
 

Density Estimation on Small Data Sets
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How might a smooth probability distribution be estimated with accurately quantified uncertainty from a
limited amount of sampled data? Here we describe a field-theoretic approach that addresses this problem
remarkably well in one dimension, providing an exact nonparametric Bayesian posterior without relying
on tunable parameters or large-data approximations. Strong non-Gaussian constraints, which require a
nonperturbative treatment, are found to play a major role in reducing distribution uncertainty. A software
implementation of this method is provided.
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The need to estimate smooth probability distributions
from a limited number of samples is ubiquitous in data
analysis [1]. This “density estimation” problem also
presents a fundamental conceptual challenge in statistical
learning, important aspects of which remain unresolved.
These outstanding problems are especially acute in the
context of small data sets, where standard large-data set
approximations do not apply. Here we investigate the
potential for Bayesian field theory, an area of statistical
learning based on field-theoretic methods in physics [2–5],
to estimate probability densities in this small-data regime.
Density estimation requires answering two distinct ques-

tions. First, what is the best estimate for the underlying
probability distribution? Second, what do other plausible
distributions look like? Ideally, one would like to answer
these questions by first considering all possible distributions
(regardless of mathematical form), then identifying those
that fit the data while satisfying a transparent notion of
smoothness. Such an approach should not require one to
manually identify values for critical parameters, specify
boundary conditions, or make invalid mathematical approx-
imations in the small-data regime. However, the most
common density estimation approaches, including kernel
density estimation (KDE) [1] and Dirichlet process mixture
modeling (DPMM) [6,7], do not satisfy these requirements.
Building on Ref. [2], previous work has described a

Bayesian field theory approach called density estimation
using field theory (DEFT) [8,9] for addressing the density
estimation problem in low dimensions. DEFT satisfies all
of the above criteria except for the last one: In Refs. [8,9],
an appeal to the large-data regime was used to justify a

Laplace approximation (i.e., a saddle-point approximation)
of the Bayesian posterior. This approximation facilitated
the sampling of an ensemble of plausible densities, as well
as the identification of an optimal smoothness length scale.
Independent but closely related work [10] has also relied
heavily on this approximation.
Here we investigate the performance of DEFT in the

small-data regime and find that the Laplace approximation
advocated in prior work can be catastrophic. This is
because non-Gaussian features of the DEFT posterior are
critical for suppressing “wisps”—large positive fluctua-
tions that otherwise occur in posterior-sampled densities.
We further find that these non-Gaussian effects cannot be
addressed perturbatively using Feynman diagrams, as has
been suggested in other Bayesian field theory contexts
[4,5]. These results are not specific to DEFT but rather
reflect the fundamentally nonperturbative nature of the
density estimation problem.
Happily, we find that importance resampling [7] can

rapidly and effectively correct for the Laplace approxima-
tion. The resulting DEFT algorithm, which we have made
available in robust and easy-to-use software, thus appears
to satisfy all of the above requirements for an ideal density
estimation method in one dimension. Tests of DEFT on
simulated data show favorable performance relative to
KDE and DPMM. We also illustrate the utility of DEFT
on real data from the Large Hadron Collider [11] and from
the World Health Organization (WHO) [12].
We first recap the DEFT approach to density estimation

[8,9]. Consider N data points fxigNi¼1 drawn from a smooth
one-dimensional probability distribution QtrueðxÞ that is
confined to an x interval of length L. From these data, we
wish to obtain a best estimate Q� of Qtrue, as well as an
ensemble of plausible distributions with which to quantify
the uncertainty in this estimate.
DEFT reparametrizes each candidate distribution Q in

terms of a field ϕ via
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QðxÞ ¼ e−ϕðxÞR
dx0e−ϕðx0Þ

