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The rat I~-tropomyosin (13-TM) gene encodes both skeletal muscle 13-TM and fibroblast TM-1 by an alternative 
RNA-splicing mechanism. This gene contains 11 exons. Exons 1-5, 8, and 9 are common to all mRNAs 
expressed from the gene. Exons 6 and 11 are used in fibroblasts as well as smooth muscle cells, whereas exons 
7 and 10 are used in skeletal muscle cells. In this study we have carried out an extensive mutational analysis 
to identify c/s-acting elements that block the use of the skeletal muscle-specific exon 7 in nonmuscle cells. 
These studies localize the critical elements for regulated alternative splicing to sequences within exon 7 and 
the adjacent upstream intron. In addition, mutations that inactivate the 5'- or 3'-splice sites of exon 6 do not 
result in the use of the skeletal muscle-specific exon 7 in nonmuscle cells, suggesting that splice-site selection 
in vivo is not regulated by a simple c/s-acting competition mechanism but, rather, by a mechanism that 
inhibits the use of exon 7 in certain cellular environments. In support of this hypothesis we have identified 
sequence-specific RNA-binding proteins in HeLa cell nuclear extracts using native gel electrophoresis and 
binding competition assays. Mutations in the pre-mRNA that result in the use of the skeletal muscle exon in 
vivo also disrupt the binding of these proteins to the RNA in vitro. We propose that the binding of these 
proteins to the pre-mRNA is involved in regulated alternative splicing and that this interaction is required for 
blocking the use of the skeletal muscle exon in nonmuscle cells. 
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Alternative RNA splicing is a fundamental process in 
eukaryotes that contributes to tissue-specific and devel- 
opmentally regulated patterns of gene expression (Smith 
et al. 1989; McKeown 1990). At present, relatively little 
is known about the cellular factors and mechanisms that 
are responsible for the selection of alternative splice sites 
in complex transcription units and how the splicing sig- 
nals in alternatively spliced exons differ from those in 
constitutively spliced exons (for review, see Smith et al. 
1989; McKeown 1990; Maniatis 1991). Significant prog- 
ress has been made in Drosophila systems such as in the 
genes of the sex-determination pathway, suppressor of 
white apricot and Drosophila P-transposase. In these 
systems alternative splicing is subject to regulation by 
factors that either inhibit or activate the use of alterna- 
tive 5'- or 3'-splice sites (McKeown 1990; Hedley and 
Maniatis 1991; Maniatis 1991 ). In contrast, in vertebrate 
systems, much less is known about the mechanisms and 

4Corresponding author. 

cellular factors involved in regulated alternative splic- 
ing, but a number of features in the pre-mRNA have 
been implicated in alternative splice-site selection. 
These include the relative strengths of 5'- and 3'- splice 
sites (Zhuang et al. 1987; Kuo et al. 1991; Mullen et al. 
1991), intron size (Fu and Manley 1987), the pyrimidine 
content of a 3'-splice site (Fu et al. 1988; Mullen et al. 
1991), the location of branchpoints (Gattoni et al. 1988; 
Helfman and Ricci 1989; Smith and Nadal-Ginard 1989; 
Goux-Pelletan et al. 1990; Helfman et al. 1990), multiple 
alternative branchpoints (Noble et al. 1987, 1988; Gat- 
toni et al. 1988; Helfman and Ricci 1989), branchpoint 
sequences (Reed and Maniatis 1988; Zhuang et al. 1989; 
Mullen et al. 1991 ), intron sequences between a 3'-splice 
site and upstream branchpoint (Goux-Pelletan et al. 
1990; Helfman et al. 1990; Libri et al. 1990), and exon 
sequences (Reed and Maniatis 1986; Mardon et al. 1987; 
Somaseker and Mertz 1985; Helfman et al. 1988; Cooper 
and Ordahl 1989; Hampson et al. 1989; Streuli and Saito 
1989; Black 1991; Libri et al. 1990, 1991). 

In addition to cis-acting elements in the pre-mRNA, at 
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least one cellular factor isolated from mammalian cells, 
termed ASF (alternative splicing factor) or SF2, has been 
found to affect the choice of alternative 5'-splice sites 
(Ge and Manley 1990; Krainer et al. 1990a). In vitro splic- 
ing studies with the early region of simian virus (SV40) 
involving the large T- and small t-splice choices, and 
model pre-mRNA substrates derived from the human 
f~-globin gene demonstrated that high concentrations of 
ASF/SF2 promote the use of proximal 5'-splice sites, 
whereas low concentrations favor the use of distal 5' 
splice sites (Ge and Manley 1990; Krainer et al. 1990a). 
Although this factor is also required for general splicing 
(Krainer et al. 1990b), differences in the relative concen- 
trations or activities of this factor in different cell types 
could, in principle, play a role in regulated alternative 
splicing. 

The tropomyosin genes represent an excellent system 
to study the molecular basis for tissue-specific RNA 
splicing. Tropomyosins are a diverse group of actin-bind- 
ing proteins found in all eukaryotic cells, with distinct 
isoforms found in muscle (skeletal, cardiac, and smooth), 
brain, and various nonmuscle cells. In many animals, 
such as nematodes, flies, frogs, birds, and mammals, this 
isoform diversity is generated by a combination of mul- 
tiple genes, most of which exhibit alternative splicing of 
primary RNA transcripts (for review, see Lees-Miller and 
Helfman 1991). We have been using the rat ~-tropomy- 
osin (~-TM) gene as a model system to investigate the 
mechanisms responsible for developmental and tissue- 
specific alternative RNA splicing (Helfman et al. 1986, 
1988, 1990; Helfman and Ricci 1989). This gene spans 10 
kb of DNA with 11 exons and encodes two distinct iso- 
forms, namely skeletal muscle f~-TM and fibroblast 
tropomyosin-1 (TM-1). Exons 1-5, 8, and 9 are common 
to all mRNAs expressed from this gene. Exons 6 and 11 
are used in fibroblasts, as well as in smooth muscle, 
whereas exons 7 and 10 are used exclusively in skeletal 
muscle. Our previous studies of tropomyosin pre-mRNA 
splicing with HeLa cell (nonmuscle) systems revealed an 
ordered pathway of splicing in which either of the inter- 
nal alternatively spliced exons (exon 6 or 7) must first be 
joined to the downstream common exon before they can 
be spliced to the upstream common exon (Helfman et al. 
1988). Unlike most branchpoints that have been 
mapped, in which a single adenosine residue located 18- 
40 nucleotides from a 3'-splice site is used during lariat 
formation {Green 1986), in vitro splicing of exon 5 to 
exon 7 (skeletal muscle-type splice) involved the use of 
multiple branchpoints that are located an unusually long 
distance (144, 147, and 153 nucleotides) from the 3'- 
splice site of exon 7 {Helfman and Ricci 1989). Subse- 
quently, we investigated the functional role of the intron 
sequences between the distant branchpoints and the 3'- 
splice site of the skeletal muscle exon 7. Our results 
demonstrated that two distinct functional elements are 
present in this region (Helfman et al. 1990). The first 
element is comprised of a polypyrimidine tract located 
89-143 nucleotides upstream of the 3'-splice site, which 
specifies the location of the branchpoints used, 144-153 
nucleotides upstream of exon 7. The second element is 

