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Abstract

Cortical firing rates frequently display elaborate and heterogeneous temporal structure.

One often wishes to compute quantitative summaries of such structure—a basic example

is the frequency spectrum—and compare with model-based predictions. The advent of

large-scale population recordings affords the opportunity to do so in new ways, with the

hope of distinguishing between potential explanations for why responses vary with time.

We introduce a method that assesses a basic but previously unexplored form of popula-

tion-level structure: when data contain responses across multiple neurons, conditions, and

times, they are naturally expressed as a third-order tensor. We examined tensor structure

for multiple datasets from primary visual cortex (V1) and primary motor cortex (M1). All V1

datasets were ‘simplest’ (there were relatively few degrees of freedom) along the neuron

mode, while all M1 datasets were simplest along the condition mode. These differences

could not be inferred from surface-level response features. Formal considerations suggest

why tensor structure might differ across modes. For idealized linear models, structure is

simplest across the neuron mode when responses reflect external variables, and simplest

across the condition mode when responses reflect population dynamics. This same pattern

was present for existing models that seek to explain motor cortex responses. Critically, only

dynamical models displayed tensor structure that agreed with the empirical M1 data. These

results illustrate that tensor structure is a basic feature of the data. For M1 the tensor struc-

ture was compatible with only a subset of existing models.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005164 November 4, 2016 1 / 34

a11111

OPENACCESS

Citation: Seely JS, Kaufman MT, Ryu SI, Shenoy

KV, Cunningham JP, Churchland MM (2016)

Tensor Analysis Reveals Distinct Population

Structure that Parallels the Different Computational

Roles of Areas M1 and V1. PLoS Comput Biol 12

(11): e1005164. doi:10.1371/journal.pcbi.1005164

Editor: Peter E. Latham, University College London,

UNITED KINGDOM

Received: March 29, 2016

Accepted: September 21, 2016

Published: November 4, 2016

Copyright: © 2016 Seely et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files are

available from the Dryad database. Access

information is as follows: doi:10.5061/dryad.92h5d

http://dx.doi.org/10.5061/dryad.92h5d

Funding: This work was supported by The Searle

Scholars Program (MMC), The Sloan Foundation

(MMC, JPC), The Simons Foundation

SCGB#325171 and SCGB#325233 (MMC, JPC),

The McKnight Foundation (MMC), a Klingenstein-

Simons Fellowship Award (MMC), The Gatsby

Foundation (JPC), The Grossman Charitable Trust

(MMC, JPC), US National Institutes of Health (NIH)

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005164&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.92h5d
http://dx.doi.org/10.5061/dryad.92h5d


Author Summary

Neuroscientists commonly measure the time-varying activity of neurons in the brain.
Early studies explored how such activity directly encodes sensory stimuli. Since then neu-
ral responses have also been found to encode abstract parameters such as expected reward.
Yet not all aspects of neural activity directly encode identifiable parameters: patterns of
activity sometimes reflect the evolution of underlying internal computations, and may be
only obliquely related to specific parameters. For example, it remains debated whether cor-
tical activity during movement relates to parameters such as reach velocity, to parameters
such as muscle activity, or to underlying computations that culminate in the production of
muscle activity. To address this question we exploited an unexpected fact. When activity
directly encodes a parameter it tends to be mathematically simple in a very particularway.
When activity reflects the evolution of a computation being performed by the network, it
tends to be mathematically simple in a different way. We found that responses in a visual
area were simple in the first way, consistent with encoding of parameters. We found that
responses in a motor area were simple in the second way, consistent with participation in
the underlying computations that culminate in movement.

Introduction

Cortical neurons often display temporally complex firing rate patterns (e.g., [1,2]). Such tempo-
ral structuremay have at least two non-exclusive sources. First, temporal structuremay reflect
external variables that drive or are being encoded by the population; e.g., a time-varying stimu-
lus or a time-varyingparameter represented by the population [3,4]. Second, temporal struc-
ture may reflect internal population-level dynamics. For example, oscillatory responses are
observed in isolated spinal populations [5], and even sensory areas exhibit response transients
due to cellular and network dynamics [6]. One often wishes to disentangle the contributions of
external variables and internal dynamics. Yet without full knowledge of the relevant external
variables, response patterns can in principle originate from either source [7]. For example, a
sinusoidal response might reflect a sinusoidal external variable, oscillatory population dynam-
ics, or both.

Motor cortex (M1) presents a paradigmatic example where temporal response complexity
[1,8–10] has fed a long-standing debate [11–21]. Guided by one viewpoint, many studies have
focused on the possibility that M1 responses reflect specific external behavioral variables, and
have sought to determine their identity (reach direction, velocity, joint torques, muscle forces,
etc. [21]) and reference frame [22–28]. Guided by another viewpoint, recent studies suggest
that the temporal structure of M1 responses may largely reflect the evolution of internal popu-
lation dynamics [29–33]. This second viewpoint is embodied in recurrent network models of
pattern generation [34–36], and is broadly compatible with control-theorymodels [37–39]
where dynamics may involve both internal recurrence and feedback.

While not necessarily opposed, the first and second viewpoints often make different predic-
tions even when starting with shared assumptions. Suppose one began with the assumption
that, during reaching, motor cortex controls muscle activity more-or-less directly [14]. The
first viewpoint predicts that neural responses will be a function of (will ‘encode’) the patterns
of muscle activity. The first viewpoint does not predict that neural responses should obey
dynamics: the future neural state would not be a consistent function of the present neural state.
While muscle activity is ‘dynamic’ in the sense that it is time-varying, it is not typically true
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that the set of muscle activations obeys a single dynamical system (i.e. a fixed flow field) across
different reaches. The second viewpoint, in contrast, predicts that the motor cortex population
response should obey consistent dynamics. The second viewpoint, like the first, predicts that
muscle activity will be a function of neural responses [40,41]. Yet because that function is pre-
sumably non-invertible, neural responses will not be a function of muscle activity, in opposi-
tion to the first viewpoint.

The hypothesis that neural responses reflect external variables (e.g., muscle activity itself)
and the hypothesis that neural responses reflect internal dynamics (e.g., the dynamics that pro-
duce muscle activity) could be readily distinguishedwere it known that muscle activity was the
relevant external variable. However, that assumption is itself the subject of controversy
[8,14,15,17,27,40,42–45]. It therefore remains debated whetherM1 response structure origi-
nates from a representation of external movement variables or the unfolding of internal
dynamics. Recent experimental studies [30,46] and reviews [19,32] have advanced both
positions.

Motor cortex thus illustrates a general need: the ability to infer the predominant origin of
time-varying responses.We report here that a basic but previously unmeasured feature of neu-
ral population data is surprisingly informative to this need.We considered the population
response as a third-order tensor (a three-dimensional array) indexed by neuron, condition and
time.We were motivated by the idea that tuning for external variables constrains structure
across neurons; if there are ten relevant external variables, responses are limited to ten degrees
of freedom across neurons. We refer to this setting as ‘neuron-preferred.’ Conversely, internal
dynamics constrain structure across conditions; if a population obeys the same dynamics
across conditions, responses will have limited degrees of freedom across conditions.We refer
to this situation as ‘condition-preferred.’ Neuron-preferred or condition-preferred structure is
hidden at both the single-neuron level and in standard population-level analyses—i.e. this
structure is hidden if the data is viewed only as a matrix.

Intuitions regarding neuron-preferred versus condition-preferred structure can be gained
by considering linear models. For example, the input-driven system

xðc; tÞ ¼ Buðc; tÞ; ð1Þ

and the autonomous dynamical system

xðc; t þ 1Þ ¼ Axðc; tÞ; ð2Þ

can be viewed as two different generators of a data tensorX 2 RN�C�T , with x(c,t)2 RN the
vector of N neural responses at time t for condition c, u(c,t)2 RM the vector ofM input vari-
ables, B 2 RN×M, and A 2 RN×N. Time-varying structure of X generated by the first equation is
inherited from the time-varying structure of u(c,t), while for the second it is inherited from the
time-varying structure of At, since Eq (2) can be expressed as x(c,t) = Atx(c,0). As will be for-
malized later, neuron-preferred tensor structure follows naturally from Eq (1): each C × T
‘slice’ of the data tensorX (i.e., the data for a given neuron across all conditions and times) is a
linear combination of a bounded number of basis elements, each of size C × T. Condition-pre-
ferred structure follows naturally from Eq (2): eachN × T ‘slice’ of the data tensorX (i.e., the
data for a given condition across all neurons and times) is a linear combination of a bounded
number of basis elements, each of sizeN × T. We choose the term ‘neuron-preferred’ to
describe the case where there are fewer degrees of freedomacross neurons, and the term ‘condi-
tion-preferred’ to describe the case where there are fewer degrees of freedom across conditions.
Thus, the ‘preferred mode’ is the mode (neuron or condition) from which the data tensor can
bemost accurately reconstructed using the smallest number of basis elements.
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Our investigation of the preferred mode was guided by a three-part hypothesis. First, we
hypothesized that empirical population responses may often have a clear preferred mode. Sec-
ond, we hypothesized that the preferred mode likely differs between brain areas. To address
these hypotheses, we assessed the preferred mode for three neural datasets recorded from pri-
mary visual cortex (V1) and four neural datasets recorded fromM1. V1 datasets were strongly
neuron-preferred, whileM1 datasets were strongly condition-preferred. Third, we hypothe-
sized that the preferred modemight be informative regarding the origin of population
responses.We concentrated on models of M1, and found that existing models based on tuning
for external variables were neuron-preferred, in opposition to the M1 data. However, existing
models with strong internal dynamics were condition-preferred, in agreement with the data.
Model success or failure depended not on parameter choice or fit quality, but on model class.
We conclude that tensor structure is informative regarding the predominant origin of time-
varying activity, and can be used to test specific hypotheses. In the present case, the tensor
structure of M1 datasets is consistent with only a subset of existingmodels.

Results

Time-varying response structure

We analyzed nine physiological datasets: three recorded from V1 during presentation of visual
stimuli, four recorded fromM1 during reaching tasks, and two recorded frommuscle popula-
tions during the same reaching tasks. Each dataset employed multiple conditions: different sti-
muli/reaches. Each neuron’s response was averaged across trials within a condition and
smoothed to produce a firing rate as a function of time. Some recordings were simultaneous
and some were sequential, but in all cases the same set of conditions was employed for every
neuron. Stimuli were never tailored to individual neurons (e.g., to their preferred direction or
receptive field). This allows for analysis of the true population response, indexed by neuron,
condition, and time. For the muscle populations, electromyographic (EMG) voltages were con-
verted to a smooth function of intensity versus time via standard rectification and filtering.
Muscle populations were then analyzed in the same way as neural populations, but individual
elements were muscles rather than neurons. We analyzed ten further datasets simulated using
existingmodels of M1.

