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Minimum epistasis interpolation for sequence-
function relationships
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Massively parallel phenotyping assays have provided unprecedented insight into how mul-

tiple mutations combine to determine biological function. While such assays can measure

phenotypes for thousands to millions of genotypes in a single experiment, in practice these

measurements are not exhaustive, so that there is a need for techniques to impute values for

genotypes whose phenotypes have not been directly assayed. Here, we present an impu-

tation method based on inferring the least epistatic possible sequence-function relationship

compatible with the data. In particular, we infer the reconstruction where mutational effects

change as little as possible across adjacent genetic backgrounds. The resulting models can

capture complex higher-order genetic interactions near the data, but approach additivity

where data is sparse or absent. We apply the method to high-throughput transcription factor

binding assays and use it to explore a fitness landscape for protein G.
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Recent advances in quantification via next-generation sequen-
cing have allowed the proliferation of high-throughput com-
binatorial mutagenesis assays that measure molecular

function for tens of thousands to millions of sequences simulta-
neously1. These assays have been applied to many different classes of
functional elements, including protein-coding sequences2–13,
RNAs14–18, and regulatory or splicing elements19–22. However, in
practice, due to both the vastness of sequence space and the lim-
itations of techniques for library preparation, such experiments
typically result in missing measurements for a subset of possible
genotypes.

Making accurate phenotypic predictions for these missing
sequences is a difficult problem because the effect of any given
mutation often depends on which other mutations are already
present in the sequence, a phenomenon known as epistasis23–25.
In the special case where such interactions are limited to occuring
between pairs of sites, the prediction problem can be solved using
regularized regression26—a technique that has sometimes per-
formed quite well27,28. However, there is now abundant evidence
that adding pairwise interaction terms to an otherwise additive
model is not sufficient to capture the complex interdependencies
between mutations observed in the empirical data10,24,29–39.

In principle, these “higher-order” interactions can be captured by
adding interactions between three or more sites to standard
regression models, but this leads to problems in interpretability and
overfitting because the number of such terms grows rapidly with
increasing interaction order26. Another strategy has been to assume
that the observed phenotype is a simple nonlinear function of some
underlying nonepistatic trait32,40, a pattern of epistasis known as
univariate8,24, nonspecific31, or global40,41 epistasis, which appears
to be well-suited primarily to sequence–function relationships that
are essentially noised versions of single-peaked landscapes. Finally, a
variety of machine-learning techniques8,12,42–45 have been
employed that can fit more complex forms of epistasis than global
epistasis or pairwise interaction models. However, these require
substantial tuning and the resulting models exhibit behavior that is
difficult to interpret.

Here, we present a method for fitting sequence–function
relationships that includes epistatic interactions of all orders but
whose predictions are nonetheless conservative, which has no
tunable parameters, and which is simple enough to provide for-
mal mathematical guarantees on its behavior. The main idea is to
assign the missing phenotypic values in such a way that the effects
of mutations are as consistent across mutationally adjacent
genetic backgrounds as possible. We achieve this by minimizing
the expected squared epistatic coefficient for random pairs of
mutations over all possible genetic backgrounds, a minimization
problem that comes down to solving a single set of coupled linear
equations. The end result is a model that can provide a compli-
cated fit where data are abundant, but which approaches addi-
tivity in regions of sequence space where data are sparse or
absent.

In what follows, we first describe our modeling technique and
its mathematical properties. We then compare our method with
regression models in terms of predictive power and behavior,
using a variety of simulated data sets, including a simple bio-
physical model for transcriptional regulation46 and a model fea-
turing sparse, higher-order interactions36. Turning to empirical
data, we first conduct an in-depth analysis of a deep mutational
scanning data set from protein GB134, a system known to contain
a particularly complex pattern of genetic interaction. Combining
our imputation and a previously proposed visualization techni-
que47, we show that the complex structure of epistasis observed in
this data set can be well-understood in terms of a simple quali-
tative model consisting of three fitness peaks where the landscape
is locally additive in the vicinity of each peak. Finally, to provide a

broader demonstration of the performance of our technique, we
apply our method to hight-throughput DNA-binding preference
assays for a set of 1121 transcription factors48, a collection of
measurements which has become a model system for under-
standing genotype–phenotype relationships49,50. We show that
minimum epistasis interpolation has better predictive power and a
lower false discovery rate than low-order regression models for the
vast majority of these transcription factor data sets.

Results
Minimum epistasis interpolation. Given phenotypic observa-
tions on a subset of genotypes, our goal is to assign phenotypic
values to all unobserved genotypes in such a manner that
mutational effects change as little as possible between mutation-
ally adjacent genetic backgrounds. To understand our solution to
this problem, it is helpful to think about the simplest possible case
where sequence space consists of two bi-allelic loci and hence four
possible genotypes. We assume we have observed phenotypes for
the wild type (fab) and both single mutants (fAb and faB), and we
want to predict the phenotype of the double mutant (fAB).

For this simple case, we can measure the change in the effect of
a mutation across genetic backgrounds using the traditional
epistatic coefficient51:

ϵ ¼ ðf AB � f aBÞ � ðf Ab � f abÞ; ð1Þ

which is just the change in the effect of an a → A mutation
between the b and B backgrounds (Fig. 1a), and is also equal to
the change in the effect of a b → B mutation between the a and A
backgrounds. However, the sign of ϵ depends on which sequence
we have chosen as the wild type, so if we want a reference-free
measure of how much mutational effects change with genetic
background we can instead use the squared quantity ϵ2, which is
also proportional to the mean-square error of a nonepistatic
model fit to these four genotypes.

Ab

aBab

AB Abc

aBc

aBCabC

ABCAbC

abc

ABc

In-sample

Out-of-sample

a b

Effect on B 
background

Effect on b 
background

Fig. 1 Minimizing average local epistasis. a The classical epistatic
coefficient ϵ measures the difference in the effect of a mutation between
two adjacent genetic backgrounds. Here ϵ is shown as the difference
between the effect of an a → A mutation on a B versus b background.
b Larger spaces of genotypes can be decomposed into faces consisting of a
wild-type sequence, two single mutants and a double mutant; one such face
is highlighted in gray. For each face, we quantify epistasis locally by
calculating the corresponding value of ϵ2. We then quantify the total
amount of epistasis for the sequence–function relationship by taking the
average of these values across all faces, ϵ2. By assigning phenotypic values
for the out-of-sample genotypes that minimize ϵ2, we infer the least
epistatic sequence–function relationship compatible with the data in the
sense that the average squared difference in the effects of mutations
between adjacent genetic backgrounds is as small as possible.
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Since we are trying to predict the phenotype for AB by
minimizing the change in the effects of each mutation across
genetic backgrounds, we can do so by choosing the prediction
that minimizes ϵ2. In fact, for this simple case minimizing ϵ2

yields ϵ= 0. This results in the classical additive prediction bf AB:bf AB ¼ f ab þ ðf Ab � f abÞ þ ðf aB � f abÞ ð2Þ

where, in particular, the predicted double-mutant phenotype is
equal to the observed wild-type phenotype plus the sum of the
observed single-mutant effects.

