
ARTICLE

Received 17 Aug 2015 | Accepted 21 Oct 2015 | Published 20 Nov 2015

Genetic control of morphometric diversity in the
maize shoot apical meristem
Samuel Leiboff1, Xianran Li2, Heng-Cheng Hu2, Natalie Todt1, Jinliang Yang2, Xiao Li2, Xiaoqing Yu2,

Gary J. Muehlbauer3, Marja C.P. Timmermans4, Jianming Yu2, Patrick S. Schnable2 & Michael J. Scanlon1

The maize shoot apical meristem (SAM) comprises a small pool of stem cells that generate

all above-ground organs. Although mutational studies have identified genetic networks

regulating SAM function, little is known about SAM morphological variation in natural

populations. Here we report the use of high-throughput image processing to capture rich

SAM size variation within a diverse maize inbred panel. We demonstrate correlations

between seedling SAM size and agronomically important adult traits such as flowering time,

stem size and leaf node number. Combining SAM phenotypes with 1.2 million single

nucleotide polymorphisms (SNPs) via genome-wide association study reveals unexpected

SAM morphology candidate genes. Analyses of candidate genes implicated in hormone

transport, cell division and cell size confirm correlations between SAM morphology and

trait-associated SNP alleles. Our data illustrate that the microscopic seedling SAM is

predictive of adult phenotypes and that SAM morphometric variation is associated with

genes not previously predicted to regulate SAM size.
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P
lants maintain populations of pluripotent stem cells called
shoot apical meristems (SAMs) throughout their lifetime.
Shoot meristems function to generate morphologically

complex body plans by the coordinated activities of stem cell
maintenance to sustain the SAM, and organogenesis of leaves and
branches in a phyllotactic pattern1. These dual SAM functions
determine the number and position of all lateral organs that make
up the plant shoot. Although microscopic in size, correlations of
seedling SAM morphology and adult plant phenotypes may
render the vegetative SAM predictive of agronomically important
plant traits2.

Decades of genetic research have delineated a complex,
interactive network of transcription factors, hormonal signals,
epigenetic marks, metabolites and biophysical forces that
contribute to the regulation of SAM function3–8. Single-gene
mutations within these SAM genetic networks can alter the
morphology of both the shoot meristem and the plant9,10,
revealing that SAM structure and function are intimately linked.
Although these studies identified a number of genes required for
SAM function, little is known about the genetic control of SAM
morphological variation in large natural populations or in diverse
breeding stocks. QTL analyses of bi-parental populations have
shown that differences in SAM morphology may involve loci not
previously identified via single-gene mutations2,11.

In contrast to QTL analyses, genome-wide association studies
(GWAS) exploit historical recombination events and linkage
disequilibrium to dissect the genetic architecture of quantitative
traits. The abundant polymorphism and relatively low linkage
disequilibrium present in the model crop plant maize (Zea mays
subsp. mays L.), when coupled with exhaustive genotypic surveys
and innovative statistical analyses, have increased the precision
and the power to identify genic associations for multiple maize
traits12. Thus, further interrogation of the genetic architecture of
SAM morphology among many diverse genetic stocks may reveal
novel regulators of SAM function, which have not been
highlighted by single-gene mutations or QTL analyses of
bi-parental populations.

To date, the majority of maize GWAS have analysed the
genetic basis of macroscopic or biochemical phenotypes in adult
plants12–14. Although a few studies in other systems have
examined microscopic phenotypes15,16, no GWAS in maize has
utilized phenotypes collected at a microscopic scale. Here we
report the first application of GWAS to study the genetic
architecture of maize SAM morphology, a microscopic phenotype
that poses unique challenges for quantitative analysis. Applying a
high-throughput imaging pipeline to a diverse panel of 369 maize
inbred lines, we detect extensive SAM morphometric variation.
Significant correlations are identified between the microscopic
SAM and several adult phenotypes, including flowering time,
stem width and leaf node number. These findings demonstrate
that the morphology of the seedling SAM is predictive of
agronomically important adult plant traits. Utilizing a 1.2 million
single nucleotide polymorphism (SNP) data set that combined
RNAseq-generated and previously published available genotypes,
we identify candidate genes associated with SAM morphological
variation. Although the majority of these GWAS-derived SAM
candidate genes have not been previously implicated in studies of
SAM structure, subsequent analyses of candidate genes with
putative functions in hormone transport, cell division and cell
expansion support their predicted contributions to maize SAM
morphological diversity.