We first focus on two datasets: one from V1 (Fig 1A) and one fromM1 (Fig 1B). The V1
dataset was recorded using a 96-electrode array from an anesthetizedmonkey viewing one-sec-
ond movies of natural scenes (25 movies, 50 trials each). The M1 dataset was recorded using a
pair of implanted 96-electrode arrays, spanning the arm representation of primarymotor cor-
tex and the immediately adjacent region of dorsal premotor cortex (all results were similar if
primarymotor and premotor cortex were treated separately). Neural responses were recorded
during a delayed reach task: the monkey touched a central spot on a screen, was presented with
a target, then executed a reach following a go cue.We analyzed data for 72 conditions (Fig 1B,
insets), each involving a different reach distance and curvature (average of 28 trials per condi-
tion) [30].

Both V1 andM1 neurons displayed temporally complex response patterns (Fig 1). Each col-
ored trace plots the trial-averaged firing rate over time for one condition: a particularmovie
(Fig 1A) or reach (Fig 1B). V1 neurons exhibited multiphasic responses throughout the stimu-
lus. M1 neurons exhibited multiphasic activity over a ~700 ms period that began shortly after
the go cue. Tight standard error bars (not displayed) confirmed that temporal response struc-
ture was statistically reliable rather than the result of sampling noise. In M1 it has been debated
whether such structure primarily reflects external factors such as reach kinematics or primarily
reflects internal dynamics. Both hypotheses can claim support from surface-level features of
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the data. Responses vary strongly with reach kinematics (insets show reach trajectories color-
coded according to the response properties of the neuron in that panel) as proposed by the first
hypothesis. On the other hand, responses show some quasi-oscillatory features that could
reflect underlying dynamics. Might a comparison with V1—where responses are known to be
largely externally driven—be illuminating regarding the source of temporal response structure
in M1?

V1 and M1 responses differed in a number of straightforwardways including frequency
content and the overall response envelope. Such differences are expected given the different
pacing of the task and stimuli. We wondered whether V1 and M1 datasets might also differ in

Fig 1. Illustration of the stimuli/task and neural responses for one V1 dataset and one M1 dataset. (a)

Responses of four example neurons for a V1 dataset recorded via an implanted electrode array during

presentation of movies of natural scenes. Each colored trace plots the trial-averaged firing rate for one condition

(one of 25 movies). For visualization, traces are colored red to blue based on the firing rate early in the stimulus.

(b) Responses of four example neurons for an M1 dataset recorded via two implanted electrode arrays during a

delayed-reach task (monkey J). Example neurons were chosen to illustrate the variety of observed responses.

Each colored trace plots the trial-averaged firing rate for one condition; i.e., one of 72 straight and curved reach

trajectories. For visualization, traces are colored based on the firing rate during the delay period between target

onset and the go cue. Insets show the reach trajectories (which are the same for each neuron) using the color-

coding for that neuron. M1 responses were time-locked separately to the three key events: target onset, the go

cue, and reach onset. For presentation, the resulting average traces were spliced together to create a continuous

firing rate as a function of time. However, the analysis window included primarily movement-related activity. Gray

boxes indicate the analysis windows (for V1, T = 91 time points spanning 910 ms; for M1, T = 71 time points

spanning 710 ms). Horizontal bars: 200 ms; vertical bars: 20 spikes per second.

doi:10.1371/journal.pcbi.1005164.g001
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deeper ways that are hidden at the level of the single neuron but clear at the level of the popula-
tion. In general, a population response can differ across neurons, conditions, and time.While
structure across time can be partially appreciated via inspection of single neurons (as in Fig 1),
the joint structure across neurons and conditions is less patent. Are some datasets more con-
strained across neurons (‘neuron preferred’) and others more constrained across conditions
(‘condition preferred’)? If so, might that carry implications?

Preferred-mode analysis of V1 and M1

Neural population data is often analyzed in matrix form, allowing a number of standard analy-
ses. Such analyses include assessing covariance structure and applying principal component
analysis to extract the most prevalent response patterns [47]. One can then quantify, for a
given number of extracted response patterns, how well they reconstruct the original data. This
can provide a rough estimate of the number of degrees of freedom in the data [48].

However, when recordings span multiple neurons, conditions and times, the data are natu-
rally formulated not as a matrix but as a third-order tensor of sizeN × C × T, whereN is the num-
ber of neurons, C is the number of conditions, and T is the number of times. Each of these three
indices is referred to as a ‘mode’ [49]. One can consider anN × C × T tensor as a collectionofN
matrices, each of sizeC × T (one per neuron), or as a collection of Cmatrices, each of sizeN × T
(one per condition) (Fig 2A). One can then reconstruct the population tensor in two ways. First,
one can reconstruct the responses of each neuron as a linear combination of a small collection of

Fig 2. Schematic illustration of population tensor and results of a simplified preferred-mode analysis for

two datasets. (a) The population response can be represented as firing rate values arranged in an N × C × T

array, i.e. a third-order tensor indexed by neuron, condition, and time. That population tensor (left) can be thought

of as a collection of C × T matrices (one for each neuron, middle) or a collection of N × T matrices (one for each

condition, right). (b) The population tensor may be approximately reconstructed (via linear combinations) from a

set of ‘basis-neurons’ (C × T matrices, red) or from a set of ‘basis-conditions’ (N × T matrices, blue). Depending on

the nature of the data, the basis-neurons or the basis-conditions may provide the better reconstruction. (c)

Normalized reconstruction error of the population tensors for the V1 and M1 datasets shown in Fig 1 when

reconstructed using basis neurons (red) or basis conditions (blue). Error bars show the standard errors across

conditions (Methods). The number of basis elements (12 for V1 and 25 for M1) was the same for the neuron and

condition modes and was chosen algorithmically (Methods). Robustness of the preferred mode with respect to the

number of basis elements is shown in subsequent analyses.

doi:10.1371/journal.pcbi.1005164.g002
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‘basis-neurons,’ each of sizeC × T (Fig 2B, red matrices). Second, one can reconstruct each con-
dition as a linear combination of a small collection of ‘basis-conditions,’ each of sizeN × T (Fig
2B, blue matrices). Unlike in the matrix case, for tensors a ‘preferred mode’ can exist.

To assess the preferred mode we applied the singular value decomposition (SVD) to the
neuron and conditionmodes of the population tensor (Methods), yielding a set of basis-neu-
rons and a set of basis-conditions. Performing SVD along a mode of a tensor, X 2 RN�C�T ,
equates to performing SVD on one of the tensor’s matrix ‘unfoldings.’ We define the ‘mode-1’
and ‘mode-2’ unfolding of X as

Xð1Þ≔½Xð1Þ Xð2Þ � � � XðTÞ � 2 RN�CT ; ð3Þ

Xð2Þ≔½Xð1Þ
> Xð2Þ> � � � XðTÞ> � 2 RC�NT ;

where X(t) 2 RN×C is theN × Cmatrix slice of X at time t. Each row of X(1) corresponds to one
neuron, and each row of X(2) corresponds to one condition. The top k right singular vectors of
X(1) are of dimensionCT, thus can be reshaped to C × Tmatrices, corresponding to k basis-
neurons. Similarly, the top k right singular vectors of X(2) are of dimensionNT and can be
reshaped to N × Tmatrices, corresponding to k basis-conditions. In this way each neuron (i.e.,
each row of X(1) and the correspondingC × T slice of X ) can be approximately reconstructed
as a linear combination of k basis-neurons. Similarly, each condition (i.e., each row of X(2) and
the correspondingN × T slice of X ) can be approximately reconstructed as a linear combina-
tion of k basis-conditions.

To assess the preferred mode we reconstructed each population tensor twice: once using a
fixed number (k) of basis-neurons, and once using the same fixed number (k) of basis-condi-
tions. Reconstruction error was the normalized squared error between the reconstructed tensor
and the original data tensor. If basis-neurons provided the better reconstruction, the neuron
mode was considered preferred. If basis-conditions provided the better reconstruction, the
conditionmode was considered preferred. (We explain later the algorithm for choosing the
number of basis elements k, and explore robustness with respect to that choice).

The above procedure is related to several tensor decomposition techniques, and the pre-
ferred mode is related to the tensor’s approximate multilinear rank [49]. Here, instead of
decomposing a tensor across all modes we simply perform independentmode-1 and mode-2
decompositions and compare the quality of their corresponding reconstructions.

For the V1 dataset illustrated in Fig 1 the neuron mode was preferred; it provided the least
reconstruction error (Fig 2C, left). In contrast, for the M1 dataset illustrated in Fig 1 the condi-
tion mode was preferred (Fig 2C, right). This analysis considered all time points in the shaded
regions of Fig 1. Keeping in mind that reconstruction along either mode is expected to perform
reasonably well (data points are rarely uncorrelated along any mode) the disparity betweenV1
and M1 is large: for V1 the basis-neuron reconstruction performed 33% better than the basis-
condition reconstruction,while for M1 it performed 68% worse.

The preferred mode emerges as more times are considered

A preferred mode exists because the population tensor spans multiple neurons, conditions, and
times. Consider the population response at a single time, yielding an N × C × 1 subtensor (a
matrix). For this case neither mode is preferred—the row rank (neuron mode) of a matrix
equals the column rank (conditionmode). How does the preferred mode emerge as more times
are considered?We assessed reconstruction error as a function of timespan (Fig 3) beginning
with a single time-point, halfway through the response. Using this time we chose bases of k ele-
ments such that there was a 5% reconstruction error of theN × C × 1 matrix (this determined
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Fig 3. Illustration of the full preferred-mode analysis. Reconstruction error is measured as a function of the

number of times included in the population tensor. (a) Schematic of the method. A fixed number (three in this

simple illustration) of basis-neurons (red) and basis-conditions (blue) is used to reconstruct the population tensor.

This operation is repeated for different subsets of time (i.e., different sizes of the population tensor) three of which

are illustrated. Longer green brackets indicate longer timespans. (b) The firing rate (black) of one example V1

neuron for one condition, and its reconstruction using basis-neurons (red) and basis-conditions (blue). Short red/

blue traces show reconstructions when the population tensor included short timespans. Longer red/blue traces

show reconstructions when the population tensor was expanded to include longer timespans. Dark red/blue traces

show reconstructions when the population tensor included all times. For illustration, data are shown for one

example neuron and condition, after the analysis was applied to a population tensor that included all neurons and

conditions (same V1 dataset as in Figs 1A and 2C). The dashed box indicates the longest analyzed timespan.

Responses of the example neuron for other conditions are shown in the background for context. Vertical bars: 10

spikes per second. (c) Plot of normalized reconstruction error (averaged across all neurons and conditions) for the

V1 dataset analyzed in b. Red and blue traces respectively show reconstruction error when using 12 basis

neurons and 12 basis conditions. The horizontal axis corresponds to the duration of the timespan being analyzed.

Green arrows indicate timespans corresponding to the green brackets in b. Shaded regions show error bars

(Methods). (d) As in b but illustrating the reconstruction error for one M1 neuron, drawn from the population

analyzed in Figs 1B and 2C. (e) As in c but for the M1 dataset, using 25 basis neurons and 25 basis conditions.

The right-most values in c and e plot the reconstruction error when all times are used, and thus correspond exactly

to the bar plots in Fig 2C.

doi:10.1371/journal.pcbi.1005164.g003
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the choice of k = 12 and 25 for the V1 and M1 datasets). Keeping k fixed, we increased the ten-
sor size, adding both an earlier and a later time point (we considered time points sampled
every 10 ms). Thus, reconstruction error was measured for subtensors of sizeN × C × Ti where
Ti = 1,3,5,. . .,T.