comprised of intron sequences located between the poly- 
pyrimidine tract and the 3'-splice site of exon 7. This 
region contains an important determinant in alternative 
splice site selection because deletion of these sequences 
results in the use of the skeletal muscle-specific exon in 
nonmuscle cells (Helfman et al. 1990). 

To study further how these sequences prevent the use 
of exon 7 in nonmuscle cells, we carried out an extensive 
mutational analysis of the intron sequences upstream 
and downstream of exon 7, as well within the exon itself. 
These studies show that the critical cis-acting elements 
for regulated alternative splicing are confined to se- 
quences within exon 7 and the adjacent upstream intron. 
We also demonstrate that these sequences function, in 
part, to regulate splice-site selection in vivo by interact- 
ing with cellular factors and thereby block the use of the 
skeletal muscle exon in nonmuscle cells. 

R e s u l t s  

Nucleotide substitutions within intron 6 result 
in use of the skeletal muscle-specific exon 7 
in nonmuscle cells 

To localize further the cis-acting elements involved in 
splice site selection, we constructed a series of mini- 
genes containing clustered point mutations in intron 6 
(Fig. 1). These mutations do not alter the distance be- 
tween the 3'-splice site of exon 7 and the upstream 
branchpoints, and result in only 3-5 nucleotide substi- 
tutions. This approach was chosen to determine whether 
the deletion mutations, which resulted in the use of the 
skeletal muscle-type splice in nonmuscle cells, altered 
splice site selection by simply altering the distance be- 
tween the 3'-splice site and upstream branchpoints or by 
removing specific inhibitory sequences {Helfman et al. 
1990). The sequence of intron 6 and the positions of the 
substitutions in this intron are indicated in Figure 1. The 
mutations were introduced into plasmid pSV40-2 for in 
vivo analyses (Helfman et al. 1988, 1990). Plasmid 
pSV40-2 carries a minigene consisting of the SV40 early 
promoter and a functional poly(A) site flanking genomic 
tropomyosin sequences. We have demonstrated previ- 
ously that transient expression of wild-type plasmid 
pSV40-2 in HeLa cells resulted in spliced RNA that con- 
tains exons 5 + 6 + 8 + 9 and very little detectable lev- 
els of spliced RNA containing the skeletal muscle-type 
splice products, that is, exons 5 + 7 + 8 + 9 (Helfman 
et al. 1988, 1990). HeLa cells were transfected with the 
wild-type and six clustered point mutation plasmids 
(int-1 through int-6), and 48 hr later the cytoplasmic 
RNA was isolated and analyzed by RNase protection. 
The RNase protection analyses of these RNAs and of 
RNA isolated from mock-infected cells were carried out 
with RNA probes derived from cDNA clones encoding 
rat fibroblast TM-1 and skeletal muscle ~-TM (Fig. 2A). 
Transient expression of the wild-type plasmid pSV40-2 
in HeLa cells resulted in spliced RNA that contains ex- 
ons 5 + 6 + 8 + 9. Only low levels of the skeletal mus- 
cle-type splice with the wild-type construct, that is, ex- 
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guaguagccucucuaggccuuucuaggcaauggcaccuuuucucacuuca -- 

cgucccuccccagcucagcaucucaggcuacugucucucuccugcgguag 

. , . 
gagggggcgggggcggagcuuccaaacagccugcugucacucucaucac__u 

uuqcucuucucuuuucuccuccuccccuccuccacuquqccaccccuccc 

int-I int-2 int-3 
ccuaaccccacccccucaccccgucgucgcgCcaccccacugucucaccu 

GGAUCC GGAUCC GGAUCC 

int-4 int-5 int-6 
ca cug~gccc ucacgcuccauccugcca cacgccccugc ag 

GGAUCC GGAUCC GGAUCC 

Intron 6 

Ex-I Ex-2 1 UAAAUGUGGGGACCUAGA~GCUGAAAAUUGUUACCAA 
GGAUCC GGAUCC 

Ex-3 Ex-4 Exon 7 
CAACLK/C4KAAUCUCUGGAAGCC~GGACAAG 

GGAUCC GGAUCC 

d6 d5 d4 d5 --]  
guauaggg~ggaggggdgcguguga~gaaggggcutgugccgagaggaggg 

I 
d2 dl 

gagggduuagguagggagggc~aggugcuuaaugaagaucaacccggagc 
8su 56I Intron 7 
~ugagggguucagugucugcgaagguuucaggaucacugaagcgguucac 

ugacggcacguguuugucucuuaaag 

Figure 1. Nucleotide sequence of substitutions and mutations 
within the B-TM pre-mRNA. The nucleotide sequence of intron 
6, exon 7, and intron 7, respectively, are shown. The positions of 
the lariat branchpoints used in splicing exon 5 to exon 7, which 
are located 144, 147, and 153 nucleotides upstream of exon 7 are 
indicated (*). The 55-nucleotide-long polypyrimidine tract lo- 
cated 89-143 nucleotides upstream from the 3'-splice site of 
exon 7 is underlined. Nucleotide substitutions in intron 6 and 
exon 7, which introduced a BamHI site, are indicated int-1 
through int-6 for mutations in the 3' end of intron 6 and Ex-1 
through Ex-4 for mutations in exon 7. (dl--d6) Deletions in in- 
tron 7, beginning at a Bsu36I site located 75 bases upstream of 
exon 8, and going toward the 5' end of intron 7. 