: ð1Þ

After adopting a Bayesian prior that constrains the α-order
x derivative of ϕ (denoted by ∂αϕ in what follows), and
accounting for the likelihood of the data given ϕ, one
obtains a posterior distribution on ϕ. We represent this
posterior as pðQjdata;lÞ ∝ expð−Sl½ϕ�Þ where

Sl½ϕ� ¼
Z

dx
L

�
l2α

2
ð∂αϕÞ2 þ NRLϕþ Ne−ϕ

�
ð2Þ

is the “posterior action” described in Ref. [9]. In Eq. (2), l is
a smoothness length scale that has yet to be determined, and
RðxÞ ¼ ð1=NÞPN

i¼1 δðx − xiÞ is a histogram (of bin width
zero) that summarizes the data. See Supplemental Material
Section 1 (SM.1) [13] for details. The behavior of Q under
this action Sl½ϕ� is the primary focus of the present Letter.
Sl½ϕ� is minimized at the maximum a posteriori (MAP)

field ϕl. The MAP field ϕl is unique even in the absence of
boundary conditions; see SM.2 [13] for details. Although
ϕl cannot be solved analytically, it is readily computed as
the solution to a convex optimization problem after dis-
cretization of the x domain at G equally-spaced grid points.
In this discrete representation, R becomes a histogram
with bin width h ¼ L=G. As long as h ≪ l, the choice
of G will not greatly affect ϕl. The optimal length scale
l� is identified by maximizing the Bayesian evidence,
pðdatajlÞ; see SM.3 [13] for details.Q� ¼ Ql� is then used
as our best density estimate. Figures 1(a)–1(c) illustrate this
procedure on simulated data.
To characterize the uncertainty in the DEFT estimate

Q�, we sample the Bayesian posterior pðQjdataÞ ¼R
dlpðljdataÞpðQjdata;lÞ. Each sample is generated by

first drawing l from pðljdataÞ, then drawing Q from
pðQjdata;lÞ. Previous work [8] has suggested that this
sampling task be performed using the Laplace approxima-
tion, i.e., approximating pðQjdata;lÞ with a Gaussian
distribution that has the same mean and Hessian. The
corresponding action, SLapl ½ϕ�, is thus quadratic in δϕ ¼
ϕ − ϕl. This Laplace approximation has the advantage that
posterior samples Q can be rapidly and independently
generated [8].
Figure 1(d) shows multiple Qs sampled from the Laplace

posterior pLapðQjdataÞ ¼ R
dlpðljdataÞpLapðQjdata;lÞ.

Clearly something is very wrong. Although many of these
Qs appear reasonable, others exhibit wisps that have sub-
stantial probability mass far removed from the data.
We hypothesized that wisps are an artifact of the Laplace

approximation. To correct for potential inaccuracies of this
approximation, we adopted an importance resampling
approach [7]. For each sampled ϕ, we computed a weight

wl½ϕ� ¼ exp ðSLapl ½ϕ� − Sl½ϕ�Þ: ð3Þ

We then resampled the Laplace ensemble with replacement,
selecting each ϕ (and thus Q) with a probability propor-
tional to wl½ϕ�. A mixture of such resampled ensembles
across length scales l was then used to generate an
ensemble reflecting pðQjdataÞ; see SM.4 [13] for details.
Figure 1(e) shows 100 distributions Q from this resampled
posterior. Wisps no longer appear.
Eliminating wisps is especially important when estimat-

ing values for summary statistics, such as distribution
entropy. In entropy estimation, the goal is to discern a
value for the quantity Htrue ¼ H½Qtrue� where H½Q� ¼
−
R
dxQðxÞ log2QðxÞ. Using the DEFT posterior ensem-

ble, we can estimate Htrue as Ĥ � ˆδH, where Ĥ ¼ hHi and
ˆδH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH2i − hHi2

p
, with h·i denoting a posterior aver-

age. Previous work expressed hope that the ensemble
provided by the Laplace approximation might serve this

(a)

(b)

(c)

(d)

(e)

