downstream of the TSS and 500 bp upstream of
TES for PRO-seq to avoid a bias from promoter-proximal
pausing and polymerase deceleration [23] (see the
“Methods” section).
We found that the PRO-seq and RNA-seq measure-

ments were well correlated overall, with Spearman’s
ρ = 0.83 (Fig. 1a), suggesting that transcription explains
the majority of the variance in mRNA levels. A parallel
analysis based on pooled intronic reads from the same
RNA-seq libraries showed only a slightly higher correl-
ation, with ρ = 0.85 (Additional file 2: Figure S2). At the
same time, there were considerable differences in the

Fig. 1 Scatter plots of PRO-seq vs. RNA-seq read counts for transcription units (TUs) in K562 cells, both shown in units of log2 transcripts per
million (TPM) (see the “Methods” section). Panels describe a all annotated TUs (n = 13,810), b protein-coding mRNAs (n = 11,011), c intergenic
lincRNAs (n = 1143), d intragenic antisense noncoding genes (n = 1066), and e pseudogenes (n = 590), all from GENCODE [29]. For each plot, the
Spearman’s rank correlation coefficient (ρ) is shown. TUs with values of zero along either axis have been omitted. Notice that as one proceeds
from b to e, from mRNAs to noncoding RNAs and pseudogenes, there is a general decrease in ρ, indicating greater variability of steady-state RNA
concentrations at each transcription level
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degree of correlation across classes of TUs, ranging from
a high of ρ = 0.83 for protein-coding mRNAs to ρ = 0.65
for lincRNAs, ρ = 0.64 for antisense genes, and ρ = 0.66
for pseudogenes (Fig. 1b–e). We observed similar pat-
terns for both intron-containing and intron-less genes
(Additional file 2: Figures S3 & S4). Together, these ob-
servations suggest that RNA decay has a more pro-
nounced effect on steady-state RNA levels in noncoding
RNAs and pseudogenes. These differences remain when
TUs are matched by expression level (see the “Methods”
section; Additional file 2: Figure S5), when our own
K562 data is used (Additional file 2: Figure S6), and
when the HeLa cells are evaluated instead (Additional
file 2: Figure S7).
Elongation rate is an important potential confounding

factor in this analysis, because the PRO-seq density does
not directly reflect the synthesis rate of RNA, but rather
the synthesis rate divided by the elongation rate, which
is known to vary across TUs [30]. However, when we
correct for elongation rate using published estimates for
K562 cells [31], we find that the correlation with RNA-
seq measurements does not improve, and indeed,
declines slightly (Additional file 2: Figure S8). Thus, the
observed relationships between PRO-seq and RNA-seq
measurements do not appear to be driven primarily by
differences in elongation rate (see the “Methods” and
“Discussion” sections).

Relative RNA half-life can be estimated from the RNA-seq/
PRO-seq ratio
As noted above, a quantity proportional to RNA half-life
can be approximated in a straightforward manner from
measurements of transcription rate and steady-state
RNA concentration under equilibrium conditions [21,
22, 32]. Briefly, if βi is the rate of production of new
RNAs for each TU i, αi is the per-RNA-molecule rate of
decay, and Mi is the number of RNA molecules, then, at
steady state, βi = αiMi, and the decay rate can be esti-
mated as αi = βi/Mi (see Fig. 2a and the “Methods” sec-
tion). If we assume that βi is approximately proportional
to the normalized PRO-seq read counts for i, denoted Pi,
and Mi is proportional to the normalized RNA-seq read
counts, denoted Ri, then the ratio Pi/Ri is an estimator
for a quantity proportional to the decay rate, and its in-
verse, T1/2,i

PR = Ri/Pi, is an estimator for a quantity pro-
portional to RNA half-life. As noted, the use of PRO-
seq, rather than intronic read counts, for the measure of
transcription has a number of advantages, including ap-
plicability to intron-less TUs and increased sensitivity
for TUs expressed at low levels.
Following this approach, we estimated T1/2

PR values
for TUs from across the genome using the PRO-seq and
RNA-seq data for K562 cells. To validate our estimates,
we compared them with estimates of RNA half-life for

K562 cells from TimeLapse-seq [20], a recently pub-
lished method based on chemical conversion of 4sU. We
compared our estimates of half-life with those from
TimeLapse-seq (denoted T1/2

TLS) at 4351 genes mea-
sured by both methods. We found that the two sets of
estimates were reasonably well correlated (Spearman’s
ρ = 0.71 Fig. 2b), especially considering the substantial
differences in experimental protocols and the generally
limited concordance of published half-life estimates
across experimental methods [6, 15]. By contrast, esti-
mates based on intronic reads showed much poorer
agreement with TimeLapse-seq (ρ = 0.47; Additional file
2: Figure S9), although it is worth noting that the correc-
tion for RNA processing introduced by Alkallas et al.
[21] could not be applied in our case, because it requires
a comparison of two conditions. We found that our esti-
mated T1/2

PR values were significantly shifted toward
lower values for zinc finger proteins (Fig. 2c), many of
which play key regulatory roles, and toward higher
values for ribosomal proteins, which are representative
of “housekeeping” genes. We also found that the pre-
dicted targets of numerous miRNAs, including the well-
studied miR-182 (Fig. 2d) [34], have significantly
reduced stability (see Additional file 2: Figure S10 for
additional examples).
As further validation, we extended our comparison to

include estimates of RNA half-life for K562 cells based
on TT-seq [35], SLAM-seq [36], and the method of
Mele et al. [37], focusing on 3449 protein-coding genes
for which estimates from all methods are available. In
general, all methods show significant but somewhat
modest levels of correlation in their half-life estimates,
ranging from a high value of Spearman’s ρ = 0.80 for the
TimeLapse-seq and Mele et al. [37] methods to a low of
ρ = 0.51 for TT-seq and our method (Additional file 2:
Figure S11). We attribute these differences in correlation
to a variety of both technological and conceptual differ-
ences among methods (see the “Discussion” section). Fi-
nally, we explicitly adjusted our estimates of relative
half-life for elongation rate, and found that the correl-
ation with other methods did not improve (Additional
file 2: Figure S12).