ons 5 + 7 + 8 + 9, were detected (Fig. 2A, lane labeled 
W). In contrast, t ransient expression of the minigenes 
containing the muta t ions  designated int-2 through int-5 
resulted in expression of two forms of spliced RNA: one 
containing exons 5 + 6 + 8 + 9, and the other contain- 
ing exons 5 + 7 + 8 + 9 (skeletal muscle-type splice) 
(Fig. 2A). On the other hand, transient expression of mu- 
tants int-1 and int-6 resulted in spliced RNA containing 
mainly exons 5 + 6 + 8 + 9. We also determined the 
effects of deleting sequences between some of the clus- 
tered point mutat ions.  Thus, three mutan t  plasmids 
were constructed, designated int3-5, int2-5, and intl-6, 
which contain deletions between the corresponding 
clustered point muta t ions  shown in Figure 1. These con- 
structs were tested in vivo by cloning the corresponding 
deletions into plasmid pSV40-2 (Helfman et al. 1988, 
1990). HeLa cells were transfected with  the wild-type 
and three deletion mutants ,  and 48 hr later the cytoplas- 
mic RNA was isolated and analyzed by RNA protection 
(Fig. 2B). Transient  expression of the wild-type plasmid 
pSV40-2 in HeLa cells resulted in spliced RNA that  con- 
tains exons 5 + 6 + 8 + 9. There was no skeletal mus- 
cle-type splice with  the wild-type construct, that  is, ex- 
ons 5 + 7 + 8 + 9. In contrast, t ransient expression of 
the minigenes containing the three muta t ions  resulted 
predominately in spliced RNA containing exons 
5 + 7 + 8 + 9 (skeletal muscle-type splice) (Fig. 2B). 

These results indicate that  specific sequences in the 3' 
end of intron 6 are involved in blocking the use of exon 
7 in HeLa cells. 

Nucleotide substi tut ions wi thin  the skeletal 
muscle-specific exon 7 also result in the use 
of exon 7 in nonmuscle  cells 

To analyze the role of sequences contained wi th in  exon 
7 we introduced a series of clustered point  muta t ions  
into four separate regions of the skeletal muscle  exon. 
The sequence of exon 7 and the position of the exon 
substi tutions are indicated in Figure 1. The subst i tut ions 
were introduced into plasmid pSV40-2 for in vivo anal- 
yses (Fig. 3). HeLa cells were transfected wi th  the wild- 
type and four mutan t  plasmids (Ex-1 through Ex-4) and 
analyzed as described above. Because the clustered point 
mutat ions  introduce regions of noncomplementar i ty  to 
the wild-type cDNA probe encoding the skeletal muscle 
RNA, the protected fragments are digested at an internal 
position. The positions of the two protection fragments 
resulting from splicing of exons 5 + 7 + 8 + 9 are indi- 
cated in Figure 3. The Ex-1 mutat ion,  which  alters 5 
nucleotides near the 5' end of exon 7, was the strongest 
activating exon mutat ion,  resulting in spliced RNA con- 
taining the skeletal muscle-type splice and no detectable 
levels of spliced RNA containing exon 6 (Fig. 3). The 
other mutat ions  within  exon 7 resulted in different lev- 
els of activation of the skeletal muscle-type splice. These 
results indicate that cis-acting elements necessary for 
tissue-specific splicing are also contained wi th in  exon 7. 

Sequences downstream of exon 7 do not  affect 
alternative splice-site selection in nonmusc le  cells 

We and others have suggested previously that  sequences 
contained within  exon 7, as well as upst ream and down- 
stream intron sequences, might  form an RNA secondary 
structure that  prevents the use of this exon in nonmus-  
cle cells (Helfman et al. 1988, 1990; Libri et al. 1989, 
1990). To determine whether  specific sequences wi th in  
intron 7 are required for regulating the use of exon 7 in 
nonmuscle  cells we introduced a series of deletions in 
this intron (Fig. 1). The deletions were introduced into 
plasmid pSV40-2 for in vivo analyses (Fig. 4). Transient  
expression of the wild-type and six mu tan t  plasmids in 
HeLa cells resulted in spliced RNA that  contains exons 
5 + 6 + 8 + 9 and almost  undetectable levels of the 
skeletal muscle-type spliced RNA (Fig. 4). In no case did 
we observe activation of the skeletal muscle  exon wi th  
any of the deletions tested. These results demonstra te  
that  intron sequences downstream of exon 7 do not play 
a role in the regulation of alternative splice-site selection 
of this exon in nonmuscle  cells. 

Inactivation of exon 6 does not  result in increased 
use of the skeletal muscle-specific exon 7 
in nonmuscle  cells 

We then determined whether  alternative splicing is due 
to a simple cis-acting competi t ion for splice sites. For 
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Figure 2. (A) Nucleotide substitutions within intron 6 result in the use of the skeletal muscle-specific exon (exon 7) in nonmuscle 
cells. Clustered point mutations where introduced into six regions of intron 6 (indicated int-1 through int-6; see also Fig. 1). (Top) 
Schematic diagram of the tropomyosin minigene used in the HeLa cell transfection. (Middle) Autoradiographs of RNA protection 
analyses with eDNA probes derived from eDNA clones encoding rat fibroblast TM-1 {left) and skeletal muscle B-TM (right). The band 
corresponding to the reference ~-globin RNAs is labeled. The identity of the band just below the a-globin protection products likely 
represents the protection of sequences containing exons 8 + 9. (Bottom) Schematic diagram of the structure of the RNA probe and 
protected fragments (splice products). It is worth noting that because both exon 6 and exon 7 each contain 76 nucleotides, the splice 
products resulting from the use of each exon are the same number size. {B). Deletions in intron 6 result in the use of exon 7 in 
nonmuscle cells. Mutations were constructed in the 3' end of intron 6 by deleting the sequences between the given clustered point 
mutations shown in Fig. 1. Schematic diagram of the tropomyosin minigenes used and autoradiographs of RNA protection analyses are 
as described in A. 

