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ABSTRACT

PCR permits the exponential and sequence-specific
amplification of DNA, even from minute starting
quantities. PCR is a fundamental step in prepar-
ing DNA samples for high-throughput sequencing.
However, there are errors associated with PCR-
mediated amplification. Here we examine the effects
of four important sources of error––bias, stochastic-
ity, template switches and polymerase errors––on se-
quence representation in low-input next-generation
sequencing libraries. We designed a pool of diverse
PCR amplicons with a defined structure, and then
used Illumina sequencing to search for signatures
of each process. We further developed quantitative
models for each process, and compared predictions
of these models to our experimental data. We find
that PCR stochasticity is the major force skewing se-
quence representation after amplification of a pool of
unique DNA amplicons. Polymerase errors become
very common in later cycles of PCR but have little
impact on the overall sequence distribution as they
are confined to small copy numbers. PCR template
switches are rare and confined to low copy numbers.
Our results provide a theoretical basis for removing
distortions from high-throughput sequencing data.
In addition, our findings on PCR stochasticity will
have particular relevance to quantification of results
from single cell sequencing, in which sequences are
represented by only one or a few molecules.

INTRODUCTION

DNA sequencing technologies have improved rapidly dur-
ing the last two decades. Due to decreased cost and in-
creased speed, DNA sequencing is now a standard tech-
nique in molecular biology both for sequence determination
and quantification.

Before a DNA sample can be sequenced, a sequencing
library must be prepared from the sample. Although the

steps in library preparation vary, the protocol almost always
involves polymerase chain reaction (PCR) amplification.
However, PCR is imperfect; it introduces both skews and
new hybrid or erroneous sequences into the pool of ampli-
fied DNA molecules. Our goal here is to obtain a quantita-
tive understanding of various artifacts introduced by PCR.

Here, using pools of carefully designed amplicons and
Illumina sequencing, we theoretically and experimentally
investigate four processes known to cause sequence mis-
representation after PCR amplification. First, we studied
the effects of PCR bias focusing on variable PCR ampli-
fication efficiencies as a function of the GC content of in-
dividual sequences. GC bias has often been considered a
major source of sequence misrepresentation after PCR. It
has carefully been measured in high-throughput sequenc-
ing data, and suggestions have been made as how to min-
imize GC bias (1–3). Second, we studied the stochasticity
with which each DNA molecule is amplified at each cy-
cle of PCR. A large body of theoretical work has focused
on the stochastic nature of PCR (4–8), mostly concerning
its implications for quantitative PCR (9). Few experiments
have addressed stochasticity in PCR amplification, how-
ever, and we know of no work carefully considering the im-
pact of the stochastic nature of PCR in sequencing data.
Third, we studied template switching, a process by which
two templates combine to form a novel chimeric product
during amplification (10,11). Template switching has previ-
ously received attention in the metagenomics community,
and tools have been developed to detect and remove such
chimeric sequences from pyrosequencing data (12). While
elegant, these tools do not provide a quantitative model of
how and when template switches occur, and therefore can-
not inform future experimental designs. Finally, we stud-
ied polymerase errors and their impact on sequencing re-
sults. Again, polymerase errors have long been recognized
as important, and tools have been developed to remove er-
roneous sequences from high throughput sequencing data
sets; but little is known about the relative magnitude of poly-
merase errors compared with other unintended effects of
PCR (13–15).

For each of the four processes considered in this work,
we formulated a mathematical framework, looked for sig-
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natures of the process in sequencing data, and compared
our theoretical predictions with the experimental data. Our
main conclusion is that PCR stochasticity is the most signif-
icant source of skewed sequence representation in our low-
input, high-throughput sequencing data sets. Polymerase
errors are the next most important source of error. However,
erroneous sequences are limited to small copy numbers, and
thus have only a small effect on overall sequence representa-
tion. GC bias and template switches have only minor effects
on sequence representation after amplification.

MATERIALS AND METHODS

DNA oligos and PCR

We ordered four ultramers from Integrated DNA Technolo-
gies: three different types of barcode pairs (BC1-BC1, BC2-
BC2 and BC3-BC3) and an adapter oligonucleotide (Ta-
ble 1). BC1-BC1, BC2-BC2 and BC3-BC3 contain the Illu-
mina P5-SBS3T sequence followed by a 20 nucleotide bar-
code, the PhiC31 phage Attachment site L (AttL) sequence
and another 20 nucleotide barcode. Whereas the barcodes
of BC1-BC1 and BC2-BC2 have a balanced base composi-
tion, BC3-BC3 has GC rich barcodes with an expected GC
content of 80%. The adapter oligonucleotide is 5′ phospho-
rylated and contains a 15 nucleotide barcode. This barcode
acts as a varietal tag (16–20) and is used to count the ab-
solute copy number of input sequences. The 15 nucleotide
barcode is followed by the reverse complement of the Illu-
mina P7-SBS8 sequence. The 3′ end of the adapter oligo is
phosphorylated to avoid circularization.

We pooled BC1-BC1 and BC2-BC2 in equal amounts
and ligated 2 × 10−17 mol of barcode pairs to an excess
of 3′ adapter using CircLigase I ssDNA ligase (epicentre;
previously sold as Thermophage ssDNA ligase) as previ-
ously described (21). For the high GC data set ZL053 we
additionally included BC3-BC3 in the ligation reaction at
a fivefold reduced concentration relative to BC1-BC1 and
BC2-BC2. The ligation reaction was cleaned up with Agen-
court RNAClean XP beads (Beckman Coulter) according
to the manufacturers instructions. 5% of the ligated prod-
ucts were subjected to 25 cycles of PCR using 47�l Ac-
cuprime Pfx SuperMix (Invitrogen), 1�l of 10�M forward
and reverse primers each (Table 1) and 1�l input. Cycling
was performed in a BioRad MyCycler Thermal Cycler us-
ing standard Accuprime protocol with 58◦C annealing tem-
perature and 30 s extension time. The PCR product was gel
extracted and sequenced on a single lane of a HiSeq 2000
machine at PE101 per data set.

Data processing

Illumina sequencing resulted in 60, 215 and 224 million
reads passing filter for data sets ZL037, ZL052 and ZL053
respectively. We merged the paired end reads into their con-
sensus sequence with the Pear tool (22) using standard set-
tings and requiring a consensus sequence of 101 nt. We
trimmed and preprocessed the remaining consensus reads
using Matlab requiring a perfect match to the constant AttL
region, and used the remaining sequences for all subsequent
analysis (Table 2) (preprocessing.m in the Supplementary

Data). All original data files are freely accessible on the Se-
quence Read Archive under accession SRP057767.

Data scaling

The three data sets used in this study differ slightly in the
number of input sequences and in sequencing depth. To
make direct comparison easier, we linearly scaled the x and
y dimensions of ZL052 and ZL053 to match ZL037 by min-
imizing the squared error between them. Scaling coefficients
are reported in Table 3. All further analysis was undertaken
on the scaled data sets.

