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CHAPTER 1 

1. Introduction 

 

1.1. Cancer Genomics 

Cancer is a family of diseases characterized by an accumulation of mutations. These genetic 

and epigenetic alterations impart the cell with properties of uncontrolled growth and 

proliferation, along with the potential for malignancy (Hanahan and Weinberg 2011). 

Beyond this shared property of genomic unrest, most cancers—and most patients—

generally present vastly different mutation patterns, mechanisms of tumor growth, and 

response to treatment. 

 

Cancer is a process that can be studied from multiple vantage points. From the 

single-cell perspective of an individual tumor, the heterogeneity and somatic evolution of 

the cancer can be dissected. From a comparative genomics perspective, the presence, 

location, function, and mechanism of cancer genes gives us clues as to how the cancer 

genome has morphed through germline evolution over millions of years. From both 

viewpoints, a valuable approach for studying cancer is to probe the underlying DNA to 

help identify these alterations. Advances in biotechnology, in particular Next-Generation 

Sequencing (NGS), have provided powerful tools to query the genome at base-pair 

resolution. As a result, sequencing has become a ubiquitous and affordable tool to study 

cancer in the research community, and has made important headways in clinical settings 

(Park et al. 2013). 
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The rise of NGS technologies has also resulted in new data types that allow us to 

address different biological questions, which in turn require the development of new 

algorithms and reproducible computational frameworks. Although much insight into cancer 

has been gleaned through the use of sequencing technologies (Meyerson et al. 2010), 

analyzing the genome of tumors remains a significant challenge due to intra-tumor 

heterogeneity. 

 

1.2. The challenges of tumor heterogeneity 

Tumors are heterogeneous populations of cells consisting of both cancer cells and normal 

cells (Pietras 2011; Marusyk et al. 2012). Within the cancerous population, cells exhibit a 

wide diversity of genetic and phenotypic properties. The concept of tumor heterogeneity 

gained ground in the 1980’s through several lines of evidence, including early work using 

histological and cytogenetic approaches that characterized tumors as consisting of several 

clonal subpopulations (Shapiro et al. 1981; Yung et al. 1982). For example, cytogenetic 

analysis of breast carcinomas using G-banding identified tumor regions with distinct 

chromosomal abnormalities (Pandis et al. 1995; Teixeira et al. 1995). Other studies used 

fluorescence in situ hybridization (FISH) to detect copy-number events in a few loci, and 

identified clones with differing copy number profiles (Sauter et al. 1995; Pantou et al. 2005).  

 

From a clinical perspective, deconstructing the heterogeneity of tumors is of critical 

importance as it severely impacts: (1) Accurate diagnosis and prognosis, since the most 

abundant clones are not necessarily the most malignant ones; (2) The course of patient 

treatment, as unidentified clones can cause resistance to chemotherapy (Fisher et al. 2013); 
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and (3) Drug development initiatives, as heterogeneity can blur the results of drug target 

validation studies (Murugaesu et al. 2013). 

 

Two widely accepted hypotheses attempt to explain tumor heterogeneity: the clonal 

evolution model (Nowell 1976) and the cancer stem cell (CSC) hypothesis (Pierce and Speers 

1988). The clonal evolution model, introduced in 1976 by Nowell, applies the ideas of 

natural selection to tumors. Starting from a cell of origin, tumor cells that acquire more 

mutations will be at a selective advantage, which will lead to one or more clonal expansions 

and the formation of clones, groups of cells with shared genomic profiles. In 1988, Pierce 

and Speers introduced the CSC hypothesis, suggesting that tumor growth is steered by a 

subpopulation of cancer stem cells that produces differentiated tumor cells. The CSC 

hypothesis is appealing since it could help explain heterogeneity (although not clonal 

heterogeneity) and, if CSCs are rare, it could explain why relapse is common after some 

patients show signs of remission. The CSC hypothesis would also suggest a different 

strategy for cancer treatment that specifically targets the CSC population instead of the 

entire tumor. 

 

1.3. Unraveling tumor heterogeneity using single-cell sequencing 

 Single-cell sequencing 1.3.1.

Until recently, most studies of tumor evolution were done in bulk, using technologies that 

probe millions of cells. By studying several tumors of the same type across hundreds of 

patients, it is possible to identify shared mutation patterns and stratify patients by subtypes 

(Perou et al. 2000; Hicks et al. 2006; Pathare et al. 2009). Another approach is to study the 
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sub-clones present within a tumor by e.g. identifying copy-number variations (CNVs) in 

bulk tumor samples. To account for heterogeneity, these studies have used techniques such 

as: (1) Laser-capture micro-dissection, to extract different tumor cell subpopulations 

(Glöckner et al. 2002); (2) FACS sorting based on the presence of surface receptors previously 

associated with certain cell subpopulations (Shipitsin et al. 2007); (3) FACS sorting to 

separate cell subpopulations that exhibit different ploidy (Navin et al. 2010); and (4) Deep-

sequencing, to identify clones and study population substructure (Campbell et al. 2008). 

 

However, bulk sequencing or microarray analyses cannot generally account for 

heterogeneity since they average out the signals of the cancer and normal sub-populations 

present in the tumor. Although there are algorithms that attempt to de-convolve bulk DNA 

sequencing into sub-populations (Carter et al. 2012b; Gusnanto et al. 2012; Chen et al. 2013; 

Oesper et al. 2013; Deshwar et al. 2015), some only support one population of cancer cells 

and one population of normal cells (Carter et al. 2012b; Gusnanto et al. 2012), whereas 

others do not scale easily beyond 2 to 3 populations (Chen et al. 2013; Oesper et al. 2013). 

Furthermore, some scenarios are very difficult to de-convolve; for example, a heterozygous 

mutation in a uniform tumor cannot be distinguished from a homozygous mutation in a 

tumor where half the cells are cancerous and half are normal, since both scenarios result in 

the same allele frequency at that locus. 

 

The most accurate approach towards studying heterogeneous tumors is to study the 

genomic profiles at the level of individual cells. The first single-cell DNA sequencing 

approach developed for studying human tumor evolution is single-nucleus sequencing 

(SNS), a single-cell technique pioneered by Wigler and colleagues (Navin et al. 2011). 
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Briefly, single nuclei are isolated by flow cytometry, followed by whole-genome 

amplification (WGA) using DOP-PCR and sequencing (Baslan et al. 2012). SNS is typically 

done at low-coverage (<1X depth of coverage, <10% coverage of the genome), which is 

enough to detect large-scale copy-number variations. 

 

Recent advances made possible by single-cell sequencing (Shapiro et al. 2013; Navin 

2015) suggest that scDNA-seq will likely become an indispensible tool in the near future to 

study the genomic variability of complex biological systems. However, since the field is still 

in its early beginnings and the analysis required to identify CNV events is quite complex, it 

is difficult for most researchers to effectively use these data. To broaden the reach of this 

new technology, we developed Ginkgo (see Chapter 2), a cloud-based platform for the 

interactive analysis, quality assessment, and visualization of single-cell CNV data. 

 

 Whole-genome amplification methods 1.3.2.

Another important challenge in using single-cell sequencing is the limited quantity of 

starting material. A single human diploid cell contains ~6pg of genomic DNA (Milo et al. 

2010), yet current sequencing technologies require input material on the order of 

micrograms. As such, amplifying the whole genome of a cell—Whole Genome 

Amplification (WGA)—is an essential step during single-cell sequencing. The most 

commonly used WGA methods for single-cell DNA sequencing employ exponential 

amplification and are mainly differentiated by whether they employ isothermal conditions, 

temperature cycling, or a combination of the two approaches (Table 1.1). 
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The most commonly used isothermal WGA method is Multiple Displacement 

Amplification (MDA) (Dean et al. 2001). MDA uses random primers, extended by a ϕ29 

DNA polymerase. ϕ29 is an enzyme with high levels of strand displacement activity, which 

leads to branching patterns of exponential amplification. In contrast, Degenerate 

Oligonucleotide Primed PCR (DOP-PCR) (Telenius et al. 1992) uses PCR-based 

amplification and degenerate primers for random priming. Although MDA covers a greater 

fraction of the genome, DOP-PCR generally exhibits more even coverage (Zong et al. 2012). 

Finally, some WGA approaches, such as MALBAC (Multiple Annealing and Looping Based 

Amplification Cycles) (Zong et al. 2012), employ both isothermal and thermal cycling 

conditions. The primers used in MALBAC have a 5’ end with a known fixed sequence of 

27nt, such that amplicons form hairpins due to complementary ends, and prevent further 

amplification. This isothermal step is then followed by several cycles of PCR amplification. 

 

WGA method Temperature condition Primers 

MDA Isothermal (Phi29 polymerase) 6nt random 

DOP-PCR Thermal cycling (PCR) 6nt degenerate (3’), fixed (5’) 

MALBAC Both (Bst polymerase + PCR) 8nt random (3’), 27nt fixed (5’) 
Table 1.1: Comparison of commonly used Whole-Genome Amplification (WGA) methods. 

 

Despite the effectiveness of WGA, going from picogram to microgram levels of DNA 

requires a large amount of amplification, which is bound to cause errors. A major source of 

amplification bias includes random fluctuations during WGA, the uneven levels of GC 

content, and varying efficiencies of priming and extension along the genome. Errors due to 

WGA also include allelic drop out and the formation of chimeric DNA, both of which can 

bias downstream analyses. Since each WGA approach exhibits different classes of errors for 
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different classes of genetic variants, it is important to compare these methods to determine 

which generally results in better data quality and less bias. We address this question for 

copy-number alterations in the latter part of Chapter 2, where we use Ginkgo to investigate 

the data quality of the three commonly used WGA approaches listed in Table 1.1, and 

conclude that DOP-PCR is best suited for copy-number analysis at single-cell resolution. 

 

1.4. Genomic variation at single-cell resolution 

Following the study by (Navin et al. 2011), other studies have applied scDNA-seq to study 

tumor evolution (Leung et al. 2015; Malhotra et al. 2015), circulating tumor cells (Ni et al. 

2013; Dago et al. 2014), mosaicism in the brain (McConnell et al. 2013), and identify 

recombination and crossover sites in sperm and oocytes (Lu et al. 2012; Wang et al. 2012a; 

Hou et al. 2013; Kirkness et al. 2013). These studies have successfully identified genomic 

variation in individual cells at the level of single nucleotides (SNPs), and large-scale CNVs 

at resolutions ranging from 50kb to 1Mb.  

 

For studies of tumor evolution, CNVs constitute an important class of mutations that 

can be probed via low-coverage single-cell sequencing. In healthy individuals, germline 

CNVs play a large role in genetic diversity amongst humans and cover a significant fraction 

of the genome, with estimates ranging from ~1% (Sebat et al. 2004) to ~11% (Redon et al. 

2006). In several cancers, somatic CNVs are a key source of alteration that can contribute to 

cancer initiation and progression (Henrichsen et al. 2009; Shlien and Malkin 2009a). CNVs 

can cause the amplification and deletion of important cancer genes (or even whole 

chromosomes), or impact their levels of expression. Although CNVs belong to a larger class 
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of variants termed Structural Variants (SVs), very few studies have investigated copy-

neutral SVs such as translocations and inversions at single-cell level (Voet et al. 2013). Due 

to low coverage and noise, algorithms that use paired-end reads or split-read information to 

call SVs are not effective. Furthermore, whole genome amplification is also known to create 

chimeras (Lasken and Stockwell 2007), artificial DNA segments joining together distant 

regions in the genome that are misinterpreted as SVs. For these reasons, most single-cell 

sequencing datasets analyzed in this thesis (Chapter 2, 3, 4) are performed at low coverage 

(< 1X), and target large-scale (50kb to 500kb) copy-number alterations. 

 

 Algorithms for CNV analysis at single-cell resolution 1.4.1.

The genome-wide copy-number state of a healthy human cell is—for the most part—2 

copies (ignoring sex chromosomes and inherited CNVs). Copy-number variations are 

defined as events that amplify or delete the number of copies of a region in the genome. 

Three major mechanisms have been proposed to explain the formation of CNVs (Redon et 

al. 2006; Gu et al. 2008; Hastings et al. 2009a; Hastings et al. 2009b; Zhang et al. 2009): (1) 

Non-Allelic Homologous Recombination (NAHR), where two distant stretches of DNA with 

high sequence similarity undergo crossover during cell division; (2) Errors during Non-

Homologous End Joining (NHEJ), a process used by the cell to repair double-strand breaks 

in DNA; and (3) Stalling of the DNA replication fork, followed by template switching (also 

known as FoSTeS). 

 

Before identifying CNVs from scDNA-seq data, the reference human genome must 

first be sub-divided into bins (e.g. ~50kb or ~500kb bins). Since cells are sequenced at low 

depth of coverage, piling up reads into large bins reduces the fluctuations present in the 
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signal; at the same time, however, using larger bins reduces the resolution at which CNVs 

can be identified. Although fixed-size bins are sometimes used in scDNA-seq experiments 

(Zong et al. 2012; Ni et al. 2013), this approach introduces bias in the analysis. For example, 

regions of low mappability along the genome will not yield many reads, which could be 

misinterpreted as deletions. Therefore, the use of variable-size bins that take mappability 

into account is highly recommended (Navin et al. 2011; Baslan et al. 2012). Once the genome 

binned, raw sequencing reads from each cell are mapped to the genome (Langmead and 

Salzberg 2012), placed into bins, and corrected for GC-bias. 

 

Next, the read depth is used to estimate the copy-number state at each bin, assuming 

that read depth is proportional to copy-number state. For example, if the average bin in a 

cell contains 100 reads, observing contiguous bins with 200 reads are likely due to an 

amplification, whereas neighboring bins with 50 reads are likely due to a deletion. In 

practice, WGA artifacts and noise require a more sophisticated approach. In recent single-

cell sequencing data, two major approaches were used to identify CNVs from noisy read-

depth profiles: (1) Segmentation, where neighboring regions of common read depth are 

joined (Navin et al. 2011; McConnell et al. 2013); and (2) Hidden Markov Models (HMMs), 

where the hidden states correspond to discrete copy-numbers (Zong et al. 2012; Ni et al. 

2013). 

 

1.4.1.1. Circular Binary Segmentation 

The most commonly used segmentation algorithm in single-cell studies is Circular Binary 

Segmentation (CBS) (Olshen et al. 2004; Venkatraman and Olshen 2007), an algorithm that 

recursively splits chromosomes into segments of equal copy numbers using a t-statistic. 
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Specifically, CBS is based on the binary segmentation approach of (Sen and Srivastava 1975), 

an algorithm that uses a t-statistic to test for the presence of a single “change-point”, a 

location along the segment where a shift in the mean value is observed. If a change-point is 

identified along a segment, the two (hence the ‘binary’) resulting sub-segments are tested 

recursively; the recursion ends when no more change-points are detected. However, since 

the t-statistic only tests for the presence of a single change-point, this approach may fail for 

more complex patterns observed in CNV profiles, e.g. small events occurring within other 

CNVs (Olshen et al. 2004). 

 

To address this issue, CBS extends the idea of binary segmentation by considering 

each chromosome as a circle (hence the name). For a given segment with bin coordinates 

[𝑆,𝐸], instead of looking for individual change-points, the goal is to identify the pair of 

change-points 𝑖, 𝑗 that maximize the t-statistic 𝑇!". This statistic tests whether the mean of the 

values found in bins [𝑖, 𝑗] differs from the mean of values in bins [𝑆, 𝑖) ∪ (𝑗,𝐸], where 

𝑆 ≤ 𝑖 < 𝑗 ≤ 𝐸; in other words, it tests whether the two arcs of the segment circle defined by 

𝑖, 𝑗 have different means. If such change-points exist, the algorithm is applied recursively on 

the three resulting sub-segments 𝑆, 𝑖 , 𝑖, 𝑗 , and (𝑗,𝐸], until no further change-points are 

identified. Since the data is generally not normally distributed, CBS assesses the significance 

of the t-statistic 𝑇 = max!,! |𝑇!"| by repeating the procedure thousands of times on permuted 

data and calculating the t-statistic  𝑇∗ at each iteration, so as to estimate the underlying 

reference distribution and infer a p-value. Once the CBS segmentation is complete, the 

segment boundaries across all bins are determined, and the counts for all bins within each 

segment are set to the median bin count value within that segment. 
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Although this procedure has a prohibitive 𝑂(𝑁!) running time (𝑁 = number of bins) 

due to the pairwise comparisons, the most recent version of CBS infers p-values in linear 

time by approximating the tail probability, which the authors have shown to be highly 

accurate (Venkatraman and Olshen 2007). In Table 1.2 and Figure 1.1, we briefly investigate 

the speed of CBS at commonly used bin sizes, using scDNA-seq data from a cancer cell 

sequenced at ~4.1M reads (Navin et al. 2011). For each binning scheme, we bin the reads, 

perform GC correction, and estimate the average running time of CBS in R over 100 

iterations. As expected, the running time grows linearly with increasing number of bins (or 

decreasing bin size).  

 

 

Average 
bin size 

Number 
of bins 

Running 
Time 

800kb 3,337 1.70 ± 0.008 

500kb 5,363 1.90 ± 0.009 

200kb 13,466 2.83 ± 0.013 

100kb 26,970 4.79 ± 0.023 

50kb 53,977 10.14 ± 0.176 

25kb 107,995 17.75 ± 0.046 
Table 1.2: Average running time of CBS as a function 
of bin size (using a variable-sized binning strategy). 

 

 
Figure 1.1: The running time of CBS for one cell (black 
line) grows linearly with number of bins. The line of 
best fit is plotted in red. 

 

1.4.1.2. Hidden Markov Models 

Another commonly used approach for single-cell CNV calling is the use of HMMs. As 

discussed in (Zong et al. 2012), both cancer cells and known normal cells are first 

normalized by their total read depth, and each cancer cell is described as a binary vector of 
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size 𝑁 (number of bins), where “1” indicates that the cancer cell has higher coverage than 

the normal cell and “0” indicates otherwise. Using a HMM with three hidden states 

(diploid, amplification, deletion) and the binary vectors as the observed sequence, the 

Viterbi algorithm is used to infer the state path. To obtain integer copy-number calls, a 

second HMM with 6 hidden states (0, 1, 2, 3, 4, 5 copy number) is used. For each cancer cell, 

the number of reads per bin is normalized by that of a normal cell, and fed in to the HMM 

as the observed sequence. Besides CBS and HMMs, (Daruwala et al. 2004) have also 

proposed a segmentation approach that uses a Maximum a posteriori (MAP) estimation, a 

Bayesian approach similar to Maximum Likelihood that includes a prior distribution. 

 

1.4.1.3. CBS vs. HMMs 

Although the HMM approach above has been used in several single-cell sequencing studies 

(Zong et al. 2012; Hou et al. 2013; Ni et al. 2013), this approach has several drawbacks. As 

used in these studies, the HMMs are typically modeled such that copy-number alterations of 

>5 copies cannot be not detected accurately. This is an issue for cancers where very high 

levels of copy-number are observed, e.g. in a single-cell sequencing study of a triple 

negative breast cancer patient (Navin et al. 2011), several cells were observed to share a 50-

fold amplification of KRAS, an important oncogene. Furthermore, the HMM approach 

above requires a transition matrix built using a priori estimates of the expected rate per bin 

of copy-number aberration start and end (which in (Zong et al. 2012) are arbitrarily specified 

as 0.01 and 0.1 respectively). 
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Since CBS requires fewer assumptions, and performs better or as well as other 

approaches (Lai et al. 2005; Willenbrock and Fridlyand 2005; Knouse et al. 2016), we make 

use of CBS for CNV calling in this thesis. 

 
 
 
 

 Optimizing scDNA-seq for CNV analysis and tumor heterogeneity 1.4.2.

From a practical standpoint, a major drawback of single-cell sequencing is the prohibitive 

cost incurred for sequencing a large number of cells. Recently, through improvements to 

WGA, library preparation and the use of multiplexed sequencing, (Baslan et al. 2015) 

present an optimized approach that reduces costs down to $30 per cell, and yields accurate 

CNV profiling. Despite these advances, scDNA-seq remains expensive for sequencing 

thousands of cells. 

 

Given a fixed budget, there exists a trade-off between the number of cells that can be 

sequenced and the depth of coverage at which each cell is sequenced, and it is unclear 

which approach yields greater biological insight into tumor heterogeneity and population 

structure. Although guidelines exist to guide investigators to better decide which 

sequencing depth if appropriate for bulk sequencing of cancer samples (Griffith et al. 2015), 

no such guidelines exist for single-cell CNV analysis. 

 

In Chapter 3, we use simulations and statistical analyses to help drive experimental 

design choices. Using single-cell sequencing data from 3,446 cells, we explore the space of 

sequencing parameters for CNV analysis at single-cell resolution. Using millions of in silico 

sub-sampling experiments, we identify the critical read depth thresholds needed to ensure 
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accurate (1) Reconstruction of CNV profiles; (2) Inference of phylogeny from tumor cells; 

and (3) Identification of known clonal groups of cells. Applying these simulations on 

varying levels of read depth and cells, we further (4) Evaluate the tradeoffs between 

sequencing at lower depth and sequencing more cells. 

 

We find that the optimal strategy is to sequence as many cells as possible, but at very 

low depth of coverage—especially for very heterogeneous tissues. The guidelines we 

highlight allow us to accurately identify the major features of a sample’s population 

structure at a first pass, while capturing as much of its heterogeneity as possible. 

Subsequent studies can then target sub-populations of interest and examine them at greater 

depth. 

 

Another challenge in single-cell sequencing is that noisy CNV data can hinder the 

dissection of tumor heterogeneity at single-cell resolution due to the presence of signal from 

spurious breakpoints. To address some of these issues, Chapter 4 introduces an approach 

for identifying the informative CNV breakpoints that define clones of cells with shared 

genomic events. In tumors characterized by only one small clone, we demonstrate enhanced 

power to hone in on these clones. In tumors with several sub-clones, we introduce an 

approach that enhances the reconstruction of the population structure. 
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1.5. Comparative genomics of genome topology 

 Co-localization of gene clusters 1.5.1.

Section §1.5.1 has been reproduced with modifications from: 

 

Aboukhalil R, Fendler B, and Atwal GS. Kerfuffle: a web tool for multi-species 

gene colocalization analysis. BMC Bioinformatics 14:22 (2013). 

 

Shifting the focus from somatic to germline evolution of cancer, advances in genomics and 

DNA sequencing technology have fueled growing interest in the large-scale physical and 

functional organization of chromosomes. Several studies have shown that genomes of many 

disparate species may have chromosome regions containing clusters of functionally related 

genes (Hurst et al. 2004a; Petkov et al. 2005a; Xue et al. 2012b). It is well known that operons, 

ubiquitous in prokaryotes, allow multiple genes to be transcribed at once into a 

polycistronic mRNA. The extent to which genes co-localize in eukaryotes and the extent to 

which gene clusters are conserved across species are largely unknown. In eukaryotes, 

operons are rare (Blumenthal 2004); however, there is evidence to suggest that genes within 

the same biological pathway may be clustered more so than expected by random 

rearrangements, possibly because of co-regulation (Lee and Sonnhammer 2003). For 

example, the Hox genes are tandem duplicate genes organized into clusters, playing a 

pivotal role in defining the body plan of organisms. Further, the order of the genes within a 

Hox cluster defines the sequence in which these genes are expressed (Carroll 1995). While 

these examples rely on positional clustering, other mechanisms may also lead to gene 

clusters. For example, clustered genes could be co-regulated because (1) their promoters are 

bound to by the same transcription factors; (2) they share regulatory elements such as 
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bidirectional promoters (Trinklein et al. 2004); and (3) the transcription of a gene can change 

local chromatin accessibility for its neighbors. 