example, if exon 6 splice junctions are intrinsically more 
efficient than those of exon 7 in nonmuscle  cells, then 
inactivating the competing splice sites should result in 
increased use of the skeletal splice in HeLa cells. To test 
this hypothesis, a series of deletions and point muta t ions  
were introduced into the 5'- and 3'-splice sites of exon 6 
(Fig. 5). The 5'-splice site of exon 6 was either deleted by 
removing the NcoI/StuI fragment containing the 3' end 
of exon 6 and 17 nucleotides of downstream intron, or 
inactivated by two point muta t ions  that changed the 
conserved GT dinucleotide to GA or AT. Similarly, the 
3'-splice site of exon 6 was either deleted by removing 
the MstII/NcoI fragment containing 100 nucleotides of 
upstream intron and the 5' end of exon 6, or inactivated 
by a point muta t ion  that  changed the conserved AG di- 
nucleotide to CG. The substi tut ions were introduced 
into plasmid pSV40-2 for in vivo analyses (Fig. 5). As 
expected, t ransient  expression of the wild-type plasmid 
pSV40-2 in HeLa cells resulted in spliced RNA that con- 
tains exons 5 + 6 + 8 + 9. Transient  expression of the 

minigenes containing muta t ions  in the 5'- and 3'-splice 
sites of exon 6 resulted in virtually undetectable levels of 
spliced RNA containing this exon. However, in no case 
did we observe increased use of the skeletal muscle  exon 
with  any of the mutan t  constructs. These results dem- 
onstrate that  the lack of use of skeletal muscle  exon is 
not due to a simple cis-acting competi t ion mechan i sm 
but, rather, to a mechan ism that  blocks the use of the 
skeletal muscle exon (exon 7) in nonmuscle  cells. 

Two different mechanisms could explain why  exon 7 
is excluded in nonmuscle  cells. The first might  involve 
muscle-specific factors that activate the splicing of exon 
7. For example, we and others have speculated that  exon 
7 is sequestered in a secondary structure, which  is dis- 
rupted by muscle-specific factors to permit  the use of 
this exon (Goux-Pelletan et al. 1990; Hel fman et al. 
1990; D'Orval  et al. 1991). The second mechan i sm might  
involve specific cellular factors that  block the use of the 
skeletal muscle-type splice. We reasoned that  if a cellu- 
lar factor repressed the use of the skeletal muscle  exon 

GENES & DEVELOPMENT 2099 

 Cold Spring Harbor Laboratory Press on November 3, 2017 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


Guo et al. 

thus allows amplification of the t ropomyosin plasmid. 
As indicated in Figure 6, coexpression of T antigen re- 
sulted in spliced RNA containing either exon 6 or exon 
7. These results provide evidence to suggest that  HeLa 
cells contain l imited amounts  of factors that  block the 
use of the skeletal muscle splice. 

A HeLa nuclear protein binds to the intron element 
that inhibits the use of the skeletal muscle-specific 
exon in nonmuscle cells 

Having localized the sequences in the p re -mRNA that  
play an important  role in regulated a l temat ive splice site 
selection to the 3' end of intron 6 and exon 7, we then 
examined the ability of RNA containing these sequences 
to interact wi th  factors present in nuclear extracts. We 
used an RNA mobility-shift  assay on nondenatur ing 
polyacrylamide gels to detect the interaction of cellular 
factors with the 3~p-labeled RNA. When a wild-type 
RNA probe, termed Ex-7, which contains 90 nucleotides 
of intron sequences upstream of exon 7, exon 7, and 25 
nucleotides of intron sequences downstream of exon 7 
(see diagram in Fig. 7J, was incubated wi th  unfraction- 
ated HeLa cell nuclear extracts, bands with  retarded mo- 
bility were detected. It is important  to note that  the con- 

Figure 3. Sequences in exon 7 play a role in alternative splice- 
site selection. Clustered point mutations where introduced into 
four regions of exon 7 {indicated Ex-1 through Ex-4; see also Fig. 
1). Schematic diagram of the tropomyosin minigenes used and 
autoradiographs of RNA protection analyses are as described in 
Fig. 2A. Because the clustered point mutations introduce re- 
gions of noncomplementarity to the wild-type cDNA probe en- 
coding the skeletal muscle RNA, the protected fragments are 
digested at an internal position and their position of two result- 
ing fragments are indicated at right (arrows). 

by binding to the pre-mRNA, it might  be possible to 
overcome this inhibit ion by introducing large quantit ies 
of pre-mRNA into a cell and thereby titrate the inhibi- 
tory factor. Accordingly, we transfected increasing 
amounts  of the wild-type plasmid in HeLa cells and de- 
termined the patterns of a l temat ively  spliced RNAs (Fig. 
6). In transfections wi th  1.0-5.0 ~g of plasmid, only fully 
spliced RNA containing exons 5 + 6 + 8 + 9 was de- 
tected. In contrast, transfection of 10-20 ~.g of plasmid 
resulted in use of the skeletal muscle-type splice in HeLa 
cells. In addition, because our t ropomyosin minigene 
plasmid contains an origin of replication for T antigen, 
we cotransfected 2 ~g of the wild-type tropomyosin 
minigene wi th  a plasmid that  expresses T antigen and 

Figure 4. Deletion of sequences downstream of exon 7 does 
not affect alternative splice-site selection in nonmuscle cells. 
The positions of the deletions are shown in Fig. 1. Schematic 
diagram of the tropomyosin minigenes used and autoradio- 
graphs of RNA protection analyses are as described in Fig. 2A. 
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tains a protein component  because addition of either 
SDS or proteinase K completely el iminated complex for- 
mat ion (data not shown). In addition, the complex was 
sequence-specific because 32p-labeled RNAs containing 
regions in and around exon 6 (Ex-6 RNA) and exon 8 
(Ex-8 RNA) did not form a complex (Fig. 8A). We also 
tested the ability of RNAs that  contained deletions in 
the 3' end of intron 6 to form a complex. Accordingly, 
three mutants ,  designated int3-5, int2-5, and in t l -6  con- 
tain deletions between the corresponding clustered mu- 
tations shown in Figure 1. These muta t ions  were chosen 
because they result in almost  complete use of the skel- 
etal muscle exon in vivo (Fig. 2B). As indicated in Figure 
8A, all three muta t ions  completely disrupt complex for- 
mation, indicating that  these intron sequences are criti- 

Figure 5. Inactivation of exon 6 does not lead to the use of the 
skeletal muscle exon in nonmuscle cells. Schematic diagram of 
the tropomyosin minigenes used and autoradiographs of RNA 
protection analyses are as described in Fig. 2A. 

centration of the nuclear extract used in the gel-shift 
assay was a critical parameter.  When the wild-type con- 
struct (Ex-7) was incubated wi th  increasing amounts  of 
nuclear extract, a band of slower mobil i ty than free RNA 
was observed (Fig. 7). This complex reflects the binding 
of a cellular factor to the RNA. In addition, the complex 
was sequence specific because 32p-labeled RNAs con- 
taining a deletion at the 3' end of intron 6 (int3-5) did 
not form a complex (Fig. 7). However, at the highest con- 
centrations of nuclear extract (lane 6) it was difficult to 
show specificity for wild-type versus mu tan t  constructs 
because both species of RNA molecules exhibited a gel 
shift (Fig. 7). These results demonstrated that HeLa cell 
nuclear extracts contain a factor that  binds to sequences 
at the 3' end of intron 6. 

