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Abstract

Biomarkers of aging can be used to assess the health of individuals and to study aging and age-related diseases.
We generate a large dataset of genome-wide RNA-seq profiles of human dermal fibroblasts from 133 people aged
1 to 94 years old to test whether signatures of aging are encoded within the transcriptome. We develop an
ensemble machine learning method that predicts age to a median error of 4 years, outperforming previous
methods used to predict age. The ensemble was further validated by testing it on ten progeria patients, and our
method is the only one that predicts accelerated aging in these patients.
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Background
There is a marked heterogeneity in human lifespan and
health outcomes for people of the same chronological
age. Thus, one fundamental challenge is to identify mo-
lecular and cellular biomarkers of aging that could pre-
dict lifespan and be useful in evaluating lifestyle changes
and therapeutic strategies in the pursuit of healthy aging.
Here, we developed a computational method to predict
biological age from gene expression data in skin fibro-
blast cells using an ensemble of machine learning classi-
fiers. We generated an extensive RNA-seq dataset of
fibroblast cell lines derived from 133 healthy individuals
whose ages range from 1 to 94 years and 10 patients
with Hutchinson-Gilford progeria syndrome (HGPS), a
premature aging disease. On this dataset, our method
predicted chronological age with a median error of 4
years, outperforming algorithms proposed by prior stud-
ies that predicted age from DNA methylation [1–5] and
gene expression data [3, 6] for fibroblasts. Importantly,
our method consistently predicted higher ages for pro-
geria patients compared to age-matched controls, sug-
gesting that our algorithm can identify accelerated aging
in humans. These results show that the transcriptome of

skin fibroblasts retains important age-related signatures.
Our computational tool may also be applicable to pre-
dicting age from other genome-wide datasets.

Results and discussion
Large transcriptome dataset of human dermal fibroblasts
Dermal fibroblast cells are an attractive system to study
human aging for several reasons. First, fibroblasts in the
human skin have a low proliferative rate and therefore
are likely to retain damage that occurs with age [7].
Second, fibroblasts show age-dependent phenotypic,
epigenomic, and transcriptomic changes [7–12]. Third,
directly reprogrammed neurons from aged fibroblasts
retain age-associated transcriptomic signatures and cel-
lular defects, such as compromised nuclear-cytoplasmic
compartmentalization [13]. Fourth, fibroblast cell lines
are easily obtained from non-invasive skin biopsies.
Thus, dermal fibroblast transcriptomes may encode sig-
natures of biological age that can be extracted using ma-
chine learning methods. Researchers have previously
generated transcriptomic fibroblast datasets for studying
human aging; however, these datasets have been limited
in the number of samples collected (< 28 individuals)
and because they sample only part of the human lifespan
[11–14].
To overcome these limitations, we generated an exten-

sive RNA-seq dataset from human dermal fibroblasts,
which were obtained from the Coriell Institute cell
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repository and the Progeria Research Foundation
(“Methods” section, Additional file 1: Figure S1A). The
dataset includes 133 people from 1 to 94 years old with
an average of 13.3 (± 6.25) individuals per decade (Add-
itional file 1: Table S1) and 10 HGPS patients. Cell lines
from healthy individuals were cultured to a mean popula-
tion doubling of 10 (± 4.2) (Additional file 1: Table S2)
and from HGPS patients with mean passage number of 11
(± 0.7) (Additional file 1: Table S3). Cells were then
subjected to RNA-seq analysis (“Methods” section).
This fibroblast dataset is unique in its coverage of in-
dividuals across a wide range of ages and thus represents
a strong benchmark for validating age prediction
algorithms.

Ensemble of classifiers to predict age from fibroblast
transcriptomes
We developed an ensemble machine learning method
to predict chronological age given a healthy individ-
ual’s gene expression data. Each classifier in the en-
semble assigns a given sample to one of a small
number of age bins (classes), with each bin having a
nominal width of N years. For example, with N = 20,
classifier #1 in the ensemble assigns everyone 21–40
years old to the same class. Each classifier in the en-
semble is trained with a different discretization of
ages, such that every possible 1-year shift of the age
bins exists within the ensemble. Thus, classifier #2
groups together everyone 22–41 years old into a bin,
and classifier #3 groups together everyone 23–42 years
old, etc. The ensemble will therefore be made up of
N different classifiers, each one having different age
bins. The ensemble as a whole will cover every pos-
sible set of age discretizations with bin width N and
with bin boundaries staggered 1 year apart. This con-
cept of staggered age bins is described graphically in
Additional file 1: Figure S1B.
All of the classifiers of the ensemble are trained on the