 

Between evolutionary distinct species, we expect to find random genomic 

rearrangements that do not conserve gene clusters, unless co-localization is beneficial to the 

organism. It is possible that co-localization is acted upon by natural selection, conserving the 

gene clusters across large evolutionary time scales, although it remains unclear what 

structural, regulatory, and functional factors are responsible for the co-localization (Lercher 

et al. 2002; Hurst et al. 2004a; Singer et al. 2005). A recent study found that the genome of a 

number of different species was arranged into neighborhoods of functionally-related genes 

that were not necessarily orthologous (Al-Shahrour et al. 2010). If functionally related genes 

cluster for mechanistic purposes, then it is expected that those clustered genes would co-

localize in other species as well. However, few of the bioinformatics tools currently available 

allow for a systematic study of gene co-localization across several, evolutionarily distant 

species. Furthermore, most tools require the user to input manually curated lists of gene 

position information, DNA sequences or gene homology relations between species. With the 

growing number of sequenced genomes, there is a need to provide new comparative 

genomics tools that can address the analysis of multi-species gene co-localization. 

 

In Chapter 5, we introduce Kerfuffle, a web tool designed to help discover, visualize, 

and quantify the physical organization of genomes by identifying significant gene co-

localization and conservation across the assembled genomes of available species (currently 

up to 47, from humans to worms). Kerfuffle only requires the user to specify a list of human 

genes and the names of other species of interest. Without further input from the user, the 
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software queries the Ensembl BioMart server to obtain positional information and discovers 

homology relations in all genes and species specified. Using this information, Kerfuffle 

performs a multi-species clustering analysis, presents downloadable lists of clustered genes, 

performs Monte Carlo statistical significance calculations, estimates the level of 

conservation of gene clusters across species, plots histograms and interactive graphs, allows 

users to save their queries, and generates a downloadable visualization of the clusters using 

the Circos software. These analyses may be used to further explore the functional roles of 

gene clusters by interrogating the enriched molecular pathways associated with each 

cluster. 

 
 
 
 

 Synteny of tumor suppressor genes 1.5.2.

Section §1.5.2 has been reproduced with modifications from: 

 

Fendler B* and Aboukhalil R*, Xue R, Esposito D, Powers S, Lowe SW and Atwal GS. 

Tumor Suppressive Genes are Conserved in Syntenic Clusters. In preparation. 

 

Of particular interest for cancer genomics is the collection of tumor suppressor genes 

(TSGs), which are central to our understanding of human tumorigenesis. Currently, our 

knowledge of the physical distribution of TSGs throughout the genome, and the 

implications this has for tumor development, is not well developed. Tumor suppressor 

genes (TSGs) play a pivotal role in preventing tumorigenesis, as their partial or complete 

inactivation through germline or somatic mutations contributes to human cancer. Since the 

identification of RB1, in 1986 (Friend et al. 1986), many other TSGs have since been 

identified, adding to a growing list of genes that sustain loss-of-function mutations in 

tumorigenesis. Despite ongoing efforts to identify these genes, little attention has been paid 
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to their physical organization in the genome and the functional constraints imposed upon 

their order. This lack of understanding is conspicuous in light of observations that genetic 

lesions in cancer frequently involve large genomic deletions that span many contiguous 

genes (Beroukhim et al. 2010a). Interestingly, anecdotal evidence of human loci containing 

clustered TSGs have been reported in current topological investigations (Zender et al. 2008a; 

Scuoppo et al. 2012), including a study that demonstrates direct evidence that the 

coattenuation of the genes in the syntenic Ink4a/Arf  locus  has a profound cooperative 

effect on tumorigenesis in mice (Krimpenfort et al. 2007). 

 

Consistent with these results, Solimini et al. demonstrated evidence, from array 

CGH (comparative genomic hybridization) data, for the so-called “cancer gene-island 

model,” in which recurrently deleted regions of the genome are enriched in growth 

preventative genes (Solimini et al. 2012). Further, recent arguments have been made for an 

increased role of happloinsufficiencies in tumorigenic growth (Solimini et al. 2012; Xue et al. 

2012a). In particular, Xue et al demonstrated that the 8p locus, which contains the putative 

DLC1 TSG, harbors other neighboring candidate TSGs. Subsequent RNAi knockdown in a 

hepatocellular carcinoma model demonstrated an increase in growth and validation of 

happloinsufficient candidates. In light of these investigations, if physically linked TSGs are 

common across the genome, then an increased role for happloinsufficiencies in cancer 

confers the possibility of tumorigenic susceptibility due to the increased likelihood of 

altering multiple genes in large deletions.  

 

Over the last decade, several studies have demonstrated, across many eukaryotic 

species, that genomes contain chromosomal regions in which functionally related genes 
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physically cluster (Hurst et al. 2004b; Petkov et al. 2005b). While it is well known that 

operons, ubiquitous in prokaryotes, allow multiple genes to be transcribed at once into a 

polycistronic mRNA, operons are rare in eukaryote (Blumenthal 2004). However, there is 

evidence to suggest that genes within the same biological pathway may be clustered more 

so than expected by random rearrangements, possibly because of co-regulation (Akashi et 

al. 2003), although the extent to which genes co-localize in eukaryotes is largely unknown. 

Combining evidence for clusters of functionally related genes, along with anecdotal 

evidence of clustered TSGs, and the implications this has for tumorigenesis, there is a 

pressing need to investigate TSG topology. 

 

In Chapter 6, we use Kerfuffle to perform a co-localization analysis of known human 

TSGs. To explore whether selection forces are at play to maintain these clusters across 

evolutionary time-scales, we carry out a comparative genomics co-localization analysis 

across 46 different species, ranging from worms to mammals. We find that neighboring 

TSGs co-localize in syntenic clusters. Overall, our results demonstrate that the conserved 

germline evolution of the physical distribution of TSGs has constrained the physical 

organization of the cancer genome and bears significantly on the risk of cancer 

development. 
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CHAPTER 2 

2. Ginkgo: Interactive analysis and assessment of single-
cell copy-number variations 

 
This chapter has been reproduced with modifications from: 

 

Garvin T* and Aboukhalil R*, Kendall J, Baslan T, Atwal GS, Hicks J, Wigler M, 

Schatz MC. Interactive analysis and assessment of single-cell copy-number 

variations. Nature Methods 12: 1058-1060 (2015). 

 

2.1. Introduction 

Single-cell DNA sequencing (scDNA-seq) is a powerful tool for probing complex biological 

systems, and has previously been used to unravel the population structure of heterogeneous 

tumors (Navin et al. 2011), study the genomic profiles of rare circulating tumor cells (Ni et 

al. 2013; Dago et al. 2014), identify mosaicism in the brain (McConnell et al. 2013), and detect 

genome-wide recombination/crossover sites in gametes (Lu et al. 2012; Wang et al. 2012a; 

Hou et al. 2013; Kirkness et al. 2013). For these applications, bulk sequencing is inadequate 

since it averages out the signal over millions of cells. One important application of scDNA-

seq is to identify large-scale copy-number variations (CNVs), which play important roles in 

several cancers (Shlien and Malkin 2009b) and neurological disorders (Malhotra and Sebat 

2012). 

 

Given the insights made possible by single-cell sequencing, many researchers are 

now interested in applying the technology to study diverse biological systems and species. 

However, the downstream analysis is complex. Although many approaches and 
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computational tools exist for CNV analysis of bulk samples (Alkan et al. 2011) there are 

currently no fully automated tools that address the unique challenges of single-cell 

sequencing data: (1) extremely low depth of sequencing coverage (< 1X) makes for noisy 

profiles and makes split-read, paired-end, or SNP density approaches ineffective; (2) whole-

genome amplification (WGA) biases markedly distort read counts, including failure to 

amplify entire segments (Baslan et al. 2012); (3) badly assembled regions of the genome (e.g. 

centromeres) lead to the artificial inflation of read counts (“bad bins”) (Baslan et al. 2012); (4) 

the need for new algorithms for calling copy numbers at single-cell, integer levels; and (5) 

the fact that current tools for exploring population structure are not built for single-cell data. 

In addition, several sources of cell-specific experimental errors, including GC content and 

other sequencing biases, need to be addressed. While ad hoc methods have been developed 

for individual studies, there is currently no easy-to-use, open-source software available to 

execute this pipeline automatically. 

 

Here we introduce Ginkgo, a suite of software tools for the interactive analysis and 

quality assessment of single-cell copy-number alterations. Ginkgo automates and 

standardizes the computation required to go from mapped reads to copy-number profiles of 

individual cells, to phylogenetic trees of cell populations. Ginkgo also enables users to 

navigate within a cell's copy number profile, zoom into regions of interest, annotate profiles 

and export tracks to the UCSC browser for further inspection. Ginkgo is available online as 

a web application at http://qb.cshl.edu/ginkgo, and as a stand-alone software package at 

http://github.com/robertaboukhalil/ginkgo. 
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To validate Ginkgo, we reproduce the major findings of five recent single-cell 

studies. These datasets address vastly different scientific questions, were collected from a 

variety of tissue types, and make use of different experimental and computational 

approaches at different institutions. Next, we use Ginkgo’s quality assessment tools to 

examine the data characteristics of three commonly used single-cell amplification 

techniques (MDA, MALBAC, and DOP-PCR) through comparative analysis of 9 different 

single-cell datasets. We find that both MALBAC and DOP-PCR outperform MDA in terms 

of data quality. As previously reported, MDA displays poor coverage uniformity and low 

signal-to-noise ratios. Coupled with high GC biases, MDA is unreliable for accurately 

determining CNVs compared to the other two techniques. Furthermore, while both DOP-

PCR and MALBAC data can be used to generate CNV profiles and identify large variants, 

we find that DOP-PCR data exhibits lower coverage dispersion and smaller GC biases when 

compared to MALBAC data. Given the same level of coverage, our results indicate that data 

prepared using DOP-PCR can reliably call CNVs at higher resolution with better signal-to-

noise ratios.  

 

2.2. Results 

 Ginkgo: an interactive software suite for single-cell CNV analysis 2.2.1.

Ginkgo's user-friendly web interface guides users through every aspect of the analysis, from 

uploading data to visualization and exploration of the single-cell copy-number profiles 

(Figure 2.1). Ginkgo takes, as input, mapped sequencing reads in the form of tab-separated 

.BED files, one for each cell to be analyzed (Figure 2.2A). Each .BED file contains mapping 

information about the reads from that cell, including chromosome number and nucleotide 
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position. Although the more standard .BAM file format could in principle be supported, 

Ginkgo requires .BED files since they contain only the information required for the 

downstream read depth analysis and copy-number calling. As such, they are much more 

condensed (~5-10X smaller in size when gzip-compressed), which greatly speeds up the 

uploading process and reduces the burden on the Ginkgo servers. 

 

 

Figure 2.1: The Ginkgo flowchart for single-cell copy-number analysis. Starting from mapped sequencing 
reads, Ginkgo places the reads into variable-sized bins along the genome, and performs GC correction. 
Following segmentation of the copy-number profiles, Ginkgo generates phylogenetic trees and heatmaps to help 
elucidate population structure. 
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Figure 2.2: Screenshots of the Ginkgo software, illustrating major steps in the analysis and visualization. (A) 
Users are asked to upload mapped sequencing read data in .BED (or .BED.GZ) format. (B) Many parameters of 
the analysis can be tweaked as necessary. (C) Once the analysis launched, Ginkgo will inform the user of the 
progress in real-time. (D-E) Once the analysis complete, Ginkgo provides tools to view the results at a glance, 
including a phylogenetic tree and heatmaps. (F-H) Each cell has a dedicated page with information about its 
copy-number profile and quality control graphs, with links to automatically export amplification/deletion tracks 
to the UCSC Genome Browser for further inspection. 
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Once a user selects analysis parameters (Figure 2.2B), sequencing reads from each 

cell are binned by chromosome position, normalized for GC bias and other amplification 

artifacts (Methods), and segmented to identify chromosome regions with consistent copy-

number states using the Circular Binary Segmentation algorithm (Olshen et al. 2004; 

Venkatraman and Olshen 2007); Methods). Integer copy-number state is assigned to each 

segment, which allows Ginkgo to build phylogenetic trees and heat maps from the copy-

number or breakpoint profiles of the collection of cells. Throughout the analysis, Ginkgo 

displays the progress of each step (Figure 2.2C). Since the analysis may take a few hours 

depending on the number of cells and sequencing depth, the user can also choose to be 

notified by e-mail once the analysis is done (at a depth of 2M reads and 500kb bin 

resolution, the analysis generally requires ~20s per cell). 

 

Once the analysis is complete, Ginkgo displays an overview of the data in a sortable 

data table, an interactive phylogenetic tree (Smits and Ouverney 2010) of all cells used in the 

analysis and a set of heat maps detailing the CNVs that drove the clustering results (Figure 

2.2D-E). Clicking on a cell in the phylogenetic tree or data table allows the user to view an 

interactive plot of the genome-wide copy-number profile of that cell (Figure 2.2F), search for 

genes of interest and link out to a custom track of amplifications and deletions in the UCSC 

genome browser (Figure 2.2G). Ginkgo also outputs several quality-assessment graphs for 

each cell (Figure 2.2H): a plot of read distribution across the genome, a histogram of read-

count frequency per bin and a Lorenz curve for assessing coverage uniformity (Zong et al. 

2012). The Lorenz curve is obtained by sorting bin counts from lowest to highest and 

plotting the cumulative fraction of reads as a function of the cumulative fraction of the 
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genome covered by these reads. Subsets of cells can also be selected by the user for direct 

comparison of copy-number profiles, Lorenz curves, GC bias and coverage dispersion. 

 

All plots, statistical measurements and clustering results can be downloaded in 

publication-quality figures or as tab-delimited text files. The results are saved on our servers 

for several months, allowing the user to return to their results at a future date and run 

different analyses with the same data. A unique URL is generated for each project, allowing 

researchers to easily share the displays with collaborators of their choosing while 

maintaining security of their data. Alternatively, we provide and document all the software 

necessary for hosting the web tool on a local server for extended analysis using Docker 

containers (Methods). 

	
	

 Ginkgo reproduces the results of previous single-cell studies 2.2.2.

To validate Ginkgo, we set out to reproduce the major findings of several recent single-cell 

sequencing studies (Navin et al. 2011; Lu et al. 2012; Hou et al. 2013; McConnell et al. 2013; 

Ni et al. 2013). These studies address vastly different scientific questions and originate from 

a variety of tissue types: breast tumors, lung circulating tumor cells, neurons, sperm and 

oocytes. Furthermore, these conclusions reported in these studies were obtained using 

different computational approaches (HMMs vs. segmentation approaches), and different 

whole-genome amplification methods: MDA (Dean et al. 2001), MALBAC (Zong et al. 2012) 

and DOP-PCR (Telenius et al. 1992; Blainey 2013). Using Ginkgo, we replicate most 

published CNVs, with the exception of one cell from a study by (Hou et al. 2013). We 

believe that this failed replication was due to mislabeling in the National Center for 

Biotechnology Information (NCBI) Sequence Read Archive (SRA). Moreover, as shown 
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below, we successfully reproduce the distinct clonal subpopulations in the two data sets 

from (Navin et al. 2011) and the patient clustering results from (Ni et al. 2013) that were 

generated from inferred CNVs. 

 

2.2.2.1. Navin et al. 

This work profiled breast cancer in two separate studies. The first (dataset T10) examined 

heterogeneity in a polygenomic breast tumor. CNV analysis and hierarchical clustering of 

100 single-cells revealed three distinct clonal subpopulations present in the tumor. The 

second study (datasets T16M/P) examined a monogenomic breast tumor and its suspected 

liver metastasis. CNV analysis and hierarchical clustering of 100 cells revealed that a single 

clonal expansion formed the primary breast tumor and seeded the metastasis. In the 

polygenomic breast tumor analysis, Ginkgo clusters all 100 samples into the same four 

distinct subpopulations of the original study, replicating the published population structure 

(Figure 2.3A). In the monogenic breast tumor and its associated liver metastasis analysis, 

Ginkgo clusters all 100 samples into the same three distinct subpopulations as the original 

publication, linking the primary tumor to its metastasis (Figure 2.3B). 

 

2.2.2.2. McConnell et al. 

This study profiled CNV events in human hiPSC-derived fibroblasts and 110 frontal cortex 

neurons. McConnell et al. found a wide degree of mosaic copy-number variation in neurons 

and discovered that a subset of neurons have highly aberrant genomes. McConnell et al. 

identified a total of 148 CNVs across 45 of the 110 sequenced cortical neurons. They further 

present detailed information for the 148 CNV calls, including their genomic coordinates, the 

copy number assignments of the CNVs expressed as the median of the segment values, the 
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genome-wide median segment value of diploid regions, and the median absolute deviation 

(MAD) score of the calls.  

 

Figure 2.3: Phylogenetic trees generated through hierarchical clustering by copy-number using (A) 100 
polygenomic breast tumor samples (T10) and (B) 52 monogenomic breast tumor (T16P) and 48 liver metastasis 
(T16M) samples. These results match the clonal structure published in the original study. 

	

Using this information, we investigated the concordance between the CNVs Ginkgo 

reports to those reported by McConnell. To do so, we matched the parameters used by 

McConnell as closely as possible by using 500kbp variable length bins and requiring a 

minimum of 6 bins for a CNV (note that McConnell used a minimum of 5 bins for a CNV, 
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but their bin size was on average 686kb wide after accounting for mappability). We do not 

expect perfect concordance, as the two methods use different strategies and technical 

choices for identifying CNVs such as different strategies for mappability, normalization, 

and thresholding CNVs. Nevertheless, we find that the concordance is extremely high, with 

99.7% bin-level concordance with Ginkgo reporting 127 (85.8%) of the 148 CNVs identified 

by McConnell plus 116 additional CNV calls. McConnell et al. identifies CNVs whenever 

the median segment value is more than 2 MAD scores above or below the genome wide 

median. We investigated this relationship and found very strong correlation (R2=0.996) 

between Ginkgo’s median segment values and McConnell’s over these regions (Figure 2.4). 

Note that the bin boundaries do not exactly coincide, due to different binning strategies and 

techniques to account for mappability, which introduces some variability in the segment 

coordinates. We investigated the most incongruent of those segments and observed that 

they were at the very beginning or very end of chromosomes in highly repetitive telomeric 

sequences (Figure 2.5 top). This suggests the differences were largely due to the details of 

how the reads were mapped and the bin boundaries were determined, especially since 

McConnell used default BWA parameters, while Ginkgo aggressively controls for multi-

mapping reads and quality scores in the analysis. In other cases, the median segment values 

of the discordant calls were virtually indistinguishable and yet not classified by Ginkgo as a 

CNV (Figure 2.5 bottom). In particular, Ginkgo and McConnell agree on all CNV calls when 

their segment MAD calls are greater than 2.35, but below that cutoff there are slight 

variations depending on the specific context of the segment (Figure 2.6). Finally, we 

speculate the additional 116 calls made by Ginkgo were just below the McConnell’s 

thresholds for reporting a CNV (slightly below a MAD of 2.0), although the data are not 

available to directly compare. 
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Figure 2.4: Comparison of segment medians between Ginkgo and McConnell. Scatter plot showing correlation 
between events called by McConnell et al. and Ginkgo. Each data point represents, for a given CNV region in 
McConnell et al., the ratio of the segment median in that region to the segment median of the entire cell.  Points 
labeled in blue correspond to the 20 segments that were called as CNVs by McConnell but called diploid by 
Ginkgo. 

 

Figure 2.5: Comparing discordant segments between Ginkgo and McConnell. (Top) The two regions with the 
most discordant median segment values that were called by McConnell but not Ginkgo. These CNVs are located 
at the start of chromosomes 1 and 16, in highly repetitive telomeric regions. (Bottom) The two regions with the 
most concordant median segment values that were called by McConnell but not Ginkgo. Although small 
differences are clearly detected by Ginkgo in these regions, they are not marked as copy-number events due to 
differences between Ginkgo and McConnell’s CNV calling thresholds. 
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Figure 2.6: An analysis of discordant calls with respect to McConnell MAD values. The 148 segments called by 
McConnell as CNVs rank-sorted by their MAD values. All 128 segments that are also called as CNVs by Ginkgo 
have higher MAD values (>2.35). All of the calls made exclusively by McConnell (colored in blue) lie right near 
their threshold for detection. 

 

2.2.2.3. Ni et al. 

This study explored SNPs and CNVs in circulating tumor cells (CTCs) in patients with lung 

cancer. Through CNV analysis and hierarchical clustering of 29 CTCs across 7 patients with 

lung adenocarcinoma (ADC) or small-cell lung cancer (SCLC), Ni et al. discovered that 

CNVs appear specific to cancer types and are reproducible from cell to cell and from patient 

to patient. Using default settings in Ginkgo, we generate similar CN profiles for all 29 

samples and can reproduce the published clustering results (Figure 2.7A). However, careful 

consideration of gender must be given when analyzing patients from mixed populations, as 

the combined set of the X and Y-chromosomes make up a large fraction of the human 

genome that can distort the clustering results. When we examined the Ni et al. dataset with 

Ginkgo with sex chromosomes masked, we could still discriminate between individual 

patient’s tumors, but we could no longer discriminate between ADC and SCLC (Figure 
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2.7B); the SCLC patients were exclusively female and ADC patients were almost entirely 

male. Ginkgo comes prepackaged with the ability to mask sex chromosomes to prevent 

gender biases from dominating the clustering.  

 

Figure 2.7: Ginkgo patient clustering of Ni et al. CTC data. (A). Hierarchical clustering by Ginkgo of 29 samples 
derived from 7 different patients with either adenocarcinoma (patients 2-6) or small cell lung cancer (patients 1, 
7), matching the results published by Ni et al.  (B) When sex chromosomes are masked, cells still cluster by 
patient, but patients no longer cluster by cancer subtype.  In particular, after masking sex chromosomes, patient 
3 is intermixed between patients 1 and 7 and there is no clear association between cancer types.	



 44 

2.2.2.4. Hou et al.  

This study sequenced several oocytes in order to phase their genomes and determine their 

crossover maps and frequency. Additionally, genome-wide CN profiles were generated to 

explore aneuploidy in each sample. The authors identified a total of 47 CNVs in 25 

aneuploid cells across 5 patients. We could replicate these results as Ginkgo uncovered 45 of 

the 47 CNVs in 23 of the 25 identified aneuploid cells. One sample, S0808 (containing the 

missing two cells/CNVs), did not have CNV events matching the published results. We 

believe this was due to accidental mislabeling of sample IDs upon being deposited to NCBI. 

 

2.2.2.5. Lu et al. 

In this study, single-cell sequencing was used to study meiotic recombination and 

aneuploidy in 99 sperm cells from an Asian male; of the 99 cells, 5 were aneuploid. Using 

Ginkgo, we uncovered the same chromosomal aberrations in the 5 aneuploid cells, and 

successfully separated the X- and Y- bearing chromosomes (Figure 2.8), with the exception 

of 2 cells that clustered separately due to poor coverage uniformity and high read drop-out. 

