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Abstract

Background: Co-expression networks have been a useful tool for functional genomics, providing important clues
about the cellular and biochemical mechanisms that are active in normal and disease processes. However, co-expression
analysis is often treated as a black box with results being hard to trace to their basis in the data. Here, we use both
published and novel single-cell RNA sequencing (RNA-seq) data to understand fundamental drivers of gene-gene
connectivity and replicability in co-expression networks.

Results: We perform the first major analysis of single-cell co-expression, sampling from 31 individual studies. Using
neighbor voting in cross-validation, we find that single-cell network connectivity is less likely to overlap with known
functions than co-expression derived from bulk data, with functional variation within cell types strongly resembling that
also occurring across cell types. To identify features and analysis practices that contribute to this connectivity, we perform
our own single-cell RNA-seq experiment of 126 cortical interneurons in an experimental design targeted to co-expression.
By assessing network replicability, semantic similarity and overall functional connectivity, we identify technical factors
influencing co-expression and suggest how they can be controlled for. Many of the technical effects we identify are
expression-level dependent, making expression level itself highly predictive of network topology. We show this occurs
generally through re-analysis of the BrainSpan RNA-seq data.

Conclusions: Technical properties of single-cell RNA-seq data create confounds in co-expression networks which can
be identified and explicitly controlled for in any supervised analysis. This is useful both in improving co-expression
performance and in characterizing single-cell data in generally applicable terms, permitting cross-laboratory comparison
within a common framework.
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Background
Biology has increasingly looked to relationships between
genes to explain phenotypic variability. One way to
determine these functional groupings is from transcrip-
tional data; genes with similar expression patterns are
thought to be involved in the same cellular pathway or
function [1]. Networks derived from expression data
have become an important resource in the interpretation
of gene function [2] and disease [3]. Co-expression
networks are built from an assessment of similarity,
often correlation, between gene pairs across sources of
variation (see Box 1 for more detail). For bulk RNA se-
quencing (RNA-seq) and microarray data, the sources of
variation are manifold, and pinpointing driving factors

has been challenging. For example, co-expression signals
may be interpreted as reflecting compositional differ-
ences, such as varying proportions of underlying cell
types within a tissue, or cell-state differences, like the
circadian rhythm, or some combination of both, with
data quality and technical variation further complicating
interpretation (see Fig. 1).
Single-cell RNA-sequencing (scRNA-seq) data provide

the opportunity to gain insight into expression hetero-
geneity at finer resolution. scRNA-seq has now been
applied to many human and mouse tissue types at
multiple stages of development, including the lung,
spleen, brain, retina, embryonic stem cells, and lum-
bar dorsal root ganglia, among others [4–11]. Because
the primary aim of many scRNA-seq studies is to deter-
mine novel, transcriptionally defined cell types, most com-
putational work in this area has focused on unsupervised
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clustering and differential expression, techniques that are
affected by the technical variability and low data coverage
inherent to scRNA-seq (for review see [12]). Co-expression
of scRNA-seq data remains relatively uncharted territory
(although see [6, 10, 13–19]). The increased prevalence of
single-cell data makes it possible to consider its co-
expression properties in aggregate, where functional signals
are most robust [20].
Here we have attempted the first major analysis of

single-cell co-expression, including a meta-analysis of
scRNA-seq expression, sampling from 31 individual
studies comprising 163 individual cell types (Table 1). By
comparing networks made from individual cell types to
networks containing all of the cell types assayed within
an experiment, we can assess the effects of cell-state and
compositional variation on functional connectivity
(where “functional” refers to known overlaps with gene
sets defined to have a common function by the Gene
Ontology [GO]). In addition, we compared single-cell
data to 239 bulk RNA-seq experiments as an external
control (Additional file 1: Table S1). From these data, we
found that single-cell network connectivity is signifi-
cantly predictive of function, particularly in aggregate,
but is less likely to overlap with known functions than
co-expression derived from bulk data. Most interestingly,
assessing single-cell data in which cell type was held
constant in each network (i.e. excluding compositional
co-expression) showed little decrease in performance on
this task, suggesting that gene sets varying from cell to
cell within a cell type are similar to those that vary from
cell type to cell type.
To complement this analysis, we performed our own

technically controlled scRNA-seq experiment using gen-
etically targeted interneuron classes to further interro-
gate data features and analysis practices that contribute
to functional connectivity in co-expression networks.
Chandelier cells and parvalbumin-positive fast-spiking
basket cells were prepared in a series of batches of 16
cells to generate co-expression networks for each [21].
This allowed us to take the same meta-analytic approach
we took to cross-laboratory comparison to characterization
of technical properties within our data by performing a
meta-analysis across batches. We focused on the principal
source of variation reported on in MAQC-III, library prep-
aration, which was done independently for each batch [22].
In addition, because normalization plays a critical role in
technical assessment, we used varietal tags [23] (similar to
unique molecular identifiers [UMI]) to measure discrete ex-
pression values. We then assessed a number of approaches
for parsing the data, attempting to sample from fundamen-
tal statistical methods whose results are highly likely
to generalize to new approaches and whose output is
readily interpretable and robust (i.e. not prone to
overfitting).

Box 1. Glossary of terms

Co-expression network – A representation of gene-gene

relationships, built by measuring expression profile similarity

across samples. Genes are denoted as “nodes” in the network

and the connections between genes are called “edges”. A

“weighted” network contains information about the strength

of the connections between genes. “Signed” networks contain

information about the direction of the association (i.e. positive

vs. negative correlations).

Fully connected network – A network containing a connection

between every gene-gene pair.

Sparse or thresholded network – A network containing

information only about gene pairs with strong connections. To

generate spare networks, a threshold will be picked to define

“strong” connections; the top 0.5 % of the network (i.e.

standardized edge weights > =0.995) is commonly used [20].

Node degree – A measure of gene (a.k.a. “node”) connectivity

within a network. A gene’s node degree is calculated by adding

up the strength of its connections to other genes (a.k.a. “edge

weights”). Genes with high node degree are commonly referred

to as “hub genes”.

Functional connectivity – Refers to gene-gene connections that

overlap with known cellular or biological processes as defined

by the Gene Ontology (i.e. gene functions).

Neighbor voting – A method to classify genes into known

categories based on gene-gene connections (i.e. the gene’s

“neighborhood”). In our study, candidate genes were scored by

dividing the sum of the ranks of the gene connections (i.e. edge

weights) within the training set by the sum of the ranks of all

gene connections.

Cross-validation – A method to estimate how well the results of

an analysis will generalize. The main purpose of cross-validation

is to avoid overfitting to a particular dataset. There are many

ways to implement cross-validation; in this study we use both

threefold and n-fold cross-validation. In threefold cross-validation,

we hide one-third of the known gene labels, then make

predictions about unlabeled genes. This is repeated three times

(i.e. for each fold). In n-fold cross-validation, we hide labels one at

a time, making predictions as each label is hidden, until we have

tested all of the genes within a particular gene set.

Performance – The metric used to quantify “functional

connectivity” in our study. This refers to the area under the

receiver operating characteristic curve (AUROC).

Semantic similarity – A measure of gene-gene relatedness based

on the number of shared GO functions.