Properties of transcription units that are predictive of
RNA stability
To reveal potential determinants of RNA stability, we
sought to identify features of TUs that were predictive of
our estimated RNA half-lives. We focused on the mRNA
and lincRNA classes, for which we could identify the
most informative features. Anticipating an effect from
splicing [5, 38], we focused our analysis on intron-
containing TUs. We considered nine different features
related to splicing patterns, transcript length, and G+C
content (Fig. 3 and Additional file 2: Figures S13 & S14).
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In previous studies of this kind, investigators have exam-
ined the correlation of each feature with half-life, either
individually or together in a multiple regression frame-
work. By construction, however, T1/2

PR will tend to be
statistically correlated with features predictive of tran-
scription regardless of their true influence on half-life.
Therefore, we instead made use of a structural equation
model (SEM) [39] that explicitly describes the separate
influences of features on transcription and half-life, and
the contributions of both to RNA abundance (see the
“Methods” section and Fig. 3a).

Our analysis revealed positive correlations with half-
life of both splice junction density and total intron
length, for intron-containing mRNAs and lincRNAs
(Fig. 3b; Additional file 2: Figure S13), although the cor-
relation with splice junction density was not statistically
significant in lincRNAs. The observation regarding splice
junction density is consistent with previous reports for
mRNAs [5, 38, 40, 41] and lincRNAs [42], as well as
with the general tendency for intron-containing TUs to
be more stable than intron-less TUs (Additional file 2:
Figure S15). The correlation with intron length is

Fig. 2 a Illustration of dynamic equilibrium between production and decay of RNA. PRO-seq (Pi) can be used to measure production and RNA-
seq (Ri) to measure the resulting equilibrium RNA concentration. At steady state, the production and decay rates must be equal, allowing for
estimation of a quantity proportional to RNA half-life (T1/2

PR) by the ratio Ri/Pi (see the “Methods” section). Illustration adapted from [33]. b Scatter
plot with density contours for (log2) half-lives estimated by the PRO-seq/RNA-seq method (T1/2

PR, x-axis) vs. those estimated by TimeLapse-seq
(Schofield et al. [20]) (T1/2

TLS, y-axis) for 4351 TUs assayed by both methods in K562 cells. The T1/2
PR values are unit-less, whereas the T1/2

TLS values
are expressed in hours. ρ = Spearman’s rank correlation coefficient. c Empirical cumulative distribution functions (eCDFs) for (log2) estimated RNA
half-lives, T1/2

PR, for ribosomal proteins (n = 119), zinc-finger proteins (n = 827), and other genes (n = 7216; p < 3.99e−15, Kolmogorov–Smirnov [K-
S] test). d Similar eCDFs for mRNAs predicted to be targets (n = 668) of miR-182-5p vs. non-targets (n = 7494, p = 4.75e−8, K-S test). In c and d,
shading indicates 95% confidential intervals as estimated from 1000 bootstrap replicates
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intriguing but could be an artifact of increased
elongation rates in long introns (see below and the
“Discussion” section). We also observed several pat-
terns having to do with G+C content and length that
are difficult to interpret owing to the complex corre-
lations of these features with CpGs, transcription,
splicing, and RNA half-life. Nevertheless, we found
that several features had coefficients of opposite sign
for transcription and half-life (e.g., 3′UTR, CDS, and
intron length), which could be driven, in part, by
stabilizing selection on RNA levels (see the “Discus-
sion” section).
To evaluate the degree to which these findings were

influenced by elongation rate, we repeated the SEM ana-
lysis for a subset of genes (n = 1429) also analyzed by
Veloso et al. [31], using an updated estimate of tran-
scription rate that explicitly corrected for the estimated
elongation rates of these genes (see the “Methods” sec-
tion). We found that most of the results above held up
under this analysis, with the main exception being the
positive correlation between intron length and RNA
half-life (Additional file 2: Figure S16). This finding
could be an artifact of elongation rate in our uncor-
rected analysis because there is evidence of increased
elongation rate (which would be perceived as reduced

PRO-seq signal, and hence increased RNA-seq/PRO-seq
ratio) in long introns [43]. We also observed some dif-
ferences in the associations with G+C content.
As further validation, we performed a similar analysis

using estimates of half-life based on TT-seq [35], SLAM-
seq [36], and the study of Mele et al. [37], focusing on
3418 genes for which features and estimates were available
from all methods (Additional file 2: Figure S17). In these
cases, we did not have separate measures of transcription
and steady-state RNA abundance, so in place of the SEM
analysis, we performed multiple linear regression (MLR)
using the same features as covariates and the estimated
half-lives from each of these other studies as outcomes.
For comparison, we repeated the analysis of our half-life
estimates also by MLR. In general, we found that the ob-
served trends were similar across all methods. The major
exception was 3′UTR length, where the other methods
found a positive correlation instead of the negative correl-
ation observed with our method. It is possible that this dif-
ference might also reflect a bias in our estimates from
elongation rate, which has been observed to decrease near
the 3′ ends of genes [8]. However, other studies have also
noted a negative correlation between 3′UTR length and
half-life, possibly related to the presence of miRNA or
RBP binding sites [4, 5, 44].