	

 

Figure 2.8: Ginkgo clusters the Lu et al. sperm samples. The major populations are defined by X- and Y-
carrying sperm. Ginkgo identifies the same variants found by the original study in 5 aneuploid cells (in yellow). 
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2.2.2.6. Simulations 

To further test the accuracy of the copy number and clustering analysis by Ginkgo, we 

simulated single cell sequencing of 90 cells with 100 total copy-number events per cell. We 

modeled the cells after a population comprised of 9 distinct clonal populations, with 10 cells 

per population (Figure 2.9A). We began by generating 3 primary clonal populations by 

introducing 80 copy-number events compared to the parent diploid cell. Next, for each of 

the 3 primary clones, we generated 3 sub-clonal populations by introducing an additional 20 

non-overlapping copy-number events to the original clones. Overall, this resulted in 9 

distinct sub-clones belonging to 3 larger clonal populations with a total of 100 CNVs with 

respect to the human reference genome (hg19). The genome positions of CNVs were non-

overlapping and generated from a uniform random distribution across the genome. The 

lengths of CNVs were generated from an exponential distribution with a mean of 5Mb and 

bounded between the range of 200kb and 20Mb to approximate the CNVs observed in the 

genuine data. The copy-number states of the CNVs were generated from a Poisson 

distribution with a mean of 2.5 excluding the value 2. We generated 10 cells from each of the 

9 subclones (90 cells in total) by simulating reads from the subclone reference sequences 

generated above. For each cell, we simulated 200k, 101bp, single-end reads from the 

subclone reference sequence using dwgsim (https://github.com/nh13/DWGSIM) (dwgsim 

–n 101 –z -1 –e .01 –d 1 –r 0 -1 101 -2 0).  For each cell, the simulated reads were 

then mapped to the hg19 human reference genome using the command bowtie hg19.fa –

S –t –m --best –strata and filtered for only uniquely mappable high scoring reads 

(quality > 25). The SAM output was then converted to BED format and all 90 cells were 

uploaded and analyzed directly within Ginkgo with variable length 50kb bins. 
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Figure 2.9: (A) Model representation of the 9 distinct subclones generated by simulation of 100 copy number 
events with respect to the reference. (B) Hierarchical clustering of the 90 samples by Ginkgo.  Ginkgo perfectly 
recovers the underlying subclonal population structure. 

 
As shown in Figure 2.9B, Ginkgo accurately reproduces the population structure 

through hierarchical clustering. In addition, we examined Ginkgo’s ability to call CNVs by 

examining the false negative and false positive rates for all 90 cells at three different read 

counts (2M, 1.5M, 1M) across three different bin sizes (100kb, 50kb, 25kb). As shown in 

Table 2.1, we find that Ginkgo has a 0.15% false negative rate and a 0.08% false positive rate, 

excluding those bins that are partially spanned by a copy number alteration. When the 

entire genome is considered, including partially spanned bins, Ginkgo still has only an ~2% 
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false negative and ~1.2% positive rate. Hence, as expected, errors are almost exclusively 

concentrated at the boundaries of CNVs where the precise end of the event cannot be 

determined due to the extremely low coverage available or partially spanning of a bin.  

 

We compared these results to the widely used CNVnator algorithm (Abyzov et al. 

2011) for bulk sequencing CNV analysis, and find that Ginkgo performs CNV calls with 

higher accuracy (Table 2.1). Furthermore, CNVnator and other bulk sample analysis 

programs do not attempt to assign integer copy number states. In this analysis, we 

measured Ginkgo’s accuracy with this stricter requirement while for CNVnator, we could 

only evaluate if an amplification or deletion had been identified. Ginkgo also has numerous 

features for evaluating population-wide CNV relationships (heatmaps, phylogenetic trees, 

multi-sample GC and Lorenz plots) that are also not present in CNVnator. From a practical 

sense, we also find Ginkgo to be substantially faster than CNVnator for the 90 cell 

evaluation, requiring a few hours via a simple web-interface rather than several days. 

 

Simulated 
reads (M) 

Mapped 
reads (M) 

Mean bin 
length (kb) 

False Negative Rate (%) False Positive Rate (%) 

Ginkgo 
Complete 

Ginkgo CNVnator 
Ginkgo 

Complete 
Ginkgo CNVnator 

2.0 1.64 100 0.15 2.03 6.37 0.08 1.28 0.69 

2.0 1.64 50 0.18 1.29 5.86 0.07 1.20 0.5 

2.0 1.64 25 0.26 1.63 6.01 0.05 1.16 0.54 

1.5 1.23 100 0.22 2.22 6.46 0.10 1.34 0.75 

1.5 1.23 50 0.28 1.67 5.99 0.07 1.21 0.66 

1.5 1.23 25 0.39 2.37 6.1 0.08 1.21 0.6 

1.0 0.82 100 0.33 2.47 6.42 0.17 1.41 0.94 

1.0 0.82 50 0.50 2.17 6.23 0.13 1.24 1.03 

1.0 0.82 25 0.75 3.82 6.03 0.14 1.24 0.68 

Table 2.1: Simulation accuracy. False negative and false positive rates for genomes with 100 simulated copy 
number events at varying read depths and bin sizes. “Ginkgo complete” represents only the segments of copy 
number variants that fully overlap bin boundaries. 
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 New algorithms for single-cell CNV analysis 2.2.3.

The Ginkgo pipeline builds on previous single-cell sequencing work (Navin et al. 2011; 

Baslan et al. 2012) and contains several novel features that we describe below: (1) an 

algorithm for determining absolute copy-number state from the segmented raw read depth; 

and (2) a method for controlling quality issues in the reference assembly.  

 

2.2.3.1. Absolute copy-number state algorithm 

Since we are analyzing single-cell data, we expect every genomic locus to have an integer 

copy number (CN) value. Furthermore, the quantized nature of single-cell data means that 

the same number of reads per bin should separate every sequential CN state, e.g., ~50 reads 

for CN 1, ~100 reads for CN 2, ~150 reads for CN 3, etc. While biological and technical noise 

prevent read counts from segregating perfectly into distinct CN states, read counts should 

still be centered around integer CN states. The most direct approach for determining the CN 

state of each cell is available for users that have a priori knowledge of the ploidy of each 

sample. For example, cells that are DAPI-stained prior to cell sorting can be gated based on 

their fluorescence activity, and ploidy can be determined by comparing its fluorescence 

activity to that of a reference cell with a known CN state. With these data, Ginkgo 

determines the copy number state of each sample by scaling the segmented bin counts such 

that the mean bin count is equal to the ploidy of the sample. Finally bin counts are rounded 

to integer copy number values. Advances in fluorescence activated cell sorting (FACS) will 

make this copy number prediction even more accurate in time, although cells that are 

incorrectly sorted and placed into wells with more than one cell will show much higher 

fluorescence activity and will have an incorrectly inferred copy number state. 
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Since FACS data is not always available for analysis and has potential for error, 

Ginkgo provides an alternative to determine the copy number of each sample. As discussed 

earlier, before determining the CN state of a cell, the cell is binned, normalized, and 

segmented. This copy number profile with a mean of one is referred to as the raw copy 

number profile (RCNP). If the true genome-wide copy number of a sample were equal to X, 

the scaled copy number profile (SCNP) would then be the product of RCNP and X, and the 

final integer copy number profile (FCNP) would be the rounded value of the SCNP so all 

segments contain an integer value. 

 

With these relationships, Ginkgo infers the genome-wide copy number X using 

numerical optimization (Pseudocode 1). For a given cell, Ginkgo first determines the SCNP 

and FCNP for all possible values of X in the set [1.50, 1.55, …, 5.95, 6.00]. Ginkgo then 

computes the sum of square (SoS) error between the SCNP and the RCNP for each value of 

X and selects the value of X with the smallest SoS error. Once the multiplier is identified and 

applied, the scaled bins are rounded to generate the final integer copy number profile for 

each sample. Intuitively, this is equivalent to finding the copy number multiplier that causes 

the normalized segmented bin counts to best align with integer copy number values. 

Sample runs of the algorithm are shown in Figure 2.10. 

 

allMult = 1.5 : 0.05 : 5.5  Define all possible multipliers 

allErrors = 𝑚𝑒𝑎𝑛 [ 𝐶𝑁𝑉!"# ∗  𝑎𝑙𝑙𝑀𝑢𝑙𝑡 −  𝑟𝑜𝑢𝑛𝑑 𝐶𝑁𝑉!"# ∗ 𝑎𝑙𝑙𝑀𝑢𝑙𝑡
!

 ] Get average SoS error for each multiplier 

multiplier = allMult[ which.min(CNerror) ] Use multiplier that yields smallest error 

Pseudocode 1: Algorithm used to find best multiplier, defined as factor that minimizes the sum of squares error 
between the scaled segmented profile and the rounded scaled segmented profile. 
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Figure 2.10: Sample runs of the integer copy-number inference algorithm using (A-B) a diploid cell, and a (C-D) 
breast tumor cell. Note that in the plots of Sum-of-Squares errors (B, D), the minimum peak is far away from 
other peaks, thereby simplifying the choice of multiplier. 

 

Despite a lot of success with this approach, there are rare occasions, especially at low 

number of reads, where two potential multipliers exhibit very similar Sum-of-Squares errors 

(Figure 2.11A), which could lead the algorithm to choose the wrong multiplier (Figure 

2.11B). One way to address this issue would be to use ploidy information obtained from 

staining during FACS sorting. However, when that information is not available, we apply 

the following heuristic to emulate a human decision: if there are two peaks that are at very 



 51 

similar heights, choose the peak corresponding to the smallest multiplier (Pseudocode 2). 

For example, if there are two peaks at multipliers 2 and 3, the algorithm will choose 2 

(Figure 2.11C). 

 

A 

 

 B 

 
 
C 

 

 

Figure 2.11: (A) Sample situation where the peaks occur at very similar Sum-of-Square errors. (B) Without the 
proposed heuristic, the algorithm could choose the wrong multiplier. (C) Using the proposed heuristic, the 
algorithm detects two peaks that are very close to each other and chooses the smallest multiplier among them. 
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allPeaksMin = which( diff(sign(diff( allErrors ))) == 2 )  Compute  discrete 2nd derivative to find 

allPeaksMax = which( diff(sign(diff(allErrors ))) == -2 )      all peaks at local minima and maxima 

 

naivePeak = min(allErrors[allPeaks]) Naïve peak occurs at global minimum 

closestPeak = closest(allErrors[allPeaks], naivePeak) Find peak closest to naïve peak 

 

∆ = | !"#$%&%"' – !"#$%$&'%() |
!"#(!""#$$%$&[!""#$!%&'!(]) ! !"#(!""#$$%$&[!""#$!%&])

  

if(∆ < 0.05) If the two peaks are very similar, choose 

      CNmult = min( CNgrid[ c(naivePeak, closestPeak) ] )     the smallest multiplier 

Pseudocode 2: This heuristic will detect situations where two multipliers have very similar sum-of-square errors, 
and will choose the smallest multiplier of the two. 

 
 
2.2.3.2. Controlling for quality issues in the reference assembly 

As previously demonstrated (Navin et al. 2011), fixed-length bins introduce mappability 

issues in highly repetitive regions such as centromeres. These regions are often “dead 

zones” that remain empty even if the overall coverage is high, and will bias segmentation 

algorithms into identifying nonexistent breakpoints. While Ginkgo supports normalizing 

copy-number profiles by a diploid cell, this can introduce noise in bins with low counts. We 

recommend using a variable-binning strategy in which variable-length bins with equal 

mappability are used, allowing uniform mapping of reads. When neglected, for example, in 

Ni et al., dead zones are present at chromosome boundaries and centromeres. In 

comparison, the same profiles generated by Ginkgo are less noisy and free of dead zones 

(see Ginkgo website). We note, however, that in using the variable-length bin strategy, 

certain regions of the genome, specifically near the centromeres of several chromosomes, 

have consistently higher read depth than expected whether profiling bulk DNA or single 

cells. This problem also occurs in fixed bins but is less severe due to the substantial read 

drop out caused by using fixed intervals. These peaks may be the result of occasional mis-

mapping of highly repetitive sequences from elsewhere in the genome to unique but similar 
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sequences located near the peri-centromeric DNA. This is also likely influenced by imperfect 

reference assemblies that do not fully represent the correct genetic sequences. We have 

termed these “bad bins” and have provided an option in Ginkgo to mask them for human 

(hg19) for simplicity of presentation. 

 

Using data from 54 normal individual diploid cells, these bins (designated as “bad 

bins”) were determined in the human reference genome (hg19) as follows. The bin counts 

were divided by the mean bin counts for each cell to normalize for differences between cells 

in total read count. For each chromosome, the mean of the bins over all cells is subtracted 

from each normalized bin count to normalize for differences between chromosomes. The 

mean and standard deviation of the autosomes is then used to compute an outlier threshold 

corresponding to a p-value of 1/N, where N is the number of bins used. These bins are 

masked from downstream copy number analysis. 

 

 DOP-PCR and MALBAC outperform MDA in data quality 2.2.4.

Although Ginkgo corrects for many of the biases present in single-cell data, higher-quality 

data inevitably lead to higher-quality results. We set out to compare the biases and 

differences in coverage uniformity among the three most widely published WGA 

techniques—MDA, MALBAC and DOP-PCR—using three distinct data sets with each 

method. Raw sequencing reads downloaded from NCBI were mapped to the human 

genome and sub-sampled to match the sample with the lowest coverage. Aligned reads 

were then binned into variable-length intervals across the genome that averaged 500kb in 

length but contained the same number of uniquely mappable positions (Methods). We use 

these binned read counts to measure two key data-quality metrics: GC bias and coverage 
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dispersion. Importantly, raw bin counts provide a view of data quality that is impartial to 

the different approaches to segmentation, copy-number calling and clustering. 

 

GC content bias refers to preferential amplification of a given genomic region due to 

the local fraction of G and C nucleotides17. This bias introduces cell- and library-specific 

correlations between GC content and bin counts. In particular, when the GC content in a 

genomic region falls outside of a certain range (typically <0.4 or >0.6), read counts rapidly 

decrease (Methods). We found that the GC bias of MDA was very high compared with that 

of MALBAC or DOP-PCR (Figure 2.12A). Only 45.9% of MDA bin counts fell within the 

expected coverage range, compared with 94.0% of MALBAC bin counts and 99.6% of DOP-

PCR bin counts. It is important to note that regardless of the WGA approach used, each cell 

has unique GC biases that must be individually corrected. 

 
 A 

 

 B 

 
Figure 2.12: (A) LOWESS fit of GC content with respect to log-normalized bin counts for all samples in each of 
the 9 data sets analyzed: 3 for MDA (top left, green), 3 for MALBAC (center left, orange) and 3 for DOP-PCR 
(bottom left, blue). Each colored line in a plot corresponds to the LOWESS fit of a single sample. The upper and 
lower dashed lines in each plot mark twofold increased and decreased values with respect to the average 
observed coverage. Note that the MDA plot has a different y-axis scale because of large GC bias. (B) The MAD 
between neighboring bins. A single pairwise MAD value was generated for each sample in a given data set and 
is represented in the figure by a box and whisker. The bold line in the center of a box represents the mean, the 
box boundaries represent the quartiles and the whiskers represent the remaining data points. Names along the x-
axis are the first authors of the referenced studies. T16 and T10 refer to types of breast cancer tumors as 
established by (Navin et al. 2011). The high biases present in the MDA data sets made it difficult to compare 
DOP-PCR and MALBAC samples. Supplementary Figure 3 shows this comparison more clearly. 
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As a further measure of data quality, we calculated the median absolute deviation 

(MAD) of all pairwise differences in read counts between neighboring bins for each sample, 

after normalizing the cells by dividing the count in each bin by the mean read count across 

bins. The MAD is resilient to outliers caused by copy-number breakpoints, as transitions 

from one copy-number state to another are relatively infrequent. Instead, pairwise MAD 

reflects the bin count dispersion due to technical noise. As expected on the basis of previous 

comparisons (Zong et al. 2012; Navin 2014), MDA data displayed high levels of coverage 

dispersion, with a mean MAD two to four times that of the DOP-PCR data sets (Figure 

2.12B). In addition, the MALBAC and MDA data sets showed large differences in data 

quality between studies, whereas the DOP-PCR data sets showed consistently flat MAD 

across all three studies (Figure 2.13). 

 

 
Figure 2.13: The median absolute deviation (MAD) of neighboring bins across 3 WGA approaches. A single 
pair-wise MAD value is generated for each sample in a given dataset and represented by a box and whisker plot. 
The DOP-PCR datasets show the lowest mean MDA as well as the lowest variance across samples.  While certain 
MDA samples outperform the MALBAC dataset, they show much large variability in data quality than 
MALBAC. 
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 DOP-PCR outperforms MALBAC for single-cell CNV analysis 2.2.5.

Whole-genome amplification using MDA introduces a large degree of biases compared to 

MALBAC or DOP-PCR, limiting its applicability to CNV analysis. As such, we focused the 

scope of the remaining comparisons on the latter two WGA techniques. 

 

For a fine-grained comparison of MALBAC and DOP-PCR, we compare the T10 

dataset from Navin et al. 2011 and the CTC dataset from Ni et al. 2013 due to their similar 

biological and technical conditions and similar published analysis. Both datasets contain 

aneuploid cancer cells, were sequenced to similar depth (CTC mean read count: 4,133,466; 

T10 mean read count: 6,706,119), and were used to generate phylogenetic clusters of samples 

based on CNVs. We begin by comparing the coverage dispersion and investigate the 

minimum coverage and bin size needed to reproduce the published results. 

 

Using the MAD criteria described above, the DOP-PCR-based T10 dataset shows 

markedly better bin-to-bin correlation than the MALBAC-based CTC dataset as judged by a 

lower MAD of adjacent and offset bin counts (Figure 2.14). For adjacent bins, the first 

quartile of the CTC MAD comparison (orange) is higher than the third quartile of the T10 

MAD comparison (blue). As we increase the bin offset, greater variation is seen in the CTC 

data as show by the separation of the mean MAD between the T10 and CTC datasets. We 

interpret this to mean that there is more local trending in amplification efficiency in 

MALBAC than in DOP-PCR data. 
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Figure 2.14: A comparison of MAD between the Navin et al. (T10) shown in blue and Ni et al. (CTC) shown in 
orange.  As the bin offset increases the separation between the mean T10 MAD and mean CTC MAD grows. 

 

To understand the effects of noise further, we evaluated each dataset to discriminate 

distinct copy number states. Because the copy-number states of individual cells are integer, 

we expect the data to be centered at integer values. If the data is highly uniform, read 

coverage per bin should tightly surround integer copy-number states. As bin count 

dispersion around copy-number states increases, or is influenced by local chromosomal 

trends, the distinction between copy-number states will blur.  

 

To examine this, we generated a histogram of the normalized read count distribution 

for the CTC and T10 datasets In Figure 2.15, we show the distributions of bin counts for 

representative cells: excellent, typical, and lower quality cells as well as the highest quality 

population average. All T10 profiles have distinct peaks representative of integer copy-

number values. While there are a few cells in the CTC dataset that have distinct peaks, many 

of the CTC profiles have considerably worse resolution with substantial blurring between 

CN states. 
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Figure 2.15:  Histograms of normalized bin counts across the CTC and T10 datasets, for a high-, typical-, and 
poor-quality cell. The rightmost column contains histograms of high quality cell population averages.  Distinct 
peaks are representative of clean data from which accurate copy number calls can be made. 

 

2.3. Discussion 

Single-cell sequencing has tremendous potential to shed light on genetically complex 

environments. Early applications have already discovered surprisingly high levels of 

heterogeneity and copy-number mosaicism in tumors, neurons, and sperm. The 

implications are profound and provide a new computational lens to observe, for example, 

the founding cancer cell population and trace its development through a tumor and 

metastasis. Many projects are now underway to apply the technology to diverse tissue and 

cell types. The experimental protocols are maturing, and with Ginkgo, a validated, open-

source end-to-end pipeline is now available for researchers as well. The interactive visual 

analytics environment provides researchers with an intuitive platform to explore and 

understand their population of cells. It begins with a high-level overview of the population 

represented by dendrograms and heatmaps. It then gives researchers the ability to zoom in 
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on the copy-number profile of individual cells, filter the analysis for subsets of cells, and 

inspect the details of copy-number state or read depth on demand. Throughout each stage 

of the analysis, statistical summaries and quality metrics guide researchers to the most 

significant and most accurate data. Figures and data tables are available for download to be 

embedded into presentations or publications. 

 

Furthermore, we found that DOP-PCR outperformed both MALBAC and MDA in 

terms of data quality. As previously reported (Zong et al. 2012; Cai et al. 2014; Chen et al. 

2014; de Bourcy et al. 2014; Navin 2014), MDA displayed poor coverage uniformity and low 

signal-to-noise ratios. These characteristics, coupled with overwhelming GC biases, make 

MDA unreliable for accurate determination of CNVs compared with the other two 

techniques examined. Furthermore, although both DOP-PCR data and MALBAC data can 

be used to generate CNV profiles and identify large variants, DOP-PCR data have 

substantially lower coverage dispersion and smaller GC biases than MALBAC data. Our 

results indicate that given the same level of coverage, data prepared using DOP-PCR can 

reliably call CNVs with better signal-to-noise ratios and are more reliable for accurate copy-

number calls than are data obtained with MDA or MALBAC. 

 

Finally, to guide researchers in their analysis, we highlight common computational 

pitfalls in single-cell analysis and discuss how Ginkgo corrects for them. Correctly calling 

CNVs from single-cell sequencing data is still an open problem and Ginkgo’s wide array of 

parameters leaves it flexible to users’ needs while remaining robust. As single-cell 

sequencing methods further develop, we anticipate it will become practical to analyze SNPs 

and other smaller mutations reliably. As this occurs, and as other algorithmic improvements 
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are made, we will incorporate those new ideas into our toolbox. We are also exploring ideas 

for the analysis and visualization of single-cell RNA sequencing as those protocols become 

more widely available. Users are encouraged to customize and contribute back to Ginkgo’s 

open-source code base hosted on GitHub. 

 

2.4. Methods 

 Mapping reads to genome 2.4.1.

Reads were mapped to hg19 using bowtie (Langmead et al. 2009) and only uniquely 

mapped reads (mapping quality score >= 25) were kept.  

 

 Binning reads 2.4.2.

Copy number analysis begins with binning uniquely mapping reads into fixed-length or 

variable-length intervals across the genome. This aggregates read depth information into 

larger regions that are more robust to variable amplification and other biases. As discussed 

in the main text, fixed-length bins are generally discouraged as they lead to read drop out in 

regions that span highly repetitive regions, centromeres, and other complex genomic 

regions. To generate boundaries for variable-length bins, we use the method outlined in 

(Navin et al. 2011), where we sample 101bp stretches of the reference assembly at every 

position along the genome. These simulated reads are mapped back to the genome using 

Bowtie and only uniquely mapping reads are analyzed. For a given bin size, we assign reads 

into bins such that each bin has the same number of uniquely mappable reads. 

Consequently, intervals with higher repeat content and low mappability will be larger than 

intervals with highly mappable sequences, although they will both have the same number 
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of uniquely mappable positions. Using variable-length bins with sufficient depth of 

coverage and consistent ploidy, high quality reads are expected to map evenly across the 

entire genome. Users are provided with a variety of bin sizes from which to choose, 

depending on the overall coverage available; if the mean coverage per bin is too low, we 

encourage users to use larger bins. 

 

 GC bias correction 2.4.3.