How can we generalize this classical additive prediction for
the two-locus bi-allelic case to larger sequence spaces and more
complex patterns of missing data? Unless our observations are
themselves drawn from an additive model, in this more general
context it will typically be impossible to find a set of predictions
for the missing genotypes such that ϵ= 0 for all pairs of
mutations on all genetic backgrounds. However, even if the effects
of mutations are not absolutely consistent across genetic back-
grounds, we can still look for a set of predictions where the effects
of mutations are as consistent as possible.

In particular, for each mutation and pair of adjacent genetic
backgrounds, we can define a corresponding value of ϵ2 that
measures the squared difference in the effect of that mutation
between the two backgrounds. We then search for the set of
predictions that minimizes the expected value of this squared
epistatic coefficient across all possible combinations of mutations
and pairs of backgrounds. That is, we are looking for a set of
predictions that make the reconstructed sequence–function
relationship as locally additive as our observations allow, without
imposing global additivity or any specific assumptions about the
form of epistasis.

More precisely, for genotypes with l sites and α possible
alleles at each site, we can consider the space of possible
sequences as a (generalized) hypercube or Hamming graph with

s ¼ l
2

� �
α
2

� �2

αl�2 “faces”, each of which consists of four

genotypes that can be described as a wild-type sequence
together with two single mutants and a double mutant, Fig. 1b.
Any vector f that assigns phenotypes to the αl possible
genotypes also defines a value of ϵ2 for each of these faces
and we denote the average value of ϵ2 over all such faces as
ϵ2ðfÞ, a quantity which is also equal to the average squared
change in the effect of a mutation between two adjacent genetic
backgrounds.

Thus, to generalize our solution for the two-locus bi-allelic case
with one missing genotype to larger sequence spaces and arbitrary
geometric arrangements of the missing data, we want to find the
value of f that matches our observed phenotypes where available,
but otherwise minimizes ϵ2ðfÞ. To do this, we note that ϵ2ðfÞ is
non-negative, since the ϵ2 for each face is non-negative, and that
the formula for the ϵ2 of each face is a second-degree polynomial
and thus so is ϵ2ðfÞ. As a result, our constrained minimization
problem is in fact a positive semi-definite quadratic minimization
problem with an equality constraint, a form of problem that has
an analytical solution52 based on solving a single set of coupled
linear equations (see “Methods”).

In particular, if we write the set of known genotypes as B and
the minimum epistasis interpolation solution as bf , we first assignbfðiÞ ¼ fðiÞ for i ∈ B to satisfy the constraint that our solution is
equal to the observed phenotypic value when available. Then, for
each i ∉ B, the minimum epistasis reconstruction of the
sequence–function relationship is given by settingbf to the solution
of the following αl − ∣B∣ equations (one equation for each i ∉ B,

see “Methods”):X
j=2B

cði; jÞ bfðjÞ ¼ �
X
j2B

cði; jÞ fðjÞ; ð3Þ

where the values of c(i, j) depend only on the Hamming distance
between genotypes i and j and are given by:

cði; jÞ ¼

lðl � 1Þðα� 1Þ2=2 i ¼ j

�ðl � 1Þðα� 1Þ i is at Hamming distance 1 from j

1 i is at Hamming distance 2 from j

0 otherwise:

8>>><>>>:
ð4Þ

The above calculation comes down to solving a set of αl− ∣B∣
linear equations, and hence scales cubically with the number of
unobserved genotypes, αl− ∣B∣. While this approach can readily
be applied to moderately sized sequence spaces (e.g. αl less than a
million), the exponential dependence of the number of possible
genotypes on the sequence length l makes this straight-forward
approach impractical for longer sequences. Nonetheless, we can
show that the minimization problem can in fact be kernelized to
remove this exponential dependence on l, so that ultimately the
computational complexity scales linearly in l and cubically in the
number of observed genotypes ∣B∣ (see Supplementary Methods
Proposition 2). Moreover, these equations have a unique solution
if and only if the least squares fit of the corresponding
nonepistatic model has a unique solution (see Supplementary
Methods Proposition 1).

Properties of the interpolation solution. Because of its mathe-
matical simplicity, we can in fact provide several guarantees for
the properties of this minimum epistasis interpolation solution.

First, consider some focal genotype i. This genotype is a

member of
l
2

� �
ðα� 1Þ2 faces, and the phenotypes of the three

other genotypes in each face can be used to derive a nonepistatic
prediction for the phenotype at i. Since these predictions are not
necessarily all the same, we can take their mean to produce the
average local nonepistatic prediction for genotype i. Perhaps
surprisingly, the solution to our constrained minimization
problem bf has the property that for any missing genotype i,bfðiÞ is exactly equal to this average local nonepistatic prediction.

Second, the above result can be reinterpreted in geometric
terms based on the mean phenotype among genotypes at distance
d from the focal genotype i. Letting dk(i) denote the mean value ofbf for sequences at distance k to i, we havebfðiÞ ¼ d1ðiÞ þ ðd1ðiÞ � d2ðiÞÞ; ð5Þ
This is similar to a Taylor approximation around i, where we
correct the nearest-neighbor estimate bfðiÞ � d1ðiÞ by the
difference d1(i)− d2(i), which captures the average effects of
the mutations carried by i when introduced on mutationally
adjacent genetic backgrounds.

Third, the solution has an illuminating connection with the
discretized heat equation and the (second-order) Laplace operator.
In particular, if L is the discrete analog to the continuous Laplace
operator (i.e. L is the graph Laplacian for our Hamming graph),
then our constrained minimization problem is equivalent to a
boundary-value problem for the second-order discrete Laplace
operator L2− αL (see “Methods”). Interestingly, the solutions to
boundary-value problems in continuous space for the squared
Laplace operator (i.e. the biharmonic equation) are given by the
thin-plate splines53, which are widely used in geometric morpho-
metrics54 and in modeling fitness surfaces for continuous
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phenotypic traits55,56. We can understand this connection more
intuitively by recognizing that the thin-plate splines can also be
defined as solutions to a constrained minimization problem, in
that they are the surfaces that go through a prescribed set of points
while minimizing the total curvature, where total curvature is
defined as the sum of squared second-order partial derivatives
integrated over the entirety of the surface. Looking back at Eq. (1),
we see that the classical epistatic coefficient can be interpreted as
a discrete version of a second-order mixed partial derivative since
it quantifies locally how much one mutation changes the effect of
another. Similarly, the squared value of the classical epistatic
coefficient is a measure of the local curvature of the sequence–
function relationship. Because minimum epistasis interpolation is
derived by minimizing the total (i.e. integrated) value of this local
curvature, we see that minimum epistasis interpolation can be
interpreted as a discrete analog of thin-plate splines adapted for
use in sequence space.

Fourth, while our interpolation procedure on its own leaves the
observed phenotypes unaltered, it is often useful to apply some
sort of smoothing to the observed data, with the idea of filtering
out experimental noise and simplifying the sequence–function
relationship to reveal its major features. Our above observations
in fact suggest a natural smoothing operator, M (see “Methods”),
where applying M to a function f replaces the value of every
sequence with its average local nonepistatic prediction. The key
feature of this particular smoothing operator is that applyingM tobf leaves our out-of-sample predictions unchanged. Thus, we can
choose to apply M to bf , if we prefer to smooth the in-sample
data, or work directly with bf to preserve fine-scale genetic interac-
tions (e.g., any fully random component or house-of-cards
component30,40,57, which would be largely removed by the action
of the smoother). It is also possible to define our interpolation
solution in terms of iteratively applying the smoother M to an
arbitrary initial function, where after each application of the
smoother the in-sample genotypes are returned to their observed
values, and the procedure is continued until convergence (See
Supplementary Methods Proposition 3). This provides another
useful view on the interpolation procedure as the fixed point of a
dynamical procedure that removes epistasis at each step.