Results
The maize SAM morphospace correlates with adult plant traits.
Although several groups have documented differences in SAM

morphology among common maize inbred varieties2,11,17, to date
no studies have summarized the diversity of shapes and sizes that
populate the maize SAM morphospace. We adapted a high-
throughput histological clearing technique11,18 to image a panel
of 369 diverse maize inbred varieties that represents more than
80% of the genetic diversity within Z. mays subsp. mays L19,20.
We hypothesized that this panel would likewise capture much of
the natural variation in SAM microphenotypes.

We modelled the SAM as a paraboloid, a geometric shape that
facilitates estimations of multiple measures such as volume,
surface area, arc length and curvature, all of which can be
calculated from just two discrete measurements, SAM height and
SAM radius21,22. To test the efficacy of this parabolic model,
we analysed two maize inbred lines (B73 and W22) with
demonstrated differences in SAM size (Fig. 1)17. Modelling the
SAM as a paraboloid identified statistically significant differences
between inbreds in shape-determining model coefficients
(Fig. 1a–c). In a comparison of direct image processing and
parabolic modelling of SAM microphenotypes, we found no
statistical difference between measurement methods, yet the
ability to differentiate genotypes was maintained (Fig. 1d). We
incorporated this parabolic model into our image-processing
pipeline to quickly generate many SAM microphenotypes from
rudimentary primary measurements (Supplementary Data 1).

Across four biological replicates, we identified rich diversity in
SAM morphology within our panel of 369 maize inbreds (Fig. 2,
Supplementary Data 2). Figure 2d portrays the maize SAM
morphospace, plotted as SAM radius versus height; small,
intermediate and large size categories of maize SAMs were
identified. The SAM from the inbred line B73, from which the
reference maize genome was obtained23, occupies the centre of
our morphospace (Fig. 2a–d). Modelling the SAM as a paraboloid
enabled facile estimations of SAM volume (Fig. 2e).

In comparisons of microscopic SAM seedling phenotypes to
agronomically important adult plant traits (Supplementary
Data 3), we identified modest but significant correlations
between seedling SAM volume and height to primary ear
(Pearson’s r¼ � 0.18, Fisher transformation P¼ 9.871e� 04),
days to anthesis (Pearson’s r¼ � 0.33, Fisher transformation
P¼ 6.743e� 10), leaf node number (Pearson’s r¼ � 0.21, Fisher
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Figure 1 | Parabolic models of the maize SAM allow rapid assessment of

morphology. (a,b) Inbreds B73 and W22 have SAM morphology (black)

closely approximated by a parabolic model (red). (c) Parabolic SAM model

coefficients between inbreds (n¼ 10) are significantly distinct, Student’s

t-test, P¼0.013 (d) SAM area calculations from model-derived estimates,

‘Estimated’ and direct image-processed measures, ‘Measured’ are not

significantly different within a genotype, but significantly different between

genotypes. Two-way ANOVA—factor, genotype: P¼0.000325; factor,

measurement technique: P¼0.750547; interaction, genotype and

technique: P¼0.939353. Scale bars, 100mm. Error bars, 95% CI.
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transformation P¼ 8.922e� 05) and stem diameter above the
primary ear (Pearson’s r¼ � 0.13, Fisher transformation
P¼ 0.01238) (Supplementary Fig. 1)24.

GWAS of maize SAM volume. To better understand the genetic
architecture controlling maize SAM morphology, we used GWAS
to identify loci correlated with SAM microphenotypes within our
diverse maize inbred panel. SAM volume was found to have a
favourable entry mean heritability, or repeatability of 0.84, and its
calculation captures variation contributed by multiple SAM
microphenotypes (Supplementary Fig. 2, Methods). We therefore
focused our analyses on SAM volume.

Using RNAseq data obtained from SAM-enriched apex tissue,
we generated 923,000 novel SNPs from our maize inbred panel.
Additional 358,000 SNPs called from the Ames US Inbreds public
data set generated a combined genotyping matrix of more than
1.2 million high quality SNPs (Fig. 3a)25,26. We used a unified
mixed-model approach to associate SAM volume with SNPs from
our genotyping matrix, accounting for kinship and population
structure within the panel27. Fifty-one trait-associated SNPs
(TAS) that surpassed a stringent (a¼ 0.01) Bonferroni-correction
threshold of � logP48.11 were detected. Thirty-four TAS
were unique to RNAseq-generated SNPs, while only seven TAS
were found in both SNP data sets (Fig. 3b). Forty-eight TAS were
within 100 kb of 23 unique candidate genes, with the majority of
TAS (44/48) in predicted coding regions themselves (Fig. 3c–o,
Supplementary Data 4). This bias towards coding regions is in
accordance with a previous report of GWAS conducted using
SNPs generated from RNAseq data26.