The emergence of the preferred mode was often readily apparent even when reconstructing
single-neuron responses (note that the entire tensor was always reconstructed, but each neuron
can nevertheless be viewed individually). Fig 3B shows the response of one V1 neuron for one
condition (black trace) with reconstructions provided by the neuron basis (red) and condition
basis (blue). Each of the (shortened) light red and light blue traces show reconstructions for a
particular timespan (Ti). Dark red and dark blue traces show reconstructions for the full time-
span (Ti = T). Unsurprisingly, for short timespans (short traces near the middle of the plot) the
two reconstructions performed similarly: blue and red traces both approximated the black
trace fairly well. However, for longer timespans the condition-mode reconstruction became
inaccurate; the longest blue trace provides a poor approximation of the black trace. In contrast,
the neuron-mode reconstruction remained accurate across the full range of times; short and
long red traces overlap to the point of being indistinguishable. Thus, the reason why the V1
data were neuron-preferred (Fig 2C) is that the neuron basis, but not the condition basis, con-
tinued to provide good reconstructions across long timespans.

For the M1 dataset we observed the opposite effect (Fig 3D). For very short timespans both
the neuron and condition bases provided adequate approximations to the black trace. How-
ever, for longer timespans the neuron-mode reconstruction (red) was unable to provide an
accurate approximation. In contrast, the conditionmode reconstruction remained accurate
across all times; short and long blue traces overlap to the point of being indistinguishable.

The disparity in reconstruction error between the preferred and non-preferredmodewas
often clear at the single-neuron level, and was very clear at the population level.We computed
overall reconstruction error for the population tensor as a function of timespan Ti (Fig 3C and
3E). The profile of each trace reflects reconstruction ‘stability.’ Reconstructionswere never per-
fectly stable; error inevitably grew as more data had to be accounted for. However, stability was
considerably better for the preferredmode: the neuronmode for V1 and the conditionmode for
M1. As can be inferred from the standard errors of the mean (shaded regions) reconstruction
error in V1 was significantly lower for the neuronmode for all but the shortest windows
(p = 0.007 for the longest window). Conversely, reconstruction error inM1 was significantly
lower for the conditionmode for all but the shortest windows (p< 10−10 for the longest window).

When a particular reconstruction fares poorly—e.g., the failure of the condition mode to
accurately capture the firing rate of the V1 neuron in Fig 3B—it is not trivial to interpret the
exact manner in which reconstruction failed. However, the underlying reason for poor recon-
struction is simple: the data have more degrees of freedom along that mode than can be
accounted for by the corresponding basis set. For V1, the data have more degrees of freedom
across conditions than across neurons, while the opposite was true for M1.

Thus, different datasets can have strongly differing preferred modes, potentially suggesting
difference sources of temporal response structure. Before considering this possibility, we ask
whether the difference in preferred mode betweenV1 and M1 is robust, both in the sense of
being reliable across datasets and in the sense of not being a trivial consequence of surface-level
features of the data, such as frequency content, that differ betweenV1 and M1 recordings.

Preferred-mode analysis of multiple datasets

To assess robustness we analyzed two additional V1 datasets recorded from cat V1 using
96-electrode arrays during presentation of high-contrast grating sequences[4,50] (Fig 4B; top,
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50 different sequences; bottom 90 different sequences; panel a reproduces the analysis from
Fig 3C for comparison). For all V1 datasets the neuron mode was preferred: reconstruction
error grew less quickly with time when using basis-neurons (red below blue). We analyzed
three additional M1 datasets (Fig 4C and 4D; the top of panel c reproduces the analysis from
Fig 3E for comparison), recorded from two monkeys performing variants of the delayed reach
task. For all M1 datasets the conditionmode was preferred: reconstruction error grew less
quickly with time when using basis-conditions (blue below red).

Most datasets involved simultaneous recordings (the three V1 datasets in Fig 4A and 4B
and the twoM1 datasets in Fig 4C). However, the preferred mode could also be readily inferred
from populations built from sequential recordings (the twoM1 datasets in Fig 4D). Critically,
we note that sequential recordings employed the same stimuli for every neuron (stimuli were
not tailored to individual neurons) and behavior was stable and repeatable across the time-
period over which recordings were made.

To avoid the possibility that the preferred modemight be influenced by the relative number
of recorded neurons versus conditions, all analyses were performed after down-selecting the
data so that neuron count and condition count were matched (Methods). Typically, there were
more neurons than conditions.We thus down-selected the former to match the latter. The pre-
ferred mode was, within the sizeable range we explored, invariant with respect to condition
count. The three V1 datasets employed a different number of conditions (25, 90, and 50) yet all
showed a neuron mode preference. The four M1 datasets employed a similarly broad range
(72, 72, 18, and 18 conditions) yet all showed a conditionmode preference. We further
explored the potential impact of condition count by taking the 72-condition datasets in Fig 4C
and restricting the number of analyzed conditions. The preferred mode was robust to this

Fig 4. Preferred-mode analysis across neural populations. Each panel corresponds to a dataset type, and

plots normalized reconstruction error as a function of timespan (as in Fig 3C and 3E). Excepting panel a, two

datasets corresponding to two animals were analyzed, yielding two plots per panel. Insets at top indicate the

dataset type and show the response of an example neuron. (a) Analysis for the V1 population from Fig 1A,

recorded from a monkey viewing movies of natural scenes. Data are the same as in Fig 3C and are reproduced

here for comparison with other datasets. (b) Analysis of two V1 populations recorded from two cats using grating

sequences. (c) Analysis of two M1 populations (monkeys J and N) recorded using implanted electrode arrays. The

top panel corresponds to the dataset illustrated in Fig 1B and reproduces the analysis from Fig 3E. (d) Analysis of

two additional M1 populations from the same two monkeys but for a different set of reaches, with neural

populations recorded sequentially using single electrodes.

doi:10.1371/journal.pcbi.1005164.g004
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manipulation (seeMethods) across the range tested (10–72 conditions).We also performed
this analysis for all V1 datasets, and again found that the preferred mode was robust (not
shown). Thus, even a modest number of conditions is sufficient to produce a clear preferred
mode. That preferred mode then remains consistent as more conditions are added.

The preferred mode is not related to surface-level features

Might the differing preferred modes in V1 and M1 be in some way due to differing surface-
level features such as frequency content? A priori this is unlikely: properties such as frequency
content may have an overall impact on the number of basis-set elements required to achieve a
given accuracy, but there is no reason they should create a bias towards a particular preferred
mode. Such a bias is also unlikely for three empirical reasons. First, as will be shown below,
some existing models of M1 yield a condition-mode preference while others yield a neuron-
mode preference. This occurs despite the fact that the surface-level structure produced by all
such models resembles that of the M1 data. Second, the preferred mode remained unchanged
when surface-level features were altered via temporal filtering (seeMethods). In particular, V1
datasets remained neuron-preferred even when filtering yielded responses with lower fre-
quency content than M1 responses. Third, it can be readily shown via construction that data
with the surface-level features of V1 (or of M1) can have either preferred mode.

To illustrate this last point we constructed data with the surface-level of features of V1 but
with a condition-mode preference. We began with the V1 dataset analyzed in Fig 4A and
extracted a set of ‘basis-conditions’ that captured most of the data variance. This was necessar-
ily a large set of basis conditions (24) given the true neuron-mode preference of the data. We
artificially reduced that number of basis conditions by summing random sets of the original
basis conditions. For example, the new first basis condition might be a sum of the original basis
conditions 1, 7, 12 and 23. Thus, the same patterns were present in the data (no basis condi-
tions were removed) but the degrees of freedomwere greatly reduced.We then constructed an
artificial population response by replacing the original response of each neuron with the linear
combination of modified basis conditions that best approximated the original response. This
manipulation resulted in a control dataset with responses that are intentionally altered yet
retain the surface-level features of the original data (Fig 5A, original data; Fig 5B, control
data). The manipulated V1 data had a strong condition-mode preference, (blue lower than
red) in opposition to the true neuron-mode preference of the original data. Using the same
procedure (but reducing degrees of freedomwithin the neuron basis) we constructed control
M1 datasets where surface-level features were preserved but where the neuron mode became
preferred (Fig 5D, red lower than blue) in opposition to the original data (Fig 5C, top, blue
lower than red). Thus, the preferred mode is not a consequence of surface-level features.

The preferred mode of simulated M1 populations reflects model class

We were interested in the possibility that the origin of temporal structuremight influence the
preferredmode. Specifically, tuning for external variables might constrain structure across neu-
rons; if responses reflect a fixed number of external variables then neurons would be limited to
that many degrees of freedom.Conversely, internal dynamics might constrain structure across
conditions; if each condition evolves according to the same dynamics, conditions could differ
along limited degrees of freedom.

The above intuition agrees with the neuron-preferred tensor structure of the V1 datasets,
for which the trial-averaged response is expected to be dominated by the stimulus-driven com-
ponent. Does this intuition extend to, and perhaps help differentiate, models of M1? Many
prior studies have modeledM1 responses in terms of tuning for of movement parameters
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(target direction, reach kinematics, joint torques, etc.). Although the causality is assumed to be
reversed relative to V1 (with the M1 representation producing the downstream kinematics),
such models formally treat neural responses as functions of time-varying external variables; in
particular, responses differ across neurons because different neurons have different tuning for
those external variables. M1 ‘tuning-basedmodels’ are thus fundamentally similar to tuning
models of V1. On the other hand, some recent studies have modeledM1 responses as the out-
come of internal population level dynamics that are similar across conditions. In such models,
downstream quantities such as muscle activity are assumed to be a function of cortical activity
but cortical activity is not a function of downstream quantities (due to non-invertibility). These
M1 ‘dynamics-based models’ are thus fundamentally dissimilar from tuning models of V1.

We analyzed simulated data from five published models of M1, including two models based
on tuning for kinematic variables [30] and three models that assumed strong population-level
dynamics subserving the production of muscle activity [30,34,36]. All M1 models displayed
surface-level features that resembled those of the recordedM1 responses, including a burst of
multiphasic responses. Each simulated dataset had neuron and condition counts matched with
a corresponding neural population. Each model was simulated twice (top and bottom of the

Fig 5. Preferred mode analysis of two control datasets. The preferred mode is not determined by surface-level

features. (a) Analysis for the empirical V1 dataset from Fig 3C and Fig 4A. Shown are three example neurons (left

panels) and reconstruction error versus timespan (right panel, reproduced from Fig 3C). (b) Same as in a but the

V1 dataset was intentionally manipulated to have structure that was simplest across conditions. (c) Analysis for the

empirical M1 dataset from Fig 3E. Shown are three example neurons (left panels) and reconstruction error versus

timespan (right panel, reproduced from Fig 3E). (d) Same as in c but the M1 dataset was intentionally manipulated

to have structure that was simplest across conditions.

doi:10.1371/journal.pcbi.1005164.g005
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relevant panels in Fig 6A, 6B, 6D, 6E and 6F) with each instance being based on the empirical
kinematics or muscle activity for one of the neural datasets.