Finally, there is the important issue of the influence of
experimental noise on the interpolation method’s out-of-sample
predictions. Because the interpolation predictions can be expressed
as linear combinations of the measured values (see “Methods” Eq.
(9)), we can derive explicit expressions for the noise-induced
uncertainty in the interpolated predictions (“Methods” Eq. (10)).
While sufficient for computationally quantifying the uncertainty in
individual predictions, these expressions are somewhat unwieldy
and depend on the particular pattern of missing data. However, to
get a crude intuitive estimate of the extent of noise reduction, we
can consider Eq. (5), which expresses the interpolation solution as a
function of the average values at distance 1 and 2. Assuming we are
in the data-dense regime so that all these values are available, and
replacing the standard error of d2(i) by the generally larger standard
error of d1(i), Eq. (5) gives an estimate of an l(α− 1)/5-fold
reduction in prediction variance relative to experimental noise,
which suggests strong noise reduction for e.g., DNA sequences of
length 3 or more. In what follows we will pay special attention to
the influence of noise, and show that in practice the noise-induced
uncertainty in our predictions is typically substantially smaller than
the measurement noise.

Validation on simulated sequence–function relationships. To
provide a simple demonstration of our interpolation technique,
we first apply our method to simulated data from models of
the sequence–function relationship where the phenotypic value

assigned to a genotype depends only on its distance from some
focal sequence. Such models are a subset of univariate24 or global
epistasis models40, in that they are formed as a nonlinear trans-
formation of an underlying additive trait (in this case, the dis-
tance from the focal sequence). However, for our purposes the
most important feature of these models is that they produce a
complex pattern of epistasis that can nonetheless be displayed
graphically in one dimension (Fig. 2), which is helpful in getting
an intuitive feeling for the behavior and characteristics of our
interpolation procedure.

We begin by analyzing a biophysically inspired model for
transcriptional regulation known as the crater landscape46,58. The
model treats a single transcription factor binding site, where the
fitness of the binding site is a function of the number of
mismatches from the best binding sequence, and where the fitness
maximum is achieved at an intermediate distance from the best
binding sequence due to selection against spurious binding
when the transcription factor is at a low concentration46 (see
“Methods”). We first consider the out-of-sample behavior of our
interpolation procedure as a function of the fraction of genotypes
whose phenotypes are known (Fig. 2a). We see that the
complexity of the model changes adaptively with the sampling
density, producing essentially additive predictions when given the
phenotypes for a random 1% of genotypes, but providing an
increasingly close fit as the amount of training data increases.

Next, we compare our method to three commonly used
regression models, namely the additive model, which assumes
independent contribution of sites to fitness, and pairwise and
three-way interaction models. The regression models were fit
using ordinary least squares with 100% of the data in order to
examine the best possible reconstruction of the true landscape
given their respective model complexities. Because our interpola-
tion procedure leaves the observed data points unchanged, as a
fair comparison we make leave-one-out predictions for genotypes
of each distance class by giving our method all but one genotype
as training data, which is equivalent to smoothing the complete
landscape using our smoother M. We find that while the
interpolation model can provide a very good fit to this landscape,
these lower-order regression models are incapable of producing a
qualitatively correct approximation of the landscape, even when
given 100% of the landscape as data. This occurs because the
crater landscape contains interactions of all orders, and thus
cannot be captured by these lower-order interaction models.

To examine the robustness of these results, we repeated the
above procedure for several different global epistasis models
including a Hamming ball model where the phenotype has a
constant high value out to a threshold distance and then drops to a
low value (Supplementary Fig. 1a), a model where the phenotype
is a quadratic function of distance to the focal sequence (a simple
version of Fisher’s geometric mode59, Supplementary Fig. 1b), and
a particularly complex model where the phenotype is a sinusoidal
function of distance (Supplementary Fig. 1c). In all cases at
sufficiently dense sampling, the interpolation method is able to
capture the basic form of the non-linearity, however, the method
does exhibit some artifacts for the Hamming ball model for
genotypes near the threshold distance. This occurs because the
effects of mutations change suddenly at the threshold distance,
violating our assumption that mutations have similar effects in
nearby genetic backgrounds. In Supplementary Fig. 2, we also
examine the behavior of our model on the crater landscape for
longer sequences, up to length 100. We see that as we increase
sequence length while fixing the number of observed sequences in
each distance class, the interpolation result becomes increasingly
additive, particularly at large distances from the focal sequence
where the local density of observed genotypes becomes extremely
small as sequence length increases. This is consistent with our

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15512-5

4 NATURE COMMUNICATIONS |         (2020) 11:1782 | https://doi.org/10.1038/s41467-020-15512-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


general intuition that the interpolation method will behave
epistatically in regions of sequence space where data are plentiful
but nearly additively in regions where data are sparse or absent.

Besides having sampling rates that vary with distance from the
wild-type sequence, experimental data will often exhibit substantial
measurement noise. To examine our method’s behavior in a more
realistic setting, we also reconsidered our analysis of the crater
landscape using the data from a simulated mutagenesis experiment
that includes simulated experimental noise (Supplementary Fig. 3;
to appropriately treat this experimental noise in the standard
regression models, we used L2 regularization where the regulariza-
tion parameter was set based on tenfold cross-validation26). Here,
we find that the interpolation method again captures the qualitative
behavior of the model in the best-sampled regions of sequence
space (near the focal sequence) while extrapolating additively
in poorly sampled regions, and that while the variability in
the predictions for any given distance class is greater than for the
noise-free case (Fig. 2), it is still less than the magnitude of the
experimental noise (see Supplementary Fig. 3 caption).

So far we have applied our interpolation method to models of
global epistasis so as to allow an intuitive graphical evaluation of
the performance and behavior of the method. However, these
global epistasis models are a type of nonspecific epistasis that
typically results in dense interactions between all mutations
rather than sparse interactions between specific sets of mutations.
In order to address interpolation performance for modeling-
specific epistasis, we applied our method to simulated data from a
sparse interaction model36. In this model, each possible set of
alleles at each possible subset of positions can make an additive
contribution to the phenotype, but almost all (90%) of the
coefficients determining these contributions are set to zero,
resulting in sparse interactions (see “Methods”). For comparison

with the interpolation method, we fit L1-regularized three-way
regression60 to exploit this sparse interaction structure in addition
to the L2-regularized two-way and three-way regression models
we fit previously. We evaluated performance by calculating the R2

for model predictions on held-out test data as each of the
methods is given a larger and larger fraction of the simulated data
set for training (Fig. 3). We see that at low data density the three-
way L1-regularized regression model performs equally well as the
interpolation model, but that at high data density the interpola-
tion model has the best performance. Intuitively, this occurs
because at low data density, the three-way L1-regularized
regression can exploit the true sparse structure of the interactions
whereas at high data density the interpolation model can capture
higher-order interactions that the lower-order regression models
cannot accommodate.