same dataset, but the boundaries defining the classes
(age bins) are different for each classifier of the ensemble
as described above. To predict the age of a test subject,
the subject’s gene expression levels are input to all N
classifiers of the ensemble. Each classifier then predicts
which age range the subject belongs to. For example,
classifier #1 votes for bin 21–40 years old, classifier #2
votes for bin 22–41 years old, and classifier #3 votes for
bin 3–22 years old. Each year inside the age range
predicted by a classifier gets one vote recorded, and
votes for each year are accumulated across classi-
fiers. In this small example, age 20 would receive 1
vote, age 21 would receive 2 votes, age 22 would re-
ceive 3 votes, age 23 would receive 2 votes, etc. The
year with the most votes is declared the prediction
of the ensemble for the test subject. In the event of

a tie, the youngest age prediction is chosen. In the
example above, the test subject will be predicted to
be 22 years old.
This ensemble method is agnostic about the type of al-

gorithm used for each classifier. We explore different al-
gorithms in the results below.

Predicting age from gene expression
When applied to our dataset of 133 individuals, an en-
semble of linear discriminant analysis (LDA) classifiers
predicted ages that differed from true chronological age
by a median absolute error of 4 years and a mean abso-
lute error of 7.7 years (leave-one-out cross-validation,
Fig. 1A). This ensemble method outperformed previous
algorithms [1–6] used to predict age from biomarkers,
including linear regression (median = 10.0, mean = 12.1),
support vector regression (median = 10.2, mean = 11.9),
and elastic net regression (median = 11.0, mean = 12.0).
The ensemble method also had a higher R2 of true ver-
sus predicted age compared to other algorithms: 0.81 for
the ensemble versus 0.73 for linear regression, 0.72 for
support vector regression, and 0.73 elastic net.
Table 1 summarizes the performance of the ensemble

method using different types of algorithms and different
age bin ranges. LDA provides better performance than
the other algorithms we tried, including random forest,
k-nearest neighbors, and Gaussian naive Bayes. Regard-
less of the algorithm, the error measures do not change
much as bin size varies. This is particularly attractive for
LDA ensembles, as age bin width is the only tunable
parameter for that method.
An important practical question is as follows: how

many samples are needed to train an ensemble that
can accurately predict age? Sequencing costs may be
prohibitive if thousands or tens of thousands of sam-
ples are needed. To test this, we generated a learning
curve for each method that depicts how age predic-
tion accuracy changes with increasing training set size
(Fig. 1B, “Methods” section). As expected, the mean
absolute error decreases with more samples for all
methods, and the variance of the error reduces with
larger sample size. For the LDA ensemble method,
extrapolating the learning curve linearly indicates that
mean absolute error would drop below 5 years with
an additional 19 samples and below 3 years with an
additional 32 samples (Theil-Sen robust regression
median slope = − 0.18, 95% confidence lower bound
slope = − 0.15). It may also be the case that adding
samples in particular age ranges with fewer samples
will further decrease the error. This idea is supported
by the anti-correlation between the number of
samples in the dataset per 5 years of age range and
the mean absolute errors made by the LDA ensemble
in that age range (r = − 0.705, p = 0.004). While accuracy
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will likely asymptote as additional samples are added,
these two lines of evidence suggest that further accur-
acy gains may be possible with feasible additional
effort.

Next, we tested the general applicability and robust-
ness of our method by using it to predict age on another
publicly available RNA-seq dataset of skin fibroblasts.
While we are unaware of any datasets that have