Once reads are placed into bins, Ginkgo normalizes each sample and corrects for GC biases 

prior to segmentation. The normalization process begins by dividing the count in each bin 

by the mean read count across all bins. This centers the bin counts of all samples at 1.0. To 

identify and correct GC biases, Ginkgo computes a locally-weighted linear regression using 

the R function lowess (Cleveland 1981) (smoother span = .5, iterations = 3, 

delta=0.1*range(x)) to model the relationship between GC content and log-normalized 

bin counts. This lowess fit is then used to scale each bin such that the expected average log-

normalized bin count across all GC values is zero. After the lowess fit, we monitor the bias 

of each cell by calculating the proportion of bins that fall outside an expected coverage of 

zero by +/- 1, log base 2. 

 

 Segmentation 2.4.4.

Following GC bias correction, bin counts are segmented using Circular Binary Segmentation 

(CBS) to reduce fluctuations in noise across chromosomes and identify longer regions of 

equal copy number (Olshen et al. 2004). The key step during segmentation is selecting the 

right reference sample for comparison. Using a diploid sample to normalize bin counts can 

eliminate additional biases uncorrected by GC normalization. Although Ginkgo supports 
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uploading data from such a cell, this is not always available so Ginkgo provides alternatives 

for segmenting samples: (1) Independent segmentation, where samples are segmented 

independently by their own normalized bin count profiles; and (2) Sample with lowest IOD, 

where Ginkgo selects the sample with the lowest index of dispersion (IOD - the ratio 

between the read coverage variance and the mean) and uses that sample as a reference for 

all other samples.  The sample with the lowest index of dispersion will likely be among the 

most evenly balanced ploidy and highest quality of all submitted cells. 

 

 Clustering 2.4.5.

Before visualization, the final step is to look outside the scope of individual cells and 

determine the overall population structure. Ginkgo first determines the distance 

(dissimilarity structure) between all cells. We provide six choices of distance metrics: 

Euclidean, 𝑑 𝑥, 𝑦 = 𝑥! − 𝑦! !
! , Manhattan, 𝑑 𝑥, 𝑦 = |𝑥! − 𝑦!|! , maximum, 𝑑 𝑥, 𝑦 =

max  { 𝑥! − 𝑦! ,… , |𝑥! − 𝑦!| } , Canberra, 𝑑 𝑥, 𝑦 = !!!!!!
!! !|!!|

 , and Minkowski, 𝑑 𝑥, 𝑦, 𝑝 =

𝑥! − 𝑦! !!  !
 for 𝑝 ≥ 1. After computing the dissimilarity matrix, Ginkgo then computes a 

dendrogram by hierarchically clustering samples using one of four different agglomeration 

methods: single linkage, complete linkage, average linkage, and ward linkage. In addition, 

Ginkgo supports building a phylogenetic tree using the more robust Neighbor Joining 

algorithm (Saitou and Nei 1987). 

 

 Server 2.4.6.

Ginkgo is hosted at Cold Spring Harbor Laboratory on a CentOS server with 24 CPUs, 64GB 

RAM and 7TB of total storage space. Most algorithms for data analysis were implemented in 

the R language, except the read-binning step, which is written in the C language to optimize 
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running time. The user-facing interface was written in HTML, CSS and JavaScript, using the 

Twitter Bootstrap (http://getbootstrap.com) and jQuery libraries (http://jquery.com). The 

phylogenetic tree was built using jsPhyloSVG (Smits and Ouverney 2010), and the 

interactive copy-number profile viewer was based on the Dygraphs library 

(http://dygraphs.com). A PHP script manages all communication between the browser and 

the server, and between the server and the analysis pipeline. When a user launches an 

analysis, the PHP script launches a Bash script that executes R scripts in the required order. 

Every few seconds, the browser queries the back-end to retrieve the current progress of the 

analysis. Ginkgo is available open-source at http://github.com/robertaboukhalil/ginkgo. 

 

To enable standalone installations of Ginkgo (for large-scale analyses on local 

servers), we also provide a Docker image that contains the Ginkgo source code, R 

dependencies, and all required server software (PHP, MySQL, Apache). The Docker image 

can be obtained from https://registry.hub.docker.com/u/robertaboukhalil/ginkgo/. 

 

2.5. Contributions 

• Ginkgo software and copy-number analyses were done by Tyler Garvin and myself. 

• The algorithm in Pseudocode 1 was developed by Michael Wigler. 

• Many thanks to Jude Kendall for guidance and assistance with bioinformatics 
algorithms.  
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CHAPTER 3 

3. Optimized single-cell sequencing strategies for copy-
number analysis and tumor heterogeneity 

 
This chapter has been reproduced with modifications from: 

 

Aboukhalil R, Alexander J, Kendall J, Baslan T, Wigler M, Atwal GS. Optimized 

single-cell sequencing strategies for copy-number analysis and tumor 

heterogeneity. In preparation. 

 

3.1. Introduction 

Single-cell DNA sequencing is an important tool for probing the underlying biology of 

heterogeneous tissues and rare cells, where genomic variability is obscured by bulk 

sequencing of millions of cells (Wigler 2012; Shapiro et al. 2013). One of the goals of single-

cell sequencing is to identify large-scale (>10kb) copy-number variations (Baslan et al. 2012), 

which are known to play a critical role in cancer (Shlien and Malkin 2009b). In recent years, 

In recent years, single-cell sequencing was used to probe tumor evolution and metastasis in 

breast tumors (Navin et al. 2011), analyze circulating tumor cells to monitor disease 

progression and effectiveness of therapy (Dago et al. 2014), and identify subtype-specific 

CNV markers in lung cancer (Ni et al. 2013). Low coverage (<1X) single-cell DNA 

sequencing is an informative and cost-effective approach for studying diseases such as 

cancer, which are often characterized by widespread CNV events (Baslan et al. 2015). To 

automate the analysis of these datasets, software tools have recently been made available 

(Garvin et al. 2015). 
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Despite these advances, single-cell sequencing remains financially prohibitive for 

studying thousands of cells. As such, there exists a trade-off between the number of cells 

sequenced and the depth of coverage, and it is unclear which parameters yield greater 

biological insight into sample heterogeneity and population structure. Although guidelines 

exist to help investigators decide the appropriate sequencing depth for bulk sequencing of 

cancer samples (Griffith et al. 2015), no such guidelines exist for single-cell CNV analysis. It 

is therefore unclear which experimental parameters are necessary for accurate single-cell 

analysis, for both copy-number profiling and inference of population structure in clonal 

tumors. 

 

To address this gap, we present a comprehensive analysis of single-cell data from 14 

whole-genome sequencing datasets (Table 3.1). These datasets span a variety of cancer 

types, including triple-negative breast cancers (Navin et al. 2011; Wang et al. 2014), 

estrogen-receptor positive breast tumors (Wang et al. 2014; Baslan et al. 2015), a paired 

metastatic liver carcinoma (Navin et al. 2011), a highly rearranged HER2-amplified breast 

cancer cell line (Wang et al. 2014; Baslan et al. 2015), biopsies from prostates of different 

grades (Alexander 2016), and circulating tumor cells from lung cancer (Ni et al. 2013) 

patients. These data also make use of different whole-genome amplification methods—

Degenerate Oligonucleotide Primed PCR (DOP-PCR) (Telenius et al. 1992; Blainey 2013) and 

Multiple Annealing and Looping Based Amplification Cycles (MALBAC) (Zong et al. 2012), 

allowing us to test the robustness of our results across differing amplification methods. 
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A 

 

 
B 

 
Figure 3.1: (A) The Drizzle pipeline automates all the steps required to perform the analyses highlighted in this 
study: (1) Given sequencing reads in FASTQ format, the reads from each cell are aligned to the reference 
genome; (2) Millions of subsampling experiments are carried out on the mapped reads. For each cell, we sample 
a random subset of reads at 15 different sampling depths, and 100 randomizations at each level; (3) At each 
downsampling depth, the reads are binned across the genome and copy-number profiles are inferred; (4) We 
evaluate the accuracy of reconstructing the copy-number profile, phylogenetic trees, and clonal subpopulations. 
Next, by downsampling cells, we evaluate the tradeoff between sequencing more cells and sequencing at greater 
depth. (B) Sequencing at the appropriate read depth has important clinical implications for the mutational status 
of tumor suppressor genes and oncogenes. Below a certain read depth, some copy-number events may no longer 
be detected (e.g. TP53, PTEN, MYC), while other events are incorrectly called as alterations (e.g. BRCA1). 

 

By analyzing data from 2,826 single cells, we estimate the number of mapped reads 

per cell required to accurately recover a cell’s copy-number profile, reconstruct phylogeny, 

and assess clinically relevant clonal subpopulations (Figure 3.1A). We also investigate the 

tradeoff between depth of coverage and the number of cells in a sample. Our work has 

important implications for future single-cell sequencing studies, as sequencing at lower 

depth can be an important cost-saving measure, especially for samples that are mainly 
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characterized by large-scale copy-number alterations. To aid future investigators in the 

analysis and quality assessment of their own datasets, we developed Drizzle, an open-

source package that automates the analyses presented here. 

 

Study Sample ID Tissue WGA method # Cells 

(Navin et al. 2011) 

navin-t10 Breast cancer DOP-PCR 100 

navin-t16p Breast cancer DOP-PCR 52 

navin-t16m Liver metastasis DOP-PCR 48 

(Ni et al. 2013) ni-lungctc Lung CTCs MALBAC 68 

(Baslan et al. 2015) 

baslan-pt31 Breast cancer DOP-PCR 89 

baslan-pt41 Breast cancer DOP-PCR 138 

baslan-skbr SK-BR-3 cell line DOP-PCR 94 

baslan-315A 315A cell line DOP-PCR 95 

(Wang et al. 2014) 

wang-nucseq-skbr SK-BR-3 cell line DOP-PCR 50 

wang-nucseq-er Breast cancer DOP-PCR 50 

wang-nucseq-tnbc Breast cancer DOP-PCR 50 

(Alexander et al. In 
preparation) 

alexander-gl6.1 Prostate cancer DOP-PCR 494 

alexander-gl7.1 Prostate cancer DOP-PCR 739 

alexander-gl9.1 Prostate cancer DOP-PCR 349 

alexander-gl9.2 Prostate cancer DOP-PCR 505 

Table 3.1: All datasets analyzed in this study, along with citation, tissue, whole-genome amplification (WGA) 
method, and number of cells. 

 

To demonstrate the clinical implications of sequencing at the correct depth, consider 

Figure 3.1B, where we highlight examples of inferred copy-number profiles from single cells 

of breast and prostate tumors. Amplifications or deletions of important tumor suppressor 

genes and oncogenes, although correctly inferred at relatively low coverage, are miscalled 

below certain read depths.  
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3.2. Results 

 Accurate copy-number profiles require ~1M reads per cell 3.2.1.

We re-analyzed 14 single-cell sequencing datasets (Table 3.1), for a total of 2,826 cells, and 

generated equally-mappable bins along the genome as discussed in (Baslan et al. 2012) to 

account for read mappability artifacts. For each cell and subsampling depth, we calculate 

the correlation between the sub-sampled CNV profile and the original profile inferred using 

all the reads. As shown in Figure 3.2A-B, reconstructing the copy-number profile with high 

accuracy (>0.9 Pearson correlation) generally requires ~1M mapped reads per cell using a 

50kb binning scheme. We find that this result is robust for a variety of tumors types and 

grades, sequencing layouts (single-end, paired-end), short read lengths (30-101bp) and 

whole-genome amplification approaches (DOP-PCR and MALBAC). Interestingly, all cells 

seem to exhibit a critical threshold (or elbow) below which the signal is overwhelmed by 

sampling noise, and above which we observe diminishing returns in accuracy (Figure 3.2A-

B and Supplementary Figure 3.1). Furthermore, high accuracy of copy-number profiling 

(>90% correlation) is observed at read depths well below the depth of coverage in the 

original studies (Figure 3.2C); on average, cells were sequenced at read depths ~8 fold 

higher than necessary. Despite low sequencing depth of coverage, it is therefore still 

possible to obtain accurate whole-genome copy-number profiling. A plausible concern is 

that the qualitative behavior of these curves would remain unchanged regardless of the 

starting number of reads. To therefore test the robustness of our analysis with respect to the 

initial starting number of reads, we performed downsampling experiments where we varied 

the starting number of reads per cell. For each starting point, we determine a quality score 

by calculating the average normalized area under the curve (Supplementary Figure 3.2). 

This quality score reflects whether the initial number of reads is sufficient to accurately 
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generate the copy-number profiles. We recommend an area under the curve close to 1; for 

example, in the navin-t10 tumor sample, 1M reads per cell yields scores > 0.95 (Figure 3.2D). 

Finally, we verify that the shape of the subsampling curve is not due to the segmentation 

algorithm having too few reads per bin. To that end, we repeat the analysis and adjust the 

bin size at each subsampling level so that we fix the number of reads per bin, and observe 

that the shape of the curve is maintained (Supplementary Figure 3.3 and Methods). 

 

  

A B 

   

C D 
Figure 3.2: Generally, ~1M reads per cell are sufficient for accurate copy-number profile construction at 50kb bin 
resolution. (A) Correlation of the subsampled CNV profile of each cell at various read depths. (B) The vast 
majority of cells in this analysis exhibit >0.9 Pearson correlation at 1M reads per cell. (C) Cells are shown to have 
been sequenced at greater depth of coverage than necessary in the original studies. (D) The average normalized 
area under the cells’ subsampling curves can be used as a measure of data quality. Insets illustrate a decrease in 
the area under the CNV accuracy curve as the starting read depth decreases; starting the subsampling analysis at 
10K reads yields significantly worse CNV profile reconstruction than 1M reads (shown for navin-t10 tumor 
sample). 
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 Reconstructing population structure requires ~500K reads per cell 3.2.2.

In addition to generating accurate copy-number profiles, single-cell copy-number studies 

often build phylogenetic trees to infer population structure, particularly in tumor samples 

where we expect to observe clonal subpopulations (Navin et al. 2011; Ni et al. 2013). In this 

section, we explore the effect of decreasing depth of coverage on the accuracy of 

phylogenetic tree construction. For this analysis, we chose the datasets in Table 3.1 that were 

obtained from patient tumors with >50 cells and only analyzed cells with >1M reads. This 

filtering resulted in the analysis of breast and prostate tumors spanning differing clinical 

grades and levels of intra-tumor heterogeneity. For each subsampling level, we build a 

Neighbor Joining tree (Saitou and Nei 1987) using each cell’s breakpoint profile, and 

evaluate how well the tree was constructed using a tree similarity metric based on the 

Branch Score distance (Kuhner and Felsenstein 1994) (Methods).  

 

At megabase pair resolution, all samples exhibit >90% tree similarity at 0.5M reads 

per cell (Figure 3.3A). Our results appear robust across various cancer types, tumor grade 

and level of tumor heterogeneity. Interestingly, the required number of reads does not vary 

drastically with larger bins (Figure 3.3B), which is expected since most cancers exhibit 

megabase-sized CNV events (Beroukhim et al. 2010b). To ensure that the shape of the curves 

is not an artifact of low bin counts during segmentation, we repeat the analysis while 

maintaining the number of reads per bin at each downsampling step and observe a similar 

trend (Supplementary Figure 3.4). 
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A 

 

B 

 
Figure 3.3: Approximately 500K reads per cell are required for accurate phylogenetic tree inference. (A) For the 
samples we analyzed, 0.5M reads per cell are sufficient for accurate phylogeny inference at 500kb bins. (B) Using 
smaller bins only changes the shape of the curves slightly but does not affect the required number of reads to 
attain > 90% accuracy (shown for navin-t10 sample). 

 

 Accurate assessment of clonality requires ~50K reads 3.2.3.

An important application of single-cell sequencing to early diagnostics in cancer is to 

identify the cells in a tumor that form clones (i.e. groups of cells with shared genomic 

alterations). Here, we assess the effect of reducing read depth on our ability to identify cells 

that form a clone. Using the prostate biopsy samples from (Alexander 2016), we 

downsampled the number of reads per cell and clustered cells by their shared profiles using 

Gaussian Mixture Models (GMM). To score our ability to identify the cells that are clonal, 

we use the following approach at each read depth level: for each set of cells 𝑆! identified 

(algorithmically and by visual inspection) by (Alexander 2016) as being clonal, we find the 

corresponding GMM cluster 𝑇!  (Methods) and define the score as 𝑆! ∩ 𝑇!  / |𝑇!|, the ratio of 

the number of true clonal cells found in 𝑇! divided by the total number of cells found in 

cluster 𝑇!. In other words, the score improves if we identify the correct clonal cells, and 

decreases if the clonal cells we identify are within a cluster that contains many non-clonal 

cells. Surprisingly, for the purpose of identifying clonal cells, 50K reads per cell was 
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sufficient for the samples we analyzed (Figure 3.4). Since this analysis does not require 

accurate CNV profiles or phylogeny structure, it is expected that we would need fewer 

reads per cell. 

 

 
Figure 3.4: Generally, 50K reads per cell are sufficient to accurately identify clonal cells. Note that the x axis is on 
a log scale. 

 

 Tradeoff between sequencing more cells and sequencing at greater 3.2.4.

depth of coverage 

An important parameter in single-cell sequencing experiments is the number of cells to 

sequence in a given sample. Here we assess the tradeoff between sequencing more cells and 

sequencing at greater depth of coverage, by varying both read depth and number of cells. At 
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further generate 100 random subsets of cells—for a total of 10! randomizations for each 

combination. At every randomization, we evaluate our ability to accurately infer population 

structure, as measured by two statistics: (1) the number of major clusters as determined by a 

Gaussian Mixture Model and the Bayesian Information Criterion; (2) and the conservation 

of each cluster’s content as determined by the Jaccard Index (Methods). 

 

Across all tumor samples, we find that our ability to infer population structure is 

much more sensitive to the number of cells than the read depth (Figure 3.5A-B and 

Supplementary Figure 3.5). Whereas removing reads from a sample generally leads to an 

approximately logarithmic decrease in accuracy, removing cells exhibits an approximately 

linear decrease. From this analysis, we conclude that given a fixed budget and sufficient 

read depth, sequencing more cells is preferable to sequencing at greater depth, especially for 

heterogeneous tumor samples. 
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Figure 3.5: Approximate log-linear relationship in the tradeoff between sequencing more cells and at greater 
depth. (A) Heatmaps of two population-structure measures on a prostate tumor biopsy (alexander-gl9.2) 
illustrates that a heterogeneous tumor would benefit more from sequencing more cells than sequencing at 
greater depth. (B) Similar results were observed for a breast tumor (navin-t10). 

 

 Drizzle: a software tool for assessing single-cell data quality 3.2.5.

We developed the software tool Drizzle to automate millions of subsampling experiments 

on single-cell sequencing data (Figure 3.1 and Methods). Drizzle takes as input sequencing 

reads in FASTQ format (one file per cell), maps reads to the reference genome (Langmead 

and Salzberg 2012), and removes PCR duplicates (Li et al. 2009) or reads with poor mapping 

quality. Drizzle also supports the analysis of data published in the Sequence Read Archive 

(SRA) database (Leinonen et al. 2011); given a list of accession IDs, Drizzle automatically 

downloads raw sequencing reads, and fetches important metadata (expected file size, read 

length, and single- or paired-end reads). Once the download is complete, Drizzle converts 

the SRA files into FASTQ format in memory, and proceeds with mapping the reads to the 

human reference genome. For each cell, Drizzle generates a segmented copy-number profile 

using variable-sized bins (Navin et al. 2011; Baslan et al. 2012) at 10 supported bin size 

configurations (25kb to 6.4Mb). Using the mapped reads from each cell, Drizzle randomly 
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samples reads at 15 different levels of read depth. For each sampling depth, Drizzle 

estimates the accuracy of inferring a cell’s copy-number profile, constructing phylogenetic 

trees using all cells from a sample, assessing divergent subclonal populations, and assessing 

population structure using various combinations of read depth and number of cells. 

Although we observe several trends across the different datasets, we anticipate that the 

exact range of optimal parameters may vary by tissue type, tumor grade, and whole-

genome amplification approach. As such, here we provide Drizzle as a suite of open-source 

software tools to enable investigators to evaluate the data quality of pilot single-cell 

sequencing experiments. 

3.3. Discussion 

Here we present the first large-scale single-cell sequencing analysis of copy-number 

variation across a wide spectra of cancer sub-types and experimental procedures. Overall, 

we find that most cells exhibit a plateau behavior, where sequencing above a certain read 

depth yields diminishing returns, whereas the signal rapidly deteriorates below that 

threshold (Figure 3.2). We show that 1M reads per cell is generally sufficient to accurately 

recover a cell’s copy-number profile at differing bin resolutions (Figure 3.2A-B). For most 

cells, this threshold is well below the original read depth (Error! Reference source not 

found.C), which suggests that using lower coverage sequencing would achieve similar 

results at reduced cost. Next, we introduce a quality control measure (average normalized 

area under the curve at different starting conditions) that can help readers assess whether 

the initial number of reads per cell is sufficient in their own preliminary data (Error! 

Reference source not found.D). Furthermore, we show that ~500K reads per cell is 

sufficient for accurate phylogeny construction in tumors of different tissue type (breast and 
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prostate), heterogeneity, and clinical grade (Figure 3.3). To identify highly diverged clonal 

sub-populations, we find that ~50K reads is sufficient (Figure 3.4). Next, we explored the 

number of cells required for accurate population structure inference. For heterogeneous 

samples, we find that sequencing more cells at a sufficient depth yields greater insight into 

population structure than sequencing fewer cells at greater depth (Figure 3.5). 

 

Our results have important implications for future single-cell sequencing studies 

that aim to study copy-number alterations. In cancer research, the single-cell CNV profile 

can be used in biopsies to detect malignancy and its evolution in the patient. In such studies, 

doing a first pass sequencing at low depth of coverage is a cost-effective approach for 

identifying the major clones in a tumor. Thereafter, a clone of interest can be studied in 

greater detail by pooling together the libraries of that clone and re-sequencing. This would 

allow for an in-depth characterization of the clone, including the identification of single 

nucleotide polymorphisms (SNPs) and smaller copy-number events. 

 

Our results show a trend that is consistent across a variety of tissue types and whole 

genome amplification methods. Nevertheless, we recommend that investigators perform 

similar downsampling analyses outlined in this paper for new projects. To this end, we 

developed Drizzle, an open-source software that enables readers to assess the quality of 

their preliminary single-cell sequencing data for copy-number profiling and phylogeny. 

This pipeline is available open-source on GitHub. 
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3.4. Methods 

 Obtaining the data 3.4.1.

We obtained the SRA accession codes from each of the published single-cell studies in Table 

3.1. Using Drizzle, we generated a list of all cells to download, and manually removed cells 

that were exome-sequenced. In total, we analyzed 2,826 cells.  

 

 Drizzle 3.4.2.

Drizzle is packaged as a collection of R and Bash scripts. Each module included in the 

package is listed below, along with a description. Also refer to the flowchart in Figure 3.1A. 