To summarize these simulation studies, the interpolation
method appears to provide a highly flexible modeling framework
that, given sufficient data, can capture complex patterns of both
specific and nonspecific epistasis. While the model gives the most
interesting results in regions of sequence space where the data are
plentiful, its behavior in the data-poor regime is innocuous and
similar to an additive model. We observe that the model performs
worst in circumstances where there are systematic deviations
from the underlying assumption that mutational effects change
smoothly (e.g. the global epistasis model with a strong threshold
effect), but the out-of-sample predictions of the interpolation
method are nonetheless relatively insensitive to experimental
noise (Supplementary Fig. 3), or, equivalently, fully random
epistasis. Overall, these results suggest that the interpolation
method is best suited for mid-size genotype–phenotype maps that
are small enough that measurements are available for a sizable
fraction of all genotypes.
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Fig. 2 Minimum epistasis interpolation but not low-order regression models can learn the crater model for transcriptional regulation. The crater model
produces a fitness landscape where fitness depends only on the Hamming distance to the wild-type sequence, with an optimum at an intermediate
Hamming distance (l= 16 and α= 2; see “Methods” for other parameters). Gray curve shows the true fitness landscape. a Out-of-sample predictions of
minimum epistasis interpolation with random subsets of 1%, 10%, 50%, and 90% of genotypes used for training. The predictions adapt to the shape of the
crater landscape with increasing data density. For each distance class, at least one genotype was assigned to the test set to ensure an informative
visualization of model fits. b Reconstruction of the crater landscape by the additive, pairwise, and three-way regression models fitted using ordinary least
squares with 100% of the data. The interpolation panel shows leave-one-out results (equivalent to applying the smoother M to the full landscape).
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Application to protein G. Having explored the behavior of our
interpolation method on simulated data, we now turn to ana-
lyzing empirical data. We begin by considering a combinatorial
mutagenesis study of the IgG-binding domain of streptococcal
protein G (GB1)34, which is a model system for studying protein
folding stability and binding affinity5,34,61,62. By sequencing a
library of protein variants before and after binding to IgG–Fc
beads, this experiment34 attempted to assay all possible combi-
nations of mutations at four sites (V39, D40, G41, and V54;
204= 160,000 protein variants) that had previously been shown
to harbor a particularly strong and complex pattern of genetic
interactions5. Binding scores were determined as log enrichment
ratios (logarithm of ratio of counts before and after selection,
normalized by subtracting the log ratio of the wild type), however,
the original authors could not report binding scores for 6.6% of
variants due to low coverage in the input library (ten or fewer
input reads34).

Here, we use this data set to both predict the phenotypes for
these missing sequences and to assess the performance of our
method by making predictions for randomly sampled held-out
data. In addition to minimum epistasis interpolation, for
comparison we also fit an additive model using ordinary least
squares, L2-regularized pairwise and three-way regression26, and
L1-regularized three-way regression60, with regularization para-
meters chosen by tenfold cross-validation (see “Methods”).

We first compare the predictive power of the five models by
plotting the out-of-sample R2 against training sample size, Fig. 4a.
The four epistatic models substantially outperform the additive
model, consistent with the high degree of epistasis previously
observed for this data set. While the pairwise model produces a
good fit with relatively little training data and is the best
performing model when training data on less than 40% of
genotypes is available, its out-of-sample R2 saturates at 0.78 and
fails to improve beyond 20% training data. In contrast, the out-of-
sample R2 for the three-way models and our interpolation
method continue to improve and surpass the pairwise model at
high data density, indicating the presence of higher-order
epistasis in this data set. Overall, the predictive power of our
method and the three-way models were very similar throughout

the whole range of sampling, with the interpolation model having
marginally better predictive power at low data density and the
three-way models performing marginally better at high training
data density (test-set R2 of 0.831 for interpolation, 0.843 for
L2 regularized three-way regression, and 0.838 for L1 regularized
regression at the largest fraction of the training data, 92.4%,
with the remaining 93.4%− 92.4%= 1% of observed genotypes
reserved as a test set).

However, despite the similar predictive power of the three-way
and interpolation models, the interpolation achieves this
predictive power using far less epistasis than the three-way
models. In particular, Fig. 4b shows the mean-squared epistatic
coefficients between pairs of mutations within the missing and
held-out data (i.e. across all faces contained in the missing and
held-out data). We see that the mean-squared epistatic coefficient
for minimum epistasis interpolation is less than half of the mean
squared epistatic coefficient for the three-way models across the
whole range of sampling densities and that the interpolation
model even has less epistasis than the pairwise model. Overall, we
conclude that the predictive power of the interpolation model is
quite similar to the three-way interaction models, but that the
reconstruction given by the interpolation ought to be preferred
because it is far smoother and hence more parsimonious.

So far we have concentrated on out-of-sample prediction, but it
is sometimes also useful to consider smoothed model predictions
within the data in order to reduce the effects of the experimental
noise and to better reveal the large-scale features of the
sequence–function relationship. While the four regression models
naturally provide smoothed predictions within the sample, for
our interpolation model we first predict all missing data and then
apply the smootherM which leaves the out-of-sample predictions
unchanged while replacing each in-sample observation by the
average of the local nonepistatic predictions (i.e. for each
genotype, we consider the nonepistatic prediction based on each
possible pair of single mutations and the corresponding double
mutant, and then replace its observed or inferred value with the
average of these predictions).

To examine the characteristics of these smoothed landscapes
across all of sequence space (both in-sample and out-of-sample),
we first represented each model as a curve with points
corresponding to different training data sizes, Fig. 4c, plotting
both the R2 between the fitted model and the complete data set
(total R2) as a measure of goodness of fit and the average squared
epistasis (ϵ2) as a measure of the ruggedness of the fitted
landscapes. We see that the global behavior of the interpolation
model is again quite different from that of the three-way and
pairwise interaction models, and at high sampling the smoothed
fit deviates from the observed data to an extent that is
intermediate between these three regression models, but which
is far less rugged than all of them. To provide a different view on
the type of epistasis that is incorporated into these smoothed
landscapes, we also considered the number of local maxima in the
reconstructions (Fig. 4d). Here, our method constructed land-
scapes with similar number of local maxima as the pairwise
model, while the three-way models produced landscapes with at
least three times as many local maxima, again suggesting that our
smoothed landscape is providing a simpler reconstruction than
the three-way interaction models.

Finally, for the purposes of understanding the qualitative
features of the sequence–function relationship, it is desirable that
the characteristics of the smoothed landscape are similar across
the observed and imputed data, so that any patterns detected
correspond to true qualitative features of the sequence–function
relationship rather than artifacts due to the pattern of missing
data. To evaluate the extent of the consistency between the

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Interpolation
Additive
L2 Pairwise
L2 Three–way
L1 Three–way

Proportion training data

O
ut

–o
f–

sa
m

pl
e 

R
2

Fig. 3 Model performance for the simulated sparse random interaction
landscape with all orders of epistasis (l= 7, α= 4). L2-regularized
pairwise and three-way regression models and L1-regularized three-way
model were fit with regularization parameters chosen by 10-fold cross-
validation. Predictive power (out-of-sample R2) is plotted as a function of
the proportion of in-sample genotypes assigned as the training data. Error
bars indicate one standard error around the mean, n= 3.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15512-5

6 NATURE COMMUNICATIONS |         (2020) 11:1782 | https://doi.org/10.1038/s41467-020-15512-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


in-sample and out-of-sample regions of sequence space, we first
considered the phenomenon of model optimism63, where the in-
sample R2 of a fit model can be far higher than its out-of-sample
R2 (Fig. 4e). We see that while the L2 three-way and pairwise
models have in-sample R2 that are roughly constant in sampling
density and often far higher than the out-of-sample R2, our
smoothed landscape provides a global fit wherein the in-sample
and out-of-sample R2 are well-calibrated to each other, so that the
goodness of fit is roughly constant across all of sequence space.