In each of the 51 TAS, the common allele (COM) had a
frequency above 91% (Supplementary Data 5). For all but one

TAS, the B73 reference sequence was the COM. The total number
of TAS alternate alleles (ALT) identified in an individual was
moderately correlated with SAM volume (Pearson’s r¼ 0.50,
Fisher transformation Po2.22e� 16); inbreds with the largest
SAMs were more frequently ALT at multiple TAS (Fig. 3p). We
selected four candidate genes with especially interesting predicted
developmental functions for analyses of the contribution of ALT
alleles to SAM shape and size.

SAM morphology-associated genes. We detected one TAS
within the 30 untranslated region of GRMZM2G405368,
Constans-like 1 (CONZ1) (Fig. 3c). CONZ1 exhibits diurnal
transcript fluctuations and is associated with flowering time28.
Within our maize inbred panel, we found a significant, moderate/
weak negative correlation between SAM volume and days to
anthesis (DTA; Pearson’s r¼ � 0.33, Fisher transformation
P¼ 6.743e� 10)24. Although flowering time data is available for
just one of the four CONZ1-ALT lines, the DTA value for Co255
falls within the upper quartile of this inbred panel. Morphological
examination of sampled SAMs revealed active production of leaf
primordia (Figs 1a,b and 2a–c), verifying that the SAMs assayed
in our data set had not undergone the transition from vegetative
to inflorescence-staged shoot meristems4. Furthermore, neither
CONZ1 nor any SAM morphology-associated candidate genes
identified in our study have been implicated in prior GWAS of
maize flowering time14,24.

We detected two TASs within the 2nd intron and 3rd exon of
GRMZM2G129413, which appear as one allele in our panel
(Fig. 3d). The ALT form of the 3rd exon TAS is expected
to render an amino acid change from histidine to asparagine
near a predicted low-complexity protein domain. The closest
Arabidopsis thaliana homologue to GRMZM2G129413 is Like
Auxin-Resistant 2 (LAX2), a predicted auxin influx protein that is
expressed within developing vasculature and may modulate auxin
flow dynamics29–31.

In situ hybridization of B73 maize seedling apices (n¼ 20)
with a probe specific to ZmLAX2 shows a strong provascular
expression pattern within leaf primordia and in the developing
stem (Fig. 4a–c). Expression is not detected in differentiated
xylem or phloem cells, but is restricted to the procambium,
undifferentiated cells located between the xylem and phloem
poles (Fig. 4d,e). Due to the three-dimensional arrangement of
plant vasculature, single longitudinal sections do not capture
entire vascular traces. To address this issue, we aligned and
compiled our ZmLAX2 in situ hybridization data from several
serial sections from 10 additional inbred lines selected to reflect
various SAM sizes and ZmLAX2 genotypes to reconstruct the
native expression pattern.

We detected spatiotemporal variation in ZmLAX2 transcripts
correlated with the ZmLAX2 TAS genotype (Fig. 5). Leaves are
designated according to plastochron number, which specifies the
relative time elapsed since initiation from the SAM, such that
the newly initiated leaf is termed P1 and the next incipient
primordium is designated P0 (ref. 32). In four large SAM
ZmLAX2-COM lines, transcript accumulation was detected in the
P0 and in older leaf primordia (Fig. 5a). Similarly, four small
SAM ZmLAX2-COM lines examined exhibited ZmLAX2
transcript accumulation in the P0 and older primordia
(Fig. 5b). In contrast, the large SAM ZmLAX2-ALT lines
ND246 and Co255 displayed transcript accumulation in the P0
and older leaf primordia, as well as on the flank of the SAM
opposite the P0 (Fig. 5c,d). This unique expression pattern
extends into the SAM towards the predicted location of the
yet-to-be-specified incipient primordium, designated P-1. Note
that the accumulation of ZmLAX2 transcript in P-1 primordia
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can been seen in apices with relatively larger, flanking P1 and P2
primordia (Fig. 5c), as well as shoot apices with smaller P1 and P2
primordia (Fig. 5d). Thus, the observed accumulation of ZmLAX2
transcript in P-1 primordia in large SAMs containing the
ZmLAX2-ALT allele is not correlated with plastochron index
and this expression pattern is not an artifact of relative
developmental staging between plastochrons.