 

1-download_sra.sh 

The first module takes as input a list of accession IDs from the SRA database (supports SRX 

and SRP accession IDs). Using the NCBI E-utilities/EFetch API, it fetches metadata about 

each cell (download URL, total file size, and timestamp); as well as information about 

experimental design (paired-end or single-end, read length, etc.). To accelerate file 

download, our pipeline uses the Aspera protocol (instead of HTTP or FTP). In our 

experience, this resulted in ~5 fold improvement in download speeds (~50 MB/s instead of 

~10 MB/s). Once each file downloaded, the pipeline verifies that the size and timestamp of 

the file on the local storage matches that in the database to ensure the download was 

successful. Finally, each cell’s SRA file is decompressed into a FASTQ file (or 2 files for 

paired-end sequencing) containing a list of sequencing reads. Also included is an optional 

step to generate quality control reports for each SRA file using FastQC (Andrews 2010). 
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2-fastq_to_bed.sh 

Reads in the FASTQ files are mapped to the human genome (hg19) using Bowtie2 

(Langmead and Salzberg 2012) (using the correct parameters for whether a cell has paired-

end or single-end data). The SAM format output from Bowtie2 is converted to BAM format 

and filtered using Samtools (Li et al. 2009) to remove low-quality reads (< 25 mapping 

quality) and PCR duplicates. The output from that step is then converted to a more compact 

BED file with only 2 columns (chromosome and start position), which is then compressed to 

BED.GZ using gzip compression. This script also supports basic read trimming options to 

remove barcodes. 

 

2-sra_to_bed.sh 

Similar as previous script, but also converts the SRA to FASTQ before launching read 

alignment. To speed up the process significantly, FASTQ files are not stored on disk but 

instead only maintained in memory when needed. 

 

3-downsample.sh 

We perform the downsampling analysis as follows: at each step, we remove a certain 

portion of a cell’s reads and reconstruct the segmented copy-number profile using a 

streamlined version of the Ginkgo implementation. To account for biases in mappability 

across the genome, we bin the genome using variable-sized bins, as described previously 

(Navin et al. 2011). This step supports several options for bin sizes: (1) choose a constant bin 

size, e.g. 500kb; (2) use a bin size that yields specified average number of reads per bin, e.g. 

~100 reads/bin; (3) number of reads per bin to maintain is defined by the specified start bin 

size. 
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4-fig2-cnvprofile.R 

Using downsampled data from above, measure the accuracy of reconstructing a cell’s CNV 

profile by calculating the correlation between the ground truth and the downsampled 

segmented CNV profiles. As with previous steps, the desired bin size and the number of 

reads per bin can be specified. This module also allows the user to reproduce all the plots 

shown in Figure 3.2, which includes: (1) correlation as a function of number of reads; (2) 

quality score as function of starting number of reads per cell; (3) accuracy as a function of 

bin size; (4) histogram of elbow for each cell; and (5) fraction of cells with > 0.9 correlation as 

a function of read depth. 

 

5-fig3-phylogeny.R 

Measures the accuracy of reconstructing the phylogenetic tree of a sample (useful for 

samples where clonal structure is expected such as tumors). Trees are built using Neighbor 

Joining (see below for details). As with previous steps, the desired bin size and number of 

reads per bin can be specified. Furthermore, the user can define which tree distance metric 

to use when building Neighbor Joining trees (euclidean, maximum, manhattan, canberra, 

binary or minkowski). This step produces the plots show in Figure 3.3 that illustrate the 

accuracy of tree construction as a function of read depth. 

 

6-fig4-clonality.R 

Launches the clonality analysis where our ability to accurately identify highly diverged 

clones is assessed at various read depths. This step also produces the plot shown in Error! 

Reference source not found. 
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7-fig5-tradeoffs.R 

To evaluate the tradeoffs between sequencing more cells and sequencing at greater depth, 

this module progressively removes both reads and cells from the analysis, and calculates the 

resulting number of major clusters and the Jaccard Index, and plots the heatmaps shown in 

Figure 3.5. 

 

 Elbow 3.4.3.

To identify the critical threshold of a curve (or “elbow”), we use the Kneedle algorithm 

(Satopää et al. 2011), as follows. First, we connect the first and last point from the curve and 

define a line D that passes through these two points. Next, we connect each data point to 

line D using a line E that is perpendicular to D; the elbow occurs at the data point that 

maximizes length of line E. When calculating the elbow for all cells, we discard cells that are 

diploid, which we define to be cells where >90% of autosomal bins are at copy-number 2. 

 

 Building phylogenetic trees 3.4.4.

In the field of cancer genomics, a powerful application of single-cell sequencing is to 

identify copy-number alterations, and use those events to infer the phylogenetic history of a 

tumor (Navin et al. 2011; Ni et al. 2013). A common approach to single-cell phylogeny is to 

first calculate the pairwise distance (e.g. Euclidean, Manhattan) between all integer copy-

number profiles and build the tree using algorithms such as hierarchical clustering and 

Neighbor Joining. However, using integer copy-number profiles can lead to additional bias, 

as discussed here. First, in the presence of very large events, such as a whole chromosome 

loss, the distance between any two cells will be largely a function of whether those events 

are observed, and will overlook smaller, possibly equally important events. Instead, starting 
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from a cell’s segmented copy-number profile, we infer its integer copy-number state across 

the genome and identify the resulting “breakpoints”, i.e. bins that indicate a transition in the 

integer copy-number state. The resulting binary vector of each cell is further modified to 

remove breakpoints that occur at chromosome starts and ends (we don’t consider 

transitions between chromosomes as a breakpoint), and within sex chromosomes (in multi-

patient phylogenetic trees, this ensures the clustering is based on shared events and not 

gender). Finally, we build phylogenetic trees by calculating the Manhattan distance between 

all pairs of cells and using the Neighbor Joining algorithm (Saitou and Nei 1987). 

 

 Comparing Trees 3.4.5.

To calculate the effect of using fewer reads per cell on the topology of the tree, we generate a 

ground truth phylogenetic tree using a fixed number of reads per cell. For this analysis, we 

set this parameter to 1 million reads per cell; this threshold was chosen such that most cells 

have a read depth > 1M reads. At each read depth level, we built a tree and calculated the 

“distance” between the two trees using the Branch Length Score distance (See Choosing an 

appropriate tree distance metric below). 

 

 Estimating the number of major cell clusters 3.4.6.

To assess the tradeoff between sequencing more cells and sequencing at higher depth, we 

evaluate the effect of using fewer cells on our ability to accurately reconstruct population 

structure. As a proxy for population structure, we use the number of major cell clusters and 

a score that estimates the conservation of cluster contents. Although we could in principle 

make use of similar tree comparison techniques as described below, this would require 

making comparisons between trees with different numbers of leaves, yet tree distances are 
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only defined between trees that share the same leaves. Although one could prune 

extraneous leaves, this is likely to generate artifacts: when downsampling to low number of 

cells, it is much easier to accurately reconstruct a tree with 10 leaves than a tree with 300 

leaves. Instead, to estimate the number of major clusters, we first trim the data from 

breakpoints that are seen in no cells, and remove cells that contain no breakpoints. Next, we 

perform a Principal Component Analysis on the cell breakpoint profiles to reduce the 

dimensionality of the data. To find clusters of cells with similar copy number profiles, we fit 

the data to a Gaussian Mixture Model of 𝑘 clusters (Fraley and Raftery 2002; Fraley et al. 

2012), where 𝑘 ranges from 1 to 10. The best 𝑘 is chosen as the one that minimizes the 

Bayesian Information Criterion. Finally, we evaluate cluster content preservation using the 

Jaccard Index. Please refer to Chapter 4’s Methods section for details on the Gaussian 

Mixture Model procedure. 

 
 Choosing an appropriate tree distance metric 3.4.7.

3.4.7.1. Introduction 

To calculate the effect of using fewer reads on the topology of the tree, we generate a 

phylogenetic tree before and after downsampling, and calculate the “distance” between the 

two trees. Although several measures have been developed for calculating the distance 

between two unrooted trees (Felsenstein and Felenstein 2004), there are certain pitfalls so 

care must be taken when choosing a distance measure, as discussed here. 

 

3.4.7.2. Robinson-Foulds Distance (also known as: Symmetric Difference or Partition Metric) 

The Robinson-Foulds distance measures the number of branches that are not shared 

between two trees 𝑇! and 𝑇! (Robinson and Foulds 1981). Specifically, each internal branch 
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in a tree partitions its leafs into two groups; the distance is defined as the number of 

partitions that are seen in one tree but not in the other.  

 

Figure 3.6: The Robinson-Foulds distance is defined as the number of inner branches not shared between two 
trees. In this example, the green internal branches are shared between the two trees, whereas the red internal 
branches are not, thus giving a Robinson-Foulds distance of 2; i.e. 50% of branches are shared. 

 

For example, consider the trees shown in Figure 3.6. Out of a total of 4 inner branches, 2 

branches are shared between the trees, whereas the remaining 2 are not shared. Hence, the 

Robinson-Foulds distance between 𝑇! and 𝑇! is 2; in other words, 1 − !
!
= 50% of internal 

branches are shared between the two trees. Algorithmically, to compare trees 𝑇! and 𝑇!, we 

loop through each internal branch from both trees and add 1 to the distance if the branch is 

seen in one tree but not the other, and 0 if it is seen in both trees: 

 

RF(𝑇!,𝑇!) = |𝐼!
!! − 𝐼!

!! |
!"#$%"&'
!"#$%! !

   

where  𝐼!! =
 1, branch 𝑏 found in tree 𝑇
0, otherwise  
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This distance ranges from 0 to twice the number of internal branches (maximum 

distance is when every branch from 𝑇! is not found in 𝑇!, and vice-versa). We define the 

Robinson-Foulds score as the percentage of internal branches maintained in both trees: 

 

RFS 𝑇!,𝑇! = 1 −
RF 𝑇!,𝑇!
2 (𝑛 − 3)

 

 

Note that the total number of internal branches in a tree is 𝑛 − 3. As illustrated in 

Figure 3.7, an unrooted tree with 𝑛 = 3 leafs has 0 internal branches, a tree with 𝑛 = 4 leafs 

has 1 internal branch, and a tree with 𝑛 = 5 leafs has 2 internal branches. By induction, we 

can show that a tree with 𝑛 leafs has 𝑛 − 3 internal branches, for 𝑛 ≥ 3. 

 

 

Figure 3.7: A tree with 𝒏 leafs has 𝒏 − 𝟑 internal branches. 

 

3.4.7.3. Branch Length Distance 

The Branch Length distance is a generalization of the Robinson-Foulds distance that takes 

branch lengths into account and considers all branches, not only internal branches (Kuhner 

and Felsenstein 1994). Instead of a 0 penalty if a branch is present, the BL distance uses a 

penalty based on the squared differences in branch lengths: 
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BL(𝑇!,𝑇!) = 𝑇!
(!) − 𝑇!

(!) !

!"#$%! !

   

 

Note that if branch lengths in both trees are 1, then the Branch Length Distance and the 

Robinson-Foulds distance are equal. 

 

Next, we define the Branch Length Score by normalizing the Branch Length Distance 

by the maximum distance between the two trees, which is when every branch in 𝑇! is not 

found in 𝑇!, and vice-versa: 

 

BLS 𝑇!,𝑇! = 1 −
BL 𝑇!,𝑇!
𝑇! ! + 𝑇! !

 

3.4.7.4. Quartet Distance 

A quartet is defined as any set of four leafs in a tree. The quartet distance is defined as the 

proportion of quartet subtrees whose topology is not preserved between two trees. As 

shown in Figure 3.8, a quartet can have one of three possible topologies. 

 

Figure 3.8: A quartet can have one of three tree topologies (assuming all nodes in the tree have degree 3) 

For two trees 𝑇! and 𝑇! that share 𝑁 leafs, the Quartet Distance is therefore defined as: 

QD 𝑇!,𝑇! = 𝟏! 𝑇!,𝑇!
!"#$%&% !

 /  
𝑁
4

  

where  𝟏! 𝑇!,𝑇! =  0, quartet 𝑄 has same topology in both trees
1, otherwise  
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3.4.7.5. Other tree distances 

So far, we discussed the three most commonly used tree distances, although other ones have 

also been suggested, including the Nearest-Neighbor Interchange Distance—which calculates 

how many steps are needed to go from one tree topology to the other—and the Path-Length-

Difference Metric—which measures the conservation of the number of branches that separate 

each pair of leafs. For an extensive discussion on tree distances, refer to (Felsenstein and 

Felenstein 2004). 

 

3.4.7.6. Which distance is most appropriate? 

In principle, many of the distances described above could be used to compare trees. Here we 

explore the usefulness of each, especially within the context of building phylogenies of 

single-cell copy-number data obtained from tumors. 

 

1) The effect of minor differences in topology 

Although one would expect the Robinson-Foulds score to be a good measure of topology 

difference between two trees, in practice we find it to be extremely sensitive to minor 

differences. To illustrate this issue, consider the example shown in Figure 3.9, where we 

wish to compare two trees that are almost identical, except for leaf #6, whose position is 

incorrectly deduced while building tree 𝑇!. 
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Figure 3.9: The Robinson-Foulds distance is very sensitive to minor changes. In this example, trees 𝑻𝟏 and 𝑻𝟐 
have the maximum possible distance according to the Robinson-Foulds distance, despite their clear similarities. 

 

Although the trees are clearly very similar, their Robinson-Foulds distance is 6, 

which is the maximum possible distance for those two trees! In other words, according to 

the Robinson-Foulds metric, the distance between 𝑇! and 𝑇! is the same as the distance 

between the two very dissimilar trees 𝑇! and 𝑇!, where the contents of the main clusters are 

completely lost. In contrast, the Quartet Distance and Branch Length score are much less 

sensitive to this situation (see Table 3.2). Other issues with the Robinson-Foulds metric have 

also been raised previously. For instance, when randomly sampling trees from 11 leafs, 

(Penny et al. 1982) found that over 80% of tree pairs had the maximum possible Robinson-

Foulds distance.  

 

 

 𝒅(𝑻𝟏,𝑻𝟐) 𝒅(𝑻𝟏,𝑻𝟑) 

Robinson-Foulds 100% 100% 

Quartet Distance 67% 80% 

Branch Length Score 46% 62% 
Table 3.2: The Robinson-Foulds distance is very sensitive to small changes. Trees 𝑻𝟏,𝑻𝟐,𝑻𝟑 refer to Figure 3.9. 
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2) The importance of branch lengths 

Next, consider the case where a tumor is composed of several clusters of cells. Although 

each cluster may contain cells that share much of their copy-number profiles, minor 

differences—for example, due to errors during whole genome amplification, sequencing or 

copy-number calling—may affect the tree building process. As a result, although cells in a 

cluster will remain near each other after downsampling reads, the order they occur in the 

tree may vary every so slightly, as shown in Figure 3.10. For such situations, it is important 

to use a distance that incorporates branch lengths into the calculation. For example, not 

considering branch lengths would greatly increase the distance between the trees (𝑅𝐹 =

2/6,𝑄𝐷 = 3/15). However, if we use a distance that takes branch lengths into account—

such as the Branch Length Score—the fact that the cells have remain near each other will be 

reflected in the smaller branch lengths, and therefore the distance between the trees will be 

much smaller. 

 

Figure 3.10: Minor changes in the order of cells within a cluster will affect the distance between the trees more 
significantly when branch lengths are not taken into account. 

 

3) Trees with large number of leafs 

In many of the samples we use in our analysis, trees can have >500 leafs, which exacerbates 

the two previous issues, especially for the Robinson-Foulds distance. In addition, although 
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the Quartet Distance was robust to the situation highlighted in Figure 3.9, it would be as 

sensitive as the Robinson-Foulds distance if the tree harbored large clusters of size ≫ 4. In 

contrast, since the Branch Length Score takes branch lengths into account, the small branch 

lengths within cell clusters indicate that those cells are very similar, and therefore the 

calculated distance will be smaller. 

 

4) The most appropriate tree distance 

Taken together, the most appropriate tree distance for our analysis is the Branch Length 

Score, given that it is robust to minor variation in the tree and takes branch lengths into 

account. We use the BLS implementation found in the phangorn R package (Schliep 2011), 

and normalize appropriately as discussed above. Note that the ape R package (Paradis et al. 

2004) also implements the BLS, but only takes inner branch lengths into account (all 

bipartitions are of size >  2), whereas phangorn takes all branches into account (bipartitions 

include those of size 1, i.e. the leafs of the tree). 

 

 Is the BLS a real “metric”? 3.4.8.

In the previous sections, the words “distance” and “metric” were used loosely to mean a 

quantity that represents how far apart two trees are from each other. Here we formally 

prove that the BLS is a metric in the mathematical sense. There are four requirements for a 

function to be defined as a “metric”: 

1. The distance between a tree and itself should be 0: 

 BL 𝑇!,𝑇! = 0 

2. The function must be symmetric, i.e. the distance between tree 𝑇! and 𝑇! is the same as the 

distance between tree 𝑇! and 𝑇!: 
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 BL 𝑇!,𝑇! = BL(𝑇!,𝑇!) 

3. The distance between two trees must be non-negative: 

 BL 𝑇!,𝑇! ≥ 0 

4. The distance function must satisfy the triangle inequality: 

 BL 𝑇!,𝑇! ≤ BL 𝑇!,𝑇! + BL 𝑇!,𝑇!  

 

From the mathematical formulas shown in previous pages, the Branch Length Score always 

satisfies requirements #1 and #2. Next, requirement #3 will always be satisfied as long as 

the trees being compared contain the same leafs. As for requirement #4, it is satisfied by the 

following proof: 

 

BL 𝑇!,𝑇! + BL 𝑇!,𝑇! = 𝑇!
(!) − 𝑇!

(!) !

!"#$%! !

+ 𝑇!
(!) − 𝑇!

(!) !

!"#$%! !

 

BL 𝑇!,𝑇! + BL 𝑇!,𝑇! ≥ 𝑇!
! − 𝑇!

! + 𝑇!
! − 𝑇!

! !

!"#$%! !

    by Cauchy Schwarz inequality 

BL 𝑇!,𝑇! + BL 𝑇!,𝑇! = 𝑇!
(!) − 𝑇!

(!) !

!"#$%! !

 

BL 𝑇!,𝑇! + BL 𝑇!,𝑇! = BL 𝑇!,𝑇!  
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3.5. Supplementary Figures 

 

Supplementary Figure 3.1: The number of reads needed for the same level of accuracy as a function of bin size 
(shown for navin-t10 sample). See Online Methods for description of elbow algorithm. 
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Supplementary Figure 3.2: Repeating the AUC analysis shown in Figure 3.2F for all samples in our study shows 
similar results across samples. 

 

 

Supplementary Figure 3.3: To test that the plateau observation isn’t due to a low number of reads per bin, we 
repeated the analysis shown in Figure 3.3B, but using a bin size of 100kb and, at each downsampling step, 
remove half the reads and use a bin size twice the size. The data shown here is from the navin-t10 sample 
(diploids removed). 

 

 

Supplementary Figure 3.4: To verify that the result in Figure 3.3 is not due to low number of reads per bin 
during segmentation, we repeat the analysis while maintaining the same number of reads per bin at each 
sampling step, and observe a similar trend. The data shown here is from the navin-t10 sample. 
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B 

 
C 

 
Supplementary Figure 3.5: We repeated the analysis shown in Figure 3.5 on several other samples. Note that in 
alexander-gl6.1, the number of major clusters is close to 1 because most cells are not similar except for a sub-clone 
of 4 cells. 
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CHAPTER 4 

4. Algorithms for single-cell copy-number phylogeny and 
clone detection 

 

4.1. Introduction 

Recent technological developments have paved the way for sequencing DNA at single-cell 

resolution for the study of complex biological systems (Navin and Hicks 2011; Wigler 2012; 

Shapiro et al. 2013; Navin 2014). In particular, single-cell DNA sequencing has enabled the 

analysis of heterogeneous tumors (Navin et al. 2011; Ni et al. 2013; Dago et al. 2014; Wang et 

al. 2014; Alexander et al. In preparation), whose population structure would otherwise be 

obscured by bulk sequencing of millions of cells. 

 

Studying the population structure of tumors helps disentangle intra-tumor 

heterogeneity by identifying groups of cells with shared copy-number events (clones). 

Inferring the presence of early clones is a promising application of single-cell sequencing for 

early cancer diagnosis in the clinic (Alexander et al. In preparation). Furthermore, a better 

understanding of the genetic profile of the various clones present in a tumor can help direct 

future treatment options, as intra-tumor heterogeneity plays an important role in drug 

resistance (Saunders et al. 2012). By retracing the relationships between the observed clones, 

investigators can also uncover early mutations to better identify driver genes, and 

potentially predict future clinical outcome or tumor recurrence (Urbschat et al. 2011; 

McGranahan and Swanton 2015). 
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Despite the growing interest in single-cell cancer genomics (Shapiro et al. 2013), the 

question of which approach to use for building phylogeny from single-cell copy-number 

sequencing data remains unanswered. Our goal in this chapter is to develop tools to more 

accurately reconstruct tumor evolution. Specifically, this chapter will address current 

challenges in single-cell CNV phylogeny, and present a method for identifying the 

informative breakpoints in a tumor, finding the major clones in a tumor and building a 

phylogenetic tree from these clones. 

 

4.2. The challenges of single-cell CNV phylogeny 

Although several algorithms are available to infer phylogeny from SNP allele frequency 

obtained from single-cell exome sequencing (Hou et al. 2012; Li et al. 2012; Kim and Simon 

2014), few algorithms exist for building phylogenetic trees of tumor cells from single-cell 

copy-number sequencing data. A common approach in single-cell CNV studies is to use 

distance-based methods such as Hierarchical Clustering or Neighbor Joining (Navin et al. 

2011; Baslan et al. 2012; Ni et al. 2013). For example, (Ni et al. 2013) performed single-cell 

sequencing of circulating	 tumor	 cells	 from	 lung	 cancer	 patients,	 and	 constructed a 

phylogenetic tree by taking the pairwise Euclidean distance between integer copy-number 

profiles. However, in tumors with very large CNV events (e.g. chromosome arm deletions), 

such an approach would heavily bias the clustering by placing more weight on large CNV 

events and less weight on smaller, potentially equally important events.  

 

For example, consider the copy-number profiles in Figure 4.1A, where cells 1 & 2 

share three copy-number events while cells 3 & 4 share three different copy-number events. 

Building a phylogenetic tree from integer copy-number profiles places cells 2 & 3 together 
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since the large deletion takes precedence in the Euclidean distance calculation (Figure 4.1B). 

Instead, using breakpoints—locations where there is a change in the copy-number state of 

the cell—reflects the number of events shared rather than their size (Figure 4.1C-D).  

 
    A 

 
 
 

    B 

 

     C 

 

     D 

 

Figure 4.1: (A-B) Constructing a phylogenetic tree (average linkage, Euclidean distance) using the integer copy-
number profiles places a lot more weight on large events and can miss small events that could represent events 
in important genes. (C-D) By contrast, using the breakpoint profiles to build the phylogenetic tree does not show 
the same CNV size bias. 
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However, the use of breakpoint profiles may not suffice for accurate population 

structure inference, depending on the choice of phylogenetic methods. Although 

hierarchical clustering approaches were used in previous single-cell studies (Gangnus et al. 

2004; Ulmer et al. 2004; Mathiesen et al. 2012; Heitzer et al. 2013; Ni et al. 2013; Melchor et al. 

2014), such approaches can fail for complex population structures. To demonstrate this 

issue, consider the population structure of 6 cells in Figure 4.2A, a simplified version of the 

population structure observed in the GL9.2 prostate tumor biopsy sequenced at single-cell 

level by (Alexander et al. In preparation). In this example, Cell 1 is a diploid cell, Cell 2 is the 

precursor cell, Cells 3, 4, 5 are derived directly from the precursor, and Cell 6 was further 

derived from Cell 3. The breakpoints profiles of the 6 cells can be represented as a matrix of 

breakpoints (columns) by cells (rows), as shown in Figure 4.2B. 