While Fig. 4e shows that the extent of model optimism for the
pairwise and three-way interaction models is largely alleviated at
high data densities, we paradoxically observed anti-conservative
behavior for these models in the high data regime. In particular,
when a large fraction of possible genotypes are used as training
data, these models appear to suffer from an artifact wherein they
have a tendency to predict local maxima at out-of-sample
sequences, with this enrichment reaching greater than threefold
when using our largest fraction of sequence space for training
(92.4% of genotypes, Supplementary Fig. 4). In contrast,
minimum epistasis interpolation does not exhibit this enrich-
ment, and rather behaves conservatively, showing a depletion of
out-of-sample predicted local maxima in the data-dense regime
(Supplementary Fig. 4). Because in studies of sequence–function
relationships we are often particularly interested in the positions
of these local maxima (e.g. “fitness peaks”), the conservative
behavior of minimum epistasis interpolation may be desirable in
order to limit the number and frequency of false-positive
predictions.

Structure of epistasis in protein G. We have shown that minimum
epistasis interpolation combined with the smoother M has the
tendency to remove experimental noise and spurious maxima
while preserving the large-scale structure of the landscape and
accommodating complex higher-order epistasis. This suggests
that such methods may also be useful for the interpretation,
exploration, and intuitive explanation of empirical data for spe-
cific sequence–function relationships. In this section, we combine
imputation using minimum epistasis interpolation and the cor-
responding smoother M with a visualization technique developed
in ref. 47 to perform exploratory data analysis on the full 204=
160,000 genotype GB1-binding landscape34. Problems with
missing data and a proliferation of noise-driven local optima had
previously impeded successful application of this visualization
technique to the empirical data. We show that the methods used
here alleviate these difficulties, allowing for a simple and intuitive
analysis of this highly epistatic sequence–function mapping.

In particular, the visualization technique is based on using the
GB1 data to construct a model of molecular evolution for these four
amino acid positions and creates a low-dimensional representation
of the corresponding sequence space that optimally approximates
the time for a population to evolve from one genotype to another
under selection for high binding (see “Methods”). The result is a
plot where high-binding (i.e. high-fitness) sequences are broadly
separated when it would typically take a long time to evolve from
one to the other. Figure 5 shows this visualization for GB1, and
indicates that there are three relatively distinct sets of high-binding
sequences (warm colors) that would take a long time to evolve from
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one to the other. These regions contain the vast majority of high-
binding sequences (97.5% of sequences with smoothed fitnesses
greater than wild type, and all of the top 100 measured binders are
contained within the boxed regions) and appear as protrusions
from a core of low-binding sequences (cool colors), plotted near the
origin. The figure marks local maxima with black rings, and we see
that each of these separate regions of high-binding sequences
corresponds to a cluster of one or more local fitness maxima, with
the wild-type sequence observed near one of these clusters (wild-
type marked with gray ring).

To better understand the characteristics of these three high-
binding regions and their underlying biophysical explanation, we
constructed sequence logos to identify the common features of the
sequences within each region (Fig. 5). We see that the key
characteristic of the first region, which contains the wild-type
sequence, is that they all have a glycine at position 41. However, the
composition of the other two regions is more complex. Sequences
in region 2 often have a glycine at position 54 instead of 41, and the
highest binders tend to instead have a leucine or phenylalanine at
site 41. In region 3, sequences typically have an alanine instead of a
glycine at site 54, with the highest binders generally having either a
cysteine of another alanine at site 41. At a more biophysical level,
sites 41 and 54 directly interact in the GB1 crystal structure, albeit
as part of dynamically active and conformationally variable portion
of the protein5,34. In particular ref. 5,34, previously suggested that
the epistasis observed at these sites was in part due to steric
interactions between sites 41 and 54. This analysis is consistent
with our observation that the major differences between the three
high-binding regions lie in the identity (glycine or alanine) and
placement (site 41 or 54) of the small non-polar residue relative to

bulkier amino acids (e.g. leucine, phenylalanine, or cysteine at
site 41).

Finally, we considered the structure of the fitness landscape
within each of the high-binding regions. Perhaps surprisingly, we
found that within each region even the unsmoothed values are
reasonably approximated by a simple additive model (scatter plots
in Fig. 5, R2 of 0.77–0.8, randomization test p < 0.003 for each
region, see “Methods”). However, these models differ substantially
between the three regions, particularly with respect to the additive
effects of substitutions at sites 41 and 54 (Supplementary Fig. 5),
and all these models fit substantially better than the global additive
model investigated previously (R2= 0.49), indicating that overall
the sequence–function relationship appears to be locally rather
than globally additive.

In summary, we are left with a qualitative understanding of the
structure of this fitness landscape at several different levels of detail.
At the coarsest level, we find that although the GB1 fitness
landscape harbors a substantial degree of epistasis, in large part this
arises from the presence of three distinct high-fitness regions, and
that the fitness landscape is approximately additive within each
such region. At a finer level of detail, we observe the presence of
multiple local fitness maxima within some of these regions. Finally,
our visualization (Fig. 5) provides a rich depiction of the finer-scale
structure of the landscape, suggesting many hypotheses that are
ripe for further exploration. For instance, the visualizations show
what appear to be fitness “ridges” connecting one high-binding
region to another (e.g. the XXGG sequences connecting Region 1
to Region 2, and the XXGA sequences connecting Region 1 to
Region 3, respectively), that can serve as paths of moderate fitness
that a population might be most likely to take when traversing
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from one high-fitness region to another. Importantly, these insights
all depend on the application of our smoother, which simplifies the
landscape by removing features attributable to experimental noise
and fully random epistasis in order to reveal its large-scale features
(see Supplementary Fig. 6 for an attempt at visualization using the
incomplete, unsmoothed landscape).

Application to transcription factor binding. Finally, in order to
observe the performance of the interpolation method across a
wider variety of sequence–function relationships, we applied the
interpolation method to protein-binding microarray data corre-
sponding to the binding preferences of 1121 transcription fac-
tors48, a set of measurements that has previously served as a
model system for studying the genotype–phenotype map49,50. In
particular, these protein-binding microarray experiments produce
a measure of the preference of the assayed transcription factor for
all possible DNA sequences of length eight (48= 65,536 total
sequences). The standard measure of this preference is known as
the E-score64,65, which serves as a proxy for binding affinity. We
downloaded all E-scores reported in ref. 48 from the Cis-BP
database (http://cisbp.ccbr.utoronto.ca), and tested the ability of
two-way and three-way L2-regularized regression, three-way L1-
regularized regression, and interpolation models to predict a
held-out set of E-scores when trained on 80% of the data.
Figure 6a–c shows that the interpolation method has a superior
out-of-sample R2 than these other models the vast majority of the
time, and in fact had the best out-of-sample R2 of any of these
models for 93.4% of transcription factors. Because we are espe-
cially interested in the accuracy of predictions for functional
binding sites and previously observed that lower-order regression
models sometimes make spurious, extreme out-of-sample pre-
dictions, we also considered the fraction of predictions of strong
binding sequences (defined as predicted E-scores greater than the
95th-percentile of the data) that were in fact false-positive pre-
dictions. Figure 6d–f shows that the rate of these false positive
predictions was often several fold lower for the interpolation

method (median 2.2-fold and 1.5-fold reduction in false discovery
rate compared with the L2 pairwise and L2 /L1 three-way models,
respectively), which again confirms the conservative character of
the minimum epistasis interpolation predictions.