We then fractionated HeLa cell nuclear extracts with 
phosphocellulose and S-Sepharose column chromatogra- 
phy, using the gel mobili ty-shift  assay to follow the bind- 
ing activity in each fraction wi th  the wild-type construct 
and the deletion mu tan t  shown in Figure 7 (see also Ma- 
terials and methods). Fractions from the S-Sepharose col- 
u m n  were used for all subsequent characterization of the 
RNA-binding activity. When the wild-type construct 
(Ex-7) was incubated wi th  the partially purified fractions 
from the S-Sepharose column, a band of slower mobil i ty 
than free RNA was observed {Fig. 8A). The complex con- 

Figure 6. Transfection of increasing amounts of the wild-type 
tropomyosin minigene plasmid into HeLa cells results in acti- 
vation of the skeletal muscle-type splice in nonmuscle cells. 
HeLa ceils were transfected with the wild-type tropomyosin 
minigene pSV40-2 at the concentrations indicated (0, 0.1, 1.0, 
2.5, 5.0, 10, and 20 g~g), or 2 ~g of the wild-type minigene was 
cotransfected with a plasmid that expresses T antigen and cy- 
toplasmic RNA harvested 48 hr later. To control for the amount 
of DNA in each transfection, carrier DNA was adjusted to main- 
tain a total DNA concentration of 20 ixg per transfection. The 
schematic diagram of the tropomyosin minigene used and au- 
toradiograph of RNA protection analyses are as described in Fig. 
2A. The identity of the band that increases in intensity with 
increasing amounts of transfected plasmid located just below 
the c~-globin protection products likely represents the protec- 
tion of sequences containing exons 8 + 9. The identity of the 
band detected with the skeletal muscle probe at high concen- 
trations of DNA and in the presence of T antigen is unknown. 
(Bottom) Schematic diagram of the structure of the RNA probe 
and protected fragments (splice products). 
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Figure 7. HeLa cell nuclear extracts contain factors that inter- 
act with the 3' end of intron 6. 32p-Labeled RNAs were incu- 
bated with unfractionated HeLa cell nuclear extracts {lanes 1-6) 
and fractions from the S-Sepharose column (see Materials and 
methods), and separated on a denaturing 4% polyacrylamide 
gels. Lanes 1-6 contained 0.4, 1.0, 2, 4, 8, and 20 ttg of protein, 
respectively. Each concentration of extract was assayed with 
the wild-type {left) and mutant (right)a2P-labeled RNA. The po- 
sition of the free RNA and complex are indicated at left. A 
schematic diagram of the structures of the RNA used in the gel 
mobility-shift assay is shown at right. 

cal for the interaction of the RNA with  the binding pro- 
teins. These results correlate wi th  the in vivo results and 
suggest that the muta t ions  function in vivo as a result of 
the inabil i ty of the RNA to form a complex wi th  these 
cellular factors. 

To determine the specificity of the interaction of the 
wild-type Ex-7 RNA with  cellular factors we carried out 
a series of competi t ion experiments using wild-type, mu- 
tant, and nonspecific competitors. Wild-type Ex-7 RNA 
labeled wi th  32p was assayed in the presence of different 
competitors, as indicated in Figure 8B. Addition of unla- 
beled wild-type RNA resulted in a dose-dependent reduc- 
tion in the formation of the complex (Fig. 8B). In con- 
trast, addition of the other three unlabeled RNAs con- 
taining a muta t ion  in the 3' end of intron 6 {int-3), 
sequences around exon 6 (Ex-6) and exon 8 (Ex-8) had no 
effect on complex formation (Fig. 8B). To study further 
the region involved in complex formation unlabeled 
RNAs representing different regions of the wild-type 
Ex-7 RNA were used as competitors (Fig. 8C). Only the 
wild-type RNA and RNA-containing sequence in the 3' 
end of intron 6 (WT-3') were able to compete wi th  32p_ 
labeled wild-type probe for complex formation. It is 
worth noting that the uppermost  shift observed wi th  the 
Ex7-5'  competitor at 1000 ng is a result of the formation 
of an intermolecular  hybrid molecule formed between 
the 32 P-labeled RNA and the competitor. These results 
indicate that the intron sequences upstream of the 3'- 
splice site of exon 7 are critical for complex formation. 

D i s c u s s i o n  

The role of RNA secondary structure in alternative 
splicing of f3-TM pre-RNA 

Previous studies of alternative splicing of the rat and 
chicken [3-TM genes have suggested that one possible 
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mechan ism by which the use of exon 7 is regulated in 
nonmuscle  and skeletal muscle  cells is by regulation of 
RNA secondary structure (Helfman et al. 1988, 1990; 
Libri et al. 1989, 1990, 1991; D'Orval et al. 1991; see also 
Fig. 9). Computer  analysis of intron sequences upstream 
and downstream of exon 7 in the rat and chicken genes 
predicts that these RNA sequences can theoretically 
form a stable secondary structure that would sequester 
the 5'- and 3'- splice sites of this exon from the splicing 
machinery  and thereby prevents its use in nonmusc le  
cells. This phylogenetically conserved, putative second- 
ary structure could then be subject to regulation via cel- 
lular factors that would either stabilize or destabilize the 
structure in nonmuscle  and skeletal muscle  cells, re- 
spectively, and thereby lead to the use of this exon in a 
tissue-specific manner.  This model  would predict that 
intron sequences upstream as well  as downstream of 
exon 7 would contain cis-acting elements  necessary for 
regulating the use of exon 7 in nonmusc le  cells. How- 
ever, three sets of experiments presented in this study 
provide strong evidence against a mechan i sm based 
solely on RNA secondary structure. First, the removal of 
intron sequences downstream of exon 7 did not result in 
activation of the skeletal muscle  exon in nonmusc le  
cells (Fig. 4). Second, the activation of the skeletal mus- 
cle splice observed following the introduction of clus- 
tered point mutat ions  in intron 6 and exon 7, which  
changed as few as three nucleotides in the pre-mRNA, 
would not be expected to disrupt the extensive second- 
ary structure needed to sequester exon 7 (Figs. 2A and 3). 
Third, overexpression of the pre-mRNA resulted in acti- 
vation of the skeletal muscle  exon, presumably the re- 
sult of titration of some inhibi tory activity (blocking fac- 
tors) in nonmuscle  cells (Fig. 6). Therefore, on the basis 
of the considerations given above, it is unl ike ly  that al- 
ternative splicing of the rat B-TM gene will  involve the 
kind of secondary structure proposed for the chicken 
[3-TM gene (Libri et al. 1990; D'Orval  et al. 1991). 