Topology – The layout, or connectivity patterns, of a network.
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This strategy proved successful as we were able to de-
lineate straightforward heuristics to inform the design
and interpretation of scRNA-seq co-expression analysis.
In short, we found that the use of raw or batch-
corrected UMI data and post-co-expression network
standardization provided the highest degree of network
replicability, semantic similarity among top connections,
and overall functional connectivity. However, we found
that gene expression levels within these networks were
highly predictive of node degree and functional connect-
ivity, which led us to propose control experiments, like
the use of expression-matched control gene sets, to as-
sess performance specificity. This finding further allowed
us to tunnel into the known dependency of network per-
formance on node degree [24], which we reproduced in
this analysis of bulk and single-cell data. Based on this,
we made the prediction that previous claims about age-
related co-expression specificity of autism candidate

genes using the BrainSpan RNA-seq data [25] may bene-
fit from control for the possibility of differential expres-
sion across the same data. Indeed, we found evidence
that variation in autism gene connectivity was predicted
by expression level, with the highest performance and
expression in pre-natal networks, but the highest de-
pendency on this potential confound within post-natal
networks.
Our results have a number of direct implications for

single-cell analysis and co-expression more generally:

� Where co-expression can be explained by simpler
effects, it is important to do so. Expression level
dependence should be a default control for all
co-expression analyses.

� Normalization of data is not independent of the use
to which that data will be put. In particular, sample
normalization which is helpful for differential

Fig. 1 What lies beneath: co-expression can reflect different combinations of cell-state or compositional variation. Each panel shows a different
scenario in which cell state and composition affect the expression of two genes (A and B), yielding different types of co-expression. Two cell types
are colored in red and blue. In the top panel, both cell types have state-dependent variation that causes co-expression within each (r ~ 0.75). In
addition, there is co-expression due to compositional variation (r ~ 0.75). In the bottom left panel only compositional variation is apparent (r ~ 0.65),
there is no relationship between gene A and gene B within the cell types (r ~ 0). This is the opposite in the bottom right panel. Here, there is only
variation within the cell types (r ~ 0.95) but no compositional effect across cell types (r ~ 0). The exact value the compositional correlations take would
vary in real data since combinations of the underlying cell types would fill in intermediate points, but the three cases would still occur as described;
other possibilities due to noise or other complex scenarios (e.g. Yule-Simpson effect) are also possible
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expression may be damaging for co-expression. As
in expression-level dependence, single-cell data offer
particular clarity on the role of these effects.

� Compositional co-expression likely overlaps with
state co-expression. Whether this is because our
knowledge of gene function is not yet cell type-
specific or because co-expressed genes form similar
functional units across cells or cell types is a question
of importance for future biological research.

While our analysis suggests technical concerns will be
critical to the interpretation of scRNA-seq co-expression
for some time, careful experimental design and analysis

choices, such as the inclusion of replicates and testing
for technical confounds, can overcome these issues and
open new avenues for biological research.

Results and discussion
Meta-analysis of scRNA-seq co-expression
Co-expression networks have been used to provide
important clues about the cellular and biochemical
mechanisms that may be active in normal and disease
processes. An outstanding question in the characterization
of co-expression is the relative importance of variable
sample composition in real terms (e.g. the proportion of
neurons vs. glia in a brain sample) versus variability in cell

Table 1 Single-cell RNA-seq expression studies used for meta-analysis, sorted by GEO ID (GEO ID = Gene Expression Omnibus
Identifier). Experiments were defined by unique GEO ID

First author Year Journal GEO ID Samples Cell types

Deng 2014 Science GSE45719 266 9

Streets 2014 PNAS GSE47835 56 1

Treutlein 2014 Nature GSE52583 184 6

Jaitin 2014 Science GSE54006 12 1

Kim 2015 Cell Stem Cell GSE55291 56 3

Biase 2014 Genome Research GSE57249 40 1

Kowalczyk 2015 Genome Research GSE59114 1933 12

Brunskill 2014 Development GSE59127 86 1

Brunskill 2014 Development GSE59129 49 1

Brunskill 2014 Development GSE59130 57 1

Usoskin 2015 Nature Neuroscience GSE59739 638 5

Sansom 2014 Genome Research GSE60297 174 1

Zeisel 2015 Science GSE60361 2975 7

Kumar 2014 Nature GSE60749 415 4

Velten 2015 Molecular Systems Biology GSE60768 100 3

Moignard 2015 Nature Biotechnology GSE61470 15 1

Grun 2015 Nature GSE62270 1154 12

Macosko 2015 Cell GSE63472 8120 38

Li 2015 Cell Research GSE63576 204 1

Lindeman 2015 Current Biology GSE64960 67 1

Klein 2015 Cell GSE65525 8649 6

Chen 2015 Developmental Cell GSE66202 91 3

Du 2015 Thorax GSE69761 148 1

Fuzik 2015 Nature Biotechnology GSE70844 76 1

Shin 2015 Cell Stem Cell GSE71485 167 2

Tasic 2015 Nature Neuroscience GSE71585 1740 8

Burns 2015 Nature Communications GSE71982 278 13

Gaublomme 2015 Cell GSE74833 722 13

Kimmerling 2015 Nature Communications GSE74923 178 2

Hanchate 2015 Science GSE75413 84 4

Fan 2016 Nature Methods GSE76005 65 1
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state (e.g. the engagement of different molecular players
throughout the phases of the cell cycle). The increasing
availability of scRNA-seq data allows us to answer this
question by comparing networks built from specified cell
types, which should have only state-dependent co-
variance, to networks built from ensembles of different
cell types from the same experiment (Fig. 1). These
pseudo-composite networks would have similar technical
properties to the individual cell-type networks but would
contain compositional variation in addition to state vari-
ation. Comparing these in meta-analysis across many ex-
periments that use different biochemical and informatics
protocols allows us to draw conclusions that are likely to
generalize rather than being specific to any one technol-
ogy or analysis practice.
Using a neighbor-voting algorithm in cross-validation

we assessed the connectivity of a representative subset
of GO functions (GO slim) in all networks. In essence,
the algorithm predicts a gene will have a given function
based on the proportion of its connectivity to genes that
already have that function (i.e. the sum of the gene’s
edge weights within the function divided by the gene’s
node degree). This can then be assessed for correctness
by holding back some functional labels, as is conven-
tional in cross-validation. A network’s performance is
the average score for each GO function and is reported
as the area under the receiver operating characteristic
curve (AUROC). The intuitive interpretation of the
AUROC score is the probability that we would be right
about classifying genes as belonging to a particular GO
function or not. Our lab has done extensive testing and
benchmarking of this algorithm against both more so-
phisticated machine learning methods, and using varying
methods for network generation (e.g. partial correlation,
mutual information, etc.), and found that results were
robust [21, 26]. This gives us confidence that the ap-
proach is likely to generalize. Results from our single-
cell analysis are discussed in more detail in the following
sections.

Single-cell co-expression exhibits lower functional
connectivity than that derived from bulk data
scRNA-seq co-expression network performance has not
previously been assessed, so to benchmark functional
connectivity of single-cell networks, we first compared
them to bulk RNA-seq co-expression networks where
there is a prior expectation that networks built from 15
or more samples should show some non-random per-
formance in predicting GO functions (i.e. they should
have AUROCs >0.5, see [21] for more detail). We parsed
data from 31 individual scRNA-seq studies into 163 cell
types comprising 28,799 samples in total and 239 bulk
RNA-seq experiments of similar sample sizes (Table 1 and
Additional file 1: Table S1, and details in “Methods”).