We detected one TAS within the 14th exon of
GRMZM2G121074 that is predicted to cause a synonymous
codon change in the ZmSDA1-ALT allele. GRMZM2G121074 is
the closest maize homologue of severe depolymerization of actin
(SDA1), a highly conserved gene required for cellular G1 phase
transition and mitotic timing in Saccharomyces cerevisiae33,34.

We processed images from a subset of inbred lines treated
with a Kasten’s fluorescent Feulgen stain to test whether
ZmSDA1 genotype is correlated with differences in cell number
(Fig. 6)35–37. Images from 3 ZmSDA1-ALT lines and 11 randomly
chosen ZmSDA1-COM lines with small, intermediate and large
maize SAMs were examined in 3 biological replicates (Fig. 6a–h).
ZmSDA1-ALT lines exhibited a statistically significant increase in
SAM cell number (SCN) compared with ZmSDA1-COM lines
(Fig. 6i). Modelling SCN as the product of ZmSDA1 genotype and
SAM volume in a two-way ANOVA showed that ZmSDA1
genotype and SAM volume are both significant predictive factors
of SCN, and predictions of SCN are independent of the
interaction between ZmSDA1 genotype and SAM volume.

We detected four TASs within the 4th exon, one TAS
within the 5th exon and one TAS within the 6th exon of
GRMZM2G145720, which appear as one allele in our panel.
GRMZM2G145720 is a leucine-rich repeat receptor-like protein
kinase gene homologous to the Oryza sativa gene BRASSINOS-
TEROID INSENSITIVE 1-associated receptor kinase 1 (OsBAK1)

(maizegdb.org). The ALT allele of ZmBAK1-like encodes two
expected amino acid changes flanking a predicted transmembrane
domain, lysine to arginine and arginine to threonine, respectively.
In O. sativa, BAK1 participates in brassinosteroid-dependent
cell expansion38. We therefore tested if cell size is affected in
ZmBAK1-like-ALT lines.

As above, we processed SAM images from a subset of inbred
lines to test the correlation of ZmBAK1-like-ALT and cell size
(Fig. 6)35–37. Images from five ZmBAK1-like-ALT lines and nine
ZmBAK1-like-COM inbred lines representing small, intermediate
and large SAM size categories, were examined in three biological
replicates (Fig. 6a–h). ZmBAK1-like-ALT lines exhibit a
statistically significant increase in average SAM cell size (ASCS)
compared with ZmBAK1-like-COM lines (Fig. 6j). Modelling
ASCS as the product of genotype and SAM volume in a two-way
ANOVA showed that SAM volume was insignificant in
predicting ASCS; however, the ZmBAK1-like-ALT allele was a
significant predictive factor for ASCS.

Discussion
Previous studies of maize seedling SAM shape and size diversity
have been limited to a small number of inbred varieties2,11,17.
By approximating SAM shape with parabolic models, we were
able to survey morphometric diversity in 369 maize inbred lines.
GWAS of microscopic phenotypes such as macular degeneration
in the human eye and root meristem size in the model plant
A. thaliana identified a small number of statistically significant
genotype–phenotype associations15,16. The high repeatability,
or entry mean heritability, of SAM volume combined with our
dense genotyping matrix of 1.2 million SNPs in a mixed-
model approach allowed us to identify 51 TAS with a high
stringency Bonferroni correction, a¼ 0.01. Previous reports of
microphenotype GWAS used molecular developmental strategies
to support candidate loci15,16. Likewise, we used a variety of
molecular developmental techniques to characterize a small
number of SAM morphology candidate genes.

Using a high-throughput image-processing pipeline to generate
SAM morphological data for GWAS of 369 maize inbred lines,
we identified candidate genes involved in intraspecific SAM
morphological variation. Studies of natural variation in plants
and animals have found that biologically significant changes are
often linked to polymorphisms in non-genic regulatory regions
that may contribute to the evolution of novel expression
patterns39–42. In contrast with this trend, the majority of our
GWAS-identified TASs are found within predicted gene-coding
regions. However, because 77% of SNPs from our genotyping
matrix were generated by RNAseq analysis, we expect a bias
towards the identification of genic polymorphisms by GWAS
(Fig. 3b)26. Although several of our gene candidates have
TASs within coding regions, and some ALT alleles encode for
predicted amino acid changes that may alter protein function,
further validation involving reverse genetics or fine-mapping
of advanced introgression lines is required to confirm any
potentially functional nucleotide polymorphisms. TASs identified
in our analysis may be markers of causative changes in flanking
regulatory regions, for which we have not identified polymorphic
SNPs26,41. Nevertheless our data provides additional evidence
that SNPs generated by RNAseq analysis can be used
to generate a dense genotyping matrix for GWAS, allowing for
high-resolution, single-gene associations26.