Although alternative splicing of the rat B-TM gene 
does not appear to require a secondary structure involv- 
ing intron sequences downstream of exon 7, a more lim- 
ited structure localized to sequences wi th in  exon 7 could 
be involved in tissue-specific splicing. Both rat and 
chicken [3-TM genes contain a phylogenetical ly con- 
served secondary structure wi th in  the skeletal muscle  
exon (Helfman et al. 1990; Libri et al. 1990, 1991). The 
sequences contained in exon 7 are able to form a second- 
ary structure, comprised of a s tem-loop (Helfman et al. 
1990; Libri et al. 1990). Strong evidence that such a 
structure does exist comes from recent studies of the 
chicken [3-TM gene (Libri et al. 1991). Using compensa- 
tory base substi tut ions these studies revealed that se- 
quences confined to the skeletal muscle  exon were re- 
quired for regulated alternative splicing and that these 
sequences function, in part, by a secondary structure 
(Libri et al. 1991). The results presented in this paper also 
demonstrate that s imilar  sequences contained wi th in  
exon 7 of the rat [3-TM gene function in splice-site se- 
lection (Fig. 3). In addition, the mutat ions  that showed 
the strongest activation of the skeletal muscle  exon, that 
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Figure 8. Cellular factors interacting with [~-TM RNA. (A) Identification 
of proteins that bind to tropomyosin RNA by a gel mobility-shift assay. 
gaP-Labeled RNAs were incubated with fractions from the S-Sepharose 
column (see Materials and methods) and separated on a denaturing 4% 
polyacrylamide gels. The positions of the free RNA and complex are indi- 
cated at left. A schematic diagram of the structures of the RNA used in the 
gel mobility-shift assay is shown at right. (B) Competition experiments 
showing that the complex is sequence specific. Binding reactions were 
carried out using gaP-labeled Ex-7 RNA (see A). The gaP-labeled RNA was 
incubated with fractions from the S-Sepharose column (see Materials and 
methods) in the presence of wild-type, int-3, Ex-6, and Ex-8 unlabeled 
competitor RNAs at the concentrations indicated and separated on a de- 
naturing 4% polyacrylamide gel. The position of the free RNA and com- 

plex are indicated at left; a schematic diagram of the structures of the competitor RNAs used in the gel mobility-shift assay is shown 
at right. (C) Competition experiments showing that the 3' end of intron 6 contains sequences important for binding. Binding reactions 
were carried out by using gaP-labeled Ex-7 RNA (see A). The 3~p-labeled RNAs were incubated with fractions from the S-Sepharose 
column (see Materials and methods) in the presence of wild-type, int-3, WT-3', and Ex7-5', unlabeled competitor RNAs at the 
concentrations indicated and separated on a denaturing 4% polyacrylamide gel. The positions of the free RNA and complex are 
indicated at left; a schematic diagram of the structures of the competitor RNAs used in the gel mobility-shift assay is shown at right. 

is, Ex-1 (Fig. 3), would disrupt the s tem of the predicted 
RNA structure. Thus, a secondary structure localized to 
those sequences wi th in  the skeletal muscle exon likely 
plays a role in regulated alternative splice-site selection. 

The role of distant  branch sites in alternative 
splice-site selection 

Branch sites located an unusual ly  long distance from a 
3'-splice site (i.e., >40 nucleotides) are a general feature 
of some alternatively excised introns and function in at 
least two ways in alternative splice-site selection. The 
best-studied examples involve the rat oL-TM gene and the 
rat and the chicken f~-TM genes (Helfman et al. 1989, 
1990; Smith and Nadal-Ginard 1989; Goux-Pelletan 
1990; Libri et al. 1990; Mullen et al. 1991; this study). In 
the case of the rat a -TM gene, the use of a distant branch 
site plays a direct role in preventing the splicing together 
of the two mutua l ly  exclusive exons 2 and 3 (Smith and 
Nadal-Ginard 1989). These two exons are never spliced 
together in any cell type. The molecular  basis for this is 
the proximity of the 5'-splice site of exon 2 relative to 
the branchpoint  used for exon 3, which is only 42 nucle- 
otides apart. In contrast, this mechan i sm cannot explain 
the mutua l ly  exclusive use of exons 6 and 7 in the rat 

and chicken B-TM genes, because the 5'-splice site of 
exon 6 in these genes is located at least 136 nucleotides 
upstream of the branchpoints used for the skeletal mus- 
cle exon (Helfman et al. 1989, 1990; Goux-Pelletan et al. 
1990). Thus, the distant branchpoints of the [3-TM genes 
in rat and chicken play a different role in alternative 
splicing. It is clear from this and previous studies that  
intron sequences located between the branchpoint  and 
downstream 3'-splice site contain important  informa- 
tion for splice-site selection because deletion or muta-  
tion of these sequences results in the use of the skeletal 
muscle exon in nonmuscle  cells (Helfman et al. 1990; 
Libri et al. 1990; this study}. These sequences appear to 
function by providing a binding site for cellular factors 
that regulate tissue-specific splicing (see below). 