Signed, weighted networks were built for each cell type
and for each bulk RNA-seq experiment by taking the
Spearman correlation of all genes, then rank standardizing
correlations between 0 and 1, which is a method to reduce
the impact of experiment-specific factors such as outlier
samples which could alter the correlation distribution be-
tween gene pairs substantially, but would have much less
impact on their relative ranking. This produces networks
in which each gene has a degree of connectivity with each
other gene (i.e. a fully connected network); the higher
the correlation between a gene pair, the higher the
weight on their connection. Notably, individual single-
cell networks had lower performance than bulk net-
works (Fig. 2a, mean sc AUROC = 0.56 +/– 0.002
SEM (used throughout), mean bulk AUROC= 0.60 +/–
0.002, p <2–16 Wilcoxon rank sum test, n = 163, = 239),
indicating that the greater homogeneity of the single-cell
data does not necessarily improve functional precision of
co-expression networks.
Some of the power of meta-analysis comes from the

ability to summarize data from multiple sources using a
common analytic framework. In our case, this takes the
form of network aggregation, where individual networks
are combined to form an aggregate network [20, 21, 27].
We add networks one by one, permuting the order of
combination through multiple runs, which allows us to
measure the dependence of aggregate network perform-
ance, and variation in performance, on the number of
experiments. For both bulk and single-cell networks, ag-
gregation was repeated ten times and GO slim perform-
ance was assessed after each additional network was
added (Fig. 2a); comparisons between bulk and single-
cell aggregates were made using 163 datasets in each. As
expected, aggregation improves performance for bulk
networks (mean individual network AUROC = 0.60 +/–
0.001, aggregate AUROC = 0.73). Interestingly, aggrega-
tion also improves performance for single-cell networks,
which indicates that there is replicable co-expression
across diverse cell types (mean individual network
AUROC = 0.56 +/– 0.002, aggregate AUROC = 0.68).
AUROC scores are consistently lower in the single-cell
aggregate than in the bulk aggregate, though per-
formance across GO slim categories is well corre-
lated (rs = 0.89) (inset Fig. 2a). The use of another
publicly available gene function prediction algorithm,
GeneMANIA [28], yielded similar results (bulk ag-
gregate AUROC = 0.70, sc aggregate AUROC = 0.61,
GO slim performance correlation rs = 0.74), indicat-
ing that this is a general property of the data, rather
than being specific to our network analysis algorithm
(Additional file 2: Figure S1).
Although single-cell networks have lower performance

than bulk networks, their variation in performance is simi-
lar, with some exceptions (Additional file 2: Figure S1).
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We also find that variation is positively correlated with
performance (Additional file 2: Figure S1). One possibility
to account for this reduced performance is that single-cell
co-expression aligns less with known biology due to some
greater specificity; alternatively, it could reflect technical

1artefacts within single-cell data, such as batch effects or in-
complete transcriptome coverage. We explore both possibilities
in our own experiments below (see “Assessing practices affect-
ing co-expression replicability and functional connectivity”).

Compositional variation does not add functional signal on
top of that due to cell-state variation
The striking overlap between single-cell and bulk data in
overall functional performance trends suggest a potential
overlap between cell-state and compositional co-expression,
the latter being likelier to occur in bulk data. To unravel
these potential influences in driving functional connectivity
within co-expression, we went on to generate pseudo-
compositional scRNA-seq networks. These were built by
taking Spearman correlations of all genes and all samples
within an individual scRNA-seq study (including across
cell types), then rank standardizing correlations between 0
and 1. Next, pseudo-compositional networks were aggre-
gated and GO slim performance was compared to that of
the cell-type aggregate. Interestingly, cell-type networks
performed almost identically to pseudo-compositional
networks (Fig. 2b), suggesting that compositional variation
does not provide excess functional signal to cell-state vari-
ation (e.g. as in the top panel of the schematic, Fig. 1).
This is further underscored by the lack of excess variation
when comparing the standard deviation in performance
across cell-type and pseudo-compositional networks; cell-type
data are not visibly providing outlier functionality for net-
works from specific cell types (Additional file 2: Figure S1).
In sum, we find that single-cell networks have lower

functional connectivity than bulk RNA-seq networks,
likely due to the same technical issues that have been dis-
cussed in other contexts [29–33] and which are inherent
to current scRNA-seq protocols (e.g. incomplete tran-
scriptome coverage). In addition, it appears that variation
in cell state alone is sufficient to produce functional signal
within scRNA-seq networks and likely overlaps with vari-
ation across cell types. Because many single-cell studies
are using their data to investigate cell state, our finding
that known co-expression remains robust within data of
constrained variation (e.g. single cell type) suggests that
this may be a useful means of benchmarking the impact
of technical effects. That is, we expect a known co-
expression signal even in data that samples from previ-
ously unseen sources of variability and so we can assess
methodological impacts even in wholly novel data. In the
following section, we apply this approach to determine
data features and analysis practices that contribute to
functional connectivity in co-expression networks.

Assessing practices affecting co-expression replicability
and functional connectivity
Our meta-analytic results provided a functional connect-
ivity benchmark for single-cell co-expression. Although

Fig. 2 scRNA-seq networks have lower functional connectivity than
bulk RNA-seq networks and state-driven performance is highly
correlated with compositional performance. a Individual bulk and
scRNA-seq networks were aggregated ten times in random order
by averaging rank co-expression values, then re-ranking the
resulting network. Receiver operating characteristic (ROC) scores
for GO slim categories were calculated as each additional network was
added. Individual runs are shown in gray (bulk) and pink (sc), and
means are shown in black and red. Performance rises with aggregation
for both bulk and sc networks, but sc networks have much lower
baseline functional connectivity. Inset: Aggregate single-cell network
(163 cell types) GO slim AUROCs are plotted against those of
the aggregate bulk network (163 experiments). Performance is
strongly correlated (r = 0.89) but is consistently lower in the
single-cell aggregate. b Aggregate cell-type network GO slim
AUROCs are plotted against those of the pseudo-compositional
aggregate network. Performance is strongly correlated
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co-expression replicated across networks, individual
network performance was moderately variable (standard
deviation in GO slim performance = 0.022, ~1/3 of AUROC
above the null) and was not obviously predicted by sample
size (rs = 0.11), with the exception that very large experi-
ments (>1000 samples) tended to have lower performance
(mean AUROC of small experiments = 0.56 +/– 0.0001,
mean AUROC large experiments = 0.5 +/– 0.02). Many
technical and biological features vary across datasets, so to
investigate the factors that might contribute to this vari-
ation with greater precision, we performed our own
technically controlled scRNA-seq experiment. We profiled
genetically targeted Chandelier cells (ChC) and parvalbumin-
positive fast-spiking basket cells (Pv), two GABAergic inter-
neuron types that are known to show some overlap and
heterogeneity [34], making their characterization non-trivial
but also a real use-case within randomly sampled data. Sam-
ples were prepared in known batches of 16 cells and we took
advantage of varietal tag technology (similar to UMI) to meas-
ure discrete expression values [23] (sample details can be
found in Additional file 3: Table S2). This experimental design
allowed us to take a similar meta-analytic approach to that
used in the previous section, but in this case treating each
batch, rather than each cell type, as a replicate experiment.
We aimed to test the impact of standardization, expression
level, and drop-outs as these are the main features likely to
have an impact, based on previous expression quality control
[22] and single-cell analysis [29, 30, 35]. To do this we gener-
ated co-expression networks for each batch after varying the
input data as specified (see Table 2), made aggregates for each
input variant, then compared them to both known informa-
tion (GO functions), described in “Characterization with re-
spect to previously known function,” and for topological
properties, described in “Characterization with respect to top-
ology.” All assessments are summarized in Table 3.