Our data agree with previous reports that correlate large SAM
size with early flowering (decreased days to anthesis) pheno-
types2, and our data expand this correlation to a markedly larger
panel of inbred maize varieties. Previous research has shown that
SAM size increases throughout vegetative development2,43,44,
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whereafter the SAM transforms into the male inflorescence
meristem. Morphological evidence showing P1 and P0 leaf
primordia arising from the periphery of all the samples examined
in this study (Figs 1a,b and 2a–c) confirm that these SAMs are

indeed vegetative shoot meristems and have not transformed into
male inflorescences4. The significant correlation between large
SAM size and early flowering suggests that large SAM lines
undergo reproductive phase change earlier than small SAM lines.
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However, our SAM size GWAS did not detect genes previously
implicated in regulation of flowering time14; in contrast, we find
that natural variation in SAM size and flowering time are
associated with separate genes.

Significant negative correlations between large SAM volume
and plant height at the primary ear are likely to reflect the early
flowering time of large SAM lines simply because large SAM lines
terminate vegetative growth earlier in the season. We also
detected a negative correlation between SAM size and leaf node
number, a proxy for total leaf number, which would likewise be
expected for plants that flower earlier in the growing season and
therefore produce fewer leaves and stems. Significant correlations
were likewise discovered between SAM size and stem diameter,
which is an important factor in lodging resistance and damage
from stem boring insects45,46. Such a correlation in seedling SAM
size and adult stem size is quite remarkable, considering there is
an B800-fold increase in size between the average SAM radius
and the average stem diameter for the 369 lines in our study.
Internode stem diameter and length are inversely correlated in
maize and other grasses47,48, such that internode width decreases
markedly in upper (younger) nodes as internode length increases.
Our data suggest that the relationship between SAM size and
stem diameter is driven by SAM height, whereas SAM radius is
insignificant in explaining the correlation (Supplementary Fig. 1).
Conversely, the relationship between SAM size and plant height
to the primary ear is driven by SAM radius and not SAM height

(Supplementary Fig. 1). We expect that these two relationships
represent an allometric trade-off between plant height and stem
diameter, separated into discrete internodes, that is established
within the SAM. At the same internode, increased SAM height
leads to decreased stem diameter and increased SAM radius leads
to decreased plant height.

Although statistically significant, these correlations are
moderate. Nonetheless, the data suggest that the stem cell
population housed in the diminutive, microscopic maize seedling
SAM is predictive of several impactful adult agricultural traits,
despite substantial intervening development and growth.

This study uncovered 23 candidate genes associated with SAM
size and shape. Notably, our GWAS did not detect any SAM
master regulatory genes previously identified by mutational
analyses, corroborating the results of previous QTL analyses of
maize SAM morphology2,11. A successful GWAS ultimately links
phenotypic variation with allelic polymorphisms. As such, our
GWAS would fail to identify SAM master regulators if these
genes were fixed in our population, perhaps due to strong
purifying selective pressure for SAM function as observed in
some species49. However, our genotyping matrix includes ample
polymorphisms within the coding sequences of multiple SAM
master regulatory genes (Supplementary Data 6). For example,
after filtering and quality control, 118 SNPs were identified in the
SAM maintenance gene knotted1 (kn1)50 and 12 SNPs were
found in the SAM size regulator aberrant phyllotaxy1 (abph1)10,
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Figure 6 | SAM cell number and cell size are correlated with ZmSDA1-ALTand ZmBAK1-like-ALT alleles. Automated cell segmentation of SAM images

from ZmSDA1-ALT (n¼ 3) and ZmBAK1-like-ALT (n¼ 5) lines compared with large (n¼ 3), intermediate (n¼ 3) and small (n¼ 3) common (COM)

TAS allele lines. (a–d) SAM images collected by confocal microscopy. (e–h) Cell segmentation of SAM images identifies nuclei and divides space between

them into a lattice of cells, used to determine cell number and cell size. (i) ZmSDA1-ALT lines (b,f) have increased SAM cell number, compared with

ZmSDA1-COM lines (a,e), independent from SAM volume effects: two-way ANOVA—factor, ZmSDA1: P¼4.37e� 14; Factor, SAM volume: P¼ 2.98e� 15;