Discussion
Understanding the mapping from genotype to phenotype is a key
problem for much of biology, from applied areas such as protein
design44,66, antigenic evolution67, and the emergence of drug
resistance68, to more basic questions about the repeatability of
adaptation69 and the dynamics of long-term molecular evolu-
tion31. While the astronomical number of possible genotypes may
put a fully comprehensive understanding of this mapping forever
out of reach, modern high-throughput experiments are currently
providing phenotypic measurements for tens of thousands to
millions of genotypes at a time, so that there is a need for com-
putational techniques to translate these high-throughput mea-
surements into phenotypic predictions for genotypes that have
not yet been assayed. Here, we have presented a principled and
highly conservative solution to this problem by inferring the least
epistatic possible sequence–function relationship compatible with
the observed data in the sense that mutational effects change as
little as possible between mutationally adjacent genetic back-
grounds while exactly matching the data where available.

One simple way of understanding our approach is by con-
trasting it with the classical nonepistatic model70, since both
models in some sense minimize the amount of epistasis, but do so
in different ways. In a nonepistatic model, one assumes that the
sequence–function relationship is completely additive so that the
effects of mutations are constant across genetic backgrounds and,
consequently, the mean-squared epistatic coefficient between
random pairs of mutations across random backgrounds is con-
strained to be precisely zero. One then determines these muta-
tional effects by minimizing the mean-squared error of the model
predictions for genotypes where data is available.
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Fig. 6 Model comparison using protein-binding microarray data from 1121 transcription factors48. For each TF, 80% of sequences were randomly
assigned as training data. L2-regularized pairwise regression, L2-regularized three-way regression, and L1-regularized three-way regression were fit with
regularization parameter chosen by cross-validation. For each TF, we calculate the out-of-sample R2 and false discovery rate (FDR) defined as the
frequency that an out-of-sample genotype predicted to be above the 95th percentile of the data were in fact below the 95th percentile. a–c Histograms of
the ratios of R2 of the regression models and minimum epistasis interpolation. d–f Histograms of the ratios of the false discovery rate of the regression
models and minimum epistasis interpolation.
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In minimum epistasis interpolation, these choices are exactly
reversed. Whereas a nonepistatic model minimizes the mean-
square error under the constraint that the mean-square epistatic
coefficient is precisely zero, here we constrain the reconstruction
to exactly match the data so that the mean square error is pre-
cisely zero and infer the missing values by minimizing the mean-
square epistatic coefficient. This allows the data itself to dictate
the amount and character of epistasis that is included, since the
reconstruction is as additive as possible while still being highly
epistatic in regions of sequence space where the data require it. In
the Supplementary Methods, we show that the classical none-
pistatic model and minimum epistasis interpolation can actually
be viewed as two ends of a continuum of models that minimize a
convex combination of mean-square error and mean-square
epistasis, and which all have out-of-sample properties similar to
minimum epistasis interpolation. Furthermore, this generalized
procedure allows one to tune the degree of regularization and
to accommodate unequal noise variance among genotypes
(see Supplementary Methods).

Our method also provides insights into the interpretation of
higher-order epistatic interactions, that is interactions between
mutations at three or more sites. When viewing genotype–
phenotype mappings from a regression or analysis of variance
standpoint, there is a tendency—going back to the very earliest
days of statistics and experimental design71,72—to assume that
higher-order interaction terms are likely to be small (e.g. in partial
factorial designs where higher-order interactions are purposefully
confounded with main effects and lower-order interactions73).
However, there is a growing consensus that such higher-order
interactions are not only common in genotype–phenotype
maps10,18,29,32,38 but are expected even for very simple, smooth
genotype–phenotype relationships, such as where the observed
phenotype is just an additive trait that has been run through a
nonlinear transformation31,32,40,74–76. Our results contribute to
this view by showing that the incorporation of higher-order
interactions in fact allows substantially less epistatic fits than
standard pairwise models. To see why this is the case, it is helpful
to realize that higher-order genetic interactions can be thought of
as pairwise interactions whose strength changes over different
regions of sequence space, which in particular allows the strength
of pairwise epistatic interactions to decay toward zero in regions of
sequence space that are data-poor or where the interaction is not
supported.

Besides viewing genotype–phenotype maps as being defined by
sums of interactions between sites as in regression models26,29,77,
there are a rich variety of other formalisms for describing genetic
interaction that are related to the techniques we have developed
here78–82. Probably the most relevant of these is the correlation
between the effects of mutations measured in mutationally
adjacent genetic backgrounds, γ10,81. Conceptually, maximizing γ
would be quite similar to our method except that γ depends on
both ϵ2 and the variance in the phenotypic effects of mutations81,
so that maximizing γ would tend to inflate the magnitude of
mutational effects, in essence minimizing the relative rather than
absolute amount of epistasis. Our face-specific epistatic coeffi-
cients are also related to the “circuit” approach of ref. 79 in that
these epistatic coefficients correspond to a subset of the possible
circuits (specifically those corresponding to conditional epistasis).
However, at a deeper level our approach is most closely related to
the Walsh–Fourier decomposition29,77,83–85, where the pheno-
type is expanded in terms of the eigenvectors of the graph
Laplacian L, which are also the eigenvectors of the second-order
discrete Laplace operator L2− αL, so that our minimization
problem can be re-cast as minimizing a weighted sum of squared
Walsh coefficients, where the weight increases quadratically with

interaction order (see Supplementary Methods). Finally, while
boundary-value problems involving the graph Laplacian L arise in
many areas of applied mathematics e.g.86–88, here we are faced
with a more unusual boundary value problem for L2− αL.
Interestingly, this second-order character arises because of our
stipulation that the mutational effects—rather than the pheno-
typic values themselves—change smoothly as we move through
sequence space. In contrast, naive interpolation based on L results
in an unrealistic degree of sign epistasis where e.g., multiple
deleterious mutations combine to be the average of the single
mutations rather than their sum.

