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signal strength analysis revealed that 
both processes interact with one another. 
In particular, neural activity within the 
paramedial frontal cortex was increased 
for internal as compared to external timing, 
but only when action selection was speci-
fied externally. Combined, these observa-
tions challenge the idea of a unitary control 
system and  underscore the existence of 
distinct, albeit interdependent, decisional 
processes that together shape voluntary 
action (Brass and Haggard, 2008). Of note 
is that this dependency is in accordance 
with the argument that aspects from the 
component processes have to be considered 
in order for an action and its consequences 
to be evaluated.

By introducing an innovative experi-
mental paradigm, the work of Krieghoff 
et al. (2009) has provided a significant 
step into the understanding of intentional 
control by specifying dissociable brain 
regions that deal with component func-
tions. Further research into the dynamics 
of voluntary action is necessary in order to 
detail the functional architecture of inten-
tional behavior and its neural correlates. 

Future studies may elaborate on the inter-
regional influences and coordination of 
the brain areas that make up the network 
activity, and the means by which context-
related factors modify intentional process-
ing within the circuitry.
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Sensory systems are confronted with a con-
tinuous stream of inputs, but only a small 
fraction of these sensory stimuli reaches 
our awareness, is consciously  perceived 
and can be remembered. Perception is 
never driven solely by the bottom-up 
stimulation, but crucially depends on the 

top-down modulations. Top-down signals 
convey behavioral context, such as atten-
tion, expectation and perceptual task, and 
are reflected in the context-specific response 
modulation in single neurons (Miller and 
Cohen, 2001; Corbetta and Shulman, 2002). 
Top-down interactions can be of many dif-
ferent kinds: augmenting or multiplying 
responses, sharpening tuning curves, con-
trolling  contextual influences, or acting as 
a modulator of plasticity (Desimone and 
Duncan, 1995; Maunsell and Treue, 2006). 
Although a lot of empirical knowledge has 
been accumulated on how top-down inter-
actions modulate neural responses, only a 
few theoretical attempts have been made so 

far to explain the underlying  biophysical 
mechanisms and to bridge the gap between 
the behavioral and single-cell data (Buia 
and Tiesinga, 2006; Deco and Rolls, 2006; 
Ardid et al., 2007).

The recent study by Zylberberg 
et al. (2009) published in Frontiers in 
Computational Neuroscience aims to 
uncover these biophysical mechanisms in 
a particular setting of top-down memory 
retrieval. The authors try to answer several 
general and long-standing questions: How 
do the bottom-up and top-down signals 
interact to produce a perception? What are 
the neural mechanisms of effortless (iconic) 
vs voluntary (working) memory? 
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How do multiple sensory stimuli 
compete for  representation in the work-
ing memory? These questions have been 
addressed in behavioral experiments, 
which established that the information 
is temporally stored in a sensory buffer 
and decays exponentially (Sperling, 1960; 
Jolicoeur, 1999; Graziano and Sigman, 
2008). In parallel, neurophysiological stud-
ies revealed a two-wave activation pattern 
of single neurons in visual cortical areas: 
The first wave of activity is largely driven by 
stimulus properties, and the second wave 

is determined by behavioral relevance and 
contextual aspects (Lamme and Roelfsema, 
2000). The work by Zylberberg et al. (2009) 
attempts to reconcile these experimental 
observations within a computational cir-
cuit model, and to provide a dynamical 
mechanism for exponential sensory decay 
and memory retrieval.

The authors propose an interesting 
two-stage mechanism (Figures 1A,B), 
whereby sensory stimulation biases the 
initial state of the network (load), before a 

non- specific top-down modulation turns 
the network into the multistable attrac-
tor regime (retrieval). During the time-gap 
(buffer) between the load and retrieval, the 
network passively moves toward a single stable 
fixed point, representing a memory decay, i.e., 
forgetting of the stimulation bias. Joint influ-
ences from the stimulation bias, exponential 
memory decay and noise determine the final 
state of the network during the retrieval phase, 
and so the success of memory retrieval.