 
                 A 

 

         B 

0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 1 0 0 1

  

Cell 1
Cell 2
Cell 3
Cell 4
Cell 5
Cell 6

 

Figure 4.2: Sample population structure represented as a (A) tree and as a (B) matrix of breakpoint profiles. 

 
Using several hierarchical clustering approaches and Neighbor-Joining, we built 

trees using the breakpoint information and re-rooted each tree by the diploid Cell 1. As 

shown in Figure 4.3, hierarchical clustering approaches (such as single linkage, complete 

linkage, UPGMA, WPGMA and WPGMC) are unable to reconstruct the tree of Figure 4.2A, 

whereas Neighbor-Joining comes closest. Although both Hierarchical Clustering and 

Neighbor-Joining are distance-based approaches, Neighbor-Joining does not assume a 

constant mutation rate across the branches of the tree, whereas methods such as UPGMA 
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assume that the distance between the root and every leaf is the same (Felsenstein and 

Felenstein 2004). 

 

   
Hierarchical Clustering 

(Single linkage) 
Hierarchical Clustering 

(Complete linkage) 
Hierarchical Clustering 

(UPGMA; average linkage) 

   
Hierarchical Clustering 

(WPGMA; weighted linkage) 
Hierarchical Clustering 

(WPGMC; median linkage) 
Neighbor-Joining 

Figure 4.3: Comparing different algorithms for reconstructing the tree shown in Figure 4.2A. In this example, 
Neighbor-Joining performs better than Hierarchical Clustering approaches. Note that the x axis is the log of the 
branch length, as several branches would otherwise overlap. 

 

Non distance-based approaches for phylogeny also exist, such as Maximum 

Parsimony (MP), where the chosen tree is the one that minimizes the number of mutations 

required to explain the observed data. Studies comparing the accuracy of both methods 

concluded that Neighbor-Joining tends to be more accurate (Li et al. 1987; Sourdis and Nei 

1988; Jin and Nei 1990). Other approaches include Maximum Likelihood (ML), where the 

tree maximizes the likelihood function based on a given model of evolution, and Bayesian 

approaches, where the tree instead maximizes the posterior probability (using MCMC to 

approximate the posterior distribution). Although such approaches outperform Neighbor-
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Joining under high rates of divergence, Neighbor-Joining nonetheless provides accurate 

trees (Tateno et al. 1994; Kuhner and Felsenstein 1995; Kumar and Gadagkar 2000; Tamura 

et al. 2004; Mihaescu et al. 2007). Practically, Neighbor-Joining is a polynomial-time 

algorithm, which renders it very fast. In terms of running time, NJ far outperforms MP, ML, 

and Bayesian methods, sometimes requiring orders of magnitude less computation time, 

even for building trees with only 10 to 20 leafs (Kuhner and Felsenstein 1994; Williams and 

Moret 2003; Albright et al. 2014). This is a significant factor when building trees for 

hundreds of cells with information at thousands of sites across the genome (to detect 1Mb 

events, we need ~5,000 sites). 

 

Tree building algorithms aside, inferring population structure from single-cell 

sequencing data is also challenging due to noise present in the data. This is in part caused 

by (1) Low sample quality due to complex sample preparation; (2) DNA contamination due 

to lysing of nuclei during cell isolation; (3) Wells accidentally containing multiple cells; (4) 

Uneven amplification during the whole-genome amplification step (Garvin et al. 2015); and 

(5) Fluctuations in coverage due to the low depth of coverage (< 1X) used in most single-cell 

CNV studies to reduce costs. 

 

In tumors characterized by a founder clone comprising only a few cells (e.g. in early 

cancer diagnosis), these issues are exacerbated since the clone is much more difficult to 

identify. For example, consider the Neighbor-Joining tree obtained from single-cell 

sequencing of the GL6.1 prostate tumor biopsy (Alexander et al. In preparation) plotted in 

Figure 4.4. Although nothing stands out strikingly, manual inspection of the ~500 copy-

number profiles (Alexander et al. In preparation) reveals that cells mostly exhibit unique 

patterns of copy-number alteration, except for a small group of four cells (Figure 4.4 in red) 
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from neighboring sectors of the tumor that share several copy-number events (Figure 4.4 

Inset). 

 

   

   

 

 
Figure 4.4: The Neighbor-Joining tree of the GL6.1 sample, with a clone of cells in red. Inset: Integer copy-
number profile of the cells present in the red clone. 

......
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From a clinical perspective, identifying such clones is important for early diagnosis. 

However, our analysis is overwhelmed by noisy, non-informative breakpoints that happen 

to be shared between a few cells due to chance. In this chapter, we address this issue by 

developing a statistical method for identifying the informative breakpoints that are 

important for defining clones. 

 

4.3. Results 

 Single-cell CNV phylogeny using informative breakpoints 4.3.1.

Following single-cell sequencing of a tumor, clones of cells can be identified by shared 

breakpoint patterns. However, for a large sample such as GL6.1 (Figure 4.4), where 494 cells 

were sequenced, we expect to observe noisy breakpoints that occur in multiple cells. From a 

clinical perspective, this issue is further exacerbated by the fact that clones of interest could 

account for a small fraction of the tumor. For example, the clone in Figure 4.4 consists of 

only 0.8% of the total cells sequenced. To address this issue, we present a new statistical 

method for inferring informative breakpoints that are important for defining clones.  

 

To distinguish informative breakpoints from noisy ones, we first discard bins where 

<2 cells exhibit a breakpoint. Next, we require informative breakpoints to “travel” in similar 

ways, as measured by the breakpoint-to-breakpoint covariance. Specifically, our input is a 

matrix of cells by bins, where a value of 1 denotes a cell that presents a breakpoint in a given 

bin, and 0 otherwise. Next, we compute the breakpoint-by-breakpoint covariances and 

denote a breakpoint as informative if the sum of its 3 largest covariances (not including self-



 103 

covariance) is significantly greater than expected by chance as follows. Significance is 

obtained by repeating the procedure on shuffled data (Methods and Pseudocode 4.2), where 

row and column sums are maintained. We use a p-value threshold of 0.01, normalized by 

the number of breakpoints to correct for multiple hypothesis testing (Pseudocode 4.1). 

 

Data = 𝑑!"   𝑚 × 𝑛 matrix of m cells and n breakpoints, where 𝑑!" = 1 

      if cell i has a breakpoint at bin j; 𝑑!" = 0 otherwise. 

 

// Perform randomizations 

TopCov = [ ] 

for i = 0 : N N is the desired number of randomizations. 

 

     Obs = Data 

     if i > 0 𝑖 = 0 uses original data; 𝑖 = 1 → 𝑁 shuffles the data 

          Obs = shuffle(Data) Shuffle data (see Methods) 

 

     Obs = Obs[ , which( colSums(Obs) < 2 ) ] = 0 Ignore breakpoints observed in only 1 cell (or no cells). 

     Cov = covariance(Obs, diagonal = 0) Calculate the covariance and set diagonal elements to 0. 

      

     for j = 1 : nbBreakpoints 

          TopCov[i, j] = Σ sort_desc(Cov[ , j]) [ 1 : 3 ] For each breakpoint, find sum of 3 highest covariances. 

 

// Find top breakpoints 

TopBkpts = [ ] 

for j = 1 : nbBreakpoints 

     if pValue < 0.01 / nbBreakpoints For each breakpoint, calculate the p-value, comparing 

          TopBkpts[] = j      the original data to the randomized data. 

 

// Find informative breakpoints (close to highest "TopCov" score) 

v = rep(0, nbBreakpoints) Vector where 𝑣! = 1 if breakpoint i is a top breakpoint. 

v[TopBkpts] = 1 

 

b = breakpoint for which 𝑣! → ! < !
!
  Require informative breakpoints to be some of the high 

InformativeBkpts = which( v[1:b] == 1 )      scoring ones as determined by a running sum. 

 
Pseudocode 4.1: Algorithm for finding most informative breakpoints. 
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Using single-cell sequencing data from eight prostate biopsy samples (Alexander et 

al. In preparation), we inferred the most informative breakpoints for each sample (Table 

4.1). To validate our results, we compared the number of informative breakpoints found in 

each tumor to its severity. To grade the severity and prognosis of prostate cancers, 

pathologists use the Gleason Score, a grading system based on histological observations of 

the prostate biopsy. Specifically, the two most common patterns seen under the microscope 

are assigned a score between 1 and 5; the final score is a sum of both. Low Gleason scores 

(2–5) indicate that the tissue is normal whereas high Gleason scores (7–10) indicate that the 

tissue is cancerous. In principle, Gleason 6 tumors are cancerous but due to the risks of 

overtreatment and unnecessary radical prostatectomies, pathologists increasingly treat 

Gleason 6 tumors in a separate category, favoring active surveillance over treatment (Carter 

et al. 2012a; Nickel and Speakman 2012). As shown in Table 4.1, we find good concordance 

between the clinical grade of the tumor and the number of informative breakpoints.  

   
 

Sample Breakpoints Clinical Grade 

GL9.1 99 Gleason 9 (5 + 4) 

GL9.2 39 Gleason 9 (4 + 5) 

GL7.1 40 Gleason 7 (3 + 4) 

GL7.2 48 Gleason 7 (3 + 4) 

GL6.1 9 Gleason 6 

GL6.2 3 Gleason 6 

Pin.1 0 Prostatic Intraepithelial Neoplasia 

Benign.1 0 Benign 
Table 4.1: Number of informative breakpoint for each tumor, as determined by our algorithm in Pseudocode 4.1 
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Using only the informative breakpoints in the GL6.1 prostate biopsy sample 

(Alexander et al. In preparation), we constructed a Neighbor-Joining tree. As shown in 

Figure 4.5B, the accuracy is improved tremendously compared to the tree built using all 

breakpoints (Figure 4.5A), as we are now able to identify the small clone that was 

previously identified via manual inspection. 

A 

 

B 

 
Figure 4.5: Neighbor-Joining tree of the GL6.1 sample, with a clone of cells in red. (A) Tree built using all 
breakpoints. (B) Tree built using informative breakpoints, as determined by our algorithm in Pseudocode 4.1. 
Some of the diploid cells (top of image) were truncated for space considerations. 

 
We repeated this procedure for GL6.2, another prostate sample with a clone of a few 

cells. Using only the top breakpoints, we are again able to build a tree that more easily 

identifies the clone (Figure 4.6); note that this is again the same clone previously identified 
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by (Alexander et al. In preparation). This result is confirmed by plotting the integer copy-

number profiles of the cells in that clone (Figure 4.7). Note that the phylogenetic tree 

accurately captures the relationships between these 8 cells, with 6 cells that have an 

additional copy-number event placed below the 2 cells they seem to derive from (Figure 4.6, 

Figure 4.7). 

 

A 

 

B 

 
Figure 4.6: Neighbor-Joining tree of the GL6.2 sample, with a clone of cells in red. (A) Tree built using all 
breakpoints. (B) Tree built using informative breakpoints, as determined by our algorithm in Pseudocode 4.1. 
Some of the diploid cells (top of image) were truncated for space considerations. 

 

  
Figure 4.7: Integer copy-number profiles of cells in the clone highlighted in Figure 4.6. 
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We next repeated this procedure for the GL9.2 prostate biopsy (Alexander et al. In 

preparation), a higher-grade tumor with a much more complex population structure 

(manually inferred to be the structure shown in Figure 4.2). As shown in Figure 4.8, our 

algorithm allows us to better identify the clonal cells and infer their evolutionary history. 

 

A 

 

B 

 
Figure 4.8: The Neighbor-Joining tree of the GL9.2 sample, with clonal cells in red. (A) Tree built using all 
breakpoints. (B) Tree built using informative breakpoints, as determined by our algorithm in Pseudocode 4.1. 
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 Inferring clonal evolution using informative breakpoints 4.3.2.

Building phylogenetic trees using only the informative breakpoints allowed us to 

successfully identify—at a glance—the early clones present in the GL6.1 (Figure 4.5) and 

GL6.2 (Figure 4.6 and Figure 4.7) tumors, which are characterized by a single clone 

consisting of only a few cells. For more complex tumors such as GL9.2, although we’re able 

to better retrace the history of the cells (Figure 4.8), it is not as trivial to infer the evolution of 

the clones themselves. In this section, we propose an approach to explicitly identify these 

clones by clustering cells based on shared patterns of informative breakpoints, with the end 

goal to build a tree of clones as in Figure 4.2. 

 

Using Gaussian Mixture Models (GMMs), we identify clones by fitting our data 

(from only informative breakpoints) to a weighted sum of Gaussian distributions. We 

attempt to cluster the data using G = 2 to 15 clusters and chose the clustering scheme that 

maximizes the Bayesian Information Criterion (Methods). Although here we use GMMs to 

cluster cells by similarity of informative-breakpoint profiles, it is also possible to cluster 

breakpoints to obtain a tree of breakpoint / mutation history. This clustering can also be 

used to identify the mutations that characterize each clone. For tree building purposes, we 

represent each cluster (or clone) as a single leaf, where the copy-number profile is the 

average breakpoint profile of all cells within that cluster. The idea here is to make use of the 

data from all cells in the cluster to average out the noise and construct a more robust CNV 

profile. 

 

To validate our approach, we applied this methodology to the simulated single-cell 

CNV data from Chapter 2, where we simulated 3 major clones, each with 3 sub-clones of 10 
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cells for a total of 90 cells (Figure 4.9A). As shown in Figure 4.9B, our approach accurately 

reconstructs the simulated population structure. 

A  
 

 

B 

 

Figure 4.9: (A) Simulated population structure of 90 cells, as discussed in Chapter 2. (B) Neighbor-Joining tree 
built using average clone breakpoint profile accurately infers the expected population structure. 

 

To further validate our approach within the context of non-simulated data, we 

attempted to reconstruct the population structure of a triple-negative breast tumor that was 

sequenced at single-cell resolution (Navin et al. 2011). As shown in Figure 4.10, we 

accurately reconstruct the expected tumor population structure (note that our approach 

further clusters the pseudo-diploid cells into a separate cluster). 

A 
 

 

B 
 

 

Figure 4.10: (A) Population structure of a triple negative breast cancer; figure reproduced from (Navin et al. 
2011). (B) Neighbor-Joining tree built using average clone breakpoint profile accurately recapitulates the clonal 
evolution. Note that the cluster names used in B are set according to where >90% of cells in that cluster originate. 
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Applying the same procedure to the GL9.2 sample discussed in the last section, our 

algorithm identifies 5 clones. The Neighbor-Joining tree of those clones accurately infers the 

expected evolution of that sample (Figure 4.11). 

 A 

 

 B 

 

Figure 4.11: (A) Manually inferred clonal evolution of the GL9.2 sample; reproduced from Figure 4.2A above. (B) 
The neighbor-Joining tree built using average clone breakpoint profiles accurately recapitulates the expected 
population structure. 

  

4.4. Methods 

 Building trees 4.4.1.

For each sample, Neighbor-Joining trees were constructed using MATLAB’s 

seqneighjoin() function (Bioinformatics toolbox). Hierarchical clustering trees were 

built using MATLAB’s seqlinkage() function. 

 

 Shuffling procedure 4.4.2.

The shuffling of the breakpoint profiles is performed on a matrix of size 𝑚 × 𝑛 (m cells, n 

breakpoints). The simplest approach to randomizing the matrix would be to count the 

number of positions in the matrix where there is a breakpoint, and assign the same number 
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of breakpoints at random positions within a new matrix of 0’s. However, such a 

randomization would likely generate significance easily. A stricter approach would be to re-

assign the breakpoints in the matrix such that row and column sums are preserved. 

 

We implement this using a swapping approach (Pseudocode 4.2). For each pair of 

cells 𝑐! and 𝑐!, we find the bins 𝑏!  where cell 𝑐! has a breakpoint but where cell 𝑐! does 

not, and vice-versa. These breakpoints 𝑏!  are then redistributed randomly to both cells. 

This ensures that we only perform 2 x 2 swaps that go from the sub-matrix configuration 

0 1
1 0  to the configuration 1 0

0 1 , thereby maintaining row and column sums in the overall 

matrix. By induction, it can be shown that for two binary matrices of same dimensions 

where row and column sums are fixed, there exists a finite number of 2 x 2 swaps that will 

transform one matrix into the other (Ryser 1987). 

Data = 𝑑!"   𝑚 × 𝑛 matrix of m cells and n breakpoints, where 𝑑!" = 1 
      if cell i has a breakpoint at bin j; 𝑑!" = 0 otherwise. 
 
// Create list of breakpoints for each cell 
bkpts = { } 
for i = 0 : nbCells 
     bkpts{𝑐!}.append( which(Data(i,:) == 1) ) 
 
 
// For each pair of cells, find breakpoints to swap 
for each pair of cells 𝑐!, 𝑐!  
     swaps12 = bkpts 𝑐!  \ bkpts 𝑐!  The set difference 𝑆! \ 𝑆! = {𝑥 ∶ 𝑥 ∈  𝑆! and 𝑥 ∉ 𝑆!}. 
     swaps21 = bkpts 𝑐!  \ bkpts 𝑐!  
     swaps = swaps12 ∪ swaps21 Union of both sets defines breakpoint positions that can 
      safely be swapped in both cells. 
 
     p = randperm(|swaps12| + |swaps21|) Randomly assign these breakpoints between the 2 cells 
     bkpts{𝑐!} = swaps[  p[1 : |swaps12| ] ] 
     bkpts{𝑐!} = swaps \ bkpts{𝑐!} 
 
 
// Generate shuffled data 
DataShuffled = zeros(nbCells, nbBreakpoints) 
for i = 0 : nbCells 
     DataShuffled[ i, bkpts{𝑐!} ] = 1 
 
Pseudocode 4.2: Algorithm used to randomize breakpoints in a matrix while maintaining the original row and 
column sums fixed. 
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Our algorithm also supports matrices with 0, +1, and -1, where the sign determines 

the direction of copy-number change at a breakpoint position. This is achieved simply by 

first performing swaps on the +1 breakpoints, followed by swaps on the -1 breakpoints. 

Since our procedure depends heavily on set operations, we use the MATLAB library 

lightspeed (Tom Minka, Microsoft Research) to speed up our calculations. 

 

 Computing covariances of large matrices 4.4.3.

The data from (Alexander et al. In preparation) contains data for thousands of breakpoints 

across hundreds of cells. Calculating the breakpoint-by-breakpoint covariance matrices is 

therefore computationally prohibitive. Here we explored which language’s implementation 

of the covariance function is most optimal. As a test case, we chose the scDNA-seq data 

from prostate sample Pin.1 prostate sample (Alexander et al. In preparation), with 679 cells 

and 7611 breakpoints. For 100 iterations, we calculated the breakpoint-by-breakpoint 

covariance matrix. Overall, MATLAB gave the best performance, and was 1.3X faster than 

Python (numpy package) and 14X faster than R’s built-in covariance function (Table 4.2). 

 

Language Average time (seconds) 

R 28.18 ± 0.6119 

Python   2.64 ± 0.0172 

MATLAB   1.99 ± 0.0076 
Table 4.2: MATLAB calculates breakpoint-by-breakpoint covariance matrices faster than R or Python, evaluated 
using a matrix with 679 cells and 7611 breakpoints (averaged over 100 trials). 
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 Using Gaussian Mixture Models to cluster cells with shared 4.4.4.

breakpoint patterns 

4.4.4.1. The math 

To estimate the major clusters in a given sample, we fit our single-cell breakpoint profiles to 

a weighted sum of Gaussian distributions. The 𝑘-th Gaussian distribution has a weight of 

𝑤!, with mean vector  𝝁𝒌, and covariance matrix 𝚺𝒌. The goal is to find the mixture of 

Gaussians that maximizes the probability of sampling a 𝐷-dimensional point 𝒙𝒊 from that 

distribution.  

 

For a given cell 𝑖, the goal is to find the values of { 𝑤! ,𝝁𝒌, 𝚺𝐤 } that maximize the probability 

of observing the cell vector 𝒙𝒊: 

𝑃 𝒙𝒊 | {𝑤! ,𝝁𝒌, 𝚺𝐤} = 𝑤!  𝒩 𝒙𝒊 𝝁𝒌, 𝚺𝐤)
!

!!!

 

where 𝒩 𝒙𝒊 𝝁𝒌, 𝚺𝐤) = 2𝜋 !!/!|𝚺𝐤|!!/! exp − !
!
𝒙𝒊 − 𝝁𝒌 !𝚺𝐤!!(𝒙𝒊 − 𝝁𝒌)   

 

Taking all cells together, the goal is to find the parameters that maximize the likelihood of 

observing the matrix 𝐗: 

𝑃 𝐗 | {𝑤! ,𝝁𝒌, 𝚺𝐤} = 𝑃 𝒙𝒊 | {𝑤! ,𝝁𝒌, 𝚺𝐤}
!

!!!

= 𝑤!  𝒩 𝒙𝒊 𝝁𝒌, 𝚺𝐤)
!

!!!

!

!!!

 

 

For convenience, we maximize the log-likelihood: 

log 𝑤!  𝒩 𝒙𝒊 𝝁𝒌, 𝚺𝐤)
!

!!!

!

!!!

= log 𝑤!  𝒩 𝒙𝒊 𝝁𝒌, 𝚺𝐤)
!

!!!

!

!!!
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The best parameter values can be computed with the Expectation Maximization (EM) 

algorithm: 

 

4.4.4.2. EM algorithm 

At each iteration, the values of parameters {𝑤! ,𝝁𝒌, 𝚺𝐤} are updated. 

 

After arbitrarily assigning each cell to a cluster, calculate initial parameter values: 

𝑤! =
1
𝑁

𝟏! ∈ !

!

!!!

                                                                 If cell 3 belongs to cluster 5: 𝟏3 𝜖 5 =  1 

𝝁𝒌 =
1

𝑤! ∗ 𝑁
𝒙𝒊 ∗ 𝟏! ∈ !

!

!!!

                                                𝑤𝑘 ∗ N = 𝟏𝑖 ∈ 𝑘

𝑁

𝑖=1

= # cells in cluster 𝑘 

𝚺𝒌 =
1

𝑤! ∗ 𝑁
𝒙𝒊 − 𝝁𝒌 ! 𝒙𝒊 − 𝝁𝒌 ∗

!

!!!

𝟏! ∈ ! 

 

E-step:  

𝑃 𝒙𝒊 ∈ 𝑘 = 𝜏!" =
𝑤!
(!)  𝒩 𝒙𝒊  𝝁𝒌

(𝒕), 𝚺𝒌
(𝒕))

𝑤!
(!)  𝒩 𝒙𝒊  𝝁𝒌

(𝒕), 𝚺𝒌
(𝒕))!

!!!
 

 

M-step: 

𝑤!
(!!!) =

1
𝑁

𝜏!"

!

!!!

 

𝝁𝒌
(𝒕!𝟏) =

1

𝑤!
(!!!) ∗

1
𝑁

𝜏!"  𝒙𝒊

!

!!!

 

𝚺𝒌
(𝒕!𝟏) =

1

𝑤!
(!!!) ∗

1
𝑁

𝜏!" 𝒙𝒊 − 𝝁𝒌
(𝒕!𝟏) !