Cellular factors involved in alternative splice-site 
selection 

The in vitro binding studies show that  intron sequences 
upstream of exon 7 bind specifically to cellular factors 
(Figs. 7 and 8). Although the nature  of these factors, the 
mechanism of their action, and a precise definition of the 
sequences in the pre-mRNA that  they bind to remains to 
be determined, it is clear from our studies that  the bind- 
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It remains to be determined whether  the cellular fac- 
tors identified in this study bind to a l inear RNA mole- 
cule or whether they recognize RNA secondary structure 
(Fig. 9). As discussed above, although it is unl ike ly  that  
an extensive secondary structure prevents the use of 
exon 7 in nonmuscle  cells, a local secondary structure 
wi th in  exon 7 could provide a binding site for factors 
(Fig. 9). For example, the binding of the HIV rev protein 
to the rev-response elements  requires a secondary struc- 
ture (Olsen et al. 1990). It is worth noting that none of 
the clustered point muta t ions  in exon 7 affected the 
binding of the RNA to the factors identified in the 
present studies (data not shown). These results suggest 
that a factor bound to the intron might  also bind to the 
exon or that a different factor might  interact wi th  the 
exon sequences. Thus, it remains to be determined 
whether the intron and exon mutat ions  act via the same 
mechan i sm and cellular factors. 

Figure 9. Possible mechanisms by which exon 7 is excluded in 
nonmuscle cells (for explanation see, Discussion). 

ing sites of these factors correlate wi th  sequences re- 
quired to prevent the use of the skeletal muscle splice in 
nonmuscle  cells. Although we found that clustered point 
mutat ions  in the 3' end of intron 6 resulted in use of the 
skeletal muscle-type splice in nonmuscle  cells, no single 
muta t ion  of this type was able to completely activate the 
use of exon 7, that is, there was still use of exon 6 (Fig. 
2A). This  is in contrast to the deletions that lead to com- 
plete use of exon 7 (Fig. 213; Hel fman et al. 1990). In 
addition, these muta t ions  in the 3' end of intron 6 are 
located over a stretch of at least 40 nucleotides. These 
results would suggest that either a single factor binds to 
mul t iple  sites on the pre-mRNA or mul t iple  factors bind 
to mul t ip le  sites on the pre-mRNA. We have observed 
that the 3' end of intron 6 in the rat B-TM gene contains 
seven overlapping copies of an 11-nucleotide imperfect 
repeat, wi th  the sequence YR(Y)4R(Y)2RY [(Y), pyrimi- 
dine; (R) purine] (Fig. 1). Interestingly, the locations of 
the four repeats correspond to the position of the four 
clustered point muta t ions  (int-2, int-3, int-4, and int-5) 
that resulted in the use of exon 7 in nonmuscle  cells (Fig. 
2B). Whether  or not the repeats in the tropomyosin gene 
represent true binding sites for cellular factors is cur- 
rently being studied. Recently, six copies of a 13-nucle- 
otide imperfect repeat was identified in the pre-mRNA 
of the dsx gene of Drosophila melanogaster and is re- 
quired for binding specifically to the tra-2 protein (Hed- 
ley and Maniat is  1991). 

Mechanisms of alternative splice-site selection 

The mechan i sm by which  factors binding to the pre- 
mRNA block the use of exon 7 in nonmusc le  cells re- 
mains  to be elucidated. One possibili ty is that the bind- 
ing of factors to the RNA results in the formation of a 
ribonucleoprotein (RNP) structure, which  prevents the 
interaction of splicing factors wi th  the 5'- and 3'-splice 
sites of exon 7. Alternatively, individual  general splicing 
factors such as U1 small  nuclear RNP (snRNP), U2 sn- 
RNP, U2AF (Zamore and Green 1989), and ASF/SF2 
could be targets for the actions of a blocking factor. 
Thus, a blocking factor bound to the RNA might  prevent 
the interaction of general splicing factors wi th  the pre- 
m R N A  and thereby inhibi t  the use of a particular splice 
site. Because ASF/SF2 affects the use of 5'-splice sites 
(Ge and Manley 1990; Krainer et al. 1990a), it is possible 
that the action of this splicing factor might  also be sub- 
ject to regulation by factors that antagonize its func- 
tions. A major determinant  in splice-site strength is the 
pyrimidine content adjacent to the branchpoint  se- 
quences; the longer the pyr imidine  tract, the more favor- 
able the splice is (Mullen et al. 1991). Although exon 7 
contains a lengthy polypyrimidine tract associated wi th  
the use of its 3'-splice site, it is normal ly  not used in 
nonmuscle  cells. A polypyrimidine tract-binding protein 
has been identified, whose binding correlates wi th  the 
relative use of a 3'-splice site (Garcia-Blanco et al. 1989; 
Mullen et al. 1991). The interaction of this polypyrimi- 
dine tract-binding protein could also be involved in reg- 
ulated alternative splice-site selection. 

Whether or not the factors identified in this study are 
expressed in a tissue-specific manner  remains  to be de- 
termined. For example, one prediction from this study 
would be that in skeletal muscle  these blocking factors 
are no longer expressed or become inactivated. In the 
absence of functional  blocking factors the skeletal mus- 
cle exon would become the default splice choice. The 
long polypyrimidine tract associated wi th  the 3'-splice 
site of exon 7 may be sufficient, in the absence of block- 
ing factors, to allow exon 7 to become the "default"  
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splice choice, s imply  the result of the more competit ive 
nature of the adjacent 3'-splice site relative to exon 6. 
Support for this model  comes from experiments showing 
that mutat ions  in the 3' end of intron 6 can lead to ex- 
clusive use of the skeletal muscle  splice in nonmuscle  
cells (Helfman et al. 1990; this study). On the other 
hand, recent work on ASF/SF2, showing that concentra- 
tions of a single factor can effect the use of alternative 
splice sites, raises the  poss ib i l i ty  tha t  a l te rna t ive  splic- 
ing could, in principle,  arise by changes in the relat ive 
concen t ra t ions  of various factors (Ge and Man ley  1990; 
Krainer  et al. 1990a). Thus ,  differences in the relat ive 
concen t ra t ions  of the factors ident i f ied in th is  s tudy 
could be responsible  for regulated a l te rna t ive  splicing. 
Finally,  addi t ional  factors m i g h t  be required for regula- 
tion. For example,  the  factors ident i f ied in the  present  
s tudies  once bound to the p r e - m R N A  migh t  then  bind to 
other  cel lular  factors tha t  modu la t e  the use of exon 7 in  
a t issue-specif ic  manner .  