FIG. 1. Density estimation using field theory. (a) A Gaussian
mixture distribution Qtrue ¼ 2

3
N ð−2; 1Þ þ 1

3
N ð2; 1Þ within the x

interval ð−15; 15Þ. (b) A histogram R of N ¼ 30 data points
sampled from Qtrue and discretized to G ¼ 100 grid points.
(c) The corresponding estimate Q� computed by DEFT using
α ¼ 3 and the same grid as in (b). (d) One hundred distributions
sampled from the Laplace-approximated posterior pLapðQjdataÞ,
which accounts for uncertainty in l as well as in Q. (e) One
hundred distributions generated using importance resampling of
the Laplace ensemble. The differential entropies of the illustrated
distributions are provided.
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purpose [8]. But in this case, we see that Ĥ is far less
accurate than the point estimates H½R� or H½Q��, and ˆδH is
enormous [Fig. 1(d)]. Importance resampling fixes both
problems: The resulting Ĥ is closer to Htrue than either
point estimate, and ˆδH is remarkably small [Fig. 1(e)].
We now turn to the problem of understanding how wisps

arise. To this end, we consider the variation in the action
upon ϕl → ϕl þ δϕ. One finds that

δSl½ϕl þ δϕ� ¼
Z

dx
L

l2α

2
ð∂αδϕÞ2 þ

Z
dx
L

VðδϕÞ; ð4Þ

where

VðδϕÞ ¼ NLQl½e−δϕ − 1þ δϕ�: ð5Þ

The first (kinetic) term on the right-hand side of Eq. (4)
imposes a smoothness constraint on δϕ, while the second
(potential) term keeps δϕ confined to a potential well
consistent with the data. See SM.5 [13] for details. Note
that V is convex, non-negative, and vanishes when δϕ ¼ 0.
By analogy to equipartition, we define neff , the effective
number of degrees of freedom constrained by the data, as
twice the value of the second term in Eq. (4) averaged over
the posterior ensemble. Typical fluctuations δϕ will there-
fore exhibit VðδϕÞ ∼ neff=2.
We now separately consider the “data-rich” regime of

the x domain, which we define by QlðxÞ ≫ neff=2NL,
and the “data-poor” regime corresponding to QlðxÞ ≪
neff=2NL. In the data-rich regime, fluctuations are small
enough that V adheres well to its Laplace approximation,
V ≈ NLQlδϕ

2=2. Under this nearly symmetric potential,
both positive fluctuations δϕþ and negative fluctuations
δϕ− are constrained by

jδϕ�j ∼ δϕrich ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
neff

NLQl

r
: ð6Þ

By contrast, V is highly asymmetric in the data-poor regime
and produces highly asymmetric fluctuations. Positive
fluctuations satisfy δϕþ ∼ neff=2NLQl, whereas negative
fluctuations obey

−δϕ− ∼ δϕ−
poor ¼ log

neff
2NLQl

: ð7Þ

See SM.5 [13] for more information.
The key point is that adopting SLapl ½ϕ� in place of Sl½ϕ� is

equivalent to assuming the Laplace approximation for V
throughout the entire x domain. Because δϕrich ≫ δϕ−

poor

in data-poor regions, the Laplace approximation greatly
overestimates the size of downward fluctuations in ϕ.

This results in the large upward fluctuations in Q that
we identify as wisps. We note that wisps are especially
prominent at the x-interval boundaries in Fig. 1 for two
reasons: (i) Ql is especially small here, making these
regions very data poor, and (ii) the kinetic term in Eq. (4),
which is all that suppresses wisps in data-poor regions, is
less effective at constraining δϕ because data are present on
only one side.
Feynman diagrams provide a general means of cor-

recting for inaccuracies in Laplace approximations
[14] and have been advocated in the context of some
Bayesian field theory regression problems [4,5]. For
density estimation, however, Feynman diagrams are inef-
fective if any region of the x interval is data poor. This is
due to the action Sl½ϕ� being strongly coupled. For
example, in the Bayesian evidence computations used to
determine l�, DEFT estimates the action Zl ¼ R

Dϕe−Sl½ϕ�

using the Laplace approximation ZLap
l ¼ R

Dϕe−S
Lap
l ½ϕ�.