GC bias

PCR efficiencies were determined as a function of GC con-
tent as described in the text. For simulation of GC biased
PCR, we calculated the average PCR efficiency for bins of
0.05 width, and normalized to a PCR efficiency of 1.9 for
the bin 0.5 to 0.55. We then randomly sampled a binomial
distribution to obtain the GC content for 2900 input se-
quences, and assigned to each sequence the PCR efficiency
of its corresponding bin. All sequences were amplified for
25 cycles, and the resulting molecule numbers Poisson sam-
pled to simulate sequencing. We chose � as to match the sum
of all the reads in the plateau of ZL037.

Calculation of the probability distribution function of copy
numbers after PCR

In PCR, the number of offspring molecules of every se-
quence in every amplification cycle is drawn from a bino-
mial distribution. When molecule numbers are small, the
binomial distribution is poorly approximated by a Gaus-
sian distribution. It is therefore essential to explicitly calcu-
late the binomial distribution of offspring molecules in the
early cycles of PCR. However, later in PCR, when molecule
numbers exceed around 20 copies, the binomial distribution
is efficiently approximated by a Gaussian distribution (Law
of large numbers). In our analysis we exactly calculated the
Probability Distribution Function (PDF) of copy numbers
after PCR for the first 15 cycles, and then switch to a Gaus-
sian approximation for computational ease.

To obtain the exact PDF for the first 15 cycles of PCR, we
proceeded as follows. Let us use the vector S to denote the
distribution of copies of a given barcode-pair after j cycles.
Each element S(i) of S is the probability of having i − 1
copies. Thus, S(1) is the probability of having 0 copies, S(2)
of having 1 copy, etc. If S(3) = 1, it means the probability
distribution is a delta function at exactly two copies; if S(2)
= 0.5 and S(3) = 0.5, it means there is a 50-50 chance of
having two or three copies. (Note that the largest nonzero
element of S must in general be ≤2j, so the length of S must
be ≤2j + 1.)

Our approach is to find an updating matrix M such that
the distribution of copies S′ on the next cycle is given by S′
= MS.

This formulation exploits the Markovian nature of the
process, namely it does not matter how we ended up with k
copies on a given cycle; all that matters is we have k copies.
To determine the elements of M, we first consider an easier
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Table 1 DNA oligonucleotides used

Name Sequence

BC1-BC1 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC
TNR NNN NNY YNN NNR RNN NYY ACG CCC CCA ACT GAG AGA ACT CAA GGG CAC GCC
CTG GCA CCC GCA CRR NNN YYN NNN RRN NNN NYN

BC2-BC2 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC
TNY NNN NNR RNN NNY YNN NRR ACG CCC CCA ACT GAG AGA ACT CAA GGG CAC GCC
CTG GCA CCC GCA CYY NNN RRN NNN YYN NNN NRN

BC3-BC3 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC
TSN SNS NSS SNS SSN SNS NSN ACG CCC CCA ACT GAG AGA ACT CAA GGG CAC GCC CTG
GCA CCC GCA CSN SNS NSS SNS SSN SNS NSN

adapter /5Phos/ NNN NNN NNN NNN NNN AGA TCG GAA GAG CGG TTC AGC AGG AAT GCC GAG
ACC GAT CTC GTA TGC CGT CTT CTG CTT G /3Phos/

F primer AAT GAT ACG GCG ACC ACC GAG ATC T
R primer CAA GCA GAA GAC GGC ATA CGA GAT C

Table 2 Sequencing data sets

Name BC1-BC1 BC2-BC2 BC3-BC3
Loading

concentration Reads pass filter
PEAR consensus

reads

ZL037 + + − 16 pM 60*106 15.7*106

ZL052 + + − 16 pM 215*106 21.2*106

ZL053 + + + 16 pM 224*106 19.6*106

Table 3 Scale factors

Scale factor in x Scale factor in y

ZL037 1 1
ZL052 0.5402 1.3424
ZL053 1.1481 0.7089

problem. Suppose there are k copies on a given cycle; what
is the expected distribution of copies on the next cycle? The
number of new copies is given by a binomial distribution
with parameters k and P; the distribution of total number
of copies is k + the number of new copies. Thus, for cases
of the distribution S where S(i) is a delta function (S(i)=1),
we have B(i, P) = M S(i) where B(i,P) is a binomial shifted
by i. This means that the ith column of M is B(i,P).

The calculation of the PDF after 15 cycles can be found
in exactpdf.m in the Supplementary Data.

To approximate the PDF after more than 15 cycles, we
used the exact PDF after 15 cycles as a starting point. For
position n of the PDF after j − 1 cycles, we generated a
Gaussian Gn with a mean of n (1 + Pamp) and a standard
deviation of

√
n Pamp (1 − Pamp). To generate the PDF of

copy numbers after j cycles, we calculated

p j (i ) =
∑2 j

n=1 p j−1(n) Gn(i )
∑2 j

i=1

∑2 j

n=1 p j−1(n) Gn(i )
, (1)

where i is the number of copies after and pj(i) is the probabil-
ity of having i molecules after j cycles. We then iterated this
step as required. Code for generating the approximate PDF
can be found in approxpdf.m in the Supplementary Data.

To simulate stochastic PCR, we randomly sampled 2900
times from the approximate PDF after 25 cycles to obtain
molecule numbers for 2900 input sequences after 25 cycles
of stochastic PCR. We then sampled from these molecule
numbers to simulate sequencing as above.

Position of template switched reads

We identified half of all template switched reads by com-
paring dinucleotide anchor sequences between the two bar-
codes in each barcode pair. We only considered reads where
every dinucleotide anchor was either RR or YY, and then
checked for barcodes of type 1 joined to barcodes of type
2 and vice versa. Using this method, we could identify
switches only between barcode classes (i.e. BC1-BC2 or
BC2-BC1 type chimeras) and not within them. In our es-
timate of the per molecule probability of template switch-
ing s0, we assumed that between and within class tem-
plate switches are equally distributed in the sequence profile.
We calculated Jk as the ratio of reads from detected tem-
plate switched sequences to reads from input barcode pairs
and derived the per molecule probability of between class
switching as described in the text. s0 is then simply double
that probability.

Position of single nucleotide errors

We approximated the overall rate of single nucleotide er-
rors in two ways: (1) by determining the minimum hamming
distance of each sequence in the shoulder and tail to the
plateau sequence and (2) by identifying single nucleotide er-
rors in the dinucleotide anchor sequences, where we quanti-
fied the occurrence of RY or YR anchors, that by definition
(and with the exception of rare oligonucleotide synthesis er-
rors) are not part of the input barcode pool.