𝒙𝒊 − 𝝁𝒌
(𝒕!𝟏)

!

!!!
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4.4.4.3. Noise term 

In the analyses presented here, we make use of the R package mclust (Fraley et al. 2012), 

which also adds a first order Poisson noise term. Instead of maximizing: 

log𝑃 𝑿| {𝑤! ,  𝜇! , 𝚺𝐤} = log 𝑤!  𝒩 𝒙𝒊  𝜇! , 𝚺𝐤)
!

!!!

!

!!!

 

 

it maximizes: 

log𝑃 𝑿| {𝑤! ,  𝜇! , 𝚺𝐤} = log
𝑤!
𝑉
+ 𝑤!  𝒩 𝒙𝒊  𝜇! , 𝚺𝐤)

!

!!!

!

!!!

 

 

where the weights are selected so that 𝑤!!
!!! = 1, and where V is the hypervolume of the 

dataset. 

 

4.4.4.4. Choosing the best clustering regime 

To choose the best clustering regime without user intervention, the procedure is performed 

using different number of clusters 𝐺, e.g. in the range 2 to 15 clusters. The best regime is the 

one that maximizes the Bayesian Information Criterion. For a solution with 𝐺 clusters and 

with parameters estimated by EM to be {𝑤! ,  𝝁𝒌, 𝚺𝐤}: 

 

 𝐵𝐼𝐶 = log𝑃 𝐗 | {𝑤! ,  𝝁𝒌, 𝚺𝐤} − 𝐺 log (𝑁) 

 

Note that the 𝐺 log 𝑁  term penalizes solutions that contain too many clusters. 
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CHAPTER 5 

5. Tumor suppressive genes are conserved in syntenic 
clusters across the genome 

 
This chapter has been reproduced with modifications from: 

 

Aboukhalil R, Fendler B, and Atwal GS. Kerfuffle: a web tool for multi-species 

gene colocalization analysis. BMC Bioinformatics 14:22 (2013). 

 
  and 

 
Fendler B* and Aboukhalil R*, Xue R, Esposito D, Powers S, Lowe SW and Atwal GS. 

Tumor Suppressive Genes are Conserved in Syntenic Clusters. In preparation. 

 

5.1. Introduction 

During the progression of tumors many large regions of the genome, encompassing 

multiple genes and regulatory sites, are either deleted or amplified (Beroukhim et al. 2011; 

Zack et al. 2013). Tumorigenesis is driven in part by the somatic copy number deletion and 

concomitant loss of function sustained at these loci, some of which may harbor one or more 

tumor suppressor genes (TSGs). This suggests that the physical distribution and synteny of 

TSGs throughout the genome may play an important role for the evolution of tumors, one 

that may be exploited by somatic genetic selection. This raises a number of questions: How 

are TSGs distributed across the human genome and is there any evidence of TSG 

colocalization? Are there evolutionary constraints on the physical organization of TSGs 

across other species? What are the implications for the pattern of somatic copy number 

deletions observed in human tumors? 
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To address these questions, there is a pressing need for computational tools that can 

overcome the onerous task of querying the growing list of available assembled genomes, 

analyzing the linear ordering of genes across the human genome to identify whether they 

form clusters, and assessing the conservation of these clusters across other species. To this 

end, we developed Kerfuffle, a web application that efficiently computes various summary 

statistics of gene clustering across most genomes in the Ensembl database (Kinsella et al. 

2011), compares significance of clustering with shuffled null models, and graphically 

displays the results. The main advantage of Kerfuffle is that it only requires a user to specify 

human gene names and species of interest. In addition, orthologous gene searches are 

automated utilizing pre-computed homology from Ensembl servers, a relative statistic is 

used to quantify cluster conservation, and the online platform permits server-side saving of 

results for each registered user for later analysis. Furthermore, Kerfuffle can generate a 

visualization of the clusters using the Circos software (Krzywinski et al. 2009). This 

comprehensive platform is an important step in furthering our understanding of genome 

organization and its evolution. 

 

Next, we use Kerfuffle to carry out an integrative analysis of known TSGs and 

demonstrate significant co-localization of these genes into conserved syntenic clusters 

throughout the genome. Comparative genomics analysis provides evidence of evolutionary 

selection enforcing this co-localization across 46 eukaryotic species, ranging from worms to 

mammals. 

 
 
 
 



 118 

5.2. Results 

 Kerfuffle: a web tool for multi-species co-localization analysis 5.2.1.

Here we present Kerfuffle, a tool for automating the analysis of gene co-localization across 

multiple species. Although some tools exist to cluster genes, there are currently no tools 

available for efficiently verifying whether a given list of genes from one species forms 

clusters, and whether these clusters are conserved across other species. For example, 

although tools such as C-Hunter (Yi et al. 2007) cluster genes by genome position and GO 

category, they do not incorporate an analysis of conserved clustering across multiple 

species, and are not intended as a tool to query a general set of genes that don’t share GO 

terms. Other tools, such as CGCV, allow for clustering across many species but require the 

user to input DNA sequences instead of gene names (Revanna et al. 2009); subsequently, the 

web tool performs BLAST searches to find orthologous genes, which adds significant 

overhead to run-time. There are related tools which identify regions of synteny, such as 

EnsemblCompara (Vilella et al. 2009), i-ADHoRe (Proost et al. 2012), MCScanX (Wang et al. 

2012b), Cinteny (Sinha and Meller 2007), OrthoClusterDB (Ng et al. 2009) and Syntenator 

(Rödelsperger and Dieterich 2008). These tools are useful for identifying homologous 

genomic regions between species, but do not include an automated approach for evaluating 

gene clustering and its conservation across species.  

 

As shown in Figure 5.1, Kerfuffle allows the user to specify a set of gene names, and 

select up to 47 species on which the analysis will be performed concurrently (we support the 

Ensembl and WikiGene naming standards). Default analysis parameters are provided, 

although customization is allowed; parameters include: (1) d, the maximum number of total 

intervening genes (or gaps) allowed in a cluster (Figure 5.8); (2) the maximum value on the 
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x-axis of the histogram of distance between consecutive gene pairs (Figure 5.2A, C); (3) the 

maximum value on the x-axis of the histogram of cluster sizes (Figure 5.2B); and (4) the 

number of randomizations for p-value estimation.  

 

 
Figure 5.1: Kerfuffle allows the user to input a list of genes and a set of species on which to launch the analysis. 

 

Once the analysis launched, Kerfuffle queries the Ensembl BioMart database 

(Kinsella et al. 2011) and retrieves gene position information for all genes of interest. 

Simultaneously, Kerfuffle identifies the corresponding homologs and paralogs for each 

species of interest using EnsemblCompara (Vilella et al. 2009). Finally, the queried genes are 

grouped into clusters based on their co-locality (Methods). Once the analysis complete, the 
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results are displayed to the user, including the distribution of distances between consecutive 

gene pairs (Figure 5.2A), a histogram of cluster sizes (Figure 5.2B) and the distribution of 

distances between consecutive gene pairs across various species (Figure 5.2C).  

 

 
Figure 5.2: Sample Kerfuffle output using genes with ontology term ‘synapse’. (A) The discovered (blue) and 
expected (red) human distance distribution. (B) Cluster size histogram for humans. (C) Distance distribution of 
two species, human (violet) and chimp (blue). 

 

The plots in Figure 5.2A are interactive: hovering over each point in the plot of 

reveals its x and y coordinate, and clicking on the point will reveal all gene pairs separated 

by a distance x. To assess the significance of the clustering, we overlay a plot of the expected 

distribution under random gene shuffling, i.e. if gene co-localization were random. 

Deviation from the null distribution is also quantified as a p-value table generated using a 

permutation test. Note that the null distribution curve in the Figure 5.2A may appear to be 
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linear, as opposed to the expected exponential, due to the significance of gene clustering—in 

other words, highly significant counts may overwhelm the null-curve. As a result, an option 

is available to generate an independent plot of this curve, demonstrating the decaying 

nature of the distribution. To ensure that p-value calculations does not slow down webpage 

usability, the calculations are performed in the background and appear in a table once 

complete. 

 

In Figure 5.1 and Figure 5.2, the genes used are list of 477 functionally related 

synapse genes we obtained using the ontology term “synapse” in the AmiGO database 

(Carbon et al. 2009). Our analysis suggests that these genes are significantly more clustered 

than expected by chance (Figure 5.2, blue vs. red curve). Co-localization of these genes is 

supported by a study that demonstrates clustering of genes associated with GABAergic 

circuit assembly in the cerebellar cortex (Paul et al. 2012b). 

 

For comparative genomics purposes, the user can also launch an analysis comparing 

human clusters to those of other species. To quantify the conservation of gene clusters in 

species T relative to those found in species ,S we use the following conservation score: 

Score(S,T)= 1
NS

Si Tj
Sij

NT
∑

i

NS
∑ ,

 

 

where iS and iT  refers to the set of genes in cluster i in species S and ,T respectively. 
XN  refers to 

the total number of clusters in species .X All clusters were chosen as size 2 or larger. The 

intersection between iS and jT is defined as the set of common genes between cluster i in 

species S and cluster j in species .T We normalize the size of the intersection by the size of the 
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cluster ,iS hence calculating the score relative to species .S The inner sum increases if the 

genes found in cluster j of species T are also found in cluster i of species S, while the outer 

sum averages those scores over each cluster i in species .S  Thus, Score(S, T) is a statistic 

which increases as the same clusters are observed and remain intact amongst the species 

investigated in T relative to .S Our default setting for this analysis sets S = Human. Once this 

analysis completed, Kerfuffle displays the degree of conservation of the clusters in each 

species relative to humans and plots the consecutive distance distribution for all species of 

interest (Figure 5.2C). For pathway analysis, we support querying the KEGG pathway 

database (Kanehisa et al. 2012) directly from Kerfuffle to assess whether genes in a cluster 

are enriched for belonging to a common pathway. 

 
Figure 5.3: Circos output from the example clustered synapse genes. Kerfuffle outputs a Circos plot clustering 
the genes investigated by the user. The clusters are quantified by the green bars protruding inward in the Circos 
plot. The longer the bars, the more genes in the cluster. The output image also lists the colocalized genes. 
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To visualize gene clusters, Kerfuffle offers the option to generate a Circos plot. 

Figure 5.3 shows a Circos plot of the clustered genes from our synapse genes example. The 

sizes of the clusters are represented by a green histogram located at the appropriate 

genomic start and stop of the clustered genes, pointing radially inwards. We have 

attempted to optimize output for visualization of gene names (pointing radially outwards) 

while maintaining all genes on the image, however, some genes may run-off the Circos 

image because it is impossible to know a priori how many genes will sit next to each other in 

any given colocalization analysis. 

 

To evaluate the performance of our tool, we ran several queries using gene sets of 

varying size and number of species (Figure 5.4). We find that a typical query of ~500 genes 

in 5 species completes in ~25 seconds (or ~3 minutes when querying all 47 species). Overall, 

for a given number of species, the running time increases exponentially with the number of 

input genes. However, even a query of 5,000 genes (an unusually high number of genes) in 

all 47 species completes in less than 10 minutes. Hence, our server is well suited to ensure 

that queries are handled expediently. Although there is no limit on how many genes a user 

can input, we recommend that users do not exceed 10,000 genes in order to maintain a 

reasonable running time, as well as the usefulness of results (too many genes increases the 

likelihood of finding clusters). 
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Figure 5.4: Running time of Kerfuffle as a function of the number of genes queried. For any given number of 
species, the running time increases exponentially with the number of input genes, but does not exceed 20 
minutes for up to 10,000 genes in 47 species. 

 
 

 Tumor suppressor genes co-localize in syntenic clusters 5.2.2.

To investigate the comparative genomic architecture of TSGs, we analyzed the assembled 

genomes of 46 different eukaryotes, spanning a wide range of taxonomic classes from 

Saccharomycetes to Mammalia (Supplementary Material). The TSGs used in this study were 

compiled by combining putative TSGs along with genes identified in the literature as 

promoting growth through whole genome RNAi-based screens of human cells and mouse 

tumor models (McClatchey et al. 1998; Salomoni and Pandolfi 2002; Yang and Fu 2003; 

Bench et al. 2004; Futreal et al. 2004; Sherr 2004; Ji et al. 2005; Westbrook et al. 2005; Bagchi et 

al. 2007; Lu et al. 2007; Hamaï et al. 2008; Rottmann et al. 2008; Xue et al. 2008; Zender et al. 

2008b; Zhan et al. 2008; Bric et al. 2009; Gewinner et al. 2009; Veeriah et al. 2009; Zilfou and 

Lowe 2009; Chicas et al. 2010; Hsu et al. 2010; Park et al. 2010; Reimann et al. 2010; 
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Wajapeyee et al. 2010; Boehler et al. 2011; Bonilla et al. 2011; Isobe et al. 2011; Kong et al. 

2011; Saha and Robertson 2011; Xu et al. 2012). 

 

From this diverse set of literature we compiled a conservative list of 221 known and 

putative TSGs (Table 5.1) for the subsequent analyses in this study. In Figure 5.5, we 

represent the distribution of TSGs along the human genome. For other species, homologs 

were determined using the pipeline in (Flicek et al. 2012), and syntenic biases due to tandem 

duplications were addressed by removing all duplicated genes except one in each set of 

tandem duplicates (Ouedraogo et al. 2012). 

 
Figure 5.5: Distribution of TSGs in the Human Genome. The chromosomes are given by each color band and are 
labeled with the appropriate number or symbol. The genes are listed in genomic order. TSG Clusters of size 
𝒏 ≥ 𝟐 are marked with green inward-pointing bars, whose lengths denote the number of TSGs in a given cluster. 
The color of the gene name denotes the spacing of the cluster to which it belongs. Here we show duplicated 
genes although the duplicates were not involved in the co-localization analysis. 
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Using TSG localization data from all species, the distribution of TSG interval spacing 

is observed to approximately collapse on a characteristic curve when plotted on rescaled 

coordinates (Figure 5.6A), exhibiting an invariant global property of the TSG genome 

architecture across species.  

A 

 
B 

 
Figure 5.6: Frequency of TSG pairs as a function of normalized distance. (A) The black curve shows the average 
distribution over 46 different species. The four groups of related species are distributed about the average. (B) 
Shows the linear fit (solid blue) from 𝒅′~𝟎.𝟐 − 𝟐.𝟓 and the null model (dashed purple), both of which share 
similar slopes. Comparing the null model to the solid black curve, demonstrates that TSGs are significantly 
closer to each other than expected by chance (𝒑 < 𝟏×𝟏𝟎!𝟗 for human at 𝒙 = 𝟎 , for example); there are 
significantly more counts at small intergenic spacing than expected from the null model across most species. 
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We modeled the null distribution of TSG interval spacing as a Poisson process, 

subject only to the constraint that the average interval spacing for each species must be 

equal to the ratio of the number of genes in the genome to the number of TSG homologs 

(Methods). The resulting null distribution for a sufficiently large genome takes an 

exponential form, characteristic of a homogeneous Poisson process,  where Ai 

is a constant dependent on species i, and x is the gene number spacing between two TSGs. 

When normalized for the varying number of TSG homologues in each species, the 

experimental data closely tracks the null model when averaged over all genomes for large 

intervals (Figure 5.6B). 

 

For small intergenic intervals, we find significant departure from the null 

distribution for most species, for example, at 𝑥 = 0 (i.e. situations where two TSGs are 

separated by no other genes), humans: 𝑝 < 10!!; mouse: 𝑝 < 10!!; zebrafish: 𝑝 ≈ 6.0 × 10!!. 

These results indicate significant co-localization of a subset of TSGs in which each 

consecutive TSG is typically separated by no more than 2 non-TSG genes (Table 5.1). 

 

Together, these observations support a two-regime model for the correlations of TSG 

positioning: (1) below a critical interval length of about 2 genes, the TSGs are highly co-

localized; and (2) above the critical interval length, the positioning of syntenic TSGs is 

uncorrelated and follows a random distribution. We note that re-parameterization of the 

intervals in terms of base pairs does not lend itself to the simple mathematical arguments 

used here due to gene length/interval variability, but qualitatively similar trends can be 

observed, i.e. the distributions of TSG interval base pair spacing for all species exhibits 

significant co-localization. 

,)( xA
i

ieAxp −≈



 128 

To quantify the extent to which inter-species chromosomal rearrangements may 

have disrupted synteny between clustered genes, we developed a cluster conservation score 

that quantifies the preservation of gene clusters between species. The conservation score 

between two species is a normalized count of homologous genes formed by the intersection 

between gene clusters found in the two genomes (Aboukhalil et al. 2013). 

 

For every species, we calculated the scores separately for TSG homolog clusters and 

randomly chosen non-TSG gene clusters with equivalent cluster size distribution. Here we 

used the human genome as a reference in the calculation of the conservation score so that 

species with cluster profiles similar to humans would have scores closer to the maximal 

value 1 (Methods). As expected, species that share more recent common ancestry to 

humans—such as primates—tend to have larger conservation scores whereas more distant 

species such as fish and insects had lower scores. This observation was true for both TSG 

clusters and non-TSG clusters. Figure 5.7 summarizes the conservation scores for all 

analyzed taxonomic groups (see Figure 5.9 for a detailed breakdown of species-specific 

results). 

 

Notably, we also observed a significant trend that the TSG scores tend to be higher 

than non-TSG scores across all species ( 𝑝 = 3.5 × 10!! ), providing evidence that 

evolutionary selection has preferentially maintained the integrity of gene clusters associated 

with tumor suppression, compared to random clusters. The conserved physical linkage of 

TSGs argues for essential pleiotropic functionality of these genes beyond tumor 

suppression, since many tumor-associated deaths typically occur post reproduction age. 
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Figure 5.7: Conservation of TSG Clusters for Related Groups. Each species is depicted inside its respective 
taxonomic group. The human score is “1” because its clusters are completely conserved. Chimp's score is the 
closest to humans. The shift upward away from the 𝒚 = 𝒙 line demonstrates that TSG clusters are, on average, 
conserved across species, more so than random gene clusters elsewhere in the genome (𝒑 = 𝟑.𝟓 × 𝟏𝟎!𝟗). 

 

To determine whether other large functional groups of genes show similar 

conservation of clusters, we categorized gene groups of size at least 100 using the Gene 

Ontology (GO) database (Ashburner et al. 2000) and investigated their co-localization. We 

find 52 functional groups that cluster significantly in humans (Table 5.2). Using the same 

procedure, we find 20 functional groups that also show statistical evidence of conservation 

across all 47 eukaryotic genomes, e.g. genes involved in synaptic transmission (𝑝 =

3.3 × 10!!, Bonferroni-corrected). This suggests that functional clustering of related genes 
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may be a shared feature across a wide eukaryotic clade, and not just mammals (Petkov et al. 

2005a; Larkin et al. 2009; Dixon et al. 2012; Paul et al. 2012a). 

 

5.3. Discussion 

 Kerfuffle 5.3.1.

Kerfuffle is web analytics platform that provides tools for efficiently obtaining genomic 

organizational information about a set of user-defined functionally related genes. The 

software discovers clusters in each species of interest and determines the significance of 

those clusters while allowing for the interactive and visual exploration of genomic structure. 

Since it is expected that speciation would lead to differences in genomic organization, 

provided organization is random, we investigate relative cluster conservation between 

species using a measure we define as the Score(S,T). Once the analysis is performed, the user 

may compare species and determine the degree of cluster conservation. The optional 

parameters make the investigations customizable and allow the user to optimize run-time. 

An account may also be created where all investigations may be saved for later use. Further, 

our website has an extensive FAQ section which may help guide the user. 

 

Future developments will include increased investigative options, such as changing 

the type of genes investigated (currently set to protein-coding only) and incorporation of 

other gene name schemes (such as RefSeq IDs). Currently, our default conservation score 

sets humans as the relative species, i.e. for all calculations, S = Homo sapiens. Other 

features, such as the identification of common clusters in the species will be added, while 

other functionality will be included to improve our pathway investigations. Currently, we 
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link to the KEGG website, a multi-gene pathway search. In later developments, our 

webpage will determine the similar pathways and display them along with the clusters. 

Finally, our current Circos implementation is limited to humans, mouse, rat, and 

drosophila; in future developments, we will make the visualization of clusters available for 

a much wider range of species. 

 

 Co-localization of tumor suppressor genes in synteny clusters 5.3.2.

Here we demonstrate that TSGs are co-localized in the human genome, and are preserved in 

syntenic clusters across hundreds of millions of years of evolution. This co-localization was 

present significantly more than expected by chance, suggesting that a selective pressure is at 

play to maintain TSG gene order. To address potential biases in our downstream analysis, 

we removed tandem duplicate genes from our gene set (Methods). Tandem duplicates are 

genes that are co-localized following a gene duplication event (e.g. HOX genes), and could 

bias our analysis by exhibiting shared behavior such as co-expression due to sequence 

similarity. Furthermore, to account for the nature by which TSGs are often discovered 

(searching for novel TSGs in regions surrounding previously-known TSGs), our list was 

populated from studies that identified growth-promoting genes via genome-wide RNAi 

screens on human cells and mouse tumor models. 

 
 
5.3.2.1. Mechanisms 

A plausible mechanism for the enforced conservation is that the expression of TSGs is 

controlled at the chromatin level, i.e. clusters of neighboring TSGs are required to be co-

expressed. It is known that species such as S. cerevisiae, C. elegans, and D. melanogaster 

demonstrate significant co-expression of co-localized, functionally related (Cho et al. 1998), 
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and tissue-specific genes (Blumenthal et al. 2002; Boutanaev et al. 2002; Roy et al. 2002; 

Lercher et al. 2003). There is also evidence of clustered gene co-expression in mammals 

(Caron et al. 2001; Dempsey et al. 2001; Yang et al. 2002; Akashi et al. 2003).  

 

Co-expression analyses by the Atwal Lab of published gene expression data suggest 

that co-expression between neighboring genes—irrespective of their function—is correlated 

across the genome; however, this trend was not confirmed for TSGs due to low statistical 

power (Fendler and Atwal, unpublished). This suggests that if co-expression is an important 

factor in maintaining conserved synteny of TSGs then it might only occur strongly during 

specific developmental stages. In fact, preliminary re-analysis of RNA-seq data obtained 

from the modENCODE project suggests that TSGs in D. Melanogaster may be more co-

expressed than random sets of genes with the same cluster structure (Aboukhalil and Atwal, 

unpublished). However, this co-expression data was obtained from whole flies, yet TSG co-

expression could be restricted to a select subset of tissues, and it is likely that fly cells exhibit 

significant heterogeneity during development. To address these issues, it would be 

necessary to study this process at single-cell resolution using a single-cell RNA-seq time-

course. By studying gene expression levels along various developmental stages of model 

organisms such as flies and mice, we could determine if co-expression is present despite 

concerns over tissue-specificity and heterogeneity. 

 

 In addition to regulated co-expression, a few other mechanisms have been proposed 

to explain gene co-localization. For example, it has been suggested that co-localization could 

be driven by epistatic interactions between neighboring genes (Fisher 1930; Nei 1967). For 

example, compensatory mutations—where a mutation in gene A is counteracted by a 
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mutation in a nearby gene B—would lead to reduced recombination events and hence 

synteny. In addition, it is possible that important groups of genes are co-localized in regions 

of the genome where very few structural variation mutations occur. This would suggest that 

studying known mutational cold spots could reveal further gene clusters. 