Characterization with respect to previously known function
For differential expression, it is standard to perform sample-
level standardization to ensure that technical factors, like se-
quencing depth, do not obscure class differences. UMI data
are typically standardized by dividing the count of the num-
ber of molecules by the total count per sample, then multi-
plying by a large number (sometimes called TPM or CPM
for “counts-per-million” normalization) [7]. One aspect of
this that is important for co-expression is that it renders the
data compositional in a mathematical sense: each gene’s ex-
pression level is really a fraction of the total. This could be
problematic for co-expression analysis because it induces
unintended co-variation, particularly among low expressing
genes. To investigate the functional consequences of this for
co-expression analysis, we again did a similar aggregation
procedure for our eight batches using either standardized
(CPM) data or unstandardized (UMI) data, then used neigh-
bor voting in cross-validation to test the connectivity of GO

slim gene sets. Similar to our meta-analysis results, GO slim
performance was fairly low (mean AUROC UMI = 0.54 +/–
0.002, mean AUROC CPM=0.54 +/– 0.001) but did rise
with aggregation (UMI = 0.56, CPM=0.55) suggesting rep-
licable functional connectivity among batches (Fig. 3a). UMI
networks had higher performance both for GO slim and
also for a gene set of specific functional relevance to our
data, post-synaptic proteome genes (inset Fig. 3a, mean
AUROC UMI= 0.73 +/– 0.004, mean AUROC CPM=0.69
+/– 0.005, see [36] for PSD gene list).
To begin to explore the impacts of other technical fac-

tors on connectivity (outlined in Table 2), we compared
the semantic similarity of the top 1 % of connections
across the genes common to all networks. Semantic simi-
larity assessment is useful in this scenario as it provides a
robust, single value per network across all functions [20].
Similar to what we observed with the whole network func-
tional connectivity assay, the top 1 % of connections in
the UMI aggregate have higher semantic similarity than
those of the CPM aggregate (mean UMI = 4.90 +/– 0.058,
mean CPM= 3.52 +/– 0.054). As might be expected, bin-
ary aggregates, which have the least information about ex-
pression variation, showed the lowest semantic similarity
among the top 1 % of connections (Fig. 3b, mean = 3.26
+/– 0.054 overlapping GO functions). By contrast, UMI
networks with zeroes excluded showed semantic similarity
extremely similar to UMI networks with zeroes included
(mean UMI zeroes excluded = 4.97 +/– 0.058 vs. mean
UMI 4.90 +/– 0.058). Because excluding zeroes will pref-
erentially impact low-expressing genes, this suggests they
play little aggregate role in the functional connectivity of
the network. This is reinforced by the lower performance
of the binary aggregate, where high-expressing genes will
show little variation and therefore little connectivity. We
focus more specifically on the role of expression in net-
work topology and function below (see “Identifying and
controlling for expression level confounds in co-expression
network analysis”).
Another interesting result concerned the effects of

batch correction. Though meta-analysis of co-expression
across batches is one method to reduce the influence of
technical factors (i.e. merging networks), in other in-
stances, researchers may wish to correct for technical
factors directly by using batch correction algorithms (i.e.
merging data). To test the effects of two well-known
methods, we performed batch correction for each cell
type using Combat [37], an empirical Bayes method of
data adjustment that requires knowledge of batches, as
well as RUV [38], which uses factor analysis to estimate
batch effects based on data properties and can also in-
corporate known control genes (in our case, ERCC spike-
ins) to normalize data. Following this, batch-corrected
cell-type networks were aggregated. Notably, Combat cor-
rected UMI data showed much higher semantic similarity
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Table 3 Methods used to assess co-expression networks

Assessment Property tested Method and interpretation

Co-expression performance Functional connectivity of each
GO group

• Neighbor voting for GO functions, threefold cross-validation

• AUROC >0.5 means the genes within the GO group have
greater connectivity than may be expected by chance

Within-network semantic similarity
(thresholded)

Functional connectivity of the
network

• Number of GO functions in common among top 1 % of
network connections

• A higher value indicates greater functional similarity among
top connections

Between-network similarity (thresholded) Topology • Jaccard index (intersect/union) over top 1 % connections

• Values closer to 1 imply greater similarity between networks

Co-expression performance after
aggregation

Replicability of functional
connectivity

• Neighbor voting for GO functions as datasets are added
together to form aggregate networks

• Improvement with aggregation suggests specific replicability
of functional connections

Aggregate connectivity distributions Replicability of topology • Rank standardized networks (with uniform distributions) are
added together to form an aggregate network, then the
standard deviation across all co-expression values is measured

• Higher variance indicates greater replicability of topology
among networks

Table 2 Network variations used for technical assessment. NB: for all networks undefined correlations are set to 0

Network Method Property tested

UMI • Spearman correlation of UMI data to make a network for
each batch

• Batch networks are rank standardized then aggregated

Do UMI expression estimates produce functional
co-expression?

CPM • Spearman correlation of CPM normalized data to make a
network for each batch

• Batch networks are rank standardized then aggregated

What types of artifacts can sample standardization
introduce?

Batch-affected • Spearman correlation across all samples using UMI data
• Rank standardization

What impact does co-variation across batches have?

Binary expression • All non-zero values are set to 1
• Spearman correlation to make a network for each batch
• Batch networks are rank standardized then aggregated

How informative is gene representation?

Combat • UMI data is log2 transformed then Combat is run for
each celltype (ChC and Pv)

• Spearman correlation to make a network for each cell type
• Aggregate is made from the addition of rank-standardized
ChC and Pv networks

Do methods for removing batch effects alter
co-expression?

Removal of unwanted
variation (RUV)

• UMI data is log2 transformed then RUV is run for each cell
type (ChC and Pv) using ERCC spike-ins as control genes

• Spearman correlation to make a network for each cell
type

• Aggregate is made from the addition of rank-standardized
ChC and Pv networks

What are the combined influence of batch
correction and ERCC-based normalization?

UMI excluding zeroes • All zeroes are set to NA
• Networks are made for each batch using pairwise
Spearman correlation

• Batch networks are rank standardized then aggregated

How does removing zeroes alter network topology
and performance?
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among top connections than RUV corrected data (Fig. 3b,
mean Combat = 4.90 +/– 0.058, mean RUV = 3.72 +/–
0.055). Furthermore, comparison of the distribution of
connections indicated no significant differences between
Combat, UMI, or UMI excluding zeroes (p >0.2 for
all comparisons, Kolmogorov-Smirnoff test); however,
a significant difference was found between these and the
distribution of connections from the batch-affected net-
work despite having similar aggregate semantic similarity

(Fig. 3b, mean batch affected semantic similarity = 4.67 +/–
0.058, p <1E-3 for all pairwise comparisons, Kolmogorov-
Smirnov test). Indeed, all other networks exhibited distribu-
tions that were distinctive (all other pairwise comparisons p
<1E-3, Kolmogorov-Smirnoff test).

Characterization with respect to topology
Next, we aimed to characterize networks in an unsuper-
vised way, without relying on the GO to determine

Fig. 3 Comparative network analysis shows higher functional connectivity, semantic similarity, and convergent co-expression of UMI-based
aggregates. a For each batch network, functional connectivity was benchmarked against 108 GO slim categories then networks were randomly
selected and aggregated ten times. Networks built from raw UMI data are shown in black and count-per-million (CPM) standardized data are
shown in red. As in our meta-analysis of single-cell networks, performance rises with aggregation, indicating an overlap in functional signal among
networks. CPM networks have significantly lower functional connectivity than UMI networks (mean UMI = 0.54 +/– 0.002, mean CPM+ 0.54 +/– 0.001,
p <0.05 Wilcoxon rank sum, n = 8). Inset: Boxplot of synaptic gene performance for UMI and CPM networks. Though mean GO slim performance is
modest, connectivity of this functionally relevant gene set is high (mean UMI = 0.73 +/– 0.004, mean CPM= 0.69 +/– 0005). b Semantic similarity of
top 1 % network connections assessed by the number of shared GO functions. The red line indicates mean semantic similarity of all genes. Lower
semantic similarity is observed for CPM, removal of unwanted variation (RUV), and binary expression aggregates compared to UMI-based networks.
c Plot shows pairwise comparisons of top 1 % network connections based on the Jaccard index. UMI-based networks are more similar to one another
than to CPM, RUV, and binary expression networks. d Standard deviation of aggregate co-expression values, red line marks the amount of variance
expected by chance. All aggregates are more variable than random, indicating the presence of replicable co-expression among individual networks
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functional overlaps. We did this in two ways, the first of
which was to threshold networks at 1 % and perform
pairwise comparisons of gene-gene connections using
the Jaccard similarity index (JI), where 0 indicates no
overlap and 1 means perfect overlap (Fig. 3c). The re-
sults of this assessment were strongly concordant with
our previous observations. As with the semantic similar-
ity test, we found that the top 1 % of connections from
UMI, UMI excluding zeroes, and Combat-corrected
networks had the highest degree of overlap (JI >0.5
for all pairwise comparisons), and that the binary
aggregate was the most dissimilar from all other
networks (JI <0.03 for all pairwise comparisons).
Interestingly, this analysis provided further insight
into the effect of RUV correction using ERCC
spike-ins, which had the highest similarity to the
CPM aggregate (JIRUV-CPM = 0.1, all others <0.06), as
well as higher similarity to the UMI aggregate than
the Binary and CPM networks do (JIRUV-UMI = 0.06,
JICPM-UMI = 0.03, JIBinary-UMI = 0.01). This suggests
that RUV has some positive batch-correcting effects
(similar to Combat) but these are offset by the
negative compositional effects caused by ERCC-
dependent normalization. In addition to the aggregate as-
sessment, we also tested the individual cell-type networks,
with similar results.
For our final test, we took advantage of our experi-