As discussed in the text, we can attribute all errors in se-
quences with a read count ≥3 to polymerase errors. At reads
counts less than 3, we cannot be sure whether the observed
base pair is due to a polymerase error or just an Illumina
sequencing error. When estimating the per molecule poly-
merase error rate e from our data, we did not want to in-
clude sequencing errors into the estimate of Fk = Zk

Rk
, the

ratio of reads from erroneous sequences to reads from in-
put sequences. We therefore Poisson sampled the sequenc-
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ing data with � = 0.1, effectively removing all low read se-
quences and estimated F25 from the resulting sequence dis-
tribution. Such an approximation is valid, as read counts
from both erroneous and input sequences are equally af-
fected by sampling, so that Fk remains constant. Indeed,
our estimate of the polymerase error rate e is robust against
different values for � (data not shown). To simulate erro-
neous PCR on a background of perfect PCR, we simulated
perfect PCR, where every molecule present at a given cy-
cle is amplified, and added new sequences caused by errors
according to the experimentally derived per molecule error
rate, assuming that every new sequence introduced this way
is unique. After 25 cycles, we sampled the obtained molecule
numbers to simulate sequencing as above.

Bootstrapping the position of template switched sequences
and polymerase errors

To determine whether the distribution of template switched
sequences or polymerase errors deviates statistically signifi-
cantly from a uniform distribution we used a bootstrapping
approach. We sampled from the experimental positions of
switches or errors with replacement as many times as we
found template switches or polymerase errors in the ana-
lyzed window. We then calculated the median distance of
the drawn positions from the center of the analyzed win-
dow. Repeating this 100000 times, we build up a bootstrap-
ping distribution, and compared the experimentally ob-
served median distance of switches or errors from the center
of the analyzed window to this distribution to calculate the
reported P-values.

Simulation of PCR stochasticity and polymerase errors

We simulated stochastic PCR with polymerase errors using
essentially the same model as for simulating erroneous PCR
on the background of perfect PCR, but assigned each input
and each new sequence a final molecule count sampled from
the PDF of molecule counts after 25 − x cycles of PCR,
where x is the PCR cycle at which the sequence first arose.
We then sampled these molecule counts as above.

RESULTS

Experimental system

To study the effects of PCR on sequence representation
in Illumina libraries, we designed an experiment in which
sequencing library preparation consists of only a single
set of PCR on known, but diverse input sequences, thus
removing possibly confounding steps like DNA shearing,
reverse transcription or adaptor ligation. We synthesized
DNA oligonucleotides containing two regions of random
sequence, i.e. two barcodes, joined by a constant region.
After ligation of a 3′ adaptor that allows single molecule
counting (16–20), these barcode pairs are flanked by two
constant sequences that are required for Illumina sequenc-
ing, and which also act as PCR primer binding sites during
library preparation (Figure 1A left).

We subjected about 5000 of the ligated oligonucleotides
to 25 cycles of PCR, and sequenced the resulting library for
two independent replicates (data sets ZL037 and ZL052;

Table 2). We chose 25 PCR cycles to avoid the plateau
phase of PCR, while still ensuring sufficient PCR product
to obtain a high quality sequencing library. We selected Ac-
cuPrime Pfx as PCR enzyme for its superior accuracy, speci-
ficity and robustness to GC rich sequences (1). The rela-
tively low number of input oligonucleotides ensures a high
sequencing depth of all input sequences, such that sampling
effects during sequencing can be ignored. We expect every
input molecule to have a unique sequence, as we used very
few input molecules and the combinatorial space of all pos-
sible barcode sequences is very large (40 random barcode
nucleotides; 440 ≈ 1024 possible combinations). This implies
that every barcode pair is present at equal abundance in the
input DNA pool (i.e. single copy) and should therefore be
read out at approximately equal read counts in the sequenc-
ing results.

We plotted the experimental sequencing read counts for
every barcode pair (Figure 1A right) sorted from the most
abundant to least abundant barcode, that is by sequence
rank, where rank 1 is the most abundant sequence. For each
data set, we find that the most abundant barcode pairs are
present at similar read counts, forming a plateau in the plot.
This plateau is followed by a shoulder of barcode pairs with
intermediate abundance and a long tail of low abundance
barcode pairs.

Given an equal abundance of all sequences before ampli-
fication, we would have naively expected only a plateau. The
presence of a shoulder and tail in the experimental data sug-
gests that additional mechanisms are at play. Conceptually,
there are a variety of potential artifacts that can be intro-
duced by PCR, each of which will have a different impact
on sequence representation after amplification (Figure 1B–
F). We will address each of these mechanisms in turn.

Perfect PCR

We first considered the sequence distribution we should ex-
pect given perfect PCR amplification (Figure 1B). Perfect
PCR faithfully amplifies every molecule in the input DNA
pool, simply doubling molecules at every cycle. Relative
abundances of different sequences will thus be preserved
during amplification.

Mathematically, perfect PCR can be summarized as

n( j ) = N0 2 j , (2)

where n(j) is the number of molecules of a particular ampli-
con after j cycles, and N0 is the initial copy number of this
amplicon (all variables used can be found in Table 4).

If every amplicon is unique before amplification, then N0
= 1, and every sequence will be present at n(j) = 2j copies
after j cycles of PCR. Plotting copies against sequence rank
results in a plateau of height 2j reads. If sequencing is deep
enough to overcome Poisson sampling effects, we expect a
similar plateau when plotting read counts against sequence
rank for the Illumina sequencing results, but with a plateau
height that reflects sampling during sequencing.

The experimental data deviate substantially from this ex-
pectation. A trivial explanation for this disparity is that
some sequences were more abundant than others before
PCR. We accounted for this possibility by including vari-
etal tags (16–20) (see Materials and Methods) in our exper-
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Figure 1. Errors and biases in PCR and their theoretical impact on sequence representation. (A) Left: structure of the amplicons used in this study. Two
20nt barcodes flank a constant sequence (AttL), forming a barcode pair. They are in turn flanked by Illumina P5 and P7 sites as well as sequencing primers
(SolI and SolII). Right: sequence rank plot of experimental data set ZL037. A plateau, a broad shoulder and a long tail (partially visible) are apparent.
Schematic representation of perfect (B) and different modes of skewed forms of PCR as well as their expected impact on sequencing data. PCR bias (C)
and PCR stochasticity (D) skew the relative abundance of input sequences, but do not add any new sequences to the data set. In contrast, PCR template
switching (E) and polymerase errors (F) generate novel sequences.
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Table 4 Variables

Variable Section first used Meaning

j Perfect PCR PCR cycles
N0 Perfect PCR Initial copy number
n(j) Perfect PCR Number of molecules after j cycles
N0, x PCR bias Initial copy number of sequence x
nx(j) PCR bias Number of molecules with sequence x after j cycles
cx PCR bias PCR efficiency of sequence x
mx PCR bias Estimated PCR efficiency of sequence x
Pamp Stochastic amplification Probability of amplification per cycle
s0 Template switching Per molecule probability of switching
sj Template switching Probability of template switching on cycle j
Sj Template switching Total number of template switched on cycle j
Qm Template switching Total number of template switched molecules after m cycles
Nk Template switching Total number of molecules after k cycles
Jk Template switching Approximation of Qk

Nk
from the data

c Polymerase errors PCR efficiency
Rj Polymerase errors Number of faithfully copied molecules after j cycles
e Polymerase errors Probability of making one error per molecule per cycle
Zk Polymerase errors Total number of molecules containing a single error after k cycles
Fk Polymerase errors Fraction of all sequences containing errors

Figure 2. PCR can grossly affect sequence representation in Illumina library generation. Sequence rank plot of replicate data sets ZL037 and ZL052 before
(A) and after (B) linear scaling in x and y to compensate for different input amounts and sequencing depth. Scale factors for the x and y dimensions can
be found in Table 3.

imental design, which allow absolute quantification in high-
throughput sequencing experiments. We were therefore able
to count the number of input molecules that carry a particu-
lar sequence, and found that all sequences from the plateau
were present exactly once before PCR (compare preprocess-
ing.m in the Supplementary Data). We therefore conclude
that the naive model of perfect PCR does not describe the
experimentally observed data.