Fig. 1 Predicting age from gene expression data. Rows from top to bottom show age prediction results for LDA Ensemble with 20-year age bins,
elastic net, linear regression, and support vector regression. Model parameters are shown in Table 1. Column (A): Leave-one-out cross-validation
predictions for 133 healthy individuals. Dots are plotted for each individual showing predicted age (y-axis) vs. true age (x-axis), with a line of best
fit overlaid, and a shadow showing the 95% confidence interval of that line determined through bootstrap resampling of the dots. Text on the
bottom of each panel shows performance metrics of mean absolute error (MAE), median absolute error (MED), and R2 goodness-of-fit for the line
of best fit. The dotted line is the ideal line, where true age equals predicted age. Column (B): The effect of training set size (x-axis) on the mean
absolute error of the ensemble (y-axis). The slope of the best fit line indicates the rate at which age prediction error would decrease with
additional samples. Dots indicate mean absolute error from each fold of 2 × 10 cross-validation (y-axis) for varying sizes of random subset of the
data (x-axis). A line of best fit and 95% confidence interval is shown. Column (C): Box plots of age predictions of progeria patients (red) and leave-
one-out cross-validation predictions of age-matched healthy controls (blue). Box limits denote 25th and 75th percentiles, line is median, whiskers
are 1.5× interquartile range, and dots are predictions outside the whisker’s range. The ensemble method is the only method that predicts
significantly higher ages for progeria patients. Progeria patients: n = 10, mean ± std. of true age 5.5 ± 2.4; age-matched controls: n = 12, mean ±
std. of true age 5.0 ± 2.9
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comparable numbers of samples and age range,
E-MTAB-3037 [13] covers a similar age range to ours
(0–89 years old) but with only 22 samples. Table 1 shows
that our method can predict the age of these individuals
better than linear regression, support vector regression,
and elastic net. As suggested by the learning curves, due
to small sample size, the mean absolute error for all al-
gorithms was higher than that with our larger dataset.

Biological age vs. chronological age
Are the age predictions made by our method using
fibroblast gene expression data also reflective of bio-
logical age? Unfortunately, the present dataset does not

include health outcome data for individuals, which could
be used in principle to estimate biological age. Instead,
we studied the performance of the ensemble on patients
suffering from Hutchinson-Gilford progeria syndrome
(HGPS). HGPS provides a unique opportunity to study
cellular processes in the context of what many believe is
accelerated aging [15]. Mutations in the nuclear enve-
lope protein LaminA/C result in an altered nuclear
architecture, leading to a premature aging phenotype
with lifespan dramatically shortened to an average of 14
years [16].
We performed RNA-seq analysis on 10 progeria pa-

tients of ages ranging from 2 to 8 years with mean age

Table 1 Accuracy of age prediction from fibroblast transcriptomes, for various algorithms on two datasets. Cross-validation age
prediction metrics are reported for our dataset of 133 individuals between 1 and 94 years old and for dataset E-MTAB-3037 with 22
individuals from newborn to 89 years old. Metrics: mean absolute error (MAE), median absolute error (MED), and R2 goodness-of-fit
for the line of best fit. Parameters shown for regression algorithms are the best ones found for reducing MAE from a grid search of
the parameter space. LDA ensemble with 20-year bins (in italics) achieves a lower MAE and MED and a higher R2 than competing
methods. Other window sizes (15, 25, 35) did not improve performance above that of the 20-year bin size

Algorithm Parameters Mean absolute
error

Median absolute
error

R2

Our dataset (133 individuals)

LDA ensemble Age bin width = 10 9.5 4.0 0.68

Age bin width = 20 7.7 4.0 0.81

Age bin width = 30 8.2 4.0 0.77

Gaussian naive Bayes ensemble Age bin width = 10 Uninformative priors 16.5 7.0 0.20

Age bin width = 20 16.0 8.0 0.27

Age bin width = 30 15.7 7.0 0.30

k-nearest neighbors ensemble Age bin width = 10 Euclidean distance metric k = 5 22.3 14.0 − 0.19

Age bin width = 20 19.7 11.0 0.04

Age bin width = 30 19.7 14.0 0.09

Random forest ensemble Age bin width = 10 n_trees = 100, min_impurity_split =2 14.2 5.0 0.38

Age bin width = 20 11.8 5.0 0.57

Age bin width = 30 11.8 5.0 0.55

Linear regression N/A 12.1 10.0 0.73

Elastic net regression Alpha = 0.1
L1/L2 ratio = 0.0

12.0 11.0 0.73

Support vector regression Kernel = second order polynomial
C = 10, epsilon = 0.05
gamma = 0.0002

11.9 10.2 0.72

E-MTAB-3037 (22 individuals)

LDA ensemble Age bin width = 20 18.1 14.5 0.20

Gaussian naive Bayes ensemble Age bin width = 20, uninformative prior 36.4 39.5 − 1.47

k-nearest neighbors ensemble Age bin width = 20, Euclidean distance metric k = 5 34.9 36 − 1.25