A B

(µn)

(λn)

Fig. 3 Features of transcription units (TUs) that are predictive of transcription rate and RNA half-life. a Structural equation model (SEM) describing
the effects of an arbitrary collection of TU features (X1, …, XN, with intercept term X0 = 1) on transcription rate (b) and half-life (t1/2), as well as the
downstream impact on mRNA concentration (m), normalized PRO-seq (p), and normalized RNA-seq (r) read counts. The model is linear in
logarithmic space, with unmodeled variation accounted for as Gaussian noise (ɛb, ɛt, ɛp, and ɛr; see the “Methods” section). The coefficients for
transcription rate (λn) and half-life (μn) are estimated by maximum likelihood, assuming independence of replicates and pooling data from all TUs
of the same class. b Estimated values for coefficients for transcription (λn; top) and half-life (μn; bottom) for various features of interest. Results are
for intron-containing mRNAs (see Additional file 2: Figures S13 & S14 for other classes). Features considered for each TU: G+C 3′UTR, GC content
in 3′UTR; G+C 5′UTR, GC content in 5′UTR; G+C cds, GC content in coding region; G+C intron, GC content in intron(s); len 3′UTR, length of 3′UTR;
len 5′UTR, length of 5′UTR; len cds, total length of coding region; len intron, total length of intron(s); spl. junc. dens., number of splice junctions
divided by mature RNA length. Error bars represent ± 1.96 standard error, as calculated by the “lavaan” R package [39]. Significance (from Z-score):
*p < 0.05; **p < 0.005; ***p < 0.0005
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DNA sequence correlates of RNA stability
Our estimates of RNA half-life for both coding and non-
coding TUs provide an opportunity to better
characterize DNA sequence correlates of RNA stability
near transcription start sites (TSSs) [5, 28, 45, 46]. We
tested for associations between half-life and DNA words
(k-mers) of various lengths near the TSS (see the
“Methods” section), but we found that the observed
trends were predominantly driven by G+C content, with
A+T-rich k-mers being enriched, and G+C-rich k-mers
being depleted, in stable transcripts relative to unstable
transcripts (Fig. 4a; Additional file 2: Figures S18–S20).
Using the discriminative motif finder DREME [47], we
identified several A+T-rich motifs associated with stable
transcripts, and several G+C-rich motifs associated with
unstable transcripts (Fig. 4b, c). Finally, we expanded
our set of TUs to include previously identified eRNAs
from K562 cells [28] (see the “Methods” section), and

found, interestingly, that stable eRNAs were slightly
enriched, rather than depleted, for G+C-rich se-
quences close to the TSS (Fig. 4a; Additional file 2:
Figure S20). This trend was most strongly associated
with CpG dinucleotides within 400 bp of the TSS
(Additional file 2: Figure S21).
The atypical patterns around CpG dinucleotides raise

the possibility of an association with DNA methylation
near the TSS. We therefore compared the methylation
patterns of TUs exhibiting low, medium, or high levels
of RNA stability, summarizing these patterns with meta-
plots of average signal of the methylated DNA immuno-
precipitation (MeDIP-seq) assay in K562 cells [48, 49] as
a function of distance from the TSS (see the “Methods”
section). We found that the medium- and high-stability
TUs exhibited similar patterns of methylation, but the
low-stability TUs show a clear enrichment (Fig. 4d). A
similar trend was evident for lincRNAs (Additional file

Fig. 4 DNA-sequence, methylation, and RNA-binding-protein correlates of RNA stability near the TSS. a Distribution of G+C content (y-axis) for
the 20% most (red) and least (blue) stable TUs, according to our estimated half-life (T1/2

PR), in enhancer RNAs (eRNA, stable: n = 510; unstable: n =
510), lincRNAs (stable: n = 91; unstable: n = 198), and mRNAs (stable: n = 919; unstable: n = 2146). b, c Two of the most significantly enriched DNA
sequence motifs in stable (b) and unstable (c) mRNAs. d Signal for MeDIP-measured DNA methylation for low-, medium-, and high-stability
mRNAs (see the “Methods” section) as a function of distance from the TSS. Solid line represents mean signal and lighter shading represents
standard error and 95% confidence interval. e Distribution of sequence stability index (SSI) based on U1 and polyadenylation sites (see the
“Methods” section) for eRNAs (n = 1020), lincRNAs (n = 989), and mRNAs (n = 10,728). Separate plots are shown for eRNAs with low (n = 510) and
high (n = 510) CAGE support, suggesting low and high stability, respectively. Significance of comparisons in a and e (from Mann–Whitney U test):
*p < 0.01; **p < 0.001; ***p < 0.0001; N.S., not significant

Blumberg et al. BMC Biology           (2021) 19:30 Page 7 of 17



2: Figure S22). These observations suggest the possibility
of epigenomic as well as DNA sequence differences as-
sociated with RNA stability, as we explore further below.

U1 and polyadenylation sites have limited predictive
power for stability
We also directly tested for the possibility that differences
in RNA half-life could reflect the presence or absence of
either U1 binding sites (5′ splice sites) or polyadenyla-
tion sites (PAS) downstream of the TSS. Comparisons of
(stable) protein-coding TUs and (unstable) upstream
antisense RNA (uaRNA) TUs have revealed significant
enrichments for proximal PAS in uaRNAs, suggesting
that they may lead to early termination that triggers
RNA decay. These studies have also found significant
enrichments for U1 binding sites in protein-coding TUs,
suggesting that splicing may play a role in enhancing
RNA stability [45, 46]. In previous work, we showed that
these trends generalize to eRNAs as well. In particular,
we found that a hidden Markov model (HMM) that dis-
tinguished between the occurrence of a PAS prior to a
U1 site and the occurrence of a U1 site prior to a PAS
could classify TUs as unstable or stable, respectively,
with fairly high accuracy [28].
We applied this HMM (see the “Methods” section)

to our mRNA and lincRNA TUs and tested whether
our DNA sequence-based predictions of stability (as
measured by a sequence stability index, or SSI) were
predictive of our estimated T1/2

PR values. We also
computed the SSI for the eRNAs identified from
PRO-seq data and classified as stable or unstable
based on CAGE data. We found that the mRNAs had
the highest SSI, followed by lincRNAs, and then
eRNAs (Fig. 4e), as expected. Interestingly, however,
the subset of eRNAs that we find to be stable based
on CAGE data also show elevated SSIs, roughly on
par with lincRNAs. In addition, intron-containing
lincRNAs have significantly higher SSIs than intron-
less lincRNAs, although there was little difference in
intron-containing and intron-less mRNAs (Additional
file 2: Figure S23). Moreover, within each of the
mRNA and lincRNA groups, we found that the SSI
changed relatively little as a function of T1/2

PR, sug-
gesting that the HMM had almost no predictive
power for true RNA stability within these classes
(Additional file 2: Figures S24 & S25). These observa-
tions suggest that, whereas the U1 and PAS sequence
signals do seem to distinguish broad classes of TUs
with different levels of stability—namely mRNAs,
eRNAs, and uaRNAs—and the same signals are useful
in distinguishing stable and unstable eRNAs, other
factors likely dominate in determining gradations of
stability within the mRNA and lincRNA classes (see
the “Discussion” section).