In summary ,  hav ing  ident i f ied  cel lular  factors tha t  in- 
teract  w i t h  specific sequences  in  the  p re -mRNA we can 
now direct  our efforts to a greater under s t and ing  of how 
these  factors act to regulate  a l te rna t ive  splicing. Work  is 
in progress to puri fy  the factor(s) tha t  in te rac t  w i t h  the 
RNA, to precisely  iden t i fy  the sequences  to w h i c h  they  
bind, and to develop in  vi t ro  assays to ident i fy  the i r  func- 
t ion. 

Materials and methods 

Plasmid constructions 

For studies designed to analyze the internal alternatively 
spliced region of the rat [3-TM gene in vivo plasmids pSV40-p2 
were used (Helfman et al. 1988). The indicated mutations were 
subcloned into plasmid pSV40-p2. In all transfection studies 
HeLa cells were cotransfected with an a-globin test gene (Tre- 
isman et al. 1983; Herr and Clarke 1986). 

The DNA templates for use in in vitro transcription are de- 
rived from the rat B-TM gene (Helfman et al. 1986). The se- 
quences of all mutations were determined by DNA sequence 
analysis (Sanger et al. 1977) and are shown in Figure 1. 

Oligonucleotide site-directed mutagenesis 

Clustered point mutations, which introduced a BamHI site in 
the DNA, were introduced into intron 6 and exon 7 by oligo- 
nucleotide mutagenesis (Kunkel 1985). Mutations in the 5' GU 
dinucleotide and 3'-splice site AG dinucleotide of exon 6 were 
also introduced by the method of Kunkel (1985). The mutations 
were confirmed by sequencing the DNA (Sanger et al. 1977). 

Nuclear extract and fractionation 

Sonicated and double-extracted nuclear extracts were prepared 
as described previously starting with 8 liters of HeLa cells that 
were grown to a density of 1 x 106/liter (Krainer et al. 1990b). 
All steps were carried out at 4~ The nuclear extract material 
was dialyzed against buffer D ([20 mm HEPES (pH 8.0}, 100 mM 
KCI, 0.2 mM EDTA, 0.5 mM DTT, 5% glycerol]). The nuclear 
extract was brought to 20% ammonium sulfate by the addition 
of solid ammonium sulfate (10.6 g/100 ml). The solution was 
stirred gently for 30 min and centrifuged for 30 min at 2300g to 

remove the precipitated was proteins. The supernatant was 
brought to 50% ammonium sulfate by the addition of solid 
ammonium sulfate (17.5 g/100 ml). The solution was stirred 
gently for 30 min and the precipitate was recovered by centrif- 
ugation for 30 min at 2300g. This 20-50% ammonium sulfate 
pellet was resuspended in buffer containing 20 mM HEPES (pH 
8.0), 100 mM KC1, 2 mM EDTA, 5% glycerol, 0.02% NP-40, 0.5 
mM DTT, and 0.5 mM PMSF. The protein concentration was 
adjusted in the same buffer to 4 mg/ml and loaded on a What- 
man P l l  phosphocellulose column (15 x 1.5 cm). The column 
was washed with 30 ml of buffer D and then eluted stepwise in 
buffer D containing 150 mM, 350 mM, and 1000 mM KC1. Each 
step was collected in 6 x 5-ml fractions. Each fraction from the 
wash, 150 mM, 350 mM, and 1000 mM KC1 elutions, was col- 
lected and assayed for RNA-binding proteins. Most of the bind- 
ing activity was found in the 350 mM KC1 fraction. The material 
from this fraction was adjusted to 100 mM KC1 and loaded onto 
a 10-ml Pharmacia S-Sepharose column. The column was 
washed with 30 ml of buffer D and eluted stepwise in buffer D 
containing 150 mM, 300 mM, and 500 mM KC1. Each step was 
collected in 4 x 5-ml fractions. Each fraction from the wash, 
150 mM, 300mM, and 500 mM KC1 elutions, was collected and 
assayed for RNA-binding proteins. The majority of the RNA- 
binding activity was found in the 150 mM elution and was used 
for further characterization. 

RNA mobility-shift assay 

The RNA mobility-shift assays were performed essentially ac- 
cording to Konarska and Sharp (1986). The 3~p-labeled SP6/ 
tropomyosin transcripts were synthesized in vitro primed with 
CAP analog as described (Konarska et al. 1984). The 32p-labeled 
pre-mRNAs were further purified on acrylamide/urea gels. The 
protein-RNA complexes were separated by native gel electro- 
phoresis using 4% acrylamide gels (acrylamide/bis, 29 : 1) by 
using TBE (89 mM Tris base, 89 mM boric acid, 2 m~4 EDTA) as 
a running buffer. The gels (25 x 0.15 cm) were pre-electropho- 
resed at 10 V/cm for 1 hr prior to loading samples. Binding 
reactions were performed in a 25-~1 reaction containing, 20 mM 
HEPES (pH 8.0), 5% glycerol, 70 mM KC1, 3 mM MgC12, 3 units 
of RNasin, 1 ~g of tRNA, 0.5 mM ATP, 20 mM creatine phos- 
phate, 5-20 ~g of protein, and uniformly 32p-labeled RNA 
probe. After 30 min of incubation at 30~ the sample was ad- 
justed to 5 mg/ml with heparin and incubated at 30~ for 10 
rain. One microliter of loading buffer containing 97% glycerol 
and 0.01% bromphenol blue plus 0.01% xylene cyanol was 
added just before loading the sample on the gel. The gel was 
electrophoresed at room temperature at 10 V/cm until the xy- 
lene cyanol had migrated 12-13 cm. The gels were dried and 
visualized by autoradiography. 

Transfections and RNA analysis 

HeLa cells were grown in Dulbecco's modified Eagle medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS). Un- 
less otherwise indicated, HeLa cells were transfected with 5 ~g 
of tropomyosin plasmid DNA and 1 ~g of ~-globin test plasmid 
(Treisman et al. 1983) per 100- mm plate by using a calcium 
phosphate coprecipitation procedure; cells were harvested 48 hr 
later, and the cytoplasmic RNA was isolated as described pre- 
viously (Helfman et al. 1988, 1990). The a-globin plasmid served 
as an internal control for transformation efficiency. RNase pro- 
tection assays were carried out as described (Zinn et al. 1983). 
The plasmids used for synthesis of 82p-labeled antisense RNA 
were derived from eDNA clones encoding rat fibroblast TM-1 
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and skeletal muscle ~3-TM and have been described elsewhere 
(Helfman et al. 1988, 1990). 
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