Random forest ensemble Age bin width = 20, n_trees = 100, min_impurity_split =2 31.9 28 − 0.82

Linear regression N/A 23.5 18.8 0.04

Elastic net regression Alpha = 1.0
L1/L2 ratio = 0.6

20.0 18.8 0.36

Support vector regression Kernel = second order polynomial
C = 1, epsilon = 0.05
gamma = 0.0002

19.7 15.4 0.31
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5.5 ± 2.4 years (“Methods” section, Additional file 1:
Table S3). We then compared the predicted ages for the
progeria patients versus age-matched controls (i.e., each
healthy person < 10 years old in our dataset, n = 12,
mean age 5.0 ± 2.8 years) using all the algorithms previ-
ously described. Specifically, we trained each algorithm
on all healthy samples in our dataset and then tested it
on the progeria patients. The age predictions for
age-matched controls were taken from the leave-one-out
cross-validation of all 133 healthy individuals.
Our ensemble of LDA classifiers consistently predicts

progeria patients as older than age-matched controls, as
expected, whereas, none of the previously proposed
methods predicted accelerated aging in progeria patients
(Fig. 1C). To gauge significance, we performed Student’s
t tests comparing the predicted age of HGPS patients vs.
age-matched controls for each method listed in Table 1.
LDA ensembles had a difference between group means
that ranged from 9 to 10 years (progeria older), depend-
ing on age bin size. p values were highly significant, ran-
ging from 1e−4 to 1e−5, indicating that HGPS patients
were predicted significantly older than age-matched con-
trols. Random forest and naive Bayes ensembles of vari-
ous age bin sizes had a higher mean difference between
groups (15 to 24 years, progeria older) but had lower p
values ranging from 1e−3 to 1e−2. The other ensembles
and all regression methods had only a small, insignifi-
cant difference between group means, often with con-
trols older than patients, and p values around 1e−1.
Thus, only the LDA ensemble method predicts HGPS
patients as significantly older than age-matched controls
after Bonferroni correction, suggesting that this tech-
nique is a better gauge of biological age compared to
other methods.

Discussion
We developed an ensemble machine learning method
that combines classification into age ranges with
voting-based regression across classifiers. Our method
predicts age from gene expression data in cultured hu-
man fibroblasts more accurately than regression algo-
rithms, such as ElasticNet, which have been previously
used to predict age from transcriptomic, epigenetic, and
other kinds of biomarkers [1–6]. When applied to our
133 sample dataset, the ensemble method produced a
4-year median error and a 7.7-year mean absolute error
during leave-one-out cross-validation, which is compar-
able to the 7.8-year mean error produced from tran-
scriptomic data in the blood [3]. Our results are not far
off the performance of Horvath’s [1] DNA methylation
clock (3.9-year median absolute error from 7800 sam-
ples) or Putin’s [17] deep learning method using blood
cytology and chemistry (5.5-year mean absolute error
from 56,000 samples), but uses one to two orders of

magnitude fewer samples. This level of prediction per-
formance using few samples is encouraging, yet the
strength of the DNA methylation clock is the large num-
bers of studies and samples that have supported its use
as an age predictor. While the learning curve (Fig. 1B)
suggests performance of our method will increase with
additional samples, further work is required to test this.
Furthermore, the ensemble method predicted HGPS pa-
tients as significantly older than age-matched controls,
suggesting that the predictions made may reflect bio-
logical age rather than chronological age. In contrast,
the regression algorithms did not make this prediction.
Why is the ensemble method so effective at predicting

age from gene expression in fibroblasts? A necessary and
sufficient condition for an ensemble to be more accurate
than any of its individual classifiers is that those classi-
fiers are accurate and diverse [18]. An accurate classifier
has a lower error rate than uniform random guessing,
and diverse classifiers make different errors when gener-
alizing to new data. One taxonomy of ensemble learning
[19] suggests that there are different ways to create clas-
sifier diversity, including manipulating the training ex-
amples (e.g., bootstrap aggregation) and the input
features (e.g., sub-setting genes) or by injecting random-
ness (e.g., through random number generation for
non-deterministic algorithms). Staggered age bins per-
form sample manipulation by grouping together differ-
ent sets of subjects as belonging to the same age class
for different classifiers of the ensemble. It is possible that
this ensemble method with staggered discretizations
could be generalized to other problems that involve pre-
diction of smooth values within finite bounds.
The ensemble with staggered age bins can be used