The neuron mode was preferred for the two models that were based on tuning for kinemat-
ics (Fig 6A and 6B red below blue). For the first tuning-basedmodel (Fig 6A), the relevant
kinematic variables were hand velocity and speed (the magnitude of velocity) as in [51]. For
the second tuning-basedmodel (Fig 6B), the kinematic variables also included hand position
and acceleration [52]. Thus, the second tuning-basedmodel reflects the possibility that neural
responses are complex due to tuning for multiple movement-related parameters—a position
which has recently been argued for based on the ability to decode such parameters [46].

The condition mode was preferred for the three models (Fig 6D, 6E and 6F) that employed
strong population-level dynamics. The model in Fig 6D was based on a pair of simple oscilla-
tions that followed approximately linear dynamics and provided a basis for fitting empirical
patterns of muscle activity [30]. The model in Fig 6E was a nonlinear recurrent neural network
(RNN) trained to produce the empirical muscle activity patterns [34]. The model in Fig 6F was
an RNN with ‘non-normal’ dynamics realized via separate excitatory and inhibitory popula-
tions[36]. Critically, these three dynamics-basedmodels were not fit to neural responses; their
responses reflect the dynamics necessary to produce the desired outputs. Each has been
recently proposed as a possible model of M1 activity during reaches. Despite their substantial
architectural differences, all dynamics-basedmodels displayed a condition-mode preference
(blue below red).

In a subsequent sectionwe employ a formal approach to explore why different model classes
produce different preferred modes. Presently, we simply stress that the preferred mode can be
used to test model predictions. In particular, the tuning-basedmodels displayed neuron-pre-
ferred tensor structure in opposition to the data. In contrast, the dynamics-basedmodels dis-
played condition-preferred tensor structure in agreement with the data. Thus, although all
models of M1 reproduced (to some reasonable degree) the basic surface-level features of M1

Fig 6. Preferred-mode analysis for non-neural data. Analysis is shown for ten simulated datasets and two muscle

populations. Presentation as in Fig 4. (a) Analysis of simulated M1 populations from the simple tuning model. Two simulated

populations (top and bottom) were based on recorded kinematic parameters of two animals (J and N), acquired during the same

experimental sessions for which the neural populations are analyzed in Fig 4C. (b) As in a, but M1 populations were simulated

based on a more complex tuning model. (c) Analysis of populations of muscle responses (monkeys J and N, top and bottom)

recorded using the same task/conditions as in Fig 4D. (d) Analysis of two simulated M1 populations from the dynamical

‘generator model’ that was trained to reproduce patterns of muscle activity. The model was trained to produce the patterns of

deltoid activity from the muscle populations in panel c. (e) Analysis of two simulated M1 populations from a neural network model

trained to produce the patterns of muscle activity shown in panel c. (f) Analysis of two simulated M1 populations from a ‘non-

normal’ neural network model.

doi:10.1371/journal.pcbi.1005164.g006
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responses, only the dynamics-basedmodels predicted the true condition-mode preference of
the M1 population data.

We also analyzed the tensor structure of populations of recordedmuscles. Becausemuscle
activity is in some sense an external movement parameter, one might expect the muscle popu-
lation to be neuron-preferred, in agreement with the tuning-basedmodels above. On the other
hand, the dynamics-basedmodels were trained so that a linear projection of the model popula-
tion response replicated the empirical muscle population response. Given this tight link one
might expect the muscle population be condition-preferred. Empirically, the muscle popula-
tions had no clear preferred mode: reconstruction error was similar and in some cases overlap-
ping for the neuron and condition modes. There was an overall tendency for the muscle data to
be neuron-preferred (the blue trace tended to be above the red trace at many points) but this
was not statistically compelling (p = 0.37 and p = 0.80).

This analysis of muscle populations again highlights that the preferred mode cannot be
inferred from surface-level features. Muscle responses and neural responses share many similar
features yet do not show the same tensor structure. The muscle data also highlight that a clear
preferred mode need not exist for all datasets. Furthermore, the tensor structure of a system’s
outputs need not reflect the tensor structure of the system itself. Dynamics-basedmodels built
to produce muscle activity showed robust condition-mode preferences (Fig 6D, 6E and 6F).
Yet the muscle populations themselves did not show a conditionmode preference (if anything
they were weakly neuron-preferred).We return later to the point that the output of a dynam-
ical system need not share the same preferred mode as the system itself.

As a side note, a natural desire is to examine the bases themselves, which might be informa-
tive regarding the underlyingmodel. For example, the first basis neuron is essentially the pro-
jection of the data onto the first principle component of theN × N covariance matrix that
captures covariance between neurons. The first basis condition is the same, but for a C × C
covariance matrix that captures covariance between conditions. It is indeed possible to make
inferences from both such projections [29,30], yet this typically requires specific hypotheses
and tailored analysis methods. The fundamental hurdle is that, for any given basis set, there are
infinitely many rotations of that basis set that provide equally good reconstruction.Thus, the
details of any given projection can be difficult to interpret without bringing additional informa-
tion to bear. We therefore focus in this study on the quality of the reconstruction, rather than
the features of the basis set.

The preferred mode is robust to the number of basis elements

We assessed whether the preferred mode analysis is robust to a key parameter: the number of
basis-elements used when quantifying reconstruction error. This is important because it is not
possible to directly measure the degrees of freedom (i.e., the number of basis elements that pro-
duces zero reconstruction error) for each mode, givenmeasurement noise and other practical
considerations. For this reason, the analyses above compared not degrees of freedom per se, but
rather the reconstruction error for a fixed number of degrees of freedom. Before concluding
that data have fewer degrees of freedom across one mode versus another, one should assess
whether the preferred mode is robust with respect to the choice of that fixed number.

To assess robustness we focused on the difference in error between the condition-mode
reconstruction and the neuron-mode reconstruction for the longest time window (Ti = T). We
swept the number of basis elements and plotted the normalized difference in reconstruction
errors (Fig 7). Positive values indicate a neuron-mode preference and negative values indicate
a condition-mode preference. We considered from 1–20 basis elements, stopping earlier if the
dataset contained fewer than 20 total degrees of freedom (e.g., the M1 single-electrodedata had
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18 conditions and the muscle populations contained 8 and 12 recordings respectively). All
datasets displayed a preferred mode that was robust with respect to the number of basis ele-
ments. In most cases the preferred mode was clearest when a modest number of basis elements
was used. Indeed, there was often a peak (for neuron-preferred datasets; data lying in the red
shaded area) or trough (for condition-preferred datasets; data lying in the blue shaded area).
Unsurprisingly, the difference in reconstruction error trended towards zero as the number of
basis elements became large (the difference is necessarily zero if the number of basis elements
is equal to the number of neurons / conditions in the data itself).

The analysis in Fig 7 supports the results in Figs 4 and 6. All V1 datasets and all M1 tuning-
model datasets were consistently neuron-preferred. All M1 datasets and all dynamical M1
models were consistently condition-preferred. The muscle populations, which had trended
weakly towards being neuron-preferred in the analysis in Fig 6, trendedmore strongly in that
directionwhen examined across reconstructions based on different numbers of basis elements
(Fig 7E). Thus, if a dataset had a clear preference for our original choice of basis elements (the

Fig 7. Reconstruction error as a function of the number of basis elements. Each panel plots the difference in reconstruction errors

(reconstruction error using k basis-conditions minus reconstruction error using k basis-neurons). The full timespan is considered.

Positive values indicate neuron-preferred structure while negative values indicate condition-preferred structure (colored backgrounds

for reference). All values in each panel are normalized by a constant, chosen as the smaller of the two reconstruction errors (for the full

timespan) plotted in corresponding panels of Figs 4 and 6. For most datasets we considered k from 1–20 (mode preference did not flip

for higher k in any dataset). For datasets with fewer than 20 neurons (or muscles) values are plotted up to the maximum possible k: the

number of neurons (or muscles) in the dataset.

doi:10.1371/journal.pcbi.1005164.g007
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number necessary to provide a reconstruction error<5% when using a single time-point) then
that preference was maintained across different choices, and could even become stronger. The
analysis in Fig 7 also underscores the very different tensor structure displayed by different
models of M1. Dynamics-basedmodels (panels h,i,j) exhibited negative peaks (in agreement
with the empirical M1 data) while tuning-basedmodels (panels c,d) and muscle activity itself
(panel e) exhibited positive peaks.

Possible sources of tensor structure

Why did tuning-basedmodels display a neuron-mode preference while dynamics-basedmod-
els displayed a condition-mode preference? Is there formal justification for the motivating intu-
ition that the origin of temporal response structure influences the preferred mode? This issue is
difficult to address in full generality: the space of relevant models is large and includes models
that contain mixtures of tuning and dynamic elements. Nevertheless, given reasonable assump-
tions—in particular that the relevant external variables do not themselves obey a single dynam-
ical system across conditions—we prove that the population response will indeed be neuron-
preferred for models of the form:

xðt; cÞ ¼ Buðt; cÞ; ð4Þ

where x 2 RN is the response of a population of N neurons, u 2 RM is a vector ofM external
variables, and B 2 RN×M defines the mapping from external variables to neural responses. The
nth row of B describes the dependence of neuron n on the external variables u. Thus, the rows
of B are the tuning functions or receptive fields of each neuron. Both x and umay vary with
time t and experimental condition c.

A formal proof, along with sufficient conditions, is given in Methods. Briefly, under Eq (4),
neurons are different views of the same underlyingM external variables. That is, each um(t,c) is
a pattern of activity (across times and conditions) and each xn(t,c) is a linear combination of
those patterns. The population tensor generated by Eq (4) can thus be built from a linear com-
bination ofM basis-neurons. Critically, this fact does not change as time is added to the popu-
lation tensor. Eq (4) imposes no similar constraints across conditions; e.g., u(:,c1) need not bear
any particular relationship to u(:,c2). Thus, a large number of basis-conditionsmay be required
to approximate the population tensor. Furthermore, the number of basis-conditions required
will typically increase with time; whenmore times are considered there are more ways in which
conditions can differ. A linear tuning model therefore implies a neuron-mode reconstruction
that is stable with time and a condition-mode reconstruction that is less accurate and less
stable.

Conversely, the population response will not be neuron-preferred (and will typically be con-
dition-preferred) for models of the form:

xðt þ 1; cÞ ¼ Axðt; cÞ; ð5Þ

Where A 2 RN×N defines the linear dynamics. This equation admits the solution x(t,c) =
At−1x(1,c). Thus, the matrix A and the initial state x(1,c) fully determine the firing rate of allN
neurons for all T times. In particular, the linear dynamics captured by A define a set of N × T
population-level patterns (basis-conditions) from which the response for any condition can be
built via linear combination. Critically, this fact does not change as different timespans (Ti) are
considered. Although the size of eachN × Ti basis-condition increases as Ti increases, the num-
ber of basis-conditions does not. In contrast, the number of necessary basis-neurons may grow
with time; neural activity evolves in some subspace of RN and as time increases activity may
more thoroughly explore this space. Thus, a linear dynamical model implies a condition-mode
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reconstruction that is stable with time, and a neuron-mode reconstruction that is less accurate
and less stable (for proof seeMethods).