Below we consider four processes, two of which (PCR
bias and PCR stochasticity) introduce skews into the repre-
sentation of input sequences, and two (template switching
and polymerase errors) that generate new sequences during
PCR amplification. For easier comparison between the ex-
perimental data sets in all subsequent analyses, we normal-
ized the sequence rank plot in x and y to account for dif-
ferences in input molecule numbers and sequencing depth.
The scaled data sets overlap very well (Figure 2; Table 3).

PCR bias

The efficiency with which PCR amplifies a sequence may
vary from one sequence to the next, depending on factors
including sequence composition and secondary structure.

A high fraction of G or C can reduce amplification effi-
ciency (1,3,23), causing uneven amplification of different
sequences in PCR. We therefore tested the possibility that
PCR bias was responsible for underrepresented sequences
after amplification. Such a bias could contribute to the
shoulder or tail in our plots, depending on how strong it
was (Figure 1C).

In equation 2 we assumed perfect amplification on each
cycle. GC bias would manifest as a sequence-dependent am-
plification efficiency. Assuming different amplification effi-
ciencies for different sequences, we can express the expected
copy number E(nx(j)) of sequence x after j cycles of PCR as

nx( j ) = N0,x c j
x, (3)

where N0, x is the initial copy number of sequence x, 1 ≤
cx ≤ 2 is its PCR efficiency, and the number of copies nx is
large.

PCR bias, that is a PCR efficiency cx smaller than
the average efficiency of all sequences 〈cx〉, has been re-
ported in sequences with a high GC content (1). As GC
bias causes uneven amplification of different sequences, we
tested whether molecules that were underrepresented after
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amplification (i.e. the sequences in the shoulder) were rich in
GC (Figure 3A). If GC bias were causing the observed dif-
ferences in read counts, regions of high read counts should
have lower GC contents than regions of low read counts.
The experimental distribution of GC content for plateau
sequences (high read counts), shoulder sequences (interme-
diate read counts) and tail sequences (low read counts) are
overall very similar to each other (Figure 3B), suggesting
that GC bias is not the primary force shaping the sequence
rank curve. We note that the average GC content of plateau,
shoulder and tail are statistically significantly different (P-
value = 1.9 × 10−4 using 2-way-ANOVA), but that the ef-
fect size is small; plateau sequences have a mean GC content
of 0.4463, compared to a mean GC content of 0.4656 and
0.4583 for the shoulder and tail.

To investigate if even the observed small differences in
GC content can result in sequence misrepresentation, we di-
rectly measured the PCR efficiency cx as a function of GC
content in our data sets. Because each input sequence was
present as only one molecule before PCR, we could quan-
tify the relative PCR efficiencies of all sequences. Briefly, we
determined the GC content of all input sequences, i.e. of all
sequences found in the plateau, and calculated their relative
abundance. We normalized the relative abundance of each
sequence to the mean abundance of all sequences with a GC
content between 0.50 and 0.55 to obtain mx, which acts as
an estimate for PCR efficiency. Assuming a PCR efficiency
of 1.9 for sequences with a GC content between 0.50 and
0.55, we then calculated absolute PCR efficiencies to each
GC content bin using the following formula:

c25
x = mx 1.925

⇔ cx = (mx 1.925)
1
25

(4)

The random design of our barcode sequences naturally
leads to few GC rich sequences in the input DNA pool. To
improve our ability to calculate cx at high GC contents, we
prepared a third data set (ZL053), similar to our initial data
sets, but into which we spiked about 10% high GC barcode
pairs (BC3-BC3) that have an average GC content of 80%
(Table 2, Supplemental Figure S1).

Drawing on all three data sets, we find that the PCR effi-
ciency is almost constant across different GC contents (Fig-
ure 3C; linear regression resulted in slopes of 0.0009, 0.0011,
and −0.0033 for the three data sets respectively, with 95%
confidence intervals <0.008).

Using these empirically measured values for cx, we then
simulated PCR and compared the resulting trace to our ex-
perimental data sets (Figure 3D). In agreement with the pre-
vious measurements, we find that GC bias as observed in
our data set cannot explain a large amount of the skew ob-
served in the experimental data.

In conclusion, we find only weak evidence for GC bias in
our experimental results. This shows that GC bias is not an
important force in skewing sequence representation under
our experimental conditions. We note, however, that in our
experiments the maximum length of a GC biased stretch
of nucleotides is ≤20nt––the length of a barcode. Longer
GC biased regions might well introduce larger biases during

PCR. Notwithstanding this caveat, the observed shoulder
and tail in our data are unlikely to be formed by GC bias.

Stochastic amplification of low copy number amplicons

A second source of uneven amplification in PCR is stochas-
ticity. If PCR were perfect, every single molecule would be
replicated every cycle. However, PCR is imperfect, so each
molecule undergoes replication with a probability of less
than 1. For example, if Pamp = 0.9, then out of every ten
molecules amplified per cycle, PCR will fail to replicate one.
This is not particularly concerning when PCR is used on
DNA mixtures where every sequence is present in high copy
numbers. In this case, the expected 1 + 0.9*1 + 0.1*0 = 1.9
fold increase of molecule numbers of per cycle is sufficient
to describe the behavior of PCR.

However, when sequences are present at very low copy
numbers, stochastic amplification may have a significant
impact on sequence representation. Consider an example.
First, consider a lucky amplicon that undergoes replication
on the first cycle, so that on cycle 2 there are 2 copies. Fur-
ther suppose that both copies are lucky and again undergo
replication, so on cycle 3 there are 4 copies (Figure 4A, red).
Compare this to an unlucky amplicon (Figure 4A, blue),
which fails to get copied both cycles (for Pamp = 0.9, this
happens (1 − p)2 = 0.12 = 0.01 or 1% of the time). If their
luck evens out and both amplicons get amplified equally
during subsequent cycles, the lucky barcode will appear at
a copy number of about four times more than the unlucky
one. This suggests that the distribution of copy numbers
for Pamp = 0.9 will range over more than a factor of four.
Stochasticity in PCR could therefore explain the shoulder
observed in the sequencing trace (9).