mental design to describe the replicability of network
co-expression distributions, considering each batch net-
work as a replicate. This was done by comparing the
standard deviation of aggregate co-expression distribu-
tions to the distribution of a randomly permuted null
aggregate (Fig. 3d). Because each of the individual
networks is rank-standardized to a uniform distribution, we
can determine the replicability of co-expression—whether
particular gene pairs are highly ranked in each replicate net-
work—simply by assessing the standard deviation of the
connectivities in the aggregate network. Under the assump-
tion of independence between networks, the aggregate co-
expression distribution is the convolution of the (uniform)
co-expression distributions of the underlying networks.
Greater replicability among batches will yield a wider distri-
bution than would be expected by chance. Note that replic-
ability cannot be comparably assessed for the batch-
corrected data because their aggregates do not treat each
batch independently. To determine the relative contribu-
tion of replicability across the zero and non-zero values of
the networks, we compared the distribution of aggregates
built from binary data to those built from pairwise
correlations excluding zeroes and from all data. As
expected, binary and pairwise aggregates showed
lower variation than full networks as they contain
only a fraction of the signal (Fig. 3d). Furthermore,
all aggregate distributions have higher standard

deviations than random, indicating a greater degree of
replicability than might be expected by chance (binary
and pairwise variation ~1.4–1.6-fold above random,
CPM 1.8-fold, and UMI 2.1-fold).
Our combination of functional and topological ana-

lyses suggests that UMI-based networks show the great-
est degree of functional connectivity, semantic similarity,
and replicability. Interestingly, Combat-corrected aggre-
gates also showed a high degree of semantic similarity
and topological overlap with the UMI aggregate, provid-
ing a useful and novel validation of batch correction
based on co-expression analysis. RUV and CPM aggre-
gates, on the other hand, show lower performance and
semantic similarity though, notably, replicability of CPM
networks is comparable to that of the UMI networks as
evidenced by the topological and aggregation tests.
We suggest that this is likely because sample-level
standardization induces artefactual co-variation (dis-
cussed in [39]) which is replicable across batches. It
is plausible that improvements in either normalization
or network construction may diminish these effects.
The common co-expression approach of only consid-
ering relative gene-gene correlations (e.g. top 1 %,
hierarchical clustering, etc.) is likely helpful for pre-
cisely this reason. Finally, our experiments to deter-
mine the contribution of zero and non-zero values to
co-expression suggest that expression level may play
an important role in driving functional connectivity.
We explore this in further detail below.

Identifying and controlling for expression level confounds
in co-expression network analysis
Expression level influences topology and functional
connectivity in UMI networks
Based on our previous observations, we sought to
visualize the impact of expression level on network top-
ology by directly plotting co-expression networks with
genes ordered by the number of non-zero values they
take. Co-expression is not generally shown in this way,
likely because the topological structure of the data is
normally too complex to admit it [40]. Strikingly, in our
case, UMI network plots are highly structured, with
much stronger co-expression of high expressing genes
than low expressing genes (representative plot in Fig. 4a,
mean correlation between node degree and median ex-
pression level = 0.77 +/– 0.04). Note that this node de-
gree correlation is not expected with all analysis
methods. Standardization practices that induce strong
co-variation among lowly expressed genes will show the
opposite direction of effect (see Additional file 4: Table
S3 and Additional file 5: Figure S2 for more detail).
We hypothesized that the expression-level dependency

within the UMI networks might explain the relative
improvement of the synaptic gene set performance
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compared to other GO categories, reported in the previ-
ous section. We formalized this with an n-fold cross-
validation exercise, where we removed labels from each
gene in the synaptic set one by one and assessed per-
formance. There was a strong relationship between gene
expression and performance (Fig. 4b, mean rs = 0.72 +/–
0.04), indicating that high expression is sufficient to
drive results. We further demonstrated this by testing
the performance of expression level-matched controls;
these were very similar to the real gene set in perform-
ance (mean AUROC synaptic set = 0.73 +/– 0.004, mean
AUROC 100 control sets = 0.72 ± 0.005). To determine
whether high expression is necessary for high perform-
ance, we restricted networks to only include high ex-
pressing genes (with median expression > =16 counts).
This yielded much smaller networks, between 51 and
1368 genes in size (median = 227 genes), of which the
synaptic set made up ~30 % (mean = 29.4 % ± 1.4 %).
Synaptic gene set performance was greatly reduced in
these networks (inset Fig. 4b, mean 0.49 ± 0.03, p <0.0002
compared to non-thresholded networks, Wilcoxon rank
sum test, n = 8).
These results show that UMI-based networks contain

functional information; however, the primary feature is
their dependence on expression level. A natural next
step was to consider whether a subset of genes is biased
and may be removed, yielding a high confidence network
without topological dependency on expression. We
tested this by applying an expression threshold to only
include genes with non-zero values in at least half of the

samples within each batch, yielding 1346 genes in the
intersect. This is a sufficiently stringent criterion that we
have removed the majority of genes (~92 %), but the
sunset structure remains robustly intact (Additional file
5: Figure S2). Indeed, even batch-corrected networks
display this topology (Additional file 5: Figure S2). The
dependency on expression appears to be continuously
distributed across all genes; if the genes most dependent
are removed, the relationship is still present among the
remainder. This highlights the necessity for appropriate
controls, like the use of expression-matched gene sets,
as opposed to filtering. This also suggests that a simpler
analysis, like functional enrichment of highly expressed
genes, may provide as much information as co-expression
using data of this type.