with any kind of classification algorithm. LDA might be
a particularly good choice for the ensemble because
groups of genes involved in the same biological process
are believed to co-vary in their expression. The LDA al-
gorithm can exploit covariance structure to aid in classi-
fication, while its close relative naive Bayes assumes
independence of the variables. Indeed, LDA had a mean
error less than half that of naive Bayes, which might re-
flect the interdependent nature of gene expression.
While it is known that the transcriptional output of indi-
vidual genes can change during aging [20], it is not yet
clear if covariance patterns exist in gene expression pro-
grams over human lifespan [21]. Future work with our
method may add to our understanding of how gene net-
works vary with age.
The ensemble method has some limitations. First, the

discretization of age produces clear edge effects in pre-
dictions at the youngest and oldest ends of the age
spectrum, where there is systematic over- and underpre-
diction. In contrast, regression-based techniques system-
atically overpredict both young and old people (c.f.,
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Fig. 1A). Including more samples in these age ranges
may help overcome this problem. Second, it may be dif-
ficult to interpret the relationship between changes in
gene expression and biological aging, as predicted by the
ensemble method. Understanding mechanisms of aging
remains an important challenge for biomedical research
and our approach provides a tool to study aging in
humans. Third, the covariance estimation process
employed during LDA has some drawbacks with data-
sets like ours. For example, it is well-known that the
sample covariance matrix may not be well-conditioned
or a good estimate with large numbers of variables and
small numbers of samples; thus, we used Ledoit and
Wolf ’s technique [22] to address this problem. Because
LDA involves estimating covariance matrices and per-
forming an eigenvalue decomposition, LDA on large
numbers of variables is computationally costly. Other
classifier algorithms may be employed within our gen-
eral ensemble framework to address some of these
problems.
We noticed that the ensemble method consistently

predicted some individuals as relatively older or younger
than their chronological age across many bootstrap
re-samplings and by almost all of the individual classi-
fiers within the ensemble (data not shown). It is unclear
if these individuals were incorrectly predicted due to
poor performance of the classifier, or because these indi-
viduals had a markedly different biological age compared
to their chronological age. Future studies should attempt
to tease apart these differences by collecting additional
health-related markers.

Conclusions
Our dataset of fibroblast gene expression is unique in its
broad coverage of healthy individuals whose ages span
from 1 to 94 years. Remarkably, skin fibroblast cells that
have been cultured ex vivo retained signatures that
allowed us to accurately predict an individual’s age. We
developed an ensemble machine learning method that
predicted age to a median error of 4 years, outperform-
ing previous methods used to predict age from genomic
biomarkers. Our results suggest that skin fibroblast tran-
scriptome data, coupled with machine learning tech-
niques, can be a useful tool for predicting biological age
in humans. Applying this approach in a longitudinal
study raises the possibility of developing a monitoring
and prognostic tool for aging and related diseases.

Methods
Cell culture
Human dermal fibroblasts documented as “apparently
healthy individuals” deposited from the National Institute
of Aging or the NIGMS Human Genetic Cell Repository
were obtained or purchased from the Coriell Institute Cell

Repository (Camden, NJ, USA). The cells were cultured in
high glucose (4.5mg/ml) DMEM (Thermo Fisher Scien-
tific Gibco) supplemented with 15% (vol/vol) fetal bovine
serum (Thermo Fisher Scientific Gibco), 1X glutamax
(Gibco), 1X non-essential amino acids (Thermo Fisher
Scientific Gibco), and 1% (vol/vol) penicillin-streptomycin
(Thermo Fisher Scientific Gibco). HGPS patient fibro-
blasts were obtained from the Progeria Research Founda-
tion and were cultured in high glucose (4.5mg/ml)
DMEM (Thermo Fisher Scientific Gibco) supplemented
with 20% (vol/vol) fetal bovine medium and 1% (vol/vol)
penicillin-strepomycin. All fibroblasts were cultured in
DMEM unless specified and were maintained at 37 °C in a
humidified incubator with 3% O2 and 7.5% CO2. Cells
were passaged every 2 to 5 days at 85% confluence.