Figure 1 | Phase-space diagrams of the working memory mechanisms. The 
variables S1 and S2 (Si ∈ [0,1]) describe the gating of NMDA receptors, and reflect 
the spiking activity of two stimulus-selective populations. The nullclines (curves 
where dSi/dt = 0) are drawn, and their crossing points are the fixed points of the 
system. (A) Memory decay and retrieval (adapted from Zylberberg et al., 2009). 
First, the stimulation drives the network into a high-activity state (left). After the 
stimulation terminates, the network moves toward its single stable fixed point, 
representing memory decay (middle). Finally, the top-down signal switches the 

network into a multistable regime, mimicking memory retrieval (right). (B)  
Time course of the input currents I1 and I2 to the two populations. Colors highlight 
the time periods corresponding to the diagrams in panels (A): biased stimulation 
(green), no stimulation (red), non-specific top-down input (blue). (C) Decision 
making and working memory (adapted from Wong and Wang, 2006). Upon 
stimulation, the network moves from a low-activity state toward one of the two 
high-activity attractors (left). When the stimulation terminates, the network remains 
in its most recent attractor state, replicating the memory of the decision (right).  
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This mechanism of broadcasting sen-
sory stimuli to the working memory is 
implemented using a circuit model previ-
ously developed for decision making and 
working memory (Wang, 2002; Wong and 
Wang, 2006), but in a different operational 
mode (different set of parameters). The 
power of this approach is that diverse 
complex behaviors are captured within a 
single  network model, suggesting that a 
common circuitry may underly different 
cognitive  functions. The model originally 
introduced in References (Wang, 2002; 
Wong and Wang, 2006) possesses multiple 
attractor states, and stimulation induces 
a transition from one attractor state to 
another, mimicking decision formation 
and its memory (Figure 1C). In contrast, 
the model of Zylberberg et al. (2009) has 
a single (low-activity) stable state in the 
absence of external currents, which leads to 
the exponential memory decay during the 
buffering. The top-down modulation then 
switches the network to a regime with mul-
tiple (high-activity) stable states and allows 
memory retrieval (Figure 1A). The idea 
of switching between single- and multist-
able regimes by the top-down modulation 
is interesting in the light of the ongoing 
debate about the nature of cortical circuits 
underpinning working memory. While 
some models propose that persistent activ-
ity is subserved by a multistable attractor 
network (Wang, 2002), others suggest that 
it reflects slow transients in a network with 
a single stable state (Goldman, 2009). 
Dynamical switching between single- 
and multistable regimes by the top-down 
modulation may bridge these two alterna-
tive hypotheses. Moreover, recovery to the 
single stable state – when the top-down 
modulation is turned off – resolves the 
apparent problem of “switching off ” the 
persistent activity in the multistable attrac-
tor network. This important issue is, how-
ever, not fully resolved in the paper, since 
the gating top-down signals are turned on 
and off “by hand”, and no neural mecha-
nism is provided for the dynamics of top-
down modulations.

In the model of Zylberberg et al. (2009), 
both buffering and memory retrieval occur 
within the sensory areas responsive to the 
stimulus, without the need for any addi-
tional specific “buffer” area. The character-
istic time of the exponential memory decay 
appears insensitive to the stimulus ampli-

tude, but can be modulated by the amount of 
top-down projections. In the present model, 
this decay time crucially depends on the 
slow (∼100 ms) N-methyl-D- aspartic acid 
(NMDA) receptor time course, as well as on 
the amount of recurrent excitation in the 
network. Accordingly, the model predicts 
that the decay time should decrease with the 
attention deployed during the task, and that 
blocking NMDA receptors should impair 
memory retrieval. Pursuing this logic, and 
under the hypothesis that larger receptive 
fields arise from stronger local recurrent 
 excitation, the model  predicts that the 
decay time should increase as one proceeds 
along the visual hierarchy. Importantly, 
these predictions can be directly tested in 
experiments.

The model by Zylberberg et al. (2009) 
not only makes testable experimental pre-
dictions, but also opens new avenues for 
the theoretical investigation of top-down 
 interactions. First of all, as conscious 
 perception depends on both sensory 
stimulation and top-down expectations 
(Carpenter and Grossberg, 2003; Gilbert 
and Sigman, 2007), it would be interest-
ing to explore how specific top-down 
expectations (as opposed to a non-specific 
modulatory input) bias the competition 
of sensory stimuli and their represen-
tation in the working memory. In the 
same vein, it remains to be explored how 
top-down modulation would interact 
with the synaptic memory mechanism, 
whereby the recurrent excitation at the 
basis of working memory is enhanced by 
short-term plasticity (Hempel et al., 2000; 
Mongillo et al., 2008). Finally, behavioral 
data reveal mechanisms acting in parallel 
with, but going beyond, the passive decay 
of information (Jolicoeur, 1999); mecha-
nisms that are not accounted for in the 
present model. Building on the ideas of 
Zylberberg et al. (2009), it is important to 
develop a  complete model circuitry that 
would  provide a basis for a more direct 
comparison with  behavioral and neuro-
physiological data, yielding a critical test 
of the proposed mechanism. The  complete 
model would also help to identify the 
 relative contributions of local recurrent 
connections versus feedback projections 
to activity patterns in visual cortical areas, 
and in this way greatly contribute to our 
understanding of the dynamical substrates 
of cortical computations.
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