 

5.3.2.2. Co-localization goes beyond TSGs 

As shown above (§5.2.2), TSGs are not the only class of genes that are co-localized—

colocalization analysis of other Gene Ontology (GO) groups reveals that at least a dozen 

more GO categories exhibit significant clustering across 46 species (Table 5.2). In future 

studies, our analysis could be extended; starting with sets of genes known to share function 

or phenotype, Kerfuffle could be used to automate the identification of additional co-

localized groups of genes. Alternatively, from a bottom-up perspective, Kerfuffle could also 

be used to identify synteny blocks that are preserved across hundreds of millions of years, 

and once found, experimentally study the shared properties (e.g. co-expression, function) of 

these genes. 

 

5.3.2.3. Implications of TSG co-localization 

The conserved co-localization of TSGs is expected to have clinical consequences for the 

development of tumors, and may fuel a different mechanism of deletion-mediated 

tumorigenesis. The canonical model of tumor progression posits that it proceeds, in part, by 

sequential inactivation of single TSGs in a classic two-hit manner. However, recent studies 

suggest that happloinsufficient genes may play a more general role in tumorigenesis 

(Solimini et al. 2012; Xue et al. 2012a), and thus clusters of TSGs could potentially be prime 

genomic targets for lesions due to the selective pressure to suppress the activity of multiple 
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genes. This new hypothesis predicts that larger TSG clusters, containing multiple weak 

tumor suppressive genes, are on average associated with greater fitness advantages for 

tumor growth, and should therefore be more frequently deleted in tumors. 

 

Analysis by the Atwal Lab of 4,466 published and unpublished cancer sample 

patients across various tissue types suggests that the mean deletion probability of a 

particular TSG increases significantly with the number of TSGs in that cluster (Fendler and 

Atwal, unpublished). These results demonstrate a genome-wide pattern of mutations in 

which tumors are vulnerable to preferential deletion of regions enriched in TSGs and, 

conversely, focal deletions for isolated TSGs are not as frequent. This would suggest another 

mechanism for tumorigenesis other than the Knudson two-hit mechanism, i.e. the 

attenuation of multiple haploinsufficient genes can also drive the growth of tumors. 

 

5.4. Methods 

 Kerfuffle 5.4.1.

The Kerfuffle back-end runs on PHP 5.2 on an Apache server. The front-end was built 

primarily in HTML and JavaScript and two JavaScript libraries to enhance user experience: 

jsCharts for plotting graphs and jQuery to asynchronously query the server. Kerfuffle is also 

flexible in the way it accepts user input. The user may choose to input genes in a textbox one 

by one or alternatively, may upload a file that contains a list of genes, each of which is 

separated by a break line. However, we recognize that it is difficult for users to keep track of 

the dozen file formats they use. Thus, if the uploaded file is a comma- or tab-delimited file 

with multiple columns, Kerfuffle will ask the user to specify the column in which the gene 

names are found. To aid in recurring analyses, we recommend that users create a free 
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Kerfuffle account, in which their results and the queried genes will be saved in our 

databases. On the back-end, the query results obtained from Ensembl are temporarily stored 

in text files and purged every week, unless users decide to save their results to their account, 

in which case the results remain on the server until the users delete them. 

 

 Genomic Spacing Analysis 5.4.2.

To download all available genomes, Kerfuffle interfaces with the Ensembl BioMart server. 

While there are 70 species available, some assemblies are not of high enough quality for the 

analysis presented here. Thus, only genomes that were at least in the “Scaffold“ build stage 

were considered. If the genome’s chromosomes contained too many “contig”, unknown 

(“Un”), or “_random” elements, the species was not analyzed. A threshold of 75% of the 

chromosomes in the genome must be at least numeric or of “Scaffold” build. Other non-

numeric chromosomes counted against the genome, such as, “reftig”s, “HG”s, “HSCHR”s, 

“Ultra”s, “GL”s, etc. The final list of species used can be found in the Supplementary 

Material. For every gene in the human genome, orthologs were obtained from Ensembl. If 

more than one ortholog was discovered, we used the larger of the “Query ID,” which 

indicates the percentage of the queried sequence (human) that matches the ortholog 

belonging to the other species. We used this data to create a database of orthologs, and 

modified each genome to guarantee a conservative analysis; for each duplicated gene, we 

merged the duplicates with one gene in the duplicated group. 

 

Clusters used in the conservation analysis are defined as in Figure 5.8. Namely, a set 

of ordered genes
nGGG ,...,, 21
is said to co-localize or form a cluster if the number of total 

intervening genes is less than or equal to the specified parameter .d Mathematically, if x(Gi ) is 
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the positional order of gene ,iG  then we require that .1)()( 1 dnGxGx n ≤+−−  In Kerfuffle, the 

default value of the parameter d is 2. To optimize performance, this algorithm was written in 

C++. 

 
Figure 5.8: Examples of cluster definition. The clusters are defined by the parameter d, the maximum number of 
allowed gaps in a sequence of genes. Red boxes represent queried genes and blue boxes represents genes not 
queried. 

 

 Distribution of the random inter-TSG spacing 5.4.3.

The probability distribution of the number of genes between consecutive TSGs (𝑑) is 

governed by a Poisson process. For a given species 𝑖, the probability of observing two TSGs 

separated by 𝑑 non-TSGs is: 

𝑃! 𝑑 = 𝑃(TSG) ∙ 𝑃 no TSG ! 

𝑃! 𝑑 =
𝑇!
𝐺!

1 −
𝑇!
𝐺!

!
 

 

where 𝑇! is the number of TSGs and 𝐺! is the number of genes in the genome of species 𝑖. For 

convenience, we define the species-specific constant 𝐴! = 𝑇!/𝐺!: 

𝑃! 𝑑 = 𝐴! 1 − 𝐴! ! 

𝑃! 𝑑 = 𝐴! 1 − 𝐴!
!
!!

!!!
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𝑃! 𝑑 ≈ 𝐴!e!!!!   

where we assume 𝐴! ≪ 1, allowing us to use the fact that lim𝑛→∞ 1 − 1

𝑛

𝑛
= 𝑒!!. Note that we 

ignore boundary effects arising from the finite extent of chromosomes. 

 

 TSG Co-localization analysis 5.4.4.

The genomic co-localization of each orthologous set of TSGs was investigated using 

Kerfuffle (Aboukhalil et al. 2013). While the significant regions (𝑑 < 3 genes) of the count 

distribution of each species were well sampled, larger distances did not offer sufficient 

statistics to demonstrate null model predictions. To solve these issues, we instead viewed 

each species as a sample of the same null model. Due to the model’s simplicity, the 

empirical data can be normalized so that each “sample” follows the same null distribution. 

To perform the analysis across all species, with differing genome size and number of TSGs, 

we use the following normalization scheme: 

𝑃! 𝑑 = 𝐴!𝑒!!!! 

𝑃! 𝑑
𝐴!

= 𝑒!!!! 

 

Setting 𝑃!! 𝑑 = 𝑃!(𝑑)/𝐴! and 𝑑!! = 𝑑𝐴!: 

𝑃!′ 𝑑 = 𝑒!!!! 

 

We then bin the 𝑃!! 𝑑  distributions at distances 𝑑!′. While the bins do not represent any real 

distance, each species is seen as a set of samples of the distribution e−d'. To estimate the 

behavior across all 𝑚 species, we average the 𝑚 empirical distributions: 
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𝑃!! 𝑑! =
1
𝑚

𝑃!! 𝑑′
!

!!!

≈ 𝑒!!! 

 

If the count distribution follows our model prediction, then the log of this average will lead 

to a slope of −1. This is Figure 5.6 in the main text and has a slope of −1.09. 

 

Reconstructing the probability distribution assumes that each realization is 

independent. This is not always the case since each common ancestor shares random 

genomic events prior to species divergence. However, we make the assumption that each 

species has diverged sufficiently to be treated as an independent sample. There are some 

species that are clearly not independent, for example, human, chimpanzee, and gorilla, 

which will lead to some over-fitting. 

 

 Conservation analysis 5.4.5.

As described in §5.2.1, we quantify the conservation of gene clusters in species 𝑆 relative to 

those found in the human genome 𝐻 using the following conservation score: 

Score 𝑆,𝐻 =
1
𝑁!

𝐻! ∩ 𝑆!
𝐻!

!!

!!!

!!

!!!

 

 

where 𝑆! and 𝐻! refer to cluster 𝑖 of species 𝑆 and in humans, respectively, and 𝑁! refers to 

the total number of clusters in species 𝑋. To be included in the conservation score, clusters 

must be composed of two or more genes. The expression 𝐻! ∩ 𝑆!  is the number of common 

(orthologous) genes between cluster 𝑖 in humans and cluster 𝑗 in species 𝑆. The expression is 

then normalized by the size of cluster 𝑖 so that the score is relative to the human genome.  
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For each species 𝑆, we calculated 𝑆𝑐𝑜𝑟𝑒(𝐻, 𝑆) and obtained two scores: (1) a score for 

TSG clusters; and (2) a score for randomly chosen non-TSG clusters that have the same 

cluster-size distribution as the TSG clusters. To determine the null distribution average 

score, we run 1,000 realizations for each species. Figure 5.9 shows each species’ TSG score 

vs. the averaged non-TSG score for that species. It is expected that the null distribution 

would fall about the 𝑦 = 𝑥 axis. This figure demonstrates that the TSG scores are generally 

greater than the non-TSG scores, suggesting that TSG clusters are more frequently 

conserved across species. Note that Figure 5.9 is the same as Figure 5.7 except all species are 

specified individually rather than in groups. 

 
Figure 5.9: Conservation of TSG Clustering for each species. Each species is identified by a unique mark 
(combination of color and point-type). 
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Since the selection forces on each cluster are unknown, we cannot analytically model 

the null distribution for a significance test. We thus define the statistic 𝑅 to measure how far 

the points deviate from 𝑦 = 𝑥: 

𝑅 =
1
𝑁

Score_TSG(𝐻, 𝑆)
Score_nonTSG(𝐻, 𝑆)

!

 

where 𝑁 is the number of species. As 𝑅 increases past “1”, the more likely the selected set of 

genes are conserved across the species. An 𝑅 less than “1” would suggest selective pressure 

against clustering. Once many R’s are collected, we construct a null distribution. The 𝑅 

statistic measured for TSGs is significantly greater than the mean of the null distribution. 

Assuming a one-tailed Gaussian distribution, we find 𝑝 = 3.5 × 10!!. 

Next, we investigated whether the conservation phenomenon was limited to only 

TSGs. We collected GO (Gene Ontology) IDs that contained at least 100 genes. Those groups 

which showed significant clustering (52) were analyzed for conservation, as similarly done 

for TSGs. We find, after a Bonferroni correction that 20 GO groups showed significant co-

localization and conservation of the clustered genes in that GO group. The GO groups and 

the significance results may be found in Table 5.2 (Supplementary Material). 

5.5. Supplementary Material 

 Species used in the analysis 5.5.1.

Overall, 46 species were used in the TSG analysis: Vicugna pacos, Dasypus novemcinctus, 

Ciona intestinalis, Caenorhabditis elegans, Felis catus, Gallus gallus, Pan troglodytes, Pelodiscus 

sinensis, Gadus morhua, Latimeria chalumnae, Bos taurus, Canis familiaris, Tursiops truncatus, 

Loxodonta africana, Drosophila melanogaster, Takifugu rubripes, Gorilla gorilla, Cavia porcellus, 

Erinaceus europaeus, Equus caballus, Homo sapiens, Procavia capensis, Dipodomys ordii, Echinops 
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telfairi, Macaca mulatta, Callithrix jacchus, Oryzias latipes, Pteropus vampyrus, Mus musculus, 

Microcebus murinus, Monodelphis domestica, Pongo abelii, Sus scrofa, Ochotona princeps, Rattus 

norvegicus, Saccharomyces cerevisiae, Sorex araneus, Choloepus hoffmanni, Ictidomys 

tridecemlineatus, Gasterosteus aculeatus, Tarsius syrichta, Tupaia belangeri, Meleagris gallopavo, 

Macropus eugenii, Taeniopygia guttata, and Danio rerio. 

 

 TSGs used in the analysis 5.5.2.

The tumor suppressor genes used in the co-localization analysis are listed in Table 5.1. 

Chr Gene names 

1 
TP73, CHD5, PRDM2, FABP3, CDKN2C, GADD45A; DIRAS3, CLCA2, PALMD, DDX20, 
ST7L, S100A2, BTG2, RASSF5 

2 TSSC1, MSH2; MSH6, MXD1, CIAO1, STEAP3, BIN1; ERCC3, LRP1B, PMS1, IDH1 

3 
VHL, RARB; TOP2B, TGFBR2, MLH1, DLEC1, CSRNP1, RBM6, NAT6; HYAL1*; HYAL2*; 
HYAL3*; TUSC2; RASSF1; NPRL2; CACNA2D2, MAPKAPK3, PARP3, BAP1, FHIT; PTPRG, 
FOXP1, ATR, ZBBX; WDR49, TP63, DLG1 

4 GAK, REST; IGFBP7, PTPN13, INPP4B, FBXW7, FSTL5, CDKN2AIP; ING2, FAT1 

5 SKP2, DAB2, PIK3R1, RAD17, APC, MCC, CDC23, EGR1; CTNNA1, HDAC3 

6 CDKN1A, BTBD9; GLO1, PERP, PLAGL1, LATS1 

7 PMS2, PIK3CG, SLC26A3, CAV1; ST7 

8 PINX1, DLC1, VPS37A, FGL1, BIN3; RHOBTB2, SFRP1, SCRIB 

9 PTPRD, MTAP; CDKN2A*; CDKN2B*, RECK, GAS1, PTCH1, TGFBR1, SET, TSC1 

10 WDR37, CUL2; GJD4, PTEN, FAS, LZTS2, TRIM8, MXI1, WDR11, DMBT1 

11 
TSPAN32; CD81; TSSC4; CDKN1C; SLC22A18; NAP1L4; CARS, STIM1; RRM1, ST5, MRVI1, 
WT1, SDHAF2, BAD, SF1; MEN1, ATM, CADM1, VWA5A, EI24; CHEK1, ST14 

12 FGF6, ING4, CREBL2; CDKN1B, ANP32D, PAWR, BTG1, CDK2AP1 

13 XPO4; LATS2, ATP8A2, BRCA2, STARD13, RB1, TRIM13, DLEU1; DLEU7, INTS6, ING1 

14 SALL2, RPS29, NUMB, TRAF3 

15 TP53BP1, SMAD3, PML 

16 AXIN1, TSC2, TCEB2, DNAJA3, SOCS1, PALB2, RBL2, WWOX, WFDC1, GAS8 

17 
ABR, DPH1; OVCA2; HIC1, BCL6B, DLG4, EIF5A, TP53, MAP2K4, NF1, CDC6; RARA; 
TOP2A; IGFBP4; TNS4; CCR7; SMARCE1, BECN1, BRCA1; NBR2, ADAM11; GJC1, NME1*; 
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NME2*, AXIN2 

18 SMAD4; DCC 

19 
STK11, APC2, PIN1, ICAM1*; ICAM4*; ICAM5*, CDKN2D, SMARCA4, PIK3R2, CEBPA, 
ARHGAP35, BBC3, GLTSCR1; GLTSCR2, BAX 

20 NRSN2, RBL1, L3MBTL1 

22 BID, HIC2, SMARCB1, NF2, TIMP3, ST13; RBX1, ARHGAP8 

23 RBBP7, SUV39H1, ARMCX1*; ARMCX6*; ARMCX2*, LDOC1, RPL10 

Table 5.1: List of TSGs used in the co-localization analysis. Asterisks denote duplicated genes, and semicolons 
indicate clusters of TSGs. 

 

 Gene Ontology analysis 5.5.3.

Gene Ontology groups used in the analysis and significance level is presented in Table 5.2. 

Identifier p-value Description Size 

0010467 < 1×10!!" Gene expression 780 

0005515 < 1×10!!" Protein binding 10084 

0005524 < 1×10!!" ATP binding 1651 

0005730 < 1×10!!" Nucleolus 704 

0005737 < 1×10!!" Cytoplasm 5185 

0005739 < 1×10!!" Mitochondrion 1543 

0005829 < 1×10!!" Cytosol 2761 

0005634 2.35×10!!" Nucleus 5785 

0044281 2.09×10!!" Small molecule metabolic process 1526 

0055085 7.56×10!!" Transmembrane transport 778 

0005654 4.13×10!!! Nucleoplasm 1118 

0006810 9.81×10!! Transport 554 

0000139 1.22×10!! Golgi membrane 588 

TSGs 1.82×10!! Tumor suppression 221 

0046872 3.00×10!! Metal ion binding 2300 

0007268 3.31×10!! Synaptic transmission 422 
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0006508 4.18×10!! Proteolysis 542 

0003723 6.69×10!! RNA binding 720 

0000122 0.001256324 Neg. regulation of transcription (Pol II promoter) 623 

0006915 0.003827994 Apoptotic process 726 

0000166 0.004391782 Nucleotide binding 648 

0043565 0.008389023 Sequence-specific DNA binding 710 

0005789 0.013259139 Endoplasmic reticulum membrane 763 

0007165 0.039904931 Signal transduction 1429 

0005794 0.041859028 Golgi apparatus 813 

0005509 0.146089353 Calcium ion binding 780 

0003700 0.34847182 Sequence-specific DNA binding TF activity 1071 

0007596 0.472623809 Blood coagulation 507 

0019048 0.968142871 Virus-host interaction 392 

0003674 1 Molecular function 761 

0003676 1 nucleic acid binding 1273 

0003677 1 DNA binding 2279 

0004930 1 GPCR activity 938 

0005575 1 Cellular component 624 

0005576 1 Extracellular region 1795 

0005615 1 Extracellular space 946 

0005622 1 Intracellular 1543 

0005886 1 Plasma membrane 4052 

0005887 1 Integral to plasma membrane 1210 

0006351 1 Transcription, DNA-dependent 2044 

0006355 1 Regulation of transcription, DNA-dependent 2084 

0006954 1 Inflammatory response 360 

0006955 1 Immune response 551 

0007155 1 Cell adhesion 511 
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0007186 1 GPCR signaling pathway 1081 

0007275 1 Multicellular organismal development 568 

0008150 1 Biological process 708 

0008270 1 Zinc ion binding 1358 

0016020 1 Membrane 2467 

0016021 1 Integral to membrane 5024 

0042803 1 Protein homodimerization activity 649 

0045893 1 Pos. regulation of transcription, DNA-dependent 586 

0045944 1 Pos. regulation of transcription (RNA Pol II promoter) 811 

Table 5.2: Gene Ontology groups and the (Bonferroni corrected) p-value of clustering in humans.  

 

5.6. Contributions 

• Analyses of co-localization, comparative genomics and gene ontology were 

performed by Bernard Fendler and myself. 
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CHAPTER 6 

6. Conclusions and Perspectives 

 
This concludes our brief foray into cancer evolution using single-cell sequencing and 

comparative genomics. In this section, we highlight our major contributions to the field and 

our outlook on future studies. As a tool for dissecting cellular heterogeneity, single-cell 

DNA sequencing (scDNA-seq) is increasingly becoming an indispensable tool. However, 

identifying copy-number alterations from scDNA-seq requires a complex pipeline to 

accurately infer integer copy-number states while accounting for sequencing and WGA 

biases. To render single-cell sequencing more accessible, we developed Ginkgo, a web 

analytics platform to aid in the analysis and visualization of single-cell CNV data (Chapter 

2). Using Ginkgo, we evaluated the data quality of commonly used WGA methods and 

highlight their relative benefits. 

 

In Chapter 3, we used simulations and statistical analyses to inform experimental 

design of single-cell sequencing studies. We identified the minimum read depth 

requirements for accurate copy-number analysis, tumor phylogeny, and assessment of 

clonality. We further explored the tradeoffs between sequencing a greater number of cells 

and sequencing at greater depth of coverage. In Chapter 4, we introduce a new approach for 

pruning non-informative CNV breakpoints from scDNA-seq data, and show its use for 

improving the inference of tumor evolution. 

 

Finally, Chapter 5 explores the relationship between gene function and localization. 

To automate the analysis of gene co-localization at evolutionary time-scales, we built 
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Kerfuffle, a web platform that scans the human genome for evidence of gene co-localization, 

and carries out a comparative genomics analysis to detect whether this co-localization is 

preserved in other species. Using Kerfuffle, we show that Tumor Supressor Genes (TSGs)—

genes whose inactivation contributes to cancer growth—are significantly co-localized in the 

human genome, and are conserved into syntenic groups over evolutionary time. 

 

In the near future, improved and more cost-effective technologies for probing whole 

genome SNP and CNV mutations patterns will enhance our understanding of the 

mutational landscape of single cells. For example, such technologies can help answer 

questions about the relative timing of SNPs and CNVs in cancer. Preliminary single-cell 

investigations of breast and colon tumors have observed that most cells present either only 

CNV events, or both SNPs and CNVs, with no cells exhibiting SNPs alone (Wang et al. 2014; 

Huang et al. 2015), suggesting that large copy-number events may play critical driver roles 

in certain cancers. 

 

Furthermore, advances in sequencing technologies will broaden the scope of single-

cell studies through improved instrumentation, protocols, and read lengths. Although 

current sequencing technologies (e.g. Illumina, Ion Torrent, 454) feature read lengths on the 

order of hundreds of basepairs, Oxford Nanopore’s MinION and Pacific Biosciences’ RS II, 

produce reads spanning ~5kb and ~15kb respectively. Adapting instruments such as the RS 

II to single cell levels of input material could yield more accurate single-cell studies, since 

such technologies do not require amplification (hence no WGA bias), present virtually no 

bias in GC-rich or GC-poor regions (hence uniform coverage), and could simultaneously 

provide single-cell methylation patterns. Long-read technologies can also help span across 
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repetitive regions in the genome, provide enhanced insight into large structural variations, 

and improve studies of genome phasing. 

 

Another important area of single-cell biology is the sequencing of RNA from 

individual cells, a technique that has been applied to dissecting the heterogeneity of tumors 

(Patel et al. 2014), identifying novel cell types in complex tissues (Zeisel et al. 2015), and 

studying developmental patterns of gene expression (Xue et al. 2013). Recent advances have 

also allowed the sequencing of DNA and RNA from the same cell (Macaulay et al. 2015). As 

these technologies gain ground, improved population structure inference should be possible 

through the development of phylogeny approaches that combine SNP variation obtained 

from RNA along with CNV patterns obtained from DNA. 

 

To elucidate the co-localization of TSGs, the use of technologies such as Hi-C (Van 

Berkum et al. 2010) can help probe the 3-dimensional architecture of the genome and 

identify potential long-range interactions between TSGs. Furthermore, although we did not 

observe evidence of co-expression of neighboring TSGs, further studies of gene expression 

are needed. In particular, since TSGs such as TP53 have been shown to play a critical role in 

fertility (Hu et al. 2008), time-course RNA-seq analyses could help shed light on whether 

TSGs are co-expressed at various stages of embryo development. 

 

A recurring theme in this dissertation is the development of web applications to 

condense our complex multi-stage bioinformatics pipelines into accessible software tools for 

the broader community. Web-based platforms are valuable to experimental biologists and 

clinicians because they resolve issues of conflicting software dependencies, complex 
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command-line interfaces, and provide a natural means for collaboration and sharing of 

results. With the increasing ubiquity of cloud services, web-based bioinformatics tools are 

likely to become more widespread in coming years. 
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