Interaction, ZmSDA1 and SAM volume: P¼0.731. (j) ZmBAK1-like-ALT lines (c,g) have increased average SAM cell size, compared with ZmBAK1-like-COM

lines (a,e), while SAM volume does not have a significant effect: two-way ANOVA—factor, ZmBAK1-like: P¼0.000137; factor, SAM volume: P¼0.516722;

interaction, ZmBAK1-like and SAM volume: P¼0.141583. Scale bars, 100mm. ***P-valueo0.001.
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although SNPs in neither gene were significantly associated with
SAM volume. Likewise, although 23 SNPs were identified in the
leucine-rich repeat receptor-like, faciated ear2 (fea2)51, significant
associations were not detected between SAM volume and fea2
SNPs by GWAS. Loss of fea2, a putative CLAVATA2 orthologue,
dramatically affects the shape and size of the maize inflorescence
meristem51, and natural variation in the regulation of fea2 was
shown to underlie ear morphological variation between maize
inbreds B73 and Mo17 (ref. 52).

Notably, our data suggest that either known SAM master
regulatory genes do not make major contributions to natural
SAM morphometric variation, or else these contributions are not
detectable in our experiment. Instead, our data suggest that SAM
morphometric variation in natural populations and diverse
breeding stocks is more likely attributed to allelic variation in
genes regulating cell expansion and cell division (Fig. 6) as
opposed to genes required for shoot meristem maintenance,
stem cell indeterminacy or organ initiation. With additional
investigation into potential developmental molecular mechan-
isms, the gene candidates identified in this study may provide
novel insights into the regulation of SAM function.

This study revealed that allelic variants of ZmLAX2, a predicted
member of the AUX/LAX family of auxin influx proteins30, are
associated with SAM morphometric variation. Auxin canalization
within the SAM is required for phyllotactic patterning and
lateral organogenesis53–55. Canalization is established by the
combined cellular efflux of PIN family proteins and auxin influx
of AUX/LAX family proteins53,56,57. Cellular localization
experiments and models of auxin flux dynamics both suggest
that the mutually antagonistic functions of AUX/LAX and PIN
proteins are localized to provascular traces that mark the
developing leaf primordium (P0)53,56,58.

In situ hybridization reveals that ZmLAX2 transcript accumu-
lation coincides with previously described patterns of PIN
localization in the developing leaf primordium (P0)59,
suggesting that AUX/LAX protein family function has been
conserved in maize. Interestingly, ZmLAX2-ALT inbred lines with
large SAM phenotypes exhibit transcript accumulation in the
developing leaf primordium (P0), as well as the yet-to-be-
elaborated leaf primordium (P-1). This unique spatiotemporal
expression pattern suggests that ZmLAX2 transcript
accumulation occurs prior to previously documented markers
of vascular trace formation in ZmLAX2-ALT lines59,60. Because
AUX/LAX influx functions are known antagonists of auxin
canalization53 and NPA-mediated inhibition of auxin transport/
canalization dramatically increases SAM size61, increased SAM
size identified in ZmLAX2-ALT inbred lines may result from
expanded or developmentally hastened expression of AUX/LAX
family genes in the maize SAM.

Methods
Plant growth and tissue harvest. Plants for all experiments were grown under
standard conditions with 10-hr day cycles in Percival A100 growth chambers
(Percival Scientific, Perry, IA) planted in 98-well trays with all edge positions filled
with inbred B73. Soil media was a 1:1 mixture of Turface MVP (PROFILE
Products LLC, Buffalo Grove, IL) and LM111 (Lambert Peat Moss, Qc, Canada).
All plants were harvested 14 days after planting and quickly trimmed to small
SAM-containing tissue cassettes and fixed in FAA (3.7% formalin, 5% acetic acid
and 50% ethanol in water) on ice, overnight.

For initial modelling, 10 kernels from inbred B73 and 10 kernels from inbred
W22 were planted as above. To map the maize SAM morphospace, kernels from
384 inbred varieties (Supplementary Data 1) were planted in randomized positions
in 4 biological replicates. For RNA in situ hybridization, 10 kernels from select lines
were grown as above in 2 biological replicates. To estimate SAM cell count and
ASCS, 4 kernels from 14 inbred varieties were planted with 3 biological replicates:
3 ZmSDA1-ALT lines and 5 ZmBAK1-like1 ALT lines with remaining lines
randomly chosen to equally represent the lower quartile (small), middle quartiles
(intermediate) and upper quartile (large) of SAM volume with COM from
ZmSDA1 and ZmBAK1-like1.