See SM.3 [13] for details. At first, one might think it
possible to correct for potential inaccuracies in this
approximation using a series of vacuum diagrams (see
SM.6 [13]), i.e.,

ð8Þ

However, as described in SM.8 [13], the number of
diagrams needed to obtain accurate results is prohibitive
when data-poor regions of the x interval are present.
Fortunately, one can instead compute nonperturbative
corrections to this log ratio using the importance resam-
pling weights in Eq. (3) via

log
Zl

ZLap
l

¼ log hwliLapjl: ð9Þ

See SM.7 [13] for details.
These results reflect a fundamental yet underappreciated

aspect of density estimation: Unless data are observed
throughout the x domain, the uncertainties in estimated
probability densities require a nonperturbative treatment.
Specifically, nonperturbative methods such as the Laplace
approximation or Feynman diagrams can only be expected
to work if QtrueðxÞ ≳ 1=NL everywhere within the x
domain. Very often, however, density estimation is applied
to data like that in Fig. 1, which are localized far away from
one or both x-interval boundaries. We argue that the
analysis of such data will quite generally require a non-
perturbative treatment.
To benchmark the performance of DEFT, we quantified

its ability to estimate probability densities of known func-
tional form. Specifically, we simulated data sets of varying
size N from a variety of Qtrue distributions, then asked two
questions. First, how accurately does Q� estimate Qtrue?
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Second, how typical is Qtrue among the distributions in the
Bayesian posterior? In both contexts, DEFTwas compared
to KDE and DPMM. See SM.9 [13] for details on how
KDE and DPMM were implemented. Figure 2 shows the
results of these performance tests for two different choices
of Qtrue. Figure S3 in Supplemental Material [13] provides
analogous results for other Qtrue distributions.
To answer the first question, we compared the Kullback-

Leibler divergence DKLðQtruekQ�Þ achieved by each esti-
mator on each data set. Note that smaller values for these
divergences indicate better method accuracy. As illustrated
in Fig. 2(b), DEFT performed comparably to KDE and
DPMM at N ¼ 10 and somewhat better at N ¼ 100. DEFT
appears to have a particular advantage over both KDE and
DPMM on Qtrue distributions that bump up against one or
both x-interval boundaries. Also unsurprising is that DEFT
performs notably better with α ¼ 2, 3, and 4 than with
α ¼ 1, since α ¼ 1 yields nonsmooth Q� distributions with
cusps at each data point [8,15].
To answer the second question, we computed where

DKLðQtruekQ�Þ falls within the distribution of divergences

DKLðQkQ�Þ observed for Q ∼ pðQjdataÞ. This location is
naturally quantified by a p value corresponding to the null
hypothesis that Qtrue ∼ pðQjdataÞ. If Qtrue is typical of
plausible Qs, these p values should be uniformly distrib-
uted between 0 and 1. Alternatively, p values clustered
close to 0 indicate that the posterior ensemble pðQjdataÞ
overestimates how muchQtrue diverges fromQ�, whereas p
values clustered close to 1 indicate that pðQjdataÞ under-
estimates this uncertainty. Figure 2(c) shows our results for
the two choices of Qtrue in Fig. 2(a); the results for other
choices ofQtrue are shown in Fig. S3 [13]. In general, the p
values for DEFT (with α ¼ 2, 3, and 4) were distributed
with remarkable uniformity. DEFT with α ¼ 1 tended to
overestimate uncertainties, whereas KDE and DPMM
tended to underestimate uncertainties.
Finally, we illustrate the capabilities of DEFT using

data reported in the initial observation of the Higgs boson
[11] (see Fig. S4 [13] for an analysis of data from the
WHO). Figure 3(a), which is a reconstruction of Fig. 4 of