Additional epigenomic correlates of RNA stability
Finally, we asked whether other epigenomic marks such
as histone modifications correlate with RNA stability.
Histone modifications are primarily associated with tran-
scriptional activity or repression, but there is increasing
evidence that events occurring before or during tran-
scription can be associated with post-transcriptional pro-
cesses and RNA stability [50–54] (see the “Discussion”
section). Similar to the methylation analysis above
(Fig. 4d), we produced meta-plots showing the average
ChIP-seq signal in K562 cells as a function of distance
from the TSS for 11 different common histone modifica-
tions [48], separately for low-, medium-, and high-
stability classes of expression-matched intron-containing
mRNAs (see the “Methods” section). While some of
these histone modifications did not differ substantially
across stability classes, such as H3K9me1 and H3K9me3,
several did show clear relationships with estimated RNA
half-life (Additional file 2: Figures S26 & S27). For ex-
ample, H3K79me2, which is associated with transcrip-
tional activity, gives a substantially higher signal in stable
transcripts than in unstable ones, particularly in peaks
about 1 kb from the TSS (Fig. 5a). A similar pattern is
observed for H3K4me2, H3K4me3, H3K9ac, and
H3K27ac. The H3K4me1 mark, which is associated with
active enhancers, displays a similar pattern far from the
TSS but an inverse pattern close to the TSS (Fig. 5a and
Additional file 2: Figure S26).
As an alternative strategy for identifying epigenomic corre-

lates of RNA stability while correcting for transcription, we
again applied our SEM framework, this time using the 11
histone marks as covariates for estimated RNA half-life and
considering the ChIP-seq signals immediately downstream of
each TSS (Fig. 5b and Additional file 2: Figure S28). As ex-
pected, the strongest correlations were detected with tran-
scription rate, and these generally had the expected sign, for
example, with positive correlations for the activation marks
H3K27ac, H3K4me1, and H3K4me3, and negative correla-
tions for the repressive marks H3K9me3 and H3K27me3.
These patterns were generally consistent between lincRNAs
and mRNAs (Additional file 2: Figures S28 & S29), and they
did not change substantially as a function of distance from
the TSS (Additional file 2: Figures S30 & S31). However, we
did additionally identify several significant correlates of half-
life. For mRNAs, these were generally consistent with the
ones identified from the ChIP-seq meta-plots, for example,
with H3K79me2 showing a positive correlation with RNA
half-life, and H3K4me1 showing a negative correlation close
to the TSS. In general, the estimated coefficients were similar
for mRNAs and lincRNAs, but there were some notable dif-
ferences: for example, the activity mark H3K36me3 shows a
negative correlation with RNA half-life in lincRNAs but a
weaker and position-dependent positive correlation with
mRNA half-life, and the silencing mark H3K9me3 shows a
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position-dependent positive correlation for lincRNA half-life
but a negative correlation for mRNA half-life (Additional file
2: Figures S28 & S29). These divergent patterns could pos-
sibly reflect differences in the degree to which splicing is co-
transcriptional in mRNAs and lincRNAs [55].

Discussion
In this article, we have introduced a simple method for
estimating the RNA half-lives of TUs from across the
genome based on matched RNA-seq and PRO-seq data
sets. Like previous methods based on intronic reads, our

method assumes equilibrium conditions and produces a
relative measure only of half-life. Unlike these methods,
however, the use of PRO-seq allows us to interrogate
intron-less TUs and TUs that are expressed at low levels.
Moreover, even for intron-containing and abundantly
expressed genes, the PRO-seq-based measurements ap-
pear to be considerably more accurate than those based
on intronic reads. Our approach also has a number of
advantages in comparison to existing methods for esti-
mating RNA half-lives based on transcriptional inhib-
ition or metabolic labeling. For example, it does not

Fig. 5 Histone-modification correlates of RNA stability. a ChIP-seq signal for H3K79me2 (left), H3K4me1 (middle), and H3K4me2 (right) for low-,
medium-, and high-stability mRNAs (see the “Methods” section ) as a function of distance from the TSS. Results are for intron-containing mRNAs
matched by normalized PRO-seq signal. Solid line represents mean signal and lighter shading represents standard error and 95% confidence
interval. b Estimated SEM coefficients for half-life (μn) for 11 histone modifications, as assayed by ChIP-seq in the 500 bases immediately
downstream of the TSS, also for intron-containing mRNAs (see the “Methods” section; see Additional file 2: Figures S28-S30 for additional results).
Error bars and significance are as in Fig. 3b
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require collecting data in a time course, which enables effi-
cient use of both time and sample material; it can make use
of RNA-seq or PRO-seq data generated for other purposes;
it is relatively nondisruptive of the biological processes under
study; and it can be extended to tissue samples using ChRO-
seq [26] (see Additional file 1: Table S1). We have shown
that our measurements of relative half-life are useful in a
wide variety of downstream analyses.
Our original design for this study was to generate our