We can express this consequence of PCR stochasticity us-
ing the recursive expression

n( j + 1) = n( j ) + B(n( j ), Pamp), (5)

where B(n(j), Pamp) is a binomially distributed random vari-
able with n(j) trials and Pamp is the probability of success (5).
This expression is equivalent to modeling PCR as a Galton-
Watson process, a stochastic branching process. In this for-
mulation, every node represents one copy of a certain se-
quence and can give rise to one or two new branches, cor-
responding to failure or success of amplification on a given
cycle.

Assuming this branching model and a realistic Pamp =
0.9, we generated the exact PDF of the copy number n of
a single sequence, starting with a single molecule at cycle 0.
After 15 cycles of PCR, the PDF has a clear global maxi-
mum (Figure 4B): as we would expect, most molecules are
amplified most of the time. Interestingly, two further local
maxima are discernible at copy numbers of 0.5 and 0.25
of the global maximum, corresponding to sequences that
missed out on amplification during either one or two of the
first two cycles of PCR. The relative heights of these peaks
are determined by Pamp.

During the first few cycles of PCR molecule numbers are
low, and stochasticity has a large effect. We therefore ex-
pected to find the origin of the observed local maxima in
the early cycles of PCR. After one cycle of PCR, the PDF
is trivial (Figure 4C). After two cycles, the PDF still shows
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Figure 3. GC Bias. (A) Schematic of two cycles of GC biased PCR. A sequence with balanced sequence composition (red) is readily amplified, whereas a
GC rich sequence (green) does not amplify well. (B) Cumulative distribution of GC content ± SD for 1500 sequences in plateau, shoulder and tail of the
sequence trace of ZL037 and ZL053. No striking differences can be observed. However, the mean GC contents of the three distributions are statistically
significantly different. (C) Relative PCR efficiencies as a function of GC content as measured in the plateau of all three data sets, normalized to an
efficiency of 1.9 for GC contents of 0.5 to 0.55. Linear fits are plotted as lines. PCR efficiencies are roughly constant across the observed range of GC
contents, including the high GC barcode pairs of ZL053 (green). (D) Simulation of PCR with using PCR efficiencies as derived in (C), compared to ZL037
and ZL052. The simulation fails to capture the shape of the data, confirming that GC bias is insufficient to explain the observed sequence distribution.

only one maximum corresponding to molecules amplified
in both cycles. After three cycles, the PDF shows two peaks
at n = 4 and n = 8. To reach copy number 8, the molecules
have successfully been amplified at every cycle as 23 = 8.
To reach n = 4, molecules must have failed to replicate dur-
ing one cycle. The biggest contribution to the probability
of n = 4 comes from paths where molecules missed out on
the first amplification cycle. This fact is immediately obvi-
ous when one considers all of the trees giving rise to four
branches after three cycles and keeping in mind that a fail-
ure to amplify is less likely than success. After 4 cycles, the
same structure as observed after 15 cycles becomes appar-
ent. The PDF shows a global maximum at copy number 16
and two local maxima at 0.5 (copy number 8) and 0.25 (copy
number 4) of that copy number. When we explicitly calcu-
lated the probabilities for these copy numbers, the dominat-
ing terms are sequences that failed to amplify on either the
first or first two cycles of PCR. A third local maximum is
apparent at n = 12, which is smoothed out in later cycles.

This reasoning confirms that the local maxima in the PDF
after 15 cycles correspond primarily to molecules that did
not amplify during the first or first two cycles of the PCR
reaction.

To test the hypothesis that stochasticity early in the PCR
reaction could generate the observed shoulder in the se-
quence trace, we approximated the PDF of copy numbers
after 25 cycles of PCR with a set of constant PCR efficien-
cies. We sampled from the resulting PDFs to create a profile
of read counts vs sequence rank. With a simulated PCR in-
put of 2900 different sequences, we were able to reproduce a
shoulder similar to the one observed in experimental data,
with the best fit for Pamp = 0.9 (average correlation coef-
ficient of R2 = 0.8925 to the three data sets; Figure 4D).
However, the smooth transition of shoulder to tail present
in experimental data is missing.

In conclusion, PCR stochasticity has a large impact on
sequence representation after PCR amplification and could
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Figure 4. PCR stochasticity. (A) Schematic of two cycles of stochastic PCR amplification. A lucky barcode pair (red) gets amplified at every cycle, whereas
an unlucky barcode pair (blue) fails to get amplified at all. A barcode pair with mediocre luck is depicted in purple. (B) The exact probability distribution of
sequence copy numbers after 15 cycles of PCR with Pamp = 0.9. Arrows indicate two local maxima in the PDF at roughly half and quarter of the molecule
numbers as the global maximum. (C) Probability distribution of sequence copy number after 1 to 7 cycles of PCR (blue fading through orange to red).
The birth and evolution of the two local maxima observed in (B) is visible. The probability distributions after j = 1..7 cycles were normalized to sum to 2j

to aid visualization. (D) A sample of 2900 sequences of the approximate probability distribution after 25 cycles of PCR with Pamp = 0.9 (red) correlates
closely with the 2900 most abundant sequence reads of the experimental data. Simulations for Pamp = 0.8, Pamp = 0.85, Pamp = 0.95 and Pamp = 0.99 are
plotted in dashed lines.

give rise to most of the experimentally observed shoulder
but not the tail.

Template switching

We next investigated processes producing new sequences
during library preparation. If a new species is generated dur-
ing PCR amplification, it will likely be amplified in subse-
quent PCR cycles like one of the original input sequences.
It will, however, lag behind these original sequences by at
least one cycle, and will thus be observed less frequently af-
ter amplification than most input sequences. Generation of
new sequences during PCR could therefore contribute to
the shoulder and tail of the sequence trace.

PCR template switching produces hybrid sequences of
two sequences already present in the input (10–11). DNA
polymerase can jump from one template to another in a

region of complementarity without aborting the nascent
DNA strand during PCR. This nascent strand therefore has
a new hybrid sequence, where one piece is complementary
to the old template and the other piece is complementary
to the new template. Similarly, nascent transcripts can be
aborted before completion and then might act as primers in
a subsequent cycle of PCR, again resulting in a new hybrid
species (10–11) (Figure 5A).

To gain a quantitative understanding of template switch-
ing, we formulated a mathematical model of the process on
a background of otherwise perfect PCR. This model explic-
itly deals with hybrid sequences produced by polymerase
jumping, but mathematically applies equally well to tem-
plate switching mechanisms where an aborted PCR product
serves as an alternative PCR primer. We assume a bimolec-
ular reaction, so that the probability sj of forming a new
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Figure 5. Template switching. (A) Schematic of one cycle of PCR with template switching. During amplification of the blue barcode pair, the polymerase
switches to the red barcode pair in the constant region, producing a blue-red chimera. (B) The barcode libraries contain two classes of barcode pairs (BC1-
BC1 and BC2-BC2), that are distinguishable by purine and pyrimidine anchors (top). If a BC1-BC2 or BC2-BC1 barcode pair is detected, it must have
been formed by a template switch. Such inter-class switches should make up half of all template switches. (C) Abundance of detected template switched
sequences ± SD in sequence rank space. Template switches are rare in abundant sequences, but become more frequent as copy numbers reach one. (D) A
simulation of template switching on a background of perfect PCR (red) captures little of the empirical sequence distribution. The only free parameter in
our model of template switching, the per molecule rate of template switching s0, was independently estimated from the data.

product on cycle j is governed by the rate of collisions be-
tween the two molecules. The collision rate in turn depends
on the concentration of the two species, which is propor-
tional to the number Nj of molecules at cycle j. Assuming
that the probability of template switching following a colli-
sion is s0 and s0 � 1/Nj, then the total number Sj of tem-
plate switches on cycle j is

Sj = s j Nj

= s0 N2
j .