(a)

(b)

(c)

FIG. 2. Performance of DEFT. (a) DEFT, KDE, and DPMM
were used to analyze data from two different Qtrue distributions:
the Gaussian mixture from Fig. 1(a) (left) and a Pareto distri-
bution, QtrueðxÞ ¼ 3x−4, confined to the x interval (1,4) (right).
(b) One hundred data sets of size N ¼ 10 and one hundred data
sets of size N ¼ 100 were generated for each Qtrue. For each data
set, Q� was computed by DEFT (using G ¼ 100 and α ¼ 1, 2, 3,
or 4), by KDE, or by DPMM. Violin plots (with median
indicated) show the resulting Kullback-Leibler divergences
DKLðQtruekQ�Þ. (c) p values quantifying, for each simulated
data set, the location of DKLðQtruekQ�Þ within the distribution of
DKLðQkQ�Þ values observed for Q ∼ pðQjdataÞ.

(a)

(b)

FIG. 3. DEFTapplied to Higgs boson data. (a) A reconstruction
of Fig. 4 from Ref. [11]. Dots (black) indicate the invariant
masses of four-lepton decay events histogrammed across G ¼ 37
bins of width 3 GeV each. Also shown are the number of events
expected, based on Standard Model simulations, from either
background decay processes (blue) or from the decay of a Higgs
boson with mass of 125 GeV (red). (b) The optimal density
estimate Q� (black), along with 100 posterior samples Q ∼
pðQjdataÞ (olive) computed by DEFT using the histogram data
in panel (a).
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Ref. [11], shows a histogram of the invariant masses of
N ¼ 58 four-lepton events observed by the CMS
Collaboration at the Large Hadron Collider. Such events
are generated by decays of the Higgs boson via
H → ZZ → 4l, but they also arise from a variety of
background decay processes. One of the challenges faced
by the CMS Collaboration was determining whether these
data exhibit a localized excess of events representing a
possible Higgs resonance. Figure 3(b) shows DEFTapplied
to these data using default parameters. Despite Higgs
decays representing only ∼10% of the observed events,
DEFT detects a prominent local maximum near the Higgs
resonance at mH ¼ 125 GeV. The confidence in this
maximum can be quantified by sampling Q ∼ pðQjdataÞ:
81% of sampled Qs have exactly one local maximum
between 110 GeVand 140 GeV (7% have no local maxima
and 12% have multiple local maxima), and these maxima
occurred at 127.1� 3.7 GeV.
Here we have shown that DEFT can effectively address

density estimation needs on small data sets in one dimen-
sion. DEFT provides point estimates comparable to KDE
and DPMM, but it does not suffer from the multiple
drawbacks of these other methods. In particular, the only
key parameter that the user must specify is a small positive
integer α that defines the qualitative meaning of smooth-
ness and which governs how DEFT relates to maximum
entropy estimation (see Ref. [9]). In our experience,
however, using α ¼ 3 seems to work well nearly all of
the time. Other parameters, such as the number of grid
points G, reflect computational practicalities. These param-
eters can be chosen automatically and have little effect on
the results as long as reasonable values are used.
DEFT thus addresses a major outstanding need, not just

in statistical learning theory but also in day-to-day data
analysis. To this end, we have developed an open source
PYTHON package called SUFTWARE. SUFTWARE allows users
to apply DEFT in one dimension to their own data, and in
the future it will include additional field-theory-based
statistical methods. This implementation is sufficiently fast
for routine use: The computations for Fig. 1 take about
0.25 seconds on a standard laptop computer (see SM.10
[13] for a discussion on computational complexity).
SUFTWARE has minimal dependencies, is compatible with
both PYTHON 2 and PYTHON 3, and is readily installed using

the PIP package manager. SUFTWARE homepage [16] for
installation and usage instructions.
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