SAM tissue preparation and imaging. For differential internal contrast (DIC)
imaging of SAMs, FAA-fixed 14-day-old seedling tissue was dehydrated in an
ethanol solution series and cleared overnight with methyl salicylate as used in the
studies by Vollbrecht et al.17 and Thompson et al.2 Cleared tissue was imaged with
Nomarski optics on an Axio Imager.Z10 (Carl Zeiss Microscopy, LLC, Thornwood,
NY) with an AxioCam MRc5 camera. We captured near-median longitudinal
optical sections using primordia appearance and SAM apex contours as
morphological cues. Images are available at MaizeGDB (maizegdb.org).

For fluorescent staining of SAM nuclei, FAA-fixed 14-day-old seedling tissue
was treated with Kasten’s Feuglen stain as described in the studies by Ruzin36 and
Kasten37: fully hydrated tissue was digested with 1 N hydrochloric acid overnight
then reacted with a solution of safranin-O (safO) incubated with potassium
metabisulfite and hydrochloric acid. After a brief destain, samples were dehydrated
and cleared with methyl salicylate. Images were collected with a Leica TCS-SP5
(Leica Microsystems Exton, PA, USA) using an argon ion laser (488 nm).
SafO-stained samples had a broad, low background emission spectrum
(580–650 nm). Single optical sections were selected at near-median longitudinal
planes. Images were processed using Leica LAS-AF software (version 2.6.0) prior to
analysis.

Image processing. For parabolic modelling of SAMs, DIC images from
14-day-old seedlings of inbred B73 (n¼ 5) and inbred W22 (n¼ 5) were processed
using ImageJ62. To test the efficacy of a parabolic model of SAM curvature, custom
macros were used to collect and export a traced SAM contour. Splines were
interpolated from raw contours and used to define points along the SAM surface
in the xy plane. SAM surface points were passed to the statistical software R (http://
www.r-project.org/) and analysed by polynomial regression to the standard form of
the parabolic equation:

y ¼ ax2 þ bxþ c

The coefficient a was taken as the shape-defining model factor and area was
estimated by the equation: area¼ 4/3(heights� radius), where height and radius
were collected as below. Estimated area was compared with measured area
collected by the ImageJ freehand selection tool.

For high-throughput analysis of SAM morphology, custom ImageJ macros
and python scripts were used to process 1,186 DIC images of 14-day-old
seedling SAMs from 369 inbred maize varieties. Using the point selection tool
in ImageJ, we collected height (h) from the SAM apex and parabola radius (r)
from the P1 notch from each image. From these primary measures, we
calculated the following: height/radius¼ h

r

� �
, diameter¼ (2r), area¼ 4

3

� �
h�rð Þ,

volume¼ p
2

� �
h�r2ð Þ, parabolic standard form coefficient a¼ð h

r2Þ, SAM surface

area¼ð pr
6h2 ½ r2 þ 4h2ð Þ3=2 � r3�Þ and arc length¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ 4h2Þ

p
þ r2

2h

� �
sinh� 1ð2h

r Þ.
To account for germination differences in some inbred lines, best linear unbiased
predictors (BLUPs) were calculated for all measures using SAS (http://
www.sas.com/) and the nlme R package. BLUPs were used for GWAS, and
phenotypes were reported in BLUPþ intercept form.

For alignment of in situ hybridization serial sections, DIC images of RNA
in situ hybridization slides were imported into ImageJ, placed in sequential order
by morphological cues and aligned using the TrakEM2 package (http://fiji.sc/
TrakEM2).

Images of fluorescent SAM nuclei were preprocessed in ImageJ for cell counting
and size estimation using the freehand selection tool to remove cells outside the
SAM. SAM images were analysed with a standard pipeline in CellProfiler35.