own PRO-seq and RNA-seq data from the same source
of K562 cells, to ensure the data sets were as closely
matched as possible. In addition, we produced total
rRNA-depleted RNA-seq libraries, rather than poly-A+
libraries, with the goal of improving our sensitivity for
noncoding RNAs. For validation, we compared our re-
sults with ones based on previously published PRO-seq
data [28] and poly-A+ RNA-seq data from the ENCODE
project [48]. As it happened, however, we found that the
half-life estimates based on these previously published
data sets were less variable, showed better agreement
with published estimates, and did not differ substantially
in sensitivity from the ones based on our newly collected
data. Therefore, we have focused on these estimates with
our main analyses. In future work, we hope to more sys-
tematically compare the attributes of total RNA and
poly-A+ libraries [56, 57]. It may also be informative to
compare measurements based on RNA extracted from
particular cellular compartments, such as the nucleus or
the cytoplasm. In general, it may be possible to begin to
disentangle the contributions of distinct RNA decay
pathways (e.g., 3′→5′ decay, decapping and 5′→3′
decay, nonsense-mediated decay), and their differential
effects on distinct classes of RNAs, through such com-
parisons [58]. In addition, it may be worthwhile to
examine how RNA stability varies across conditions or
cell types, as most studies so far have only measured
RNA stability for a particular cell type under a particular
set of conditions.
In a comparison of half-life estimates from several

methods that have all been applied to K562 cells, includ-
ing TimeLapse-seq [20], TT-seq [35], SLAM-seq [36],
and the method of Mele et al. [37], we found reasonable
agreement across methods, but also some differences
(Additional file 2: Figure S11). The average pairwise
Spearman's correlation coefficient between sets of esti-
mates was relatively modest at ρ = 0.64. It is difficult at
this stage to disentangle the sources of the differences
among methods. Most likely, they result both from ex-
perimental noise and from a combination of more fun-
damental differences, including whether the estimates
are based on steady-state assumptions or time-course
measurements, whether transcriptional inhibition or ac-
tivation is used, how the rate of transcription is assayed,
and whether RNA abundance is based on total RNA or

polyA+ RNA. These differences may make some
methods better for certain classes of TUs than others
(e.g., coding vs. noncoding RNAs, lowly vs. highly
expressed TUs, intron-containing vs. intron-less TUs, or
RNAs that are or are not at equilibrium). More work
will be required to clarify the relative strengths and
weaknesses of the available methods.
Notably, our method has limited sensitivity for highly

unstable transcripts. When half-lives are low, the RNA-
seq signal tends toward zero, leading to limited ability to
identify gradations of stability. For this reason, we have
focused our half-life analysis on genes with fairly strong
signals from both assays (PRO-seq > 10 TPM and RNA-
seq > 1 TPM; see the “Methods” section). At the same
time, similar limitations occur with essentially all of the
available assays for half-life estimation, and our approach
at least has the advantage that PRO-seq is highly sensi-
tive as a measure of transcriptional activity.
Perhaps a more important limitation of our method is

that, strictly speaking, PRO-seq is a measure not of the
rate of transcription but of the occupancy of engaged
RNA polymerases, which reflects both the rate of tran-
scription and the rate of elongation. The PRO-seq signal
along a gene body is analogous to the headlight bright-
ness on a highway at night; an increase in signal can re-
flect either an increased number of cars entering the
highway (analogous to an increased rate of transcrip-
tion), or a back-up in traffic (analogous to a decreased
elongation rate). Consequently, variation in T1/2

PR across
TUs could in part be driven by variation in elongation
rate. We attempted to control for this possibility in sev-
eral ways. First, we explicitly corrected our estimates of
transcription and half-life with previously published esti-
mates of elongation rate for the same cell type [31] (see
the “Methods” section). We found that the correction
did not improve the correlation of PRO-seq and RNA-
seq measurements (Additional file 2: Figure S8), nor did
it improve the agreement with independent estimates of
half-life (Additional file 2: Figure S12). Second, we re-
peated our analysis of features predictive of half-life with
the corrected estimates and found that it did not sub-
stantially alter our results, with one notable exception
(Additional file 2: Figure S16; discussed below). Third,
we observed that the variation in elongation rate across
genes is only about one fifth of the variation in estimated
half-lives, indicating that it can account for, at most, a
fairly small fraction of the observed variation (Add-
itional file 3: Supplemental Text). We conclude from
these analyses that elongation rate does undoubtedly
have some impact on our half-life estimates, but overall,
the effects appear to be limited. However, more work
will be needed to obtain more accurate and more com-
prehensive estimates of elongation rates, and to fully
understand their impact on half-life estimates.
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To identify features that are predictive of RNA half-
life, we devised a structural equation model (SEM) that
explicitly describes the separate effects of each feature
on transcription and half-life, as well as the resulting im-
pact on RNA concentrations, PRO-seq, and RNA-seq
data. While multivariate regression has been used to
identify features associated with RNA stability [5], our
analysis is the first, to our knowledge, to attempt to dis-
entangle the separate influences of such features on
transcription and RNA stability. It is worth noting that
this framework could also be useful for estimators based
on intronic reads. The results of the SEM analysis were
consistent with previous findings in many respects, par-
ticularly regarding the association between RNA splicing
and RNA stability. The mechanism underlying this rela-
tionship remains unclear, but it is known that the exon
junction complex (EJC) remains bound to the mature
mRNA after its transport to the cytoplasm and it has
been proposed that EJC components may protect the
mRNA from decay [5, 41]. In addition to the previously
reported positive correlation of splice junction density
and RNA half-life, we also observed a positive correl-
ation between intron length and half-life. This observa-
tion could potentially indicate that RNA stability is
enhanced by recursive splice sites [59] or extended con-
tact with the spliceosome in long introns. However, we
could not confirm this finding after our correction for
elongation rate using a subset of our full gene set, and it
may therefore be an artifact of increased elongation rates
in long introns. More work will be needed to confirm or
reject this association.
It has recently been reported that U1 binding sites are