(6)

As template switched molecules undergo amplification in
every cycle after their generation, the total number of tem-
plate switched molecules Qm after m cycles is

Qm =
m∑

j=1

Sj 2m− j

= s0 N2
0 2m

m∑

j=1

2 j

≈ s0 N2
0 22m+1.

(7)

The model predicts that the number of template switches
per cycle grows with the square of the total number of
molecules in solution Nj. As Nj increases exponentially with

j, the probability of template switching increases exponen-
tially with 2j. Accordingly, template switches will become
increasingly common in late cycles of PCR, but will not
accumulate to levels comparable to the original input se-
quences, and should be detectable mostly in the tail of the
sequence distribution.

To test this prediction experimentally, we searched for sig-
natures of template switching in the sequencing results. Our
barcode libraries contain two different classes of barcodes
(Figure 5B). Barcodes of type 1 (BC1) are different from
barcodes of type 2 (BC2) at six positions at which the se-
quence is restricted to either a purine (R=A,G) or a pyrim-
idine (Y=C,T) base. Based on these anchors, BC1 and BC2
can be reliably distinguished from each other. We started the
PCR reaction with a pool of barcode pairs that were either
BC1-BC1 pairs or BC2-BC2 pairs for data sets ZL037 and
ZL052. Note that BC3-BC3 pairs in the high GC data set
ZL053 are lacking the anchor structure present in BC1 and
BC2 and were therefore excluded for this analysis. In the
absence of template switching, we would expect to observe
only the initial barcode pair types in the sequencing data
set. However, when we detect a BC1-BC2 or BC2-BC1 pair,
this barcode pair must have arisen from a template switch
across the constant region between the two barcodes. Us-
ing this detection method, we are able to detect half of all
template switches.
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We find that template switched reads are present only at
low read counts in the tail of the experimental sequence
distribution (Figure 5C), and that their distribution signifi-
cantly departs from a uniform distribution (P-values of 0 for
all three data sets by bootstrapping). This is in agreement
with the our prediction that template switched sequences
are created late in PCR. Accordingly, template switches,
as detectable by this metric, produce many new sequences
(1234, 16190 and 48153 in ZL037, ZL052 and ZL053, re-
spectively), but make up only a small fraction of all reads
(8.1 × 10−5, 7.8 × 10−4 and 2.6 × 10−3). Note that our bar-
code design favors the the production of chimeras due to
the constant region between the two random barcodes.

We then estimated the per molecule probability of tem-
plate switching s0 from the data. We define Qk as the num-
ber of template-switched molecules after k cycles, which is
smaller than the total number Nk of molecules. Although
we cannot measure Qk or Nk directly, we can obtain an es-
timate of their ratio Jk,

Jk � Qk

Nk

= s0 N2
0 c2k+1

N0 ck
,

(8)

where c is the PCR efficiency. We can then solve for the per
molecule probability of template switching s0

s0 = Jk
1

N0 ck+1
. (9)

Assuming a PCR efficiency c = 1.9, For data sets ZL037,
ZL052 and ZL053 after removal of high GC barcodes we
obtain a per molecule probability of template switching of
s0 = 2.9 × 10−15, s0 = 1.3 × 10−15 and s0 = 3.3 × 10−15

respectively.
Based on the mean value of s0 = 2.6 × 10−15 across our

data sets, a simulation of perfect PCR with template switch-
ing cannot account for the experimentally observed shoul-
der (Figure 5D).

These results indicate that PCR template switching is a
rare event in dilute solutions, and only becomes common
late in PCR. By then, the newly generated sequences have
lost out on many amplification cycles and are present at
much lower copy numbers than original sequences. They
are therefore detected at low copy numbers in sequencing.
Template switched reads do not account for the observed
shoulder, and only a small fraction of the sequences in the
tail.

Polymerase errors

A second source of new sequences during PCR are am-
plification errors. During synthesis of a new DNA strand,
DNA polymerase makes errors including single nucleotide
substitutions and, at a lower rate, small insertions or
deletions (24). Polymerase error rates strongly depend on
experimental conditions, and estimates of error rates vary
with the method used to determine polymerase errors. Wild
type Taq polymerase is the best studied polymerase used in
PCR and is generally used as a relative standard for poly-
merase fidelity. Estimates of Taq fidelity vary, but are on the

order P(Error per nucleotide) = 10−4 (25,26). AccuPrime
Pfx polymerase, as used in our experiments, is estimated by
the manufacturer to have a fidelity 26 × higher than Taq
polymerase (http://tools.lifetechnologies.com/content/sfs/
brochures/711-021834%20AccuPrime%20Brochu.pdf). We
therefore expect AccuPrime Pfx to introduce polymerase
errors at a probability of roughly

P(Error per nucleotide) = 4 × 10−6. (10)

The probability of one or more errors in the 2x20 barcode
nucleotides is therefore

P(At least one error per barcode pair) =
1 − (

1 − 4 × 10−6)40 ≈ 1.6 × 10−4. (11)

Thus on average, out of every 6250 molecules, a new
molecule with at least one error will be produced. These
new sequences are subsequently amplified during the re-
maining cycles of PCR just like any other DNA molecule.
However, because, by definition, they lag by at least one cy-
cle of PCR, they are less abundant than original sequences.
Moreover, the probability of producing new sequences due
to polymerase errors is linearly dependent on the number
of amplified molecules, and thus increases exponentially
during PCR. Taken together, these considerations suggest
that polymerase errors are responsible for part of the shoul-
der but become increasingly more abundant with low copy
number. We therefore predict that the lower part of the
shoulder and parts of the tail are formed by polymerase er-
rors (Figure 6A).

To test this prediction experimentally, we used a Ham-
ming distance metric to identify sequences that arose from
polymerase errors. The Hamming distance between two se-
quences is defined as the number of substitutions necessary
to go from one to the other. For example, a sequence with
a single PCR error will have a Hamming distance of one
to its original parent sequence. Using this metric, we can-
not directly differentiate between polymerase errors and Il-
lumina sequencing errors. However, if a sequence appears
more than twice in our data set, it is unlikely that it arose
due to an Illumina sequencing error and therefore is either
real or result of a template switch or a polymerase error: at
a lower bound quality score of Qphred = 30, that is a base
calling error rate of 10−3 per nucleotide, the probability of
introducing the same sequencing error three times into dif-
ferent copies of the same 40nt barcode pair is 40*0.0013

= 4 × 10−8. At a coverage on the order of 104 for real
sequences––that is, reads from the plateau of the sequence
trace––this implies that the probability of introducing the
same sequencing error three times into a real barcode pair
is 4 × 10−8*104 = 4 × 10−4. With only roughly 5000 real
barcode pairs, sequencing errors in sequences present three
or more times are negligible. At fewer than three counts
per sequence, we cannot exclude the possibility that some
of the observed mismatches arise from sequencing errors,
especially in the singlet region.