SNP matrix generation. RNA for RNAseq analysis was extracted from
SAM-enriched apices of 14-day-old seedlings and sequenced using Illumina
HiSeq2000 instruments. The nucleotides of each raw read were scanned for low
quality bases63. Bases with PHRED quality valueso15 (out of 40)64, that is, error
rates of r3%, were removed. Each read was examined in two phases. In the first
phase, reads were scanned starting at each end and nucleotides with quality values
lower than the threshold were removed. The remaining nucleotides were then
scanned using overlapping windows of 10 bp and sequences beyond the last
window with average quality value less than the specified threshold were truncated.
Trimmed reads were aligned to the Maize B73 RefGen_v2 genome using
GSNAP26,65,66. To obtain confidently mapped reads, reads were retained if they
mapped uniquely in the genome, allowing two or less mismatches every 36 bp and
fewer than five bases for every 75 bp in read length as unaligned ‘tails’. The
coordinates of confident and single (unique) alignments that passed our filtering
criteria were used for SNP discovery. Polymorphisms at each potential SNP site
were examined and putative homozygous SNPs were identified using the following
criteria after ignoring the first and last three aligned bases of each read. Before
being used to call a SNP, a polymorphic base was required to have a PHRED base
quality value of at least 20 (o1% error rate), and at least five unique reads must
support the SNP call.

For genomic SNP calling, we used data from 2,815 US inbreds, including our
369 inbreds, which were genotyped at B700,000 SNP sites by sequencing25. The
original data set was downloaded from Panzea (panzea.org). For accessions that
were sequenced multiple times, we scored the consensus allele for each site. Alleles
with conflicting records were scored as missing.
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For SNP quality control, after merging RNASeq and genomic SNPs,
polymorphisms with minor allele frequency o1% or missing in over 60% of
inbreds were excluded from further GWAS analysis.

Mixed-model GWAS. The analysis was performed on SAM volume BLUP data
with a compressed mixed linear model67 implemented in the GAPIT R package
(Version 3.55) by selecting the best model from PCA covariates and Kinship
matrix68.

In situ RNA hybridization. RNA in situ hybridization analyses were carried out as
described in the study by Jackson69 with modifications as in the study by Johnston
et al.60: FAA-fixed tissue was dehydrated and transferred to paraffin wax in
preparation for sectioning. Longitudinal sections through the SAM were adhered to
slides overnight, paraffin stripped off, rehydrated and treated by with Proteinase K
in preparation for incubation with a DIG-labelled RNA probe. After overnight
incubation at 50 �C with the ZmLAX2-specific probe, slides were rinsed several
times in SSC, treated with RNase H to remove excess probe and incubated with an
anti-DIG alkaline phosphatase (AP) conjugated Fab-fragment serum at 4 �C
overnight (Roche Diagnostics, IN, USA). Transcript accumulation was visualized
by incubating overnight at room temperature in a BCIP/NPT AP substrate (Roche
Diagnostics).

SAM tissue from the following genotypes was examined: small SAM
ZmLAX2-COM genotypes—CML322, B104, B57, NC314; large SAM ZmLAX2-
COM genotypes—F42, CS405, NC324, LP5; large SAM ZmLAX2-ALT genotypes—
ND246, Co255. We constructed an antisense probe to GRMZM2G129413
(ZmLAX2) using 1 kb of sequence from the last exon and 30 untranslated region of
inbred B73 cDNA, using primers oSL33 (50-TCTATATCATCCCGGCGCTC-30)
and oSL38 (50-TAACTTGCACCTTTGCTGCG-30).

Gene model annotation. Candidate genes model entries were queried on Mai-
zeGDB (www.maizegdb.org) for classical names and best sequence homologues in
A. thaliana and O. sativa. Genes without classical names were queried against a
maximum likelihood protein sequence tree (ensembl.gramene.org). Protein
domains were determined by SMART (http://smart.embl-heidelberg.de/).

Field measurements. Stem diameter and node count measurements were
collected in Summer 2014 at the Musgrave Research Farm (Aurora, NY).
Measurements were gathered from 3 post-anthesis individuals from 10-kernel
families of the 369 inbred varieties used above. The highest ear on the maize plant
was designated the ‘primary ear.’ The primary ear is clonally related to the node,
internode and leaf on the opposite side of the stem, above its own point of insertion
at maturity70. Stem diameter was collected from the widest diameter measured at
the midpoint between nodes for: the clonally related internode above the primary
ear, the internode at the point of insertion of the primary ear and internode below
the point of insertion of the primary ear using a Fowler-Sylvac Digital Caliper Kit
(Serialio.com, Cedar Park, TX). Above-ground nodes were scored and counted as a
proxy for total leaf count.

Statistical analysis and plotting. Descriptive statistical analysis, t-tests, one-way
analysis of variance (ANOVA) and two-way ANOVA were carried out using core
R packages. Correlation analyses were carried out using the PerformanceAnalytics
R package. All correlations report Pearson’s product-moment r and were evaluated
for statistical significance with the Fisher transformation. Additional adult
phenotype data for correlation analyses were collected from published data sets24.
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