enriched, and polyadenylation sites are depleted, down-
stream of the TSS in stable mRNAs relative to unstable
upstream antisense RNAs (uaRNAs) and enhancer RNAs
(eRNAs), suggesting that RNA stability is determined, in
part, by the DNA sequence near the TSS. In this study,
we tested not only whether this “U1-PAS axis” could dis-
tinguish TUs in stable classes (mRNAs) from those in
unstable classes (uaRNAs and eRNAs) but also how pre-
dictive it is of half-life within these classes. We con-
firmed that a U1-PAS-based “sequence stability index”
(SSI) is generally elevated for mRNAs, intermediate for
lincRNAs, and reduced for eRNAs. Furthermore, this
SSI can distinguish between more and less stable eRNAs,
as quantified using CAGE (Fig. 4e). Somewhat surpris-
ingly, however, we found that the SSI has essentially no
predictive power for relative RNA stability within the
generally more stable mRNA and lincRNA classes (Add-
itional file 2: Figures S24 & S25). One possible explan-
ation for this observation is that the U1-PAS axis
determines a kind of early “checkpoint” for stable tran-
scripts—for example, by ensuring that premature tran-
scriptional termination is avoided—but that once a

transcript has cleared this checkpoint, these DNA se-
quence features are no longer relevant in determining
RNA stability. Instead, the relative stability of mRNAs
and lincRNAs may be predominantly determined by
splicing-related processes, binding by miRNAs or RBPs,
or other post-transcriptional phenomena. More work
will be needed to fully understand the mechanistic basis
of these differences in stability.
Some of the associations that we observed with half-

life concerned G+C content, but these observations are
generally difficult to interpret. Indeed, even the com-
paratively straightforward question of the relationship
between G+C content and transcriptional activity has a
long and contradictory literature, with several studies
finding correlations between them [60–62], but others
claiming that the relationship between G+C and tran-
scription is weak, at best, once confounding factors such
as genomic context are properly accounted for [63, 64].
Sharova et al. [5] identified a fairly pronounced negative
correlation between RNA stability and the prevalence of
CpGs in the 5′UTR, which is not supported by our ana-
lysis—although we interrogated only G+C content, not
CpGs, in the 5′UTR. These authors raised the intriguing
hypothesis this correlation may reflect the activity of
splicing-associated methyl CpG-binding proteins [65],
but to our knowledge, this idea has not been tested
experimentally. In any case, it seems unlikely that the
complex relationships among G+C content, CpGs, tran-
scription, RNA stability, and downstream effects such as
translational efficiency can be fully disentangled through
post hoc statistical analyses. Instead, this effort will re-
quire experiments that directly perturb individual fea-
tures of interest and separately measure the effects on a
variety of processes.
There is now substantial evidence for connections be-

tween events that occur before or during transcription
and a variety of post-transcriptional processes, some of
which impact RNA stability. In addition to the apparent
enhancement of RNA stability by splicing, there is now
evidence that some RNA-binding proteins having roles
in RNA export and stability are recruited to the RNA in
a promoter-dependent manner [66–69]. Similarly, co-
transcriptional processes such as polyadenylation and
capping appear are linked to RNA stability [51]. It was
also recently shown that disrupting transcription rates
could lead to enhanced m6A deposition, shortened
polyA tails, and reduced RNA stability [52, 53]. With
these observations in mind, we looked for epigenomic
correlates of stability. We identified several histone mod-
ifications that are significantly associated with increased
or decreased half-life, but we cannot rule out the possi-
bility that these correlations reflect indirect relationships
with confounding variables not considered here. How-
ever, the effect is quite strong for certain marks (such as
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H3K79me2 and H3K4me2) and it is apparent both in
direct comparisons of PRO-seq-matched TUs (Fig. 5a)
and in the SEM setting (Fig. 5b). It therefore seems
plausible that it has a direct mechanistic basis, perhaps
involving factors that interact both with DNA-bound
nucleosomes and the spliceosome. Some divergent pat-
terns for mRNAs and lincRNAs (Additional file 2: Figure
S28) suggest the possibility of differences in these
splicing-associated processes. Additional work will be
needed to test these hypotheses.
One general pattern that emerges from the SEM ana-

lysis of histone modifications is that the coefficients for
transcription and half-life are often different from zero
in opposite directions (Additional file 2: Figures S28-
S31). This trend of anti-correlation was less prominent
with the TU features, but we did observe it with CDS,
intron, and 3′UTR length (Fig. 3b). A possible explan-
ation for this pattern is that it is, at least in part, a reflec-
tion of stabilizing selection on gene expression. If
selection tends to favor a particular RNA level for each
TU, then mutations that increase transcription may tend
to be compensated for by mutations that decrease RNA
stability, and vice versa. Thus, stabilizing selection might
result in a tendency for features that are positively corre-
lated with one measure (transcription or stability) to be
negatively correlated with the other. Notably, this type
of hypothetical causal interrelationship between tran-
scription and stability is not considered in our SEM, nor
in any other statistical model of which we are aware. As
a result, it may be difficult to distinguish correlations
that have a direct, mechanistic basis (say, relating to
transcription) from their indirect “echoes” (say, relating
to half-life) resulting from evolutionary constraint. Des-
pite this potential limitation, our framework remains
useful for identifying potentially interesting correlations,
whose mechanistic underpinnings can then be further
investigated through direct experimental perturbation.

Conclusions
We introduce a novel approach for estimating the rela-
tive half-lives of individual RNAs using PRO-seq and
RNA-seq. We develop a structural equation model and
test multiple features for their associations with RNA
stability after controlling for the effects on transcription.
Together, our estimation method and systematic analysis
shed light on the pervasive impacts of RNA stability on
cellular RNA concentrations.

Methods
PRO-seq and RNA-seq data preparation and processing
Our main analysis is based on PRO-seq data for K562
[28] and HeLa [70] cell lines as well as RNA-seq data
from the ENCODE project [48, 71] (ENCSR000AEM for
K562, ENCSR000CPR for HeLa). For comparison, we

also sequenced new PRO-seq (n = 2) and RNA-seq (n =
4) libraries, generated from cells grown in the same flask
under the same conditions. Human K562 cells were cul-
tured using standard cell culture procedures and sterile
techniques. The cells were cultured in RPMI-1640 media
supplemented with 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin. For PRO-seq, 3′ and 5′
adapters were ligated as described [26] followed by li-
brary preparation as previously published [72]. Sequen-
cing was done by Novogene on a HiSeq instrument with
paired-end reads of 2 × 150 bp. For RNA-seq, total RNA
was extracted using the Trizol method (see https://
assets.thermofisher.com/TFS-Assets/LSG/manuals/
trizol_reagent.pdf), followed by rRNA depletion using
the Ribozero HMR Gold kit. Libraries were prepared
using the NEB kit with TruSeq RNAseq adaptors.
Single-end sequencing (length = 75) was performed on a
NextSeq500 instrument by the RNA Sequencing Core at
the College of Veterinary Medicine, Cornell University.
Sequencing data is deposited on GEO under accession
GSE153200.