Performance variation can be predicted by expression level
and associated technical features
Individual batch networks show some variation in per-
formance, and we wished to determine whether this
might be explained by the same principles we outlined
above. In keeping with our earlier result, we find a
strong relationship between the average AUROC across
GO functions for each batch network and the total
level of expression within that batch (Additional file 6:
Figure S3, rs = 0.62 between AUROC and total molecule
counts), potentially related to selection bias within the
data (Additional file 6: Figure S3, rs = 0.88 between
AUROC and the number of detected genes). One import-
ant consideration is whether these differences in data

Fig. 4 Functional connectivity is dependent on expression level in UMI networks. a A UMI-based network is plotted as a function of gene expression
level, with co-expression values for highly expressed genes in the bottom left corner and lowly expressed genes in the top right corner. A characteristic
sunset pattern is observed in A, with the highest co-expression values occurring between highly expressed genes. b AUROC for synaptic
set performance in n-fold cross-validation is plotted against median expression level for each held-out gene (plot shows the results from
one network). A strong positive relationship was observed between expression level and performance (mean rs = 0.72 +/– 0.038). Inset:
Box-and-whisker plot of synaptic set performance in networks made from all genes compared to networks made from high expressing
genes only (median > =16 in each batch). A significant reduction in performance was observed in filtered networks (mean AUROC in all
gene networks = 0.73 +/– 0.004, mean AUROC in high expressing networks = 0.49 +/– 0.03, p <0.0002 Wilcoxon rank sum test, n = 8)
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quality are trivially correctable by, for example, increased
sequencing depth. While our level of over-sequencing (i.e.
number of reads per UMI) was in the range of previous
reports using it as a QC metric [41], the correlation be-
tween over-sequencing and performance was strongly
negative (Additional file 6: Figure S3, rs = –0.76). While
this may seem counter-intuitive at first glance, it is easier
to understand when reversed—low complexity data are
easier to sequence and have lower performance—but does
suggest that using over-sequencing for quality control
cannot be done naively. Interestingly, this relationship be-
tween over-sequencing and selection bias is only visible
through the window provided by our use of replicates: the
two properties have little correlation across all samples
(Additional file 6: Figure S3, rs = –0.02).

Expression level explains the node degree dependency of
functional connectivity in the single-cell aggregate network
Having observed a strong dependency of network con-
nectivity on expression level in our UMI networks, we
sought to determine whether this could be observed in
other single-cell networks. The distribution of correla-
tions varied widely across networks, concordant with the

fact that data derive from many experiments and was sub-
ject to a range of normalization procedures (Additional
file 7: Figure S4, –0.53 < rs < 0.85). Because the networks
are very large, this range of correlation values is enor-
mously more variable (and positive) than expected by
chance with mean absolute z-scores of 28.4 after Fisher’s
transformation. While the exact relationship with network
topology will vary depending on normalization, expression
level is critical to consider in virtually every case. Interest-
ingly the data that were most similar to ours, a cortical
interneuron network based on UMI data, also showed a
similarly high positive correlation between node degree
and median expression (rs = 0.71).
Our meta-analytic aggregate networks have higher

performance than any individual network, so to trace
the functional impact of expression level more broadly
than the synaptic gene set we focused on using the ag-
gregate networks. Previous work from our lab has shown
that functional connectivity in gene networks can be
predicted from the node degree of functional genes, with
high node degree genes being good candidates for many
functions [24]. We assess this by using the node degree
as a predictor for each gene function; we control for the

Fig. 5 Node degree and network performance are predicted by expression level in the single-cell aggregate network. Top: GO slim AUROCs and predicted
AUROCs based on node degree are plotted for single-cell and bulk aggregates (163 networks in each). Functional connectivity in both
aggregates is dependent on node degree. Bottom: GO slim AUROCs and predicted AUROCs based on median gene expression are plotted. Single-cell
aggregate performance is predicted by expression; however, there is no relationship between expression and bulk aggregate performance
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role of node degree by making predictions using it alone
(“Node degree performance”) and determining how
much of a given GO group’s performance within the net-
work could be attributable to this factor. Both the bulk
and single-cell aggregate network performance showed a
characteristic V-shaped dependency on node degree due
to our use of signed networks (Fig. 5, top right panel).
Within the scRNA-seq co-expression networks we can,
again, trace this back to a dependency on expression level
(Fig. 5, bottom left panel). However, this is not the case
for the bulk RNA-seq aggregate (Fig. 5, bottom right
panel), possibly because its higher performance means it
is powered sufficiently to overcome single-study (or even
single pipeline) technical artifacts and is therefore robust
to weak expression level variation. Generalizing from this,
because individual bulk studies are not as well powered as
the aggregate networks, we might hypothesize that where
performance variation exists, it may again derive from
simple data features such as expression level. We tested
this through a re-analysis of the BrainSpan data, where
both expression level variation and functional specificity
in co-expression have been previously identified.

Expression level predicts autism candidate gene
connectivity in BrainSpan networks
Our meta-analysis results indicate that aggregation of
bulk RNA-seq data generates a network with robust,
functionally convergent performance that is not
dependent on expression level. However, this does not
preclude the notion that expression level differences can
explain variation in performance where it does occur.
For example, one of the most exciting co-expression re-
sults in recent years has been the finding that candidate
genes for neuropsychiatric disorders such as autism
spectrum disorder (ASD) and schizophrenia tend to be
co-expressed in the brain [3, 42] and vary in their degree
of co-expression by developmental stage [25, 43]. Also
interesting are the independent reports of ASD gene dif-
ferential expression between pre-natal and post-natal
data within BrainSpan [44]. Our results suggest an obvi-
ous link between these results and also the possibility
that the reported differential connectivity may be ex-
plained by simpler data features.
To test this, we generated networks for every individ-

ual in BrainSpan where ten or more brain region sam-
ples were available (Additional file 8: Table S4), then
assessed the connectivity of ASD candidate genes (see
[45] for gene list) using the same general machine learn-
ing framework we used to measure the connectivity of
GO groups and synaptic genes in previous sections.
While this method is quite different from the more cus-
tomized analyses underlying initial reports, we were able
to replicate the main prior claims of differential connect-
ivity (Fig. 6). We observed modestly, but consistently,

higher performance in pre-natal networks and more
variable performance in post-natal networks (pre-natal
AUROC = 0.81 +/– 0.009, post-natal AUROC = 0.79 +/–
0.015). Encouragingly, it was principally the co-
expression performance within the post-natal net-
works which showed a significant association with
the expression level of the ASD genes (adjusted R2 =
0.23, p <0.05). That is, where the differences in
performance are less likely to reflect relevance to
disease, we found greater relevance for an artefactual
origin. There was no association between age and
co-expression performance within the post-natal data
(Additional file 9: Figure S5), indicating the expres-
sion level is likely useful as a fundamental control in
itself. While some of the difference between pre-
natal and post-natal co-expression may be due to
differences in expression level, the variation within
the pre-natal data itself showed no such trend, so
that comparisons within pre-natal data may reflect
co-variation not explained by expression level alone.

Conclusions
Co-expression analyses comprise a diverse and complex
set of methods that have, historically, found widest ap-
plication in otherwise hard-to-advance areas, such as
predicting novel gene functions (e.g. [46, 47]) or charac-
terizing disease genes (e.g. [48, 49]). The number of co-
expression methods that have been developed is large
since it builds on expression analysis to include network

Fig. 6 Differential connectivity of autism candidate genes in BrainSpan
networks is predicted by expression level. Networks were built using
BrainSpan RNA-seq data for individuals with ten or more samples
(16 pre-natal, 18 post-natal networks). Connectivity of autism candidate
genes is plotted against mean expression, with linear regression lines
for pre-natal and post-natal networks colored in black and red (adjusted
R2 = –0.05, = 0.23, respectively)
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construction [50] as well as the interpretation of that
network. Amid this diversity, there are community prac-
tices which have evolved to make co-expression analysis
robust, but whose influence is rarely formally assessed
(although see [51]). Given this mixture of explicit and
implicit dependencies, interpreting the impact of novel
technical variation in scRNA-seq on co-expression is
challenging: how can we assess a wide enough corpus of
methods to determine which are working?
Our approach has been to employ comparatively sim-

ple methods whose downstream effects in the data are
likely to generalize. Thus, our claim is not that correl-
ation and pairwise correlation excluding zeroes (for ex-
ample) are optimal methods for computing gene-gene
similarity, but that novel methods with data-specific de-
pendencies will likely show downstream impacts that are
some combination of the simple, easily explained, and
quite different, effects we observe. As the first step in
motivating this approach, we conducted a wide-ranging
meta-analysis of single-cell and bulk expression data, re-
analyzing it and testing for aggregate functionality in the
derived networks. The steady rise in performance with
quantity of data suggests our methods for assessment
are robust to practices within the field and allowed us to
investigate the role of possible sources of co-expression
within the data. Indeed, the use of a more sophisticated
machine-learning algorithm, GeneMANIA, provided
comparable results. Having established that our assess-
ment methods were likely to generalize, we designed an
experiment to elucidate replicability within single-cell
co-expression, including factors which cannot be easily
assessed in meta-analysis. We sampled across a non-
trivial class of cellular variation in batches, each of which
could be used to assess co-expression performance and
replicability. These results provide some general guide-
lines for interpreting co-expression in single-cell data,
and particularly the importance of variation in expres-
sion level. Finally, we validate the relevance of derived
heuristics by applying them in the complex and import-
ant characterization of autism co-expression within the
brain.
Our analysis suggests four concrete recommendations

targeted to co-expression:

1. Ideally experiments should be run in replicate and
then the separate replicate networks should be
aggregated. Our extensive analysis of bulk and
single-cell co-expression provides evidence that any
individual experiment has low predictive power,
regardless of sample size, but that aggregation
improves performance. This also allows researchers
to estimate technical and biological variation in a
meaningful way and to define patterns that are
robust. Replication has additional benefits for

single-cell experiments which seek to delineate cell
types or cell sub-types: finding similar proportions of
cells across replicates provides an estimate of
clustering accuracy (e.g. as in [7]).

2. Baseline functional connectivity, measured against
GO slim, should be reported using neighbor voting
or publicly available function prediction algorithms,
such as GeneMANIA [28]. This will provide
researchers with a benchmark for expected
performance and allow for cross-laboratory
comparisons.

3. Performance should be evaluated with respect to
possible technical effects. In supervised methods,
this may take the form of plotting leave-one-out
performance versus the putative confound. In
unsupervised methods, the degree to which the
technical effect is confounded with modules
should be reported via ANOVA. Particular factors
to consider are expression level and number of
drop-outs. Plotting networks with respect to
potential confounds may also be helpful for
exploratory analysis (as in Fig. 4a and Additional
file 5: Figure S2).

4. Co-expression specificity should be checked against
our meta-analytic aggregates. Alongside this paper
we have provided the top 0.5 % of connections in
the bulk and single-cell aggregate networks, as well
as the top 0.5 % of connections in each of the
underlying single-cell networks. Genes co-expressed
in a cell type- or condition-specific manner should
not be present in the bulk or single-cell aggregates.
Additional evidence for condition specificity may be
derived from comparison to comparable single cell
type networks and should be reported.

One aspect of single-cell analysis that has yet to be re-
solved is how best to normalize data. As we and others
have shown, normalization is not trivial for scRNA-seq,
likely due to the current state of the technology, which
samples inconsistently from the RNA pool within cells.
Even a relatively conservative rank standardization will
induce strong artefactual correlations among low ex-
pressing genes because different numbers of genes are
expressed in each sample and across batches. Likewise,
batch correction is powerful but potentially dangerous,
and must be applied carefully or researchers risk the re-
moval of interesting variation [52]. While removal of low
expressing genes may be possible in some cases, this will
make comparison between studies confounded by selec-
tion bias. These sorts of basic biases seem also likely to
confound even sophisticated statistical techniques until
they are much better characterized within the data.
To solve this problem, we suggest keeping all of the
data and implementing meta-analytic methods which
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explicitly assess replicability as this is more likely to
provide a general solution.
Indeed, as suggested by the BrainSpan analysis, many

of the heuristics we derive for single-cell data apply to
bulk data as well, where their presentation may be less
immediately obvious. Notably, expression level explained
variation in ASD gene co-expression performance only
in the post-natal data, where the ASD gene expression
was comparatively low to begin with, and so it is likelier
for that variation to make sense as a confound. Thus,
our results are encouraging for the significance of the
BrainSpan autism analyses in suggesting that the pre-
natal performance dependencies, interpreted as provid-
ing support for the neurodevelopmental features of aut-
ism, are not the result of expression level confounds.
More generally, we suggest that the particular promin-
ence of technical variance with single-cell data [29]
makes it a useful resource for determining the down-
stream impact of potential artefacts. For this reason, fu-
ture assessment of replicability within co-expression
would likely benefit from a focus on single-cell data.
The importance of follow-up work targeting the gen-

esis of co-expression, and using single-cell data to sam-
ple within data of constrained variability, is highlighted
by the implications of our model and meta-analysis.
Using GO as a reference suggests that compositional
and cell-state variation exhibit very similar properties,
one being redundant in the presence of the other, and
using either results in network performances that are
highly similar. Of course, this may reflect the use of GO
which, as a “tool for the unification of biology” [53] may
be less useful at dividing up biology by cell type. Alter-
natively, this finding is consistent with the notion that
cell sub-type identity is as prominent as cell-type iden-
tity, and thus swamps cell-state co-expression. Further
work to explore these hypotheses is warranted.
In addition to our topological assessments focusing on

specific connectivity overlaps, module detection [51] and
its replicability and condition-dependence suggest a
route forward for the field. If co-expression is to be used
as a means of interpreting disease gene convergence and
condition specificity, the genesis of those properties are
crucial to pin down. The careful exploitation of single-
cell data, particularly in meta-analysis, offers a unique
window into how genes work together to produce func-
tion and on what factors it depends.

Methods
Meta-analysis of single-cell and bulk data
We obtained 239 bulk mouse RNA-seq experiments and
eight single-cell mouse RNA-seq experiments from the
Gemma database [54] that were processed using RSEM
[55] (version 1.2.5, and mouse reference mm10_en-
sembl_72). Processed data files for all other scRNA-seq

experiments were downloaded directly from GEO. Cell
types were defined using labels provided by authors.
Where groups had profiled the same cell type in mul-
tiple batches, networks were generated for each batch.
Twenty-four “cell type” networks were derived from
whole tissues and could therefore contain compositional
variation; however, results were robust to the removal of
these experiments. Samples that were not explicitly la-
beled as single cells and those with fewer than 1000
genes with expression >0 were removed, as well as any
cell types that were represented by fewer than 10 sam-
ples. Similarly, we restricted our bulk RNA-seq analyses
to experiments with at least ten samples. Fifty-two bulk
experiments (~22 %) used purified cell populations,
which, though they are not compositional in the sense of
having multiple cell types represented, are preferentially
non-state by dint of averaging across cell-state variation
within each sample.
Data analysis was performed in R using custom scripts

[56]. Only genes appearing on both Affymetrix Gene-
Chip Mouse Gene 2.0 ST array (902119) and the UCSC
known gene list were considered. The mean value was
taken for all genes with more than one expression value
assigned. Networks were built from Spearman correla-
tions and undefined correlations were set to zero. Edge
weight was defined as the rank of the correlation coeffi-
cient within the network and node degree was calculated
as the summation of all the weights connected to a given
node [24]. Aggregation was performed by averaging
ranked correlation coefficients across networks, then re-
ranking and standardizing values between 0 and 1. We
obtained gene annotations from the GO Consortium
“goslim_generic” (August 2015). These were filtered for
terms appearing in the GO Consortium mouse annota-
tions “gene_association.mgi.gz” (December 2014) and for
gene sets with between 20 and 1000 genes, leaving 108
GO groups with 9421 associated genes.
Functional connectivity was measured using a

neighbor-voting algorithm, in which genes are scored
based on the fraction of the genes to which they are
connected which possess a given property [21, 26, 57].
The “performance” at this task is defined as the AUROC
after threefold cross-validation [24] using GO groups,
i.e. how well the network connectivity allows the recon-
struction of known gene functions. Networks are scored
by the average of the AUROCs across GO functions.