The above considerations likely explain why we found that tuning-basedmodels were
always neuron-preferred and dynamics-basedmodels were always condition-preferred.While
none of the tested models were linear and some included noise, their tensor structure was nev-
ertheless shaped by the same factors that shape the tensor structure of more idealizedmodels.

The preferred mode in simple models

Tuning-based models and dynamics-basedmodels are extremes of a continuum: most real
neural populations likely contain some contribution from both external variables and internal
dynamics.We therefore explored the behavior of the preferred mode in simple linear models
where responses were either fully determined by inputs, were fully determined by population
dynamics, or were determined by a combination of the two according to:

xðt þ 1; cÞ ¼ Axðt; cÞ þ Buðt; cÞ: ð6Þ

The case where responses are fully determined by inputs is formally identical to a tuning
model; inputs can be thought of either as sensory, or as higher-level variables that are being
represented by the population.When A was set to 0 and responses were fully determined by
inputs (Fig 8A) the neuron mode was preferred as expected given the formal considerations
discussed above. Indeed, because the model is linear, neuron-mode reconstruction error was

Fig 8. The preferred-mode analysis applied to simulated linear dynamical systems. Left column of each panel: graphical

models corresponding to the different systems. Middle column of each panel: response of neuron 1 in each simulated dataset.

Colored traces correspond to different conditions. Right column of each panel: preferred-mode analysis applied to simulated data

from that system. Analysis is performed on the data x in panels a-d, while analysis is performed on the data y in panels e-h. (a) A

system where inputs u are strong and there are no internal dynamics (i.e., there is no influence of xt on xt+1. (b) A system with

strong inputs and weak dynamics. (c) A system with weak inputs and strong dynamics. (d) A system with strong dynamics and no

inputs other than an input u0 at time zero that sets the initial state. (e) A system with 20-dimensional linear dynamics at the level of

the state x, but where the observed neural responses y reflect only 3 of those dimensions. I.e., the linear function from the state x

to the neural recordings y is rank 3. (f) A system with 20-dimensional dynamics and 4 observed dimensions. (g) A system with

20-dimensional dynamics and 8 observed dimensions. (h) A system with 20-dimensional dynamics where all 20 dimensions are

observed (formally equivalent to the case in panel d).

doi:10.1371/journal.pcbi.1005164.g008
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perfectly stable as times were added (the red trace remains flat). When B was set to zero and
responses were fully determined by internal dynamics acting on an initial state, the condition
mode was preferred and condition-mode reconstruction error was perfectly stable (Fig 8D),
consistent with formal considerations.

For models where tuning for inputs was strong relative to dynamics, the neuron mode was
preferred (Fig 8B). However, because dynamics exerted a modest influence, neuron-mode
reconstruction error was not perfectly stable. When dynamics were strong relative to inputs,
the condition mode was preferred (Fig 8C). However, because inputs exerted a modest influ-
ence, condition-mode reconstruction error was not perfectly stable. Thus, simple simulations
confirm the expected behavior. A neuron-mode preference is produced when temporal
response structure is dominated by tuning for inputs, even if dynamics exert some influence. A
condition-mode preference is produced when temporal response structure is dominated by
dynamics, even if inputs exert some influence. Thus, the preferred-mode analysis can reveal
the dominant source of structure, but does not rule out other contributions.

A potentially confusing point of interpretation is that all neurons necessarily respond to
inputs; each neuron is driven by the inputs it receives. How then can there be a difference in
tensor structure between a population that is tuned for inputs versus a population that reflects
dynamics? The answer lies in how fully the population reflects dynamics. In the case of tuning
for external variables, those variables typically do not fully reflect dynamics. Although the local
environment is in some sense ‘dynamic,’ those dynamics are incompletely observedvia the sen-
sory information available to the nervous system. Conversely, if dynamics are produced by the
local population they may be fully observedprovided that sufficient neurons are recorded.

To illustrate this point we repeated the simulations with the model population either par-
tially (Fig 8E) or completely (Fig 8H) reflecting an identical set of underlying dynamics. As
expected, the case where dynamics are partially observedbehaved like the case when the system
is input driven: the neuron mode was preferred. As dynamics becamemore fully reflected, the
population switched to being condition-preferred. Thus, condition-preferred structure results
from a very particular circumstance: the neural population obeys dynamics that are consistent
across conditions and are close to fully reflected in the neural population itself. In contrast,
neuron-preferred structure is observedwhen the temporal structure is inherited from outside
the system: from sensory inputs or from dynamics that may be unfolding elsewhere in the ner-
vous system. This explains why there is no paradox in the fact that the muscle populations
tended to show neuron-preferred structure (Fig 6C and Fig 7E) even though dynamical mod-
els that produce muscle activity show condition-preferred structure (Fig 6D–6F, Fig 7H–7J)
as doesM1 itself. More generally, these simulations illustrate that one may often expect a dif-
ference in preferred mode between a system that produces a motor output and a system that
‘listens’ to that output (e.g., a sensory system that provides feedback during movement).

A key point illustrated by the simulations in Fig 8A–8D is that the preferred mode is inde-
pendent of smoothness in the temporal domain. For example, the idealizedmodels in Fig 8A
and 8D have responses with closely matched temporal smoothness, yet yield opposing pre-
ferred modes. This can be understood via reference to the derivation in the Methods, where
assumptions regarding temporal smoothness play no role. For example, a condition-mode
preference will be observed even if dynamics cause rapid fluctuations in the neural state, and
indeed even if the dynamics are themselves rapidly time-varying. It is the ‘smoothness’ across
conditions versus neurons that determines the preferred mode, not the smoothness across
time. This fact is also illustrated in Fig 5, where control manipulations alter the preferred mode
while leaving temporal smoothness unchanged.

For the simulations in Fig 8 and the models in Fig 6 the preferred mode always reflected the
dominant source of temporal structure. Yet with the exception of some idealizedmodels,
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reconstruction error was rarely perfectly stable even for the preferred mode. The lack of per-
fectly stability arises frommultiple sources including nonlinearities, simulated noise in the fir-
ing rate, and contributions by the non-dominant source of structure.We therefore stress that it
is difficult, for a given empirical dataset, to ascertainwhy the preferredmode shows some insta-
bility in reconstruction error. For example, in the case of M1 it is likely that the modest rise in
condition-mode reconstruction error with timespan (e.g., Fig 4C and 4D) reflects all the above
factors.

Discussion

Our analyses were motivated by three hypotheses: first, that population responses will show
tensor structure that deviates strongly from random, being simpler across one mode than
another; second, that the ‘preferred mode’ will likely differ across datasets; and third, that the
underlying source of temporal response structure influences the preferred mode. The empirical
data did indeed deviate strongly from random. V1 datasets were consistently neuron-preferred:
the population response was most accurately reconstructed using basis-neurons.M1 datasets
were consistently condition-preferred: the population response was most accurately recon-
structed using basis-conditions. This difference was invisible at the single-neuron level and
could not be inferred from surface-level features of the data. Simulations and formal consider-
ations revealed that neuron-preferred structure arises preferentially in models where responses
reflect stimuli or experimental variables. Condition-preferred tensor structure arises preferen-
tially in models where responses reflect population-level dynamics.

Implications for models of motor cortex responses

Given the relationship betweenmodel class and preferred mode, the neuron-preferred struc-
ture in V1 is entirely expected: all V1 datasets were recorded in the presence of strong visual
inputs that are expected to drive the observed response structure [53]. In contrast, the condi-
tion-preferred structure of the M1 population response could not be anticipated from first
principles because there is little agreement regarding the source of temporal response structure
in M1. Several existingM1 models assume that time-varying responses are a function of time-
varyingmovement variables such as reach direction, velocity, and joint torques (for a review
see [21]). These variables may be ‘dynamic’ in the loose sense (they change with time and some
may be derivatives of the others) but their values typically do not follow a single dynamical rule
that is consistent across conditions. Other recent models are explicitly dynamics-based: the
future population state is a function of the present population state, with external inputs serv-
ing primarily to set the initial state of the dynamics [30,34,36]. Tuning-based and dynamics-
basedmodels lie on a continuum, but occupy opposing ends and thus make different predic-
tions regarding the tensor structure of the population response. Existing dynamics-basedmod-
els predict condition-preferred tensor structure, in agreement with the M1 data. Existing
tuning-basedmodels predict neuron-preferred structure, in opposition to the M1 data.

Our results thus place strong constraints on models of M1: to be plausible a model must
replicate the condition-preferred structure of the empirical population response. Our explora-
tion of current models indicates that this happens naturally for models that include strong
dynamics within the recorded population. It does not occur naturally for tuning-basedmodels.
We cannot rule out the possibility that future elaborations of tuning-basedmodels might be
able to replicate the empirical condition-preferred structure, but the practical possibility of
such elaborations remains unclear. There also exist a number of M1 models that we did not
examine [35,37,54,55]. It remains an empirical question whether the tensor structure of such
models is compatible with the data.
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We stress that all current M1 models (including those that successfully predict the empirical
preferred mode) are incomplete in key ways and will need to be elaborated or unified in the
future. For example, the dynamics-basedmodels we examined do not yet capture the influence
of external, sensory-based feedback which is known to be a driver of M1 responses [38,39,56].
Conversely, a recent model of feedback control (not tested here) captures only the dynamics of
external feedback loops; the M1 population was modeled as a feedforward network [37]. As
future models are developed that incorporate both internal recurrence and sensory feedback,
tensor structure provides a simple test regarding whether those models produce realistic popu-
lation-level responses.

Tensor structure is a basic feature of data, much as the frequency spectrumor the eigenvalue
spectrumof the neural covariance matrix are basic features of data. (Indeed, tensor structure is
a simple extension to a three-mode array of the standard method of applying principal compo-
nent analysis to a two-mode array.) Thus, any model that attempts to explain data should suc-
ceed in replicating the preferred mode. This requirement is particularly important because,
while models can often be easily modified to produce obvious surface-level features, it is more
challenging to also reproduce the underlying tensor structure. Just as importantly, the preferred
mode of recorded data can be informative regarding how an appropriate model should be con-
structed. For everymodel tested we found that tensor structure is condition-preferred only
when the measured population reflectsmost of the state variables in a dynamical system. In the
context of M1, this suggests that successful models will be those where a large percentage of the
relevant state variables (sensory feedback,muscle commands and the dynamics that link them)
are observable in the M1 population response.

It should be stressed the preferred mode is likely not a feature of a brain area per se, but
rather of a neural population in the context of the computation being performed by that popu-
lation. For example, M1 has strong responses to sensory stimuli, especially stretching of the
tendons and muscles [56]. In an experiment where responses are driven primarily by externally
imposed perturbations of the arm [57,58] it seems likely that M1 would exhibit a neuron-mode
structure like that of V1 in the present study. If so, then it would be natural to apply a model in
which responses are largely externally driven. If not, then one would be motivated to consider
models in which external events set in motion internal dynamics. In either case, knowing the
preferred mode would be valuable because it would constrain the set of plausible models.