To further reduce the contribution of sequencing errors
to our data set, we sequenced using paired end reads that
each span the entire length of the barcode pair, so that every
base was sequenced twice. We then determined the consen-
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Figure 6. Polymerase errors. (A) Schematic of two cycles of PCR with polymerase errors. Polymerase errors introduce mutations into an input barcode
pair (red), effectively producing novel sequences (orange, lavender, yellow). (B) Histogram of the minimum Hamming distance ± SD from sequences in
the plateau to other plateau sequences (blue) and sequences from shoulder and tail (scaled rank 2900 to 10000) to plateau sequences (green). In contrast
to plateau sequences, the majority of sequences from shoulder and tail are within a Hamming distance of one (i.e. one base change) from the parent
plateau sequences. (C) Position of errors detected using mismatches to anchor sequences in the barcodes in sequence rank space ± SD. While the plateau is
depleted of polymerase errors, shoulder and tail sequences show a large increase in error frequency. (D) A simulation of polymerase errors on a background
of perfect PCR (red) recapitulates the shoulder to tail transition of the observed sequence distribution. The polymerase error rate used for the simulation
was independently estimated from the data.

sus sequence of paired end reads using the PEAR tool (22),
analyzing only those reads for which a consensus over the
whole molecule could be found. Assuming independence
of paired end reads, this procedure eliminates the majority
of sequencing errors. Taking both read quality and paired
end matching arguments into consideration, we will assume
that errors identified by the Hamming distance metric arise
exclusively from polymerase errors if the sequences have a
copy number of more than 2.

We defined the plateau sequences from scaled rank 1 to
2900 as original parent sequences, and find that we can
account for about 84% of all other sequences by a single
nucleotide substitution in these original sequences. In con-
trast, the minimum Hamming distances between all the par-
ent sequences are significantly different from each other,
such that they could not be related to each other by poly-
merase errors (Figure 6B). Due to the length of the tail ob-
served in the data, these findings suggest that the vast ma-

jority of all unique sequences in the data sets are actually
errors, but all occur at low abundance. Indeed we find that
while most of the tail sequences are the product of errors,
only roughly 1% (1.1%, 1.6%, 1.5% for ZL037, ZL052 and
ZL053, respectively) of all reads derive from errors.

To obtain an independent estimate of the polymerase
error rate that does not depend on identifying parent se-
quences, we quantified polymerase errors by scoring devia-
tions from the expected sequence features of BC1 and BC2
sequences. Each of the defined anchors in BC1 or BC2 is a
pair of two purines or two pyrimidines. Any mixed anchor
sequence, e.g. AT or CG, therefore must be the result of a
substitution. Using these mismatches as measure of poly-
merase errors, we find that polymerase errors are depleted in
the plateau region of the experimental sequence trace (Fig-
ure 6C). The distribution of polymerase errors in this win-
dow significantly differs from a uniform distribution as as-
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sessed by bootstrapping (P-values=0 for ZL037, ZL052 and
ZL053 after removal of high GC spike-ins).

To further quantify the effects of polymerase errors, we
estimated the error rate of Accuprime Pfx using our exper-
imental data. Our estimation procedure began by assum-
ing N0 initial sequences that are amplified with PCR effi-
ciency c. After j cycles, the total number of faithfully copied
molecules Rj is

Rj = N0 c j . (12)

Now let us assume a fixed probability e of making an error
per molecule on each round. Then the expected number Ej

of new errors generated during the jth round is

Ej = e Rj−1, (13)

where we use j − 1 since the jth round was produced
from Rj − 1 molecules on the previous round. Erroneous se-
quences are amplified just like all other sequences. Thus
after k cycles, there will be ck − j copies of a erroneous se-
quence that arose on the jth cycle. Thus the total number
Zk of molecules containing a single error after k rounds of
PCR is

Zk =
k∑

j=1

ck− j E j

=
k∑

j=1

ck− j e N0 c j−1

= N0 e
c

k∑

j=1

ck

= N0 e k ck−1.

(14)

Accordingly, the fraction of all sequences containing er-
rors is

Fk = Zk

Rk

= N0 e k ck−1

N0 ck

= k e
c

(15)

After resampling our sequencing data to remove rare se-
quencing errors (see Materials and Methods), we can ap-
proximate Fk by taking the fraction of all reads in the tail
that have a Hamming distance of one to the plateau (the er-
rors) over all reads in the plateau of our data (the original
sequences). Therefore, we can solve the above equation for e
and obtain an estimate for the per molecule error rate in our
data. For the three data sets ZL037, ZL052 and ZL053 we
obtained values of 0.0008, 0.0012 and 0.0011 respectively.
These values correspond to a per nucleotide error rate of 2.0
× 10−5, 2.9 × 10−5 and 2.8 × 10−5, respectively. Note that
this experimental polymerase error rate is about six times
higher than our above estimate based on the manufacturers
information and traditional lacZ complementation assays
(25,26).

Figure 7. Polymerase errors and stochasticity appear to explain a large
fraction of observed data. PCR is simulated as a Galton Watson process
with polymerase errors added at the average experimental rate. Simulated
(red) and observed sequence profile (light and dark blue) match closely.

Based on the relatively steady rate of polymerase errors
outside the plateau, we hypothesized that most sequences
found at the bottom of the plateau and in the tail of the se-
quence trace arose from polymerase errors. To test this hy-
pothesis, we simulated erroneous PCR with an overall am-
plification efficiency of c = 1.9 in a deterministic model. As-
suming that every individual error is rare, we simulated 25
cycles of PCR on an input of 2900 sequences using the aver-
age measured error rate of P(Error per nucleotide) = 2.7 ×
10−5. The resulting sequence rank plot shows a plateau fol-
lowed by a steep drop off which then softens into a long tail
(Figure 6D). This simulation does not account for the ex-
perimentally observed smooth top of the shoulder, but does
agree closely with the experimentally observed trace at the
bottom of the shoulder.

Taken together, these data confirm our theoretical pre-
dictions. Polymerase errors are relatively common, but in
absolute numbers happen predominantly late in PCR, and
thus are confined to the tail of the sequence distribution,
where they make up a large fraction of sequences.

Stochasticity and polymerase errors explain much of the ob-
served PCR errors

From the above analyses, we expected stochasticity of am-
plification and polymerase errors to explain most of the ob-
served sequence distribution. To test this hypothesis we sim-
ulated PCR by a Galton Watson process, and added poly-
merase errors at the experimentally observed rate of P(Error
per nucleotide) = 2.7 × 10−5 (Figure 7). Again we assumed
that each individual error is rare. Simulation and experi-
mental data show a very good fit, confirming that the ob-
served distribution can be explained by PCR stochasticity
and polymerase errors alone.