Animals and manual cell sorting
Nkx2.1-CreER mice [58] and Pv-ires-Cre [59] animals
were bred separately to Ai14 reporter [60] to label ChC
and Pv basket cells in the cortex. ChCs were enriched in
frontal cortex with tamoxifen induction at E17.5 [58].
Mice were bred and maintained according to animal
husbandry protocols at Cold Spring Harbor Laboratory
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(Institutional Animal Care and Use Committee reference
number 16-13-09-8) with access to food and water ad
libitum and 12 h light-dark cycle. Adult animals (P28-
35) were sacrificed by cervical dislocation to harvest
brains for single-cell sorting.
Single cells were collected by manual sorting proced-

ure as detailed in Sugino et al. [61]. Brains were sec-
tioned to 300 μm using a cooled stage vibratome with
circulating oxygenated artificial cerebrospinal fluid. Sec-
tions were blocked in AP5, CNQX, and TTX cocktail to
prevent excitotoxic cell death and then treated with mild
protease. Brain regions of interest were microdissected
and triturated to dissociate the cells. Dissociated cells
were put into in a Petri dish and RFP-positive cells
were collected into single patch pipette capillaries and
dispensed into single tubes containing RNAseOUT
(Invitrogen), ERCC spike-in RNAs in 1:400 K dilution,
sample specific RT primers for a total of 1 μL volume.
Collected cells were flash frozen in liquid nitrogen and
stored at –80 °C until processed. Individual sample details
can be found in Additional file 3: Table S2.

RNA amplification, Illumina library prep, and sequencing
RNA was linearly amplified using two rounds of in
vitro transcription using MessageAmp-II kit (Life
Technologies) according to the manufacturer’s recom-
mended protocol. Amplified aRNA was reverse tran-
scribed using SuperScript-III enzyme (Invitrogen) and
made into cDNA library using Illumina TruSeq small
RNA library preparation kit using 7–11 cycles of PCR
according to the manufacturer’s protocol. The result-
ing library was size-selected using SPRISelect mag-
netic beads (Agencourt) and paired-end sequenced for
101 bp in Illumina HiSeq.

Mapping and QC
Bowtie (v 0.12.7) was used for sequence alignment of
polyA primed reads to the mouse reference genome
(mm9), while read1 sequences were used for varietal tag
(a.k.a. UMI) counting. Using a custom python script,
multiple reads to the same gene with the same tag
sequences were rejected and only counted as one, such
that only mapped sequences with unique tags were retained
and tallied for each mRNA for each cell. Two cells failed to
amplify and resulted in 0 expressed genes. These were re-
moved prior to further analysis. For the remainder of the
dataset, the mean number of genes detected with >0 counts
is 5407.5 ± 189.8 per cell, and the average level of over-
sequencing across all genes is 4.4-fold which is in line with
previous single-cell studies [41, 62, 63].

Replicability analyses
For replicability analyses, networks were built for
individual batches then aggregated as described above.

Details about network generation can also be found in
Table 2. As stated in the results, there were three aspects
of the data that we wished to explore for their contribu-
tion to network replicability; namely, the role of zeroes,
expression level, and normalization. To clarify the role
of zeroes, zeroes were set to NA then networks were
built by taking the pairwise Spearman correlation across
genes using either counts or CPM values. To test the
importance of variation in non-zero expression level,
“binary” networks were built by setting all non-zero
values to one prior to generating networks. To test the
effect of normalization in addition to CPM, batch-
corrected aggregates were built by summating ChC and
Pv networks where batch correction had been performed
within each cell type using either Combat as imple-
mented in the sva package (v 3.14.0), or using the RUVg
function of the RUV package (v 1.2.0) with ERCC spike-
ins as control genes. Only genes that were non-zero in
more than 50 % of both ChC and Pv cells were included
(3642 genes total). The “batch-affected” network was
built by taking Spearman correlations across all 126
samples. For UMI and CPM networks, functional con-
nectivity and connectivity of synaptic genes (downloaded
from the Genes to Cognition database [36]) were
assessed as described above.
Semantic similarity and pairwise topological overlap

analyses were performed on networks filtered to have
the same set of genes as those in the batch-corrected
networks. For the semantic similarity test, a gene-gene
matrix was generated counting the number of times
each gene pair had the same GO function, using only
non-IEA functions with 20 to 1000 genes. The top 1 %
of each network was compared to this, and the mean
number of common GO groups among the top 1 % was
plotted. Topological overlap was measured by direct
pairwise comparisons of gene-gene connections within
the top 1 % of networks using the JI. Replicable topo-
logical overlap within conditions was assessed for net-
works containing all genes. For this we reported the
standard deviation of the aggregate co-expression values,
using the aggregation of eight randomly generated rank-
standardized networks as the null.

Testing expression level dependence
Spearman correlations between node degree and median
expression were performed for all networks, excluding
any genes with undefined correlations to all other genes
(i.e. node degree = 1). For our data, neighbor voting in
combination with n-fold cross-validation was used to
evaluate the influence of expression level on perform-
ance. Second, synaptic set performance was compared to
the performance of 100 randomly chosen gene sets
with similar expression levels. Expression-matched
sets were generated by binning the synaptic set genes
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into quartiles and choosing the same number of genes
from each quartile. Finally, synaptic set performance was
compared between networks containing all genes and net-
works that were stringently filtered to include only those
genes with median expression >16 UMIs. For the meta-
analysis, we tested the dependence of aggregate network
performance on both node degree and median expression
by generating prediction vectors for both factors and cal-
culating the AUROC analytically:

AUCj ¼ 1−
X

ijGenei�GOj

Ranksi−
NPos � NPos þ 1ð Þ

2
= NPos � NNeg
� �!0

@

where “Ranks” are the ranks of the hidden positives,
Npos is the number of true positives, and NNeg is the
number of true negatives.
BrainSpan RNA-seq data were downloaded from the

BrainSpan consortium on July 2015 [64, 65]. Networks
were generated as described above for all individuals
with ten or more samples available (listed in Additional
file 8: Table S4). Connectivity of ASD genes was assessed
with the neighbor-voting algorithm and AUROC scores
were regressed against mean ASD gene RPKM values for
each individual.

Availability of supporting data
A Github repository containing R scripts and parsed
data can be found online [56]. Raw data files, parsed
data, and metadata have been uploaded to GEO (acces-
sion GSE75049). Aggregate networks and individual
single-cell networks are available to download and are
linked from our Github page.

Ethics
Mice were bred and maintained according to animal
husbandry protocols at Cold Spring Harbor Laboratory
(Institutional Animal Care and Use Committee reference
number 16-13-09-8).
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Additional file 1: Table S1. Bulk RNA-seq expression studies used for
meta-analysis, sorted by GEO ID (GEO ID = Gene Expression Omnibus
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PubMed Identifier.(XLSX 72 kb)

Additional file 2: Figure S1. Variability in GO group performance
across networks. (PDF 1709 kb)

Additional file 3: Table S2. Sample metadata for ChC and Pv single
cell RNA-seq analysis. (XLSX 16 kb)

Additional file 4: Table S3. Correlation between node degree and
median expression for model co-expression networks with varying input.
(XLSX 8 kb)

Additional file 5: Figure S2. Visualizing network topology can help to
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Additional file 6: Figure S3. Co-expression performance and
sequencing depth. (PDF 670 kb)

Additional file 7: Figure S4. Expression level dependency is variable in
individual single cell networks. (PDF 475 kb)

Additional file 8: Table S4. BrainSpan sample metadata and co-
expression summary statistics. For our re-analysis of the BrainSpan data
we generated co-expression networks for each individual with 10 or
more samples. The table lists the sample ID, sex, age, the number of sam-
ples included in the network, and then provides summary statistics from
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(ASD) genes, the mean expression of the ASD genes, and the mean per-
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