Interpretational caveats

Interpretation of the preferred mode is most straightforwardwhen there exists one or more
models that seek to explain the data. Any model (or model class) that does not replicate the
empirical preferred modemust be modified or discarded. Can similarly strong inferences be
drawn directly from the preferred mode of the data, without comparison with models? In short
they cannot: while a robust preferred modemay suggest a particular class of model, caveats
apply. As shown in the derivation (Methods) idealizedmodels produce neuron-preferred
structure when responses are driven by unconstrained external variables, and condition-pre-
ferred structure when responses are shaped by internal dynamics.We found that this pattern
was robust under less-idealized circumstances: all of the models we examined exhibited a pre-
ferred mode consistent with the idealized pattern, even though they departed from idealized
assumptions (in particular they were not linear). Such robustness is largely expected. For exam-
ple, non-linear dynamical systems can often be well approximated by time-varying linear sys-
tems, which is all that is required to produce the idealized pattern. Similarly, a non-linear
dependency on external variables can often be reconceived as a linear dependency via a change
in variables.
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That said, there will be limits to the observed robustness. It is possible that a model of one
class (e.g., a dynamical systems model) can produce a paradoxical preferred mode (e.g., a neu-
ron-mode preference) under certain circumstances. This might, for example, occur for a neural
circuit with strongly nonlinear dynamics that produces long motor sequences. Such a system
might be poorly approximated by time-varying linear dynamics, which would result in com-
promised condition-mode reconstructions. In the case where responses are driven by external
variables, an unclear or even paradoxical preferred mode could occur if there is something ‘ill-
conditioned’ about the input. For example, the input could be highly redundant across condi-
tions, resulting in responses that lack enough structure to allowmeaningful comparison of
reconstruction quality for the neuron mode versus the conditionmode. Along similar lines, it
would be difficult to interpret the preferred mode in the case where there is little variation in
the motor output that can be captured across conditions.

An attractive feature of the preferred mode analysis is that it can be applied without knowl-
edge of the inputs to a system, and provides constraints on potential hypotheses without
requiring fully mature models that are ready to be fit directly to data. These advantages are
large but, as discussed above, not absolute. First, although potential inputs need not be known,
one must have reasonable confidence that the task evokes a range of reasonably rich responses,
such that a clear preferred mode can emerge. Second, interpretation of the preferred mode will
always be most certain in the case where the preferred mode of the data can be compared with
the preferred mode displayed by competing models. In the present case, the preferred mode of
the M1 datasets consistently disagreedwith the preferred mode of models where time-varying
responses are a function of time-varyingmovement variables. As this accords with formal
expectations, such models are unlikely to provide a good account of the data without major
modification.

Future applications

It is likely that neural populations outside of areas V1 and M1 will also display clear preferred
modes, which could be diagnostic regarding candidate models. Applicable datasets are those
that are sufficiently rich: the experimental task must elicit time-varying responses where
PSTHs vary across neurons and conditions. Further, there must be sufficientlymany neurons
and conditions such that certain low-rank conditions are met (an explanation of these condi-
tions are in Methods under Low-rank assumptions).

As a potential example, some models of decision-making assume that neural responses
reflect a small number of task variables (e.g., a ‘decision variable’ whose value codes the evolv-
ing tendency towards a given choice [59]). Other models include internal dynamics that
implicitly gate when information is integrated or ignored [60]. None of these decisionmodels
sits fully at an extreme—all assume both sensory inputs and some form of integration—but
they possess large qualitative differences that may predict different tensor structure. Given the
ease with which the preferred mode can be computed for both real and simulated data, the pre-
ferred-mode analysis provides a natural way to test whether a givenmodel matches the data at
a basic structural level.

Methods

Ethics

All methods were approved in advance by the respective Institutional Animal Care and Use
Committees at Albert Einstein College of Medicine (protocol #20150303) and the New York
State Psychiatric Institute (protocol #1361). To minimize any potential suffering non-survival
surgeries were performed under deep anesthesia with sufentanil citrate, adjusted per the needs
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of each animal. Survival surgeries were performed under isoflurane anesthesia with carefully
monitored post-operative analgesia.

Experimental datasets

We analyzed 9 physiological datasets. Eight have been analyzed previously and one was
recorded for the present study. All datasets were based on the spiking activity of a neural popu-
lation recorded using either multi-electrode arrays (the datasets analyzed in Fig 4A, 4B and
4C) or sequential individual recordings (the neural dataset analyzed Fig 4D and the muscle
dataset analyzed in Fig 6C). Datasets are available from the Dryad repository (http://dx.doi.
org/10.5061/dryad.92h5d).

One V1 dataset (analyzed in Figs 1, 2, 3, 4A and 7A) was collected using natural-movie sti-
muli from an anaesthetized adult monkey (Macaca fascicularis) implanted with a 96-electrode
silicon ‘Utah’ array (BlackrockMicrosystems, Salt Lake City, UT) in left-hemisphere V1. These
data were recorded in the laboratory of Adam Kohn (Albert Einstein College of Medicine) spe-
cifically for the present study. The left eye was covered. Receptive field centers (2–4 degrees
eccentric) were determined via brief presentations of small drifting gratings. Stimuli, which
spanned the receptive fields, were 48 natural movie clips (selected from YouTube) with 50
repeats each. The frame rate was 95 Hz. Each stimulus lasted 2.63 s (100 movie frames followed
by 150 blank frames). Spikes from the array were sorted offline using MKsort (available at
https://github.com/ripple-neuro/mksort/). Single units and stable multi-unit isolations were
included. Some neurons showed weak responses and were not analyzed further. Similarly,
some stimuli (e.g., those where the region within the receptive fields was blank or relatively
unchanging) evoked weak responses overall. Again, these were not analyzed further. Finally, to
ensure we were analyzing a neural population that responds to a shared set of stimulus features,
all analyses focused on the subset of units with strongly overlapping receptive fields, defined as
the 25 units with receptive fields closest to the center of the stimulus. We insisted upon this cri-
terion because our central analyses would not be as readily interpretable if applied to a set of
neurons with distant receptive fields, as they would effectively be responding to different
stimuli.

We analyzed two further V1 datasets (Fig 4B) recorded from cat V1 as described in [4,50]
using Utah arrays implanted so as to overlap areas 17 and 18 (collectively, cat area V1). Stimuli
were large stationary gratings, ~30 deg in diameter, and thus spanned the receptive fields of all
neurons. Gratings were presented in a rapid sequence—one every 32 ms—each with one of 4
spatial phases and one of 12 orientations. One dataset had five sequences of ~12 s in length.
The other dataset had nine such sequences.We wished to segment these long-duration stimuli
into ‘conditions’ with a timescale comparable to that of the other V1 and M1 datasets analyzed
here. To do so, we divided the first 10 s of each sequence into 10 one-second segments, which
we treated as separate conditions (the stimuli in each second were unrelated to the stimuli in
the last second, and are thus effectively different conditions). The two datasets (Fig 4B, top,
bottom) thus yielded a total of 50 and 90 conditions, respectively. Each condition was observed
across multiple (~10) trials. Each dataset consisted of 96 well-tunedmultiunit recordings (see
[4,50] for details), which were down-selected to match condition counts (50 and 90) of the
datasets.

Four M1 datasets were recorded from two male macaque monkeys (Macaca mulatta)
trained to perform a delayed reach task. These datasets have been described and analyzed pre-
viously [29,30]. Briefly, reaches were performed on a fronto-parallel screen for juice reward. To
begin each trial the monkey touched a central spot. After a>400 ms hold period, a reach target
and up to nine ‘barriers’ appeared (see Fig 1 of [29]). The monkey was required to hold its
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position for a 0–1000 ms delay until a ‘go cue’, and to then briskly reach to the target while
avoiding the barriers. A juice reward was delivered after a 450 ms hold period. This task evoked
a large variety of conditions: each corresponding to a particular target and arrangement of bar-
riers. For a given condition, reach trajectories were highly stereotyped across trials (there was
only one allowable route through the barriers) allowing a meaningful computation of the aver-
age across-trial firing rate. Only trials with delays>450 ms were analyzed (5–40 trials per con-
dition, depending on the dataset); shorter delays simply provided incentive to prepare their
movement during the delay. For present purposes, the primary value of the barriers was that
they increased the variety of reach conditions, thus increasing the size of the tensor that could
be analyzed. In the original dataset some conditions included ‘distractor’ targets that the mon-
key had to ignore while preparing the reach. The purpose of those conditions was incidental to
the present study and they were not included in the analysis (results were virtually identical if
they were included). Neural responses were recorded fromM1 and the adjacent region of cau-
dal PMd. Single-electrodeand array datasets employed 18 and 72 conditions respectively. Sin-
gle-electrodedatasets consisted of ideally isolated single neurons. Array datasets included both
ideal isolations and goodmulti-unit isolations (e.g., two clear units that could not be separated
from one another). Unit counts for the four datasets were 170, 218, 55, and 118 (correspond-
ing, respectively, to panels c-d in Fig 4), which were down-selected to 72, 72, 18, and 18 to
match condition counts.

Two datasets of the responses of muscle populations (analyzed in Fig 6C) were recorded
using the same monkeys and task as for theM1 datasets. Muscle datasets used the same 18 con-
ditions as the single-electrodedatasets. EMG responses were recorded percutaneously using
electrodes inserted for the duration of the recording session. Recordings were made from six
muscle groups: deltoid, biceps brachii, triceps brachii, trapezius, latissimus dorsi and pectoralis.
Multiple recordings were often made from a given muscle (e.g., from the anterior, lateral and
posterior deltoid). For monkey J the triceps was minimally active and was not recorded.Mus-
cles were recorded sequentially and then analyzed as a population (just as were the single-elec-
trode datasets). For the two monkeys the resulting populations consisted of 8 and 12
recordings.

Model datasets

We analyzed multiple datasets produced via simulation of published models. The velocity
model from [30] was analyzed in Fig 6A (here, referred to as the simple tuning model). The
complex-kinematic model from [30] was analyzed in Fig 6B (here referred to as the complex
tuning model). The generator model from [30] is analyzed in Fig 6D. The network model of
Sussillo et al. [34] is analyzed in Fig 6E. The network model of Hennequin et al. [36] is ana-
lyzed in Fig 6F. Both network models are instantiations of a recurrent neural network (RNN):

dxðt; cÞ
dt

¼ � x t; cð Þ þ Ar t; cð Þ þ Bu t; cð Þ ð7Þ

rðt; cÞ ¼ �ðxðt; cÞÞ

yðt; cÞ ¼Wrðt; cÞ;

where x 2 RN is the network state, u 2 RM is the vector of inputs, y 2 RP is the vector of out-
puts. The function ϕ is an element-wise nonlinear function, r 2 RN is interpreted as a firing
rate, and the matricesA, B, andW are of appropriate dimensions. The output y is interpreted
as muscle activity.
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All datasets were from the original simulations analyzed in those publications, with the
exception of the RNNmodel of [36]. We re-simulated that model based on similar procedures
described in [36]. After stabilizing the network using their procedure, we needed to specify
each of the 72 initial states x(1,c) (one for each condition).We first computed the controlla-
bility Gramian of the linearized network (the matrixQ in [36]). The orthonormal columns of
Q correspond to potential choices of initial states; the first column is an initial state that evokes
the ‘strongest’ response (in terms of the total energy of the corresponding signals r); the second
column gives the next strongest, and so forth.We selected the initial state for each condition to
roughly match the temporal pattern of total energy (summed across all neurons) of the empiri-
cal neural data. Namely, we first considered the instantaneous power P(t)≔ r(t)>r(t). Next, for
a given column of Q (a possible choice of initial state), we simulated the network and measured
the correlation across times between P(t) of the simulated data and P(t) of the empirical data
for a given condition. After determining the 5 columns of Q that yielded the highest correla-
tions, we chose each x(1,c) to be the weighted sum of those 5 columns that best matched P(t)
for that condition. The net effect of this procedure was to produce a rich set of dynamics, flow-
ing from 72 initial states, that provided a possible basis set for producing patterns of EMG for
the 72 conditions. We confirmed the network did indeed provide such a basis set (e.g., that the
EMG could be fit as a weighted sum of the responses in the network).