DISCUSSION

We set out to systematically investigate potential sources of
sequence misrepresentation in next-generation sequencing
libraries, focusing on bias, stochasticity, template switching
and errors introduced by PCR. Studying four processes in
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the same system allowed us to compare their relative im-
portance directly. Using a carefully designed set of ampli-
cons and mathematical models, we find that PCR stochas-
ticity in the first two or three cycles of PCR greatly affects
sequence representation of low copy number sequences af-
ter amplification. Polymerase errors, and to a lesser extent
template switches, generate new sequences which occur pre-
dominantly at low read counts, producing the observed tail
in the read distribution. GC bias makes only a minor con-
tribution to the observed sequence misrepresentation in the
data.

Our findings provide a framework for understanding
PCR-induced misrepresentations in sequencing data. Our
results on PCR stochasticity have direct relevance for any
high-throughput sequencing assay with limited starting ma-
terial, and are of particular relevance to the single cell se-
quencing community, where the copy number of target se-
quences is often equal to one. Our findings emphasize the
limits imposed by counting statistics in the low input limit
on the quantification of RNA or DNA sequences through
sequencing. Stochastic amplification in the first rounds in
PCR amplification may contribute to the uneven coverage
observed in copy number analyses of single cells (27) or vari-
ation of transcript abundance in single cell RNAseq (28,29).
Indeed, variation of transcript abundance increases with de-
creasing copy number (28).

To overcome the limits imposed by stochasticity, a num-
ber of quantitative tools have been developed to assess and
even deconvolve technical and biological noise in single
cell RNAseq studies (29,30). In parallel to these computa-
tional efforts, experimental techniques have been developed
to minimize PCR induced distortions in low input sequenc-
ing experiments. Techniques like multiple displacement am-
plification (31), antisense RNA amplification (32) or multi-
ple annealing and looping-based amplification cycles (33)
aim to minimize the use of PCR. These approaches exploit
linear or quasilinear amplification to minimize the rapid ac-
cumulation of errors and biases that arise during exponen-
tial PCR amplification and therefore allow for better post-
amplification quantification of nucleic acids. In contrast,
single molecule barcoding techniques (16–20) still rely on
PCR, but compensate for misrepresentations after sequenc-
ing. Individual molecules are uniquely labeled before am-
plification, so that the number of input molecules can be
precisely quantified. Our results underscore the importance
of such strategies in cases where copy numbers <8 must be
quantitatively resolved.

The introduction of new sequences, through polymerase
errors or template switches, are of particular interest in envi-
ronmental genomic applications where the 16S rRNA gene
from a diverse pool of microbes is sequenced to determine
the composition of the population. These studies aim to
to determine the true number of different 16S rRNA se-
quences in the data set, which act as a measure of the num-
ber of distinct microbial species in the pool. Algorithms
have been developed to remove single nucleotide poly-
merase and sequencing errors (13,14), as well as chimeric
sequences (12), from high-throughput data. However, be-
cause the goal of these algorithms is to identify and remove
errant sequences, they do not quantitatively address the dis-
tortions in the representation of single molecules that arise

from high-throughput sequencing. Our work aims to close
this gap, and to provide a quantitative and mechanistic ba-
sis for updated experimental designs and analyses. Our data
suggest that polymerase errors have a clear signature and,
given sufficient sequencing depth, are easily distinguished
even from rare input sequences by abundance after amplifi-
cation. We were further able to measure the critical param-
eter for a model of template switching, so that we can pre-
dict how much we have to dilute our input samples to limit
chimeric sequences to an acceptable level. We note, that sin-
gle molecule barcoding strategies should help to experimen-
tally mitigate the problems caused by erroneous sequences
introduced during PCR (18).

Although GC bias has previously been reported to intro-
duce misrepresentations into sequencing data (1), we find
that it explains little of the observed sequence misrepresen-
tation under our conditions. One reason for this discrep-
ancy may be that effects of GC bias are minimized in our ex-
perimental system by the short length of our barcodes. Ad-
ditionally, we expect that the use of Accuprime polymerase,
and of a thermocycler with relatively slow ramp rates (2.5
deg/s), further diminishes the detrimental effects of GC bias
(1).

We designed the experimental system used in this study to
disentangle different sources of PCR induced misrepresen-
tation in sequencing data sets. The artificial design of our
PCR amplicons allowed us to carefully measure the mag-
nitude of different distorting effects in PCR in a well con-
trolled setting. At the same time, however, this design means
that our system differs from many real world applications of
high throughput sequencing, so further work will be needed
to assess how our findings generalize.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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10. Pääbo,S., Irwin,D. and Wilson,A. (1990) DNA damage promotes
jumping between templates during enzymatic amplification. J. Biol.
Chem., 265, 4718–4721.

11. Odelberg,S., Weiss,R., Hata,A. and White,R. (1995)
Template-switching during DNA synthesis by thermus aquaticus
DNA polymerase i. Nucleic Acids Res., 23, 2049–2057.

12. Haas,B.J., Gevers,D., Earl,A.M., Feldgarden,M., Ward,D.V.,
Giannoukos,G., Ciulla,D., Tabbaa,D., Highlander,S.K., Sodergren,E.
et al. (2011) Chimeric 16S rRNA sequence formation and detection in
sanger and 454-pyrosequenced PCR amplicons. Genome Res., 21,
494–504.

13. Reeder,J. and Knight,R. (2010) Rapidly denoising pyrosequencing
amplicon reads by exploiting rank-abundance distributions. Nat.
Methods, 7, 668–669.

14. Quince,C., Lanzen,A., Davenport,R.J. and Turnbaugh,P.J. (2011)
Removing noise from pyrosequenced amplicons. BMC
Bioinformatics, 12, 38.

15. Quince,C., Lanzn,A., Curtis,T.P., Davenport,R.J., Hall,N.,
Head,I.M., Read,L.F. and Sloan,W.T. (2009) Accurate determination
of microbial diversity from 454 pyrosequencing data. Nat. Methods,
6, 639–641.

16. Kinde,I., Wu,J., Papadopoulos,N., Kinzler,K.W. and Vogelstein,B.
(2011) Detection and quantification of rare mutations with massively
parallel sequencing. Proc. Natl. Acad. Sci. U.S.A., 108, 9530–9535.

17. Fu,G.K., Hu,J., Wang,P. and Fodor,S.P.A. (2011) Counting
individual DNA molecules by the stochastic attachment of diverse
labels. Proc. Natl. Acad. Sci. U.S.A., 108, 9026–9031.

18. Casbon,J.A., Osborne,R.J., Brenner,S. and Lichtenstein,C.P. (2011) A
method for counting PCR template molecules with application to
next-generation sequencing. Nucleic Acids Res., 39, e81.
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