RNA sequencing
Total RNA was extracted using 1 ml of TriZol reagent
(Thermo Fisher Scientific Invitrogen) directly from the
six-well plates or trypsinized and pelleted from 100-mm
dishes. RNA was purified with RNeasy Mini kits with 30
min of DNase I treatment to remove genomic DNA in
accordance to the manufacturer’s instructions (Qiagen).
mRNA sequence libraries were prepared using the
Illumina TruSeq Stranded mRNA kit with 150 ng to 1μg
of total RNA. Reads were aligned to the human genome
(hg19) using STAR (version 2.5.1.b) [23]. Only reads that
aligned uniquely to a single genomic location were used
for downstream analysis (MAPQ > 10). Gene expression
(FPKM) values were calculated for annotated RefSeq
genes using HOMER (version 4.9.1) by counting reads
found overlapping exons [24]. As most genes typically
express just one dominant isoform, the top expressed
isoform was used as proxy for gene expression, resulting
in 27,142 unique genes. While isoform-level quantifica-
tion of expression may help better stratify age, our data
is not able to address this question, as it would require
deeper sequencing, paired-end library preparation, and/
or long-read sequencing.

Model fitting and evaluation
Age prediction models were fit to the FPKM data for all
subjects using leave-one-out cross-validation. Model
performance is reported on the average error made on
the held-out sample for each validation fold.
For each cross-validation fold, a different set of genes

were selected to train the model according to a fixed
rule. To be included in building the model, a gene must
have at least a fivefold difference in expression levels be-
tween any two samples in the training set, and at least
one sample in the training set had to have an expression
level > 5 FPKM for that gene. Averaged over the 133
folds of leave-one-out cross-validation, this resulted in
4852 genes used to train the model, with a standard
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deviation of 17, a minimum of 4755 genes, and a max-
imum of 4861 genes. Various other methods for gene
sub-setting were implemented with little change in the
age prediction results. For example, using stronger inclu-
sion criteria (tenfold change, max FPKM > 5) tends to
produce similar results in regression models, while using
much weaker criteria (twofold change, max FPKM > 1)
produces approximately 20–40% worse mean absolute
error, as the number of genes included in the model
more than doubles. After sub-setting, selected gene
FPKM values were then log transformed before further
use. Note that gene sub-setting is different across folds
of the cross-validation to prevent overfitting, but since
the same folds will be used for training each model, gene
sub-setting is identical across models.
Calculation of learning curves (i.e., how training set size

effects prediction accuracy) was done by creating multiple
bootstrap samples of the data for each training set size
under investigation using 5 × 10-fold cross-validation.
Age prediction models were fit using scikit-learn

v.0.19 [25] in Jupyter notebooks v.5.0.0 [26] running py-
thon v.2.7.9. Linear regression models were fit using or-
dinary least squares. Elastic net models were fit using
coordinate descent; regularization ratio and proportion
(L1/L2 ratio and alpha) were selected using a parameter
grid search with 2 × 10-fold cross-validation on the data-
set. Support vector regression models were fit using
libsvm, for both polynomial kernels up to degree four
and radial basis kernels. Parameters for kernel, degree,
C, gamma, and epsilon were selected by 2 × 10-fold
cross-validation grid search. For the ensemble of classi-
fier method, parameter values (which included any
classifier-specific parameters, as well as the ensemble’s
age bin size parameter) were selected using a parameter
grid search with 2 × 10-fold cross-validation. Linear dis-
criminant analysis was performed using the eigenvalue
decomposition solver and Ledoit-Wolf shrinkage of the
covariance matrix [22]. Naive Bayes, k-nearest neigh-
bors, and random forest algorithms were implemented
with their default settings in scikit-learn. In all cases,
after grid search was used to select the best model param-
eters, model performance was evaluated separately using
leave-one-out cross-validation to generate the results in
Fig. 1 and Table 1. As a further check against overfitting,
we performed 10× random shuffles of 50%-50%
training-test split (i.e., twofold cross-validation). The re-
sults, shown in Additional file 1: Figure S2, show that the
ensemble LDA method continues to outperform the other
methods on our dataset. For a detailed mathematical
treatment of the classification and regression algorithms
used here, see [27].
We downloaded and aligned fastq files using the same

methods described in the RNA sequence section above to
produce FPKM for E-MTAB-3037 [13] (22 people, 0–89

years old). We then used the same model fitting proce-
dures described above for our data. The ages of the sam-
ples in E-MTAB-3037 could be predicted by various
methods, with the ensemble LDA method having the low-
est mean/median absolute errors (Table 1).
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