Data preprocessing

For all experimental neural data, spike trains were smoothedwith a Gaussian kernel (20 ms
standard deviation) and sampled every 10 ms. Firing rate values were averaged across trials
resulting in a population tensor of sizeN × C × T. Each element of this tensor is simply the fir-
ing rate for the corresponding neuron, condition and time. To ensure that analysis was not
dominated by a few high-rate neurons, we normalized firing rates. Because normalization can
occasionally lead to an undesirable expansion of sampling noise for low-rate neurons, we
employed a ‘soft-normalization’ procedure (this same normalization is used in [30]). Each neu-
ron was normalized according to:

xn c; tð Þ  
xnðc; tÞ

5þ rangec;tðxnðc; tÞÞ
; ð8Þ

where i = 1,. . .,N. The function rangec,t(�) returns the difference between the maximum and
minimum firing rates across all conditions and times for a given neuron. The soft normaliza-
tion constant 5 mapped high firing rate neurons (e.g., 100 Hz) to a new range close to one. Low
firing rate neurons were mapped to a range somewhat less than one (e.g., a neuron with a range
of 5 spikes/s would be mapped to a new range of 0.5). This preprocessing allows neurons to
contribute roughly equally regardless of their firing rate range. This is especially desirable when
analyses involve the mean squared error. For example, without normalization the same relative
error will be 25 times greater for a neuron with a 0–100 Hz firing rate range relative to a neuron
with a 0–20 Hz firing rate range. That said, we emphasize that our results (e.g., the preferred
mode of a given dataset) did not depend on the choice of soft normalization constant.

We wished to analyze temporal response structure that was different across conditions.We
therefore removed the ‘cross-condition mean’ from the entire population tensor. We averaged
the tensor across conditions resulting in an N × Tmatrix that we subtracted from everyN × T
matrix of data. This is related to the standard PCA step of first removing the mean value of
each variable, and ensured that the analysis did not consider response structure that was identi-
cal across conditions, such as an elevation of firing rates for all visual stimuli or all reach
directions.
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All datasets naturally had an unequal number of neurons (N) and conditions (C). To ensure
that basis-neuron and basis-condition reconstructionswere compared on similar footing, we
removed excess neurons or conditions in each dataset so that N = C. In most datasets there
were more neurons than conditions. In such cases we kept theN = C neurons with the highest
ratio of signal to noise. In the V1 dataset of Fig 1A there were more conditions than neurons.
In this case we retained theN = C conditions that elicited the most temporal complexity in the
population response (assessed via the standard deviation of the firing rate across all neurons
and times). The specific preprocessing choices (filter length, normalization, equalizingN and
C) were made to minimize any potential bias toward basis-neurons or basis-conditions. Still,
none of these choices were found the affect the outcome of the analyses.

Preferred-mode analysis

For each population tensorX 2 RN�C�T we quantified how well it could be reconstructed from
a small set of k basis-neurons or k basis-conditions (the method for choosing k is described
later). To illustrate, we first consider the case of basis-neurons (the case of basis-conditions is
entirely parallel). Each of the recorded neurons is a set of T datapoints (one per time) for C
conditions and thus forms a C × Tmatrix. Each basis neuron is also a C × Tmatrix. The data
for each of theN neurons (each C × Tmatrix within the full population tensor) was approxi-
mated as a weighted sum of k basis-neuronmatrices.Weights and basis neurons were chosen
to provide the reconstructionwith the lowest error.

To find those weights and basis neurons we applied SVD along the neuron mode of the pop-
ulation tensor. This procedure amounts to ‘unfolding’ (or reshaping) the tensor into a matrix,
X(1) 2 RN×CT, where the subscript in parentheses indicates which mode appears as the row
index in the matrix (see [49]). The order in which the columns appear in the matrix does not
affect our analysis. We applied the SVD to X(1). The right singular vectors of X(1) correspond to
vectors of dimensionCT, which can be reshaped into C × Tmatrices corresponding to ‘basis-
neurons.’ The singular values (squared) of X(1) indicate how much variance is explained by
each basis-neuron. The approach to finding basis-conditions is parallel to the above and
involves the SVD of X(2) 2 RC×NT. For both reconstructionswe assessed the mean squared
error between the elements of the original tensor and those of the reconstructed tensor. The
reconstructed tensor was produced by multiplying the matrices produced by the SVD after
appropriately limiting the inner dimensions based on the number of basis elements k. For
example, if X(1) = USV>, then Xrec

ð1Þ
¼ U:;1:kS1:k;1:kV>1:k;:. We note that for practical convenience

reconstruction error can also be readily computed from the first k singular values. For visuali-
zation we express reconstruction error in normalized form, relative to the total variance of the
data.

We extended the above analysis to quantify reconstruction error as a function of the number
of time-points included in the tensor (Figs 3,4 and 6). We began by considering a single time-
point halfway through the response: thalf = round(T/2).We used this time to ask howmany basis
elements (basis-neurons and basis-conditions) were necessary to achieve low reconstruction
error. As above we applied the SVD, in this case to the matrixX :;:;thalf

2 RN�C�1. We chose the
smallest number k such that normalized reconstruction error using the first k basis elements was
less than 5%. BecauseX :;:;thalf

is a matrix, the value of k is the same for basis-neurons and basis-
conditions.We then analyzedX :;:;thalf � 1:thalfþ1 2 R

N�C�3 and quantified reconstruction error when
using k basis-neurons versus k basis-conditions (i.e., the standard procedure described above was
applied, but to a tensor that contained three times rather than all times).We repeated this for
X :;:;thalf � 2:thalfþ2 2 R

N�C�5 and so forth until the fullN × C × T tensor was analyzed.
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To assess statistical reliability, we computed reconstruction error independently for each
condition. This yielded a distribution of errors with a given mean and standard error. It is that
mean and standard error that are plotted in Figs 2C, 3C, 3E, 4 and 6, and the right columns of
Fig 8. We chose to compute the standard error across conditions rather than across both neu-
rons and conditions to be conservative (the latter would have yielded even smaller error bars).

Control datasets and analyses

We performed a three control analyses to assess the robustness of the central method. The out-
come of the first of these is shown in the Results; the outcome of the other two are shown here.
First, we analyzed two control datasets intentionally constructed to have surface-level features
similar to the original empirical datasets. To generate the manipulated V1 dataset, we first
extracted the top 24 basis-conditions (out of 25) from the original dataset using SVD. We ran-
domly partitioned the basis set into 6 partitions (4 elements each), and summed the elements
within a partition to create a single basis-condition, resulting in 6 total basis-conditions.We
then reconstructed the manipulated dataset neuron-by-neuron: each new neuron was a least-
squares fit to the original neuron, but using the 6 basis-conditions derived above. This ensured
that the manipulated V1 data had relatively few degrees of freedom across conditions, yet
resembled the original V1 neurons in terms of basic response properties. The manipulated M1
dataset was constructed analogously, but using 6 basis-neurons derived from the original 72.
The outcome of this analysis is shown in Fig 5.

Second, to assess robustness of the central method with respect to the number of recorded
conditions, we repeated the analysis for oneM1 dataset (the dataset from Fig 3E) that originally
contained 72 conditions.We down-sampled the data by selecting 10, 20, and 30 conditions. Con-
ditions were selected randomly, but via a procedure that also ensured that the selected conditions
were sufficiently different (e.g., that they were not all rightwards reaches). The preferredmode
was indeed robust even when the number of conditions was reduced (Fig 9).

Finally, we analyzed the effect of spike filter widths on the preferred mode for the V1 and
M1 datasets (Fig 10). This analysis served two purposes. First, spike filtering is a standard pre-
processing step and we wanted to ensure that results were not dependent on the particular
choice of filter width. Second, the analysis reveals that the preferred mode is not in some way
to due to the smoothness or frequency content of neural signals—a potential concern when
comparing brain areas whose neurons have fundamentally different response properties, as is
the case with V1 and M1.

Linear Models

In Fig 8 we illustrated some basic properties of the preferred mode using simulations of linear
dynamical systems (Eq (6)). These simple simulations were separate from the simulations of
published models described above. For these simple simulations we choseN = C = 20, and
T = 300. We setM = 10 (i.e. the input u was ten-dimensional).We first generated the matrices
A and B with orthonormal columns; for A, eigenvalues were random but were clustered near 1
to ensure smooth trajectories for our choice of T (this was not a necessary step, but yielded
roughly comparable oscillation frequencies to those observed in the datasets of Fig 4). Each
input um was composed of a randomly weighted sum of 20 sinusoids. Sinusoid frequencywas
determined by the same procedure that generated the eigenvalues of A. Thus, inputs had the
same frequency components as the dynamics, ensuring similar single-neuron response proper-
ties across simulations. Initial states across conditions were chosen randomly and were con-
strained to span 10 dimensions.With these parameters fixed, we simulated the system x(t + 1,
c) = aAx(t,c) + bBu(t,c), where a 2 [0,1] and b 2 [0,1] determined the strength of dynamics and
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inputs, respectively. In Fig 8A–8D, values of a were 0, 0.98, 0.99, and 1 (Note that values of a
even slightly lower than unity lead to rapidly decaying ‘weak’ dynamics). Values of b were 1,
0.05, 0.03, and 0 (note that inputs need to be quite weak before they cease to have a strong effect
on a system with persistent dynamics). Each panel in Fig 8 involved the same choices of A and
B, and the same initial states.

Data in Fig 8E–8H were simulated as above, with a = 1 and b = 0. However, the ‘data’ for
which the preferred mode was computed consisted not of the values of the dynamic variable x,
but rather of the values of an observation variable y. We treated y as the neural population

Fig 9. Preferred-mode analysis using a variable number of conditions. (a) Responses of one example neuron

illustrating an instance of randomly selected sets of 10 (top), 20 (middle), and 30 (bottom) conditions. Horizontal

and vertical calibration bars correspond to 200 ms and 20 spikes/s. (b) Reconstruction error as a function of

timespan for sets of 10 (top), 20 (middle), and 30 (bottom) conditions. Multiple traces are shown: one each for 10

draws of random conditions. Dark traces show the neuron-mode (red) and condition-mode (blue) reconstruction

error for the particular sets of conditions illustrated in a. Even for small numbers of conditions (as few as 10) there

was a consistent preferred mode. In fact, the preferred mode was even more consistent than it appears, as the

comparisons are naturally paired: every red trace has a corresponding blue trace. These tended to move upwards

and downwards together (as in the example illustrated with the dark traces) with a reasonably consistent difference

between them.

doi:10.1371/journal.pcbi.1005164.g009
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being driven by ‘observing’ the dynamic state variable x, with y(c,t) = Cx(c,t). The observation
matrix C had different ranks depending on how fully y reflected x. Specifically, C was diagonal
with 1s on the first 3, 4, 8, and 20 diagonal entries for Fig 8 panels e,f,g,h, respectively (and 0s
elsewhere).