While our interpolation procedure exactly matches the data
where available, some degree of smoothing is often helpful to better
understand the large-scale features of the sequence–function rela-
tionship and to ameliorate the effects of experimental noise. To
address this need, we proposed a smoother that is philosophically
similar to LOESS89 in that it approximates the sequence–function
relationship as being locally additive while making no assumptions
about its global structure. Specifically, the smoother replaces
the phenotypic value for each genotype with the average of the
nonepistatic predictions that would be obtained by taking each
possible double mutant as the wild type. Because of the large
number of single and double mutants that this smoothed estimate
averages over, such smoothing greatly decreases the impact of
experimental noise. It is important to note that by the same
argument the application of the smoother will largely remove any
true fully random component of the sequence–function rela-
tionship (i.e. the so-called house-of-cards component30,40,57).
Thus, for applications where we are most interested in genotypes
with high phenotypic values (high fitness or highly functional
genotypes), concordance between the smoothed and raw experi-
mental phenotypes for a high functionality provides confidence
not only that the genotype is likely to be truly functional, but also
that this functionality is due to a consistent tendency in the local
sequence–function relationship rather than some idiosyncratic
feature of the individual genotype. Importantly, the out-of-sample
predictions of our interpolation solution have similar noise-
reduction properties to the smoother, since the out-of-sample
predictions are invariant under the action of the smoother. To
see the extent of this reduction, we note that the interpolation
solution is linear in the data (see “Methods”, Eq. (9)) so that
the influence of noise on the out-of-sample predictions can be
assessed by conducting interpolation on a pure noise landscape.
Conducting this analysis for the GB1 data set (4 sites, with 20
alleles per site), we find the variance due to noise in our out-of-
sample predictions is reduced 20 to 50-fold relative to the noise in
the original data (Supplementary Fig. 3).

Minimum epistasis interpolation provides a principled and
highly conservative method for reconstructing sequence–function
relationships that has no tunable parameters and allows epistatic
interactions of all orders. Nonetheless, the method has a number
of important limitations. First, precisely because of this con-
servative nature, the method requires a relatively high density of
data to predict a substantial amount of epistasis. In the examples
we have explored here, we see that in order to produce sub-
stantially epistatic predictions the method requires that at least
some region of sequence space has a local sampling density
greater than roughly 10%, and generally predicts negligible
epistasis in regions of sequence space where less than 1% of
genotypes have been observed (see also, Supplementary Fig. 8,
which directly explores how the extent of epistasis depends on
sampling density). Thus the method is best viewed as an inter-
polation or imputation procedure that extrapolates additively
where data are sparse. Second, the method is somewhat more
computationally intensive than lower-order regression models,
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and our present implementations are limited to sequence spaces
containing less than roughly a million genotypes or, alternatively
(using our kernelized implementation), studies containing less
than roughly twenty thousand observed sequences. Third, we
emphasize that despite its many interesting and useful properties,
the method introduced here produces only the least epistatic
possible reconstruction of the sequence–function relationship,
and hence is almost necessarily underfitting the data. More
general statistical approaches that better reflect the character of
epistasis found in a specific data set are likely possible and capable
of providing better out-of-sample performance.

Methods
Formulation of the minimization problem and its solution. Suppose our
sequence space consists of two bi-allelic loci (α= 2, l= 2) and hence four possible
genotypes {ab, aB, Ab, AB}. Given a vector that assigns phenotypes to all four

genotypes, fT ¼ f abf aBf Abf AB
� �T

, we can calculate the squared epistatic coefficient
for f as

ϵ2ðfÞ ¼ ððf AB � f aBÞ � ðf Ab � f abÞÞ2
¼ f 2AB þ f 2aB þ f 2Ab þ f 2AB
� 2f ABf aB � 2f ABf Ab � 2f aBf ab � 2f Abf ab
þ 2f ABf ab þ 2f aBf Ab:

ð6Þ

Extending this to arbitrary α and l, for a vector f defined on the set of all αl

genotypes we can calculate the mean-squared epistatic coefficient ϵ2ðfÞ by
averaging over all s ¼ l

2

� �
α
2

� �2

αl�2 faces of the sequence space. This results in a

positive semi-definite quadratic form ϵ2ðfÞ ¼ 1
s

P
i;jcði; jÞfðiÞfðjÞ, where the c(i, j)

can be found by counting the number of times the ordered product f(i)f(j) appears
when summing Eq. (6) over all faces and which only depend on the Hamming
distance d(i, j) between sequences i and j. First, the squared term for any given

genotype (distance 0) appears in p ¼ l
2

� �
ðα� 1Þ2faces with coefficient 1. Second,

each ordered pair of genotypes that are at Hamming distance 1 from each other
appear in (l− 1)(α− 1) faces with coefficient −1. Third, if the ordered pair of
genotypes are separated by distance 2, they appear in exactly one face with
coefficient 1. Thus, we arrive at Eq. (4) in the main text.

Now, arrange the coefficients c(i, j) in a matrix C with C(i, j)= c(i, j)/s and
ϵ2ðfÞ ¼ fTCf . Given data y 2 Rm for a subset of sequences B of size m of the set of
all possible sequences S, we write I ¼ S n B to be the set of all missing sequences.
Without loss of generality, we will order our sequences so that the m sequences in B
whose phenotypes are known come first. Our aim is to infer a full landscapebfT ¼ bfTB bfTIh i

that minimizes the average squared epistatic coefficient under the

constraint that we do not change the values for genotypes in B. We can formulate
this as a quadratic minimization problem with equality constraint:

minimize fTCf ; ð7Þ

subject to fB ¼ y: ð8Þ
Using B and I to index submatrices of C, we can solve this minimization

problem by differentiating fTCf with respect to fI and setting the gradient to zero.
This gives us:

bf ¼ bfBbf I
" #

¼ y

�ðCIIÞ�1CIBy

� �
; ð9Þ

which is equivalent to Eq. (3) in the main text (the matrix ðCIIÞ�1 exists if and only
if the nonepistatic model fit by least squares has a unique solution, see

Supplementary Methods Proposition 1). Note that by Eq. (9), the predictions bf I are
simply a linear transformation of the observations y. Thus, if the observations y

contain i.i.d. noise with mean 0 and variance σ2 then Eq. (9) gives the mean of bf I
while the covariance matrix is given by

covðbf IÞ ¼ σ2ðCIIÞ�1CIBCBIðCIIÞ�1; ð10Þ
a matrix whose main diagonal gives the noise-induced variance in the individual
out-of-sample predictions.

Mathematical properties of the solution. Rearranging Eq. (9) as

CII
bf I � CIB

bfB ¼ 0, we find the solution bf must satisfy ðCbfÞðiÞ ¼ 0, for all genotypes
i in I. To understand what this condition means, we rescale our cost matrix and use
it to define a new matrix M ¼ I� s

pC, where I is the identity matrix. Using the

definition of C and Eq. (4) gives us

ðMfÞðiÞ ¼ 1
p

X
j:dði;jÞ¼1

ðl � 1Þðα� 1ÞfðjÞ �
X

k:dði;kÞ¼2

fðkÞ
0@ 1A ð11Þ

¼ 1
p

X
F:i2F

X
j;k;l2Fnfig

fðjÞ þ fðkÞ � fðlÞ; ð12Þ

where we enumerate through all p faces F that i belongs to. For each face F, f(j)+ f
(k)− f(l)= f(j)− f(l)+ f(k)− f(l)+ f(l) is the nonepistatic prediction based on
sequences j, k which are at distance 1 to i and l which is at distance 2 to i (Eq. (2)).
Therefore, (Mf) (i) returns the average local nonepistatic prediction for i based on

all faces containing i. Thus the necessary condition ðCbfÞðiÞ ¼ 0 is equivalent tobfðiÞ ¼ ðMbfÞðiÞ, ∀i ∈ I. That is, for any unknown genotype i, its inferred value must

be equal to its average local nonepistatic prediction based onbf . As a result, applying
M to bf does not alter our predictions for the out-of-sample genotypes.