Read mapping and transcript abundance estimation
Raw data files in fastq format were trimmed using Cuta-
dapt [73] with parameters -j 0 -e 0.10 --minimum-
length=10. Reads were then aligned using HISAT2 [74]
with default parameters (hisat2 --threads 4 -x {index} -U
{input.reads} -S {output} --summary-file {log}). We used
the GRCh38/hg38 reference genome and the associated
GENCODE gene annotations. HTSeq [75] was used for
read counting for RNA-seq and PRO-seq. For the pur-
poses of read counting with PRO-seq, we omitted the
first 500 bases downstream of the TSS and 500 bases up-
stream of TES to avoid a bias in read counts from
promoter-proximal pausing and polymerase deceler-
ation. Finally, we normalized read counts by converting
them to transcripts per million (TPM) [76] based on the
length of each TU.

Estimation of RNA half-life from RNA-seq and PRO-seq
data
We assume a constant rate of production of new RNAs,
βi; a constant per-RNA-molecular rate of decay, αi; and
a number of RNA molecules, Mi. At steady state,
βi = αiMi; therefore, the decay rate can be estimated as
αi = βi/Mi, and the half-life as T1/2 = ln(2)/αi = ln(2) ×Mi/βi.
We further assume that the normalized PRO-seq read
counts (omitting regions near the TSS and TES) are pro-
portional to the rate of production of new RNAs, Pi ∝ βi,
and that the normalized RNA-seq read counts are propor-
tional to the number of RNA molecules, Ri ∝Mi. Therefore,
T1/2 ∝ Ri/Pi. We define our unit-less estimator of half-life as
T1/2

PR = Ri/Pi, where PR denotes a PRO-seq/RNA-seq-
based estimator. Notice that these unit-less T1/2

PR values
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can be compared across experiments only up to a propor-
tionality constant, unless the raw read counts have been
appropriately normalized. To compare our PRO-seq-based
approach with an approach based on intronic reads, we
repeated the estimation using normalized intron reads
instead of PRO-seq read counts to represent the transcrip-
tion rate.

Correction for elongation rate in PRO-seq vs. RNA-seq
correlation and half-life estimations
A potential confounding factor in the comparison of
normalized read counts for PRO-seq and RNA-seq is
elongation rate. Because PRO-seq read depth reflects
a combination of transcription initiation rates and
elongation rates [30, 77], some reduction in correl-
ation with RNA-seq could reflect variability across
TUs in elongation rate. We investigated this possibil-
ity by using published measurements of elongation
rate for the same K562 cell type [31], focusing on
~2000 genes that overlap our set. We explicitly
adjusted for the estimated elongation rates by multi-
plying them by the PRO-seq abundance across gene
bodies, under the assumption that the PRO-seq
density is proportional to the transcription rate di-
vided by the elongation rate. The corrected PRO-seq
abundance was then used for comparison with RNA-
seq, for half-life estimation, and for the SEM
analysis.

Structural equation model
To separate the effects of TU features on decay from the
effects on transcription, we developed a SEM using the
“lavaan” R package [39]. Let Xn be the nth feature associ-
ated with a TU. We assume that the logarithms of this
TU’s transcription rate and half-life, i.e., b = log β and
t1/2 = log T1/2

PR, are linear combinations of the Xn’s and

a TU-level random effect: b ¼ PN
n¼0 λnXn + εb and t1/2 ¼

PN
n¼0 μnXn + εt where ϵb ∼N(0, σb) and ϵt ∼N(0, σt) are

independent Gaussian random variables explaining all
variation not attributable to known features. Assum-
ing a fixed value X0 = 1 for all genes, the parameters
λ0 and μ0 can be interpreted as intercepts whereas
λn≠0 and μn≠0 are regression coefficients indicating
the contributions of feature n to transcription rate
and half-life, respectively.
According to the model derived above, at steady

state, T1/2
PR∝ M/β, where M is the number of RNA

molecules; therefore, m = log M is given by m = b +
t1/2 + C, where C is an arbitrary constant that can be
ignored here because it does not affect the estima-
tion of regression coefficients. Denoting pj = log Pj
and rj = log Rj as the logarithms of the PRO-seq and
RNA-seq measurements in replicate j, respectively,

we assume pj ~ b + εp and rj~m + εr where ϵp ∼N(0, σp)
and ϵr ∼N(0, σr) are independent Gaussian random vari-
ables describing the noise in PRO-seq and RNA-seq ex-
periments, respectively. Finally, we assume that all
observations are independent across TUs. With these as-
sumptions, and pooling information across TUs of the
same class, we can estimate separate regression coeffi-
cients for transcription rates (λn) and half-life (μn) for all
features by maximum likelihood.

Transcription unit features
Transcription unit (TU) sequences were downloaded
from BioMart using the R package biomaRt [78, 79]. We
considered only one isoform per annotated gene, i.e., the
most abundant transcript determined by Salmon [80].
Features based on properties of DNA sequences (e.g.,
G+C content) were then extracted using Biopython [81].
The intron length was set equal to the transcript length
minus the total exon length. The splice junction density
was set equal to the intron number divided by the ma-
ture RNA length.

eRNA analysis
We used eRNAs identified from our previous GRO-cap
analysis in K562 cells [28] restricting our analysis to pu-
tative eRNAs with divergent transcription [27] that fell
at least 1 kb away from annotated genes (n = 21,816). To
measure steady-state RNA levels, we used CAGE in
place of RNA-seq owing to its greater sensitivity. We
used the Nucleus PolyA and Non-polyA CAGE libraries
from ENCODE (GEO accession number GSE34448). To
measure transcription rates, we used PRO-seq data from
same study [28]. For the stability analysis, we eliminated
TUs having no mapped CAGE reads, and then selected
the top 10% by CAGE/PRO-seq ratio as “stable” and the
bottom 10% as “unstable.” These stable and unstable
groups were then matched by PRO-seq signal (n = 510).