Derivation of the preferred mode for idealized models

Here we show that neuron-preferred structure is expectedwhen responses are driven by
unconstrained external variables, while condition-preferred structure is expectedwhen neural
responses are shaped by internal dynamics. We consider a datasetX 2 RN�C�T , whereN, C
and T are the number of recorded neurons, experimental conditions, and times.We also con-
sider a set of external signals, or inputs, U 2 RM�C�T , whereM is the number of external vari-
ables. The column vector x(t,c)2 RN is the firing rate of every neuron at time t 2 {1,. . .,T} for
condition c 2 {1,. . .,C}. An N × Cmatrix ‘slice’ of X is denotedX(t) 2 RN×C, and is the popula-
tion state across all conditions for time t. We define the ‘mode-1’ and ‘mode-2’ matrix unfold-
ings of X :

Xð1Þ≔½Xð1Þ Xð2Þ � � � XðTÞ � 2 RN�CT ; ð9Þ

Xð2Þ≔½Xð1Þ
> Xð2Þ> � � � XðTÞ> � 2 RC�NT :

Each row of X(1) corresponds to one neuron, and each row of X(2) corresponds to one condi-
tion. Importantly, rank(X(1)) is the number of basis-neurons needed to reconstructX . Simi-
larly, rank(X(2)) is the number of basis-conditions needed to reconstructX .

Fig 10. Effect of spike filtering width on the preferred mode. Spike trains from V1 and M1 datasets were

filtered with a Gaussian kernel of varying widths (width corresponds to the standard deviation of the Gaussian). (a)

Response of one example V1 neuron for filter widths of 10 ms, 20 ms (the default value used for all other analyses

in this study), and 100 ms. (b) Response of one example M1 neuron for the same three filter widths. Horizontal and

vertical calibration bars correspond to 200 ms and 20 spikes/s. (c) Difference in reconstruction error between the

condition mode and the neuron mode (computed as in Fig 7) as a function of filter width, for the V1 dataset from

panel a. Differences are positive, indicating that the neuron mode incurred less error and is preferred. Green

arrows indicate filter widths of 10, 20, and 100, corresponding to the examples shown in a. (d) Difference in

reconstruction error for the M1 dataset from panel b. Differences are negative, indicating that the condition mode

incurred less error and is preferred. Thus, the preferred mode is robust to filter width, despite the wide range of

frequencies highlighted or suppressed by filter width choices.

doi:10.1371/journal.pcbi.1005164.g010
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Definition: A datasetX 2 RN�C�T is called neuron-preferred (condition-preferred) when
the rank of the matrix unfoldingX(1) (X(2)) of its sub-tensorsX Ti

2 RN�C�Ti does not increase
with Ti, while the rank of X(2) (X(1)) does increase with Ti.

We evaluate the rank of each unfolding in datasetsX generated by the followingmodel clas-
ses:

xðt; cÞ ¼ Buðt; cÞ; ð10Þ

and

xðt þ 1; cÞ ¼ Axðt; cÞ: ð11Þ

We term Eq (10) the tuning model class (B 2 RN×M defines each neuron’s tuning for exter-
nal variables), and Eq (11) the dynamical model class (A 2 RN×N specifies linear dynamics).

Claim:Models of the form Eq (10) (Eq (11)) generate datasets having neuron-preferred
(condition-preferred) structure.

Part 1: The tuning model class implies neuron-preferred structure. To begin, note that
Eq(10) can be written as a matrix equation,

XðtÞ ¼ BUðtÞ: ð12Þ

For any Ti 2 {1,. . .,T}, Eq (12) implies,

½Xð1Þ Xð2Þ � � � XðTiÞ � ¼ B½Uð1Þ Uð2Þ � � � UðTiÞ �; ð13Þ

or, more compactly, X(1) = BU(1). For the mode-2 unfolding, given Eq (12) we can also write,
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.
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. ..
.
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Uð1Þ

Uð2Þ

..

.

UðTiÞ

2
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6
6
6
6
4

3

7
7
7
7
7
5

; ð14Þ

i.e.,Xð2Þ ¼ U ð2ÞðITi 
 B>Þ where ITi is the Ti × Ti identity matrix and
 denotes the Kronecker
product. Thus,

xðt; cÞ ¼ Buðt; cÞ()Xð1Þ ¼ BU ð1Þ()Xð2Þ ¼ U ð2ÞðITi 
 B>Þ: ð15Þ

We can take without loss of generality rank(B) =M. Thus, rank(X(1)) = rank(BU(1)) = min
(M,rank(U(1)))�M. On the other hand rank(X(2)) = rank(U(2))�min(C,MTi). (To see this
note that U(2) is size C ×MTi and ðITi 
 B>Þ is sizeMTi × NTi and full rank). Thus, the rank of
the mode-1 unfolding is strictly bounded byM (which is fixed by the model) while the rank of
the mode-2 unfolding can grow arbitrarily with C and Ti (which can be increased by the experi-
menter). Thus, datasets generated by the tuning model class are neuron-preferred when the
inputs are unconstrained, i.e. when rank(U(2)) grows beyondM with increasing Ti. This shows
part 1 of the claim.

Part 2: The dynamicalmodel class implies condition-preferred structure. Eq (11) can
be written X(t + 1) = AX(t), which admits the solution

XðtÞ ¼ At� 1Xð1Þ; ð16Þ

where the matrix At−1 maps initial states to the state at time t. We define the tensorA 2
RN�N�T to be the collection of all matricesAt−1 for t = 1,. . .,T (from here, the definitions of A(1)

Tensor Structure of M1 and V1 Population Responses

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005164 November 4, 2016 29 / 34



and A(2) follow). We can now write
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Xð1Þ: ð17Þ

More compactly:X(2) = X(1)>A(2). To findX(1), given Eq (16) we can write

½Xð1Þ Xð2Þ � � � XðTiÞ � ¼ ½ IN A � � � ATi � 1 �
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: ð18Þ

More compactly:Xð1Þ ¼ Að1ÞðITi 
 Xð1ÞÞ. Thus,

xðt þ 1; cÞ ¼ Axðt; cÞ()Xð1Þ ¼ Að1Þ ITi 
 Xð1Þ
� �

()Xð2Þ ¼ Xð1Þ>Að2Þ: ð19Þ

We note that the rank of the mode-1 unfolding can grow with Ti,

rankðXð1ÞÞ � rankð½Xð1Þ AXð1Þ�Þ � rankð½Xð1Þ AXð1Þ A2Xð1Þ�Þ � � � � ; ð20Þ

and can eventually reach the maximum of rank(A) (due to the Cayley-Hamilton theorem). On
the other hand, rank(X(2)) = rank(X(1)), where equality follows becauseX(1)> is a submatrix
of X(2). The rank of the mode-2 unfolding thus does not grow with Ti. Therefore, datasets gen-
erated by the dynamical model class are condition-preferred when rank([X(1)AX(1)])> rank
(X(1)), i.e. whenever the matrix Amaps the initial states into a subspace not spanned by the
columns of X(1). This completes part 2 of the claim.

Low-rank assumptions pertaining to the above derivation

Given the above, a natural expectation is that X(t) = BU(t)) rank(X(1))� rank(X(2)) with
rank(X(2)) growing as more times are considered. Similarly one expectsX(t + 1) = AX(t))
rank(X(2))� rank(X(1)) with rank(X(1)) growing as more times are considered. These expecta-
tions will indeed hold given reasonable low-rank assumptions. The first inference (that tuning
models imply a neuron-mode preference) depends upon recording more neurons and condi-
tions than the presumed number of represented variables, i.e., we needN>M and C>M.
Otherwise it is possible for min(C,MTi) (the limit on rank(X(2))) to be smaller thanM (the
limit on rank(X(1))). In practice, the adequacy of the data can be evaluated by testing whether
results change whenmore neurons/conditions are added. Importantly, the present results did
not depend upon neuron/condition count. For example, effects are equally strong in Fig 4F
and Fig 4G despite a threefold difference in the number of analyzed neurons and conditions.
Still, the possibility of data being neuron- or condition-limited is a real one, and provides
strong motivation to analyze datasets with many neurons and many diverse conditions.

The second inference (dynamical models imply a condition-mode preference) depends
upon the assumption rank(X(1))< rank(A). In other words, the set of initial states (one per
condition) must occupy a proper subspace of all states visited as the dynamics governed by A
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unfold. Otherwise rank(X(1)) = rank(X(2)) regardless of how many times are considered (i.e.,
the red and blue traces in Fig 4 would be equal and would not rise with time). In practice the
assumption rank(X(1))< rank(A) is reasonable, both because we never observed the above sig-
nature for any dataset and because we have recently shown that M1/PMd preparatory states do
not occupy all dimensions subsequently explored duringmovement [61].

In summary, the key low-rank assumptions are likely to be valid when consideringmany
neurons and diverse conditions. Models of the form X(t) = BU(t) will thus have a stable rank
(X(1)) and an unstable rank(X(2)). Models of the form X(t + 1) = AX(t) will have a stable rank
(X(2)) and an unstable rank(X(1)). The converse inferences will also hold. If rank(X(1)) is stable
as times are added then the data can be factored as in Eq (13) and thus modeled as X(t) = BU
(t). If rank(X(2)) is stable then the data can be factored as in Eq (17) (possibly requiring a time-
varyingA) and thus modeled as X(t + 1) = AX(t).

Time-varying dynamics

Part 2 of the above claim extends naturally to the equation X(t + 1) = A(t)X(t), a time-varying
linear dynamical system. As long as the dynamics—the (potentially time-varying) vector fields
—are the same across conditions then the above arguments hold. Thus, while the appearance
of condition-preferred structure depends on the constraints imposed by dynamics, such struc-
ture does not depend on time-invariant dynamics. Because dynamical systems can often be
approximated as time-varying linear systems (especially over short timescales), condition-pre-
ferred structure is likely to be common whenever population structure is shaped by strong
dynamics.

Measuring rank

Empirical neural data inevitably include sampling noise in the estimated firing rates, due to
finite trial-counts from spiking neurons. Similarly, some degree of nonlinearity is always pres-
ent in the form of spiking thresholds or deeper nonlinearities in the underling representations
or dynamics. Thus, the measuredX(1) and X(2) will always be full rank. In practice, we therefore
evaluated not the ranks of X(1) and X(2) per se but the success of rank-k reconstructions of X(1)

and X(2). In simulations we found that this approach works well. Reconstruction error is
increased by the addition of noise or nonlinearities, but this occurs approximately equally for
both X(1) and X(2). Thus, the preferred-mode analysis is still able to successfully differentiate
datasets generated by static nonlinear tuning models from autonomous nonlinear dynamical
models (e.g., Fig 4).
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