Let dk(i) denote the mean value of bf for sequences at distance k to i. We can
rewrite Eq. (11) as

ðMbfÞðiÞ ¼ 1
p
ðl � 1Þðα� 1Þ

X
j:dði;jÞ¼1

bfðjÞ � 1
p

X
k:dði;jÞ¼2

bfðkÞ ð13Þ

¼ 1
p
ðl � 1Þðα� 1Þlðα� 1Þd1ðiÞ � d2ðiÞ ð14Þ

¼ d1ðiÞ þ ðd1ðiÞ � d2ðiÞÞ; ð15Þ
which gives us a geometric interpretation for our method (Eq. (5) in the main text).

Our minimization problem also has a close relation to the Dirichlet problem on
a graph88. To see this, recall the definition of the graph Laplacian L for our
Hamming graph of all possible sequences

Lði; jÞ ¼
lðα� 1Þ i ¼ j

�1 dði; jÞ ¼ 1

0 otherwise:

8><>: ð16Þ

A discrete Dirichlet problem is formulated as finding a function bf defined on the

graph so that ðLbfÞðiÞ ¼ 0 on the unsampled genotypes (interior) i ∈ I, while

satisfying the condition bfB ¼ y.
It turns out that we can re-express C in terms of L and L2. In particular for L2,

we have

L2ði; jÞ ¼

ðlðα� 1ÞÞ2 þ lðα� 1Þ i ¼ j

�2lðα� 1Þ þ ðα� 2Þ dði; jÞ ¼ 1

2 dði; jÞ ¼ 2

0 otherwise:

8>>><>>>: ð17Þ

Consequently, L2− αL= 2sC. Thus, instead of being harmonic in the interior, i.e.

ðLbfÞðiÞ ¼ 0, as in the classical discrete Dirichlet problem, the solution to our

problem instead must satisfy ððL2 � αLÞðbfÞÞðiÞ ¼ 0 for i ∈ I, in addition to the
boundary-value constraint.

Simulation of crater landscape. We simulated data under the crater landscape
model46 for the fitness of a transcription factor binding site. Specifically, we assume
the effects of mutations on binding energy to be constant and the binding prob-
ability of any sequence is a function of its Hamming distance d to the best binding
sequence, p ¼ 1

1þeϵðd�ρÞ , where ϵ is the binding energy per nucleotide mismatch and
the compound parameter ϵρ is the chemical potential measuring the factor con-
centration46. In this minimal model, we assume there are two cellular states. The
on state favors the expression of the gene, and hence selects for high-binding
probability with selection coefficient son. The off state disfavors gene expression and
selects against high binding with coefficient soff=−son. The total fitness of a
sequence at distance d is given by

f ðdÞ ¼ son
1þ eϵðd�ρonÞ

� son
1þ eϵðd�ρoff Þ

: ð18Þ
We choose the following parameters ϵ= 1, ρon= 6, ρoff= 1, and son= 1. We use

this model for simulating fitness landscape data for the set of all possible mutants
corresponding to a sequence space with l= 16 sites and two allelic states at
each site.

Sparse interaction model. We first simulated sparse interaction landscapes using
the formula

f ¼ Xθ; ð19Þ
where X is the one-hot design matrix with columns corresponding to specific allelic
combinations in specific subsets of sites. For any given column, the value of a
genotype is 1 if it contains the corresponding allelic combination on the prescribed
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sites, and 0 otherwise. We consider genetic interactions of all orders, so that the

dimension of X is αl × (α+ 1)l, since
Pl

k¼0
l
k

� �
αk ¼ ðαþ 1Þl . θ is the (α+ 1)l-

dimensional vector of coefficients. To ensure sparsity, we randomly set 90% of the
entries of θ to 0, and sampled the remaining 10% independently from the standard
normal distribution.

L2-regularized regression. We use the following linear model to fit pairwise and
three-way interaction models to the GB1 data set.bfðiÞ ¼X

j

ϕijβj þ
X
k

ψikγk; ð20Þ

or in matrix notation bf ¼ ΦβþΨγ: ð21Þ
The matrix Φ has as columns any orthonormal set of vectors that span the space of
nonepistatic fitness landscapes (eigenspace of the graph Laplacian L associated with
eigenvalues 0 and α). The columns of Ψ form an orthonormal set of vectors that
span the space of all pairwise or pairwise and three-way functions (eigenspace of L
associated with eigenvalue 2α (pairwise) or 2α and 3α (three-way), see Supple-
mentary Methods).

We fitted L2-regularized pairwise and three-way regression models to different
training data sets B. Specifically, we find our solution by minimizing

X
i2B

yi �
X
j

ϕijβj þ
X
k

ψikγk

 ! !2

þ λjjγjj2: ð22Þ

The regularization parameter λ is chosen from a set of potential parameters equally
spaced on the log 10 scale. For each training sample, we performed 10-fold cross-
validation to generate average mean squared errors using the candidate λ’s. The λ
with the lowest cross-validated MSE is used to fit the training data and make
predictions for the test data set.

L1-regularized regression. In addition to the L2 regularized regressions, we also fit
L1 regularized three-way regression models, where the design matrix is given by the
columns of the one-hot matrix X corresponding to interactions between up to three
sites. The models were fit using penalized least squares with the penalty given by
the L1 norm of the coefficients. We used the R package glmnet90 to fit L1 reg-
ularized regression models for all data sets with regularization parameter chosen by
cross-validation using the default setting.

Visualization of the GB1 landscape. We consider a population evolving in
continuous time under weak mutation e.g., refs. 91–93 on the full 204= 160,000
genotype GB1-binding landscape smoothed using M. Specifically, we model evo-
lution as a continuous-time Markov chain where the population moves from
genotype to genotype at each fixation event. The rate matrix Q of the Markov chain
is

Qði; jÞ ¼
1

α�1
cðfðjÞ�fðiÞÞ
1�e�cðfðjÞ�fðiÞÞ dði; jÞ ¼ 1

�Pk≠i Qði; kÞ i ¼ j

0 otherwise;

8><>: ð23Þ

where c is the conversion factor that transforms log binding to scaled fitness
(Malthusian fitness ×Ne). We choose c so that the expected log binding at statio-
narity is equal to the log binding of the wild type. Time is scaled so that the total
mutation rate per site is equal to 1. For a two-dimensional representation of the
GB1 landscape, we use as coordinates the right eigenvectors of Q associated with
the two largest nonzero eigenvalues. This allows our low-dimensional repre-
sentation of the landscape to optimally capture the expected time for a population
to evolve from genotype i to j47.

Significance test of R2 for local additive fits. To assess the statistical significance
of the total R2’s of additive models fit to the three regions identified in our
visualization of the GB1 landscape, we sampled, for each region, 1000 random
subsets of the same size. We then fit additive models to these random subsets to
calculate the null distribution of total R2. We calculate the p-value for the R2 for
each region as the fraction of random subsets that have equal to or greater R2 than
the observed value.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The GB1 data can be downloaded at https://doi.org/10.7554/eLife.16965.024. E-scores of
the protein binding microarray data can be accessed via the Cis-BP database (http://
cisbp.ccbr.utoronto.ca, Database Build 0.90).

Code availability
The Mathematica notebook and R files used in this study are included as Supplementary
Software 1. The scripts will reproduce all figures in the article.
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