DNA word enrichments
We considered all DNA words (all possible combina-
tions of A, C, G, T) of sizes k ∈ {2, 3, 4}. For each word
w, we counted the total number of appearances in our
set of stable TUs (top 20% by T1/2

PR), denoted cs,w, and
the total number of appearances in unstable TUs (bot-
tom 20% by T1/2

PR), denoted cu,w. These counts were
collected in 1 kb windows beginning at various distances
downstream of the TSS (0, 500, 1000, and 1500 bp). The
enrichment score for each word w and each window
position was then computed as log2(cs,w/cu,w). A positive
value of this score indicates an enrichment, and a nega-
tive score indicates a depletion in stable TUs relative to
unstable TUs. For eRNAs, we used a similar procedure
but with 400 bp windows at distances of 0, 200, 400, and
600 bp from the TSS.
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Motif discovery
For motif discovery, we used the discriminative motif
finder “DREME” [47] with default parameters (core
width ranging from 3 to 7). For the stable motifs, we
used the top 20% of TUs by T1/2

PR as the primary se-
quences and the bottom 20% as the control sequences.
For the unstable motifs, we reversed the primary and
control sequences.

Sequence stability index
We define the SSI to be the probability that a TU is
“stable” based on our previously published U1-PAS hid-
den Markov model (HMM) [28]. Briefly, the HMM iden-
tifies a TU sequence as “stable” if either (1) it has a U1
splicing motif upstream of a PAS motif or (2) it lacks
both a PAS motif and a U1 splicing motif, as detailed by
Core et al. [28]. We applied the HMM to the first 1 kb
of sequence downstream of the annotated TSS and cal-
culated the SSI as 1 minus the probability the TU is un-
stable, as output by the program. An implementation of
the HMM is available at https://github.com/Danko-Lab/
stabilityHMM.

Matching by PRO-seq expression
We used the R package “MatchIt” [82, 83] to match
groups of TUs by their normalized PRO-seq read counts
(method = “nearset”). In cases of multiple groups, one
group was selected as the reference and every other
group was matched to that reference group.

MicroRNA targets analysis
We obtained microRNA targets from TargetScanHuman
[84], Release 7.2 (http://www.targetscan.org/vert_72/
vert_72_data_download/Predicted_Targets_Info.default_
predictions.txt.zip). We used all default predictions of
conserved targets for each conserved miRNA family in
the database.

Gene categories
We obtained lists of genes encoding ribosomal proteins
and zinc fingers from the HUGO Gene Nomenclature
Committee (https://www.genenames.org/).

Epigenomic analysis
Histone modifications (ChIP-seq; http://hgdownload.soe.
u c s c . e d u / g o l d e n P a t h / h g 1 9 / e n c o d e D C C /
wgEncodeSydhHistone/) and DNA methylation IP
(MeDIP; GEO accession number GSM1368906) data
were downloaded from the ENCODE consortium [48] as
bigwig files annotated to the GRCh37/hg19 reference
genome. We partitioned our mRNAs, considering
intron-containing TUs only, into five equally sized sta-
bility classes based on the estimated T1/2

PR values, and
then subsampled from classes 1 (low stability), 3

(medium stability), and 5 (high stability) to obtain distri-
butions matched by PRO-seq signal. We then produced
meta-plots for each of these three classes showing the
average signal of the histone modifications (ChIP-seq)
and methylated DNA immunoprecipitation (MeDIP-seq)
assays in K562 cells [48, 49] as a function of distance
from the TSS. Meta-plots showing the average values of
signals of interest across loci (e.g., Figs. 4d and 5a) were
produced using the “plotMeta” function from the “Geno-
mation” [85] R package. The input signal was provided
in bigwig format, and the loci were defined in bed for-
mat. In all cases, the average signal is plotted as a col-
ored line, with uncertainty indicated by the standard
error of the mean (darker shading) and 95% confidence
intervals (lighter shading) as specified by the “se”
parameter.
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TLS, y-axis) after correcting for
elongation rate. Figures S13-S14. SEM results for features of intron-
containing (Figure S13) or intron-less (Figure S14) transcription units in
K562. Figure S15. Estimated half-lives for intron-containing and intron-
less transcription units. Figure S16. SEM results for features of intron-
containing transcripts in K562 cells, with and without a correction for
elongation rate. Figure S17. Multiple linear regression (MLR) for features
of transcription units versus RNA stability in K562 cells. Figures S18-S19.
DNA word enrichments in stable transcripts for protein-coding mRNAs
(Figure S18) or lincRNAs (Figure S19). Figure S20. G+C content in inter-
vals downstream of the TSS for various classes of transcription units. Fig-
ure S21. DNA word enrichments in stable transcripts for eRNAs. Figure
S22. DNA methylation in lincRNAs of various stability levels. Figure S23.
Sequence Stability Index of intron-containing versus intron-less genes.
Figures S24-S25. Sequence Stability Index (SSI) for mRNAs (Figure S24)
or lincRNAs (Figure S25) of various stability classes. Figures S26-S27. His-
tone modification signals for protein-coding mRNAs of various stability
classes. Half-live estimations are based on published data (Figure S26) or
newly collected data for this study (Figure S27). Figures S28-S29. Esti-
mated SEM coefficients for transcription (λn; top) and half-life (μn; bottom)
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ures S30-S31. Estimated SEM coefficients for transcription (λn; top) and
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published data (Figure S30) or on the newly collected PRO-seq and RNA-
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