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A cell’s ability to regulate gene transcription depends in large part
on the energy with which transcription factors (TFs) bind their DNA
regulatory sites. Obtaining accurate models of this binding energy
is therefore an important goal for quantitative biology. In this
article, we present a principled likelihood-based approach for
inferring physical models of TF–DNA binding energy from the data
produced by modern high-throughput binding assays. Central to
our analysis is the ability to assess the relative likelihood of
different model parameters given experimental observations. We
take a unique approach to this problem and show how to compute
likelihood without any explicit assumptions about the noise that
inevitably corrupts such measurements. Sampling possible choices
for model parameters according to this likelihood function, we can
then make probabilistic predictions for the identities of binding
sites and their physical binding energies. Applying this procedure
to previously published data on the Saccharomyces cerevisiae TF
Abf1p, we find models of TF binding whose parameters are
determined with remarkable precision. Evidence for the accuracy
of these models is provided by an astonishing level of phylogenetic
conservation in the predicted energies of putative binding sites.
Results from in vivo and in vitro experiments also provide highly
consistent characterizations of Abf1p, a result that contrasts with
a previous analysis of the same data.

binding energy � likelihood � transcription factor � mutual information

Transcription factors (TFs) are central to the cell’s ability to
regulate gene expression (1). Any quantitative understanding of

gene regulation will therefore require an accurate characterization
of the specificity with which these proteins recognize their DNA
target sites. This problem is usually phrased in one of two ways: can
we find a statistical pattern (or ‘‘motif’’) that distinguishes TF
binding sites from the genomic background or, alternatively, can we
find a faithful representation of the TF’s sequence-dependent
binding energy (SDBE) to DNA? For a variety of reasons, the
development of motif-finding algorithms addressing the statistical
question has received much more attention than attempts to directly
model TF binding energy. Although the statistical and the energetic
pictures are related, they are not equivalent. Indeed, knowledge of
binding energy is essential for an understanding of gene regulatory
dynamics: a TF binds, not in response to a statistical P value, but to
the physical affinity of a site. In this article we describe a method
for inferring physical models of binding energy from genome-scale
TF binding assays, such as ChIP–chip (2, 3) or protein binding
microarrays (PBMs) (4). Instead of seeking a ‘‘best’’ model, our
method finds ensembles of models with a high likelihood of being
responsible for the data. This probabilistic approach allows direct
comparison of results from different experiments and provides
additional ways of making biologically relevant predictions.

To set a context for our proposal, we briefly compare and
contrast the statistical and energetic approaches to TF specific-
ity. Because high-throughput binding assays generally localize
TFs to within only �500 bp, one often faces the problem of
predicting where, precisely, a TF binds within experimentally
bound regions of DNA. The statistics-based algorithms that have
been proposed to do this locate binding sites (see ref. 5 for a
concise summary) typically proceed by positing a model for

‘‘background’’ DNA and then searching for statistical motifs
describing short DNA sequences that appear more often in
TF-bound regions than otherwise expected.

In a seminal work, Berg and von Hippel (6) [see also the work
of Stormo (7) and Stormo and Fields (8)] proposed a method for
estimating the SDBE of a TF from the sequence statistics of
known binding sites, and this method is often used to estimate
TF–DNA binding energies from the output of motif-finding
programs. However, Berg and von Hippel’s derivation assumes
(i) that all of the binding sites of a given TF experience the same
selection pressure on their energy and (ii) that such sites evolve
out of random background DNA (see refs. 9 and 10 for a more
general discussion of how binding site sequence, energy, and
fitness relate to one another). In reality, different sites may need
to have different binding energies for functional reasons, and the
noncoding DNA of many organisms is clearly not random
[Plasmodium falciparum is an instructive example: see support-
ing information (SI) Table 1]. Although the Berg–von Hippel
formula provides a plausible connection between a TF’s SDBE
and the sequences of its target sites, it is unlikely to be exact or
universally valid.

In fact, it should not be necessary to invoke such a connection
at all in analyzing PBM and ChIP–chip data, because both assays
probe the SDBE of the TF rather directly. This is clear for PBM
experiments, where the TF is directly bound in vitro to dsDNA-
spotted microarrays. Things are more subtle in ChIP–chip
experiments where in vivo effects can modify TF binding (1): in
yeast, chromatin can obscure binding sites and other transfactors
can alter TF–DNA binding energy. Although such effects are
biologically important, they generally vary from site to site,
whereas the SDBE of the TF acts in the same way throughout the
genome. Thus, for some purposes, it is possible to regard these
in vivo effects as a type of ‘‘noise’’ that obscures, but does not
negate, the influence of the TF’s SDBE.

One should therefore be able to model this energy directly
from ChIP–chip and PBM data without calling on any assump-
tions about binding site evolution or the statistics of background
DNA. Foat et al. (11) have recently developed such an approach:
they postulate a simple parametrized model of the TF’s SDBE
and then find the parameters that best fit experimental data.
Although it is a big step in the right direction, the Foat et al.
analysis leaves some things to be desired: it makes the implicit
assumption that measurement noise is Gaussian, an assumption
that is not always supported by the data (see SI Fig. 5); more
importantly, it returns only the best set of parameters, rather
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than giving the full range of parameters consistent with given
observations. In this article, we address these problems and in
the process develop a simple but general method for analyzing
TF–DNA binding data.

Our basic method is to use experimental data to specify a
probability distribution on the parameters of a model of the TF’s
SDBE. By model we mean a function, involving parameters
denoted collectively by �, that takes a potential binding site
sequence as input and gives an energy as output. The distribution
on models is then used to make predictions (e.g., for binding site
energies) that have mean values and variances. We think of the
data as a set of values {zi}i�1

N (such as observed fluorescence
intensities) obtained for the N regions of DNA probed by the
experiment. Because of experimental noise, particular model
parameters � will produce the observed data with a probability
p({zi}��) (also referred to as the ‘‘likelihood’’), which can be
computed if the statistics of the noise are known. Given a prior
distribution p(�) on allowable model parameters, we can use
Bayes’ theorem to turn this into a posterior distribution on model
parameters, given the observed data:

p����zi�� � p��zi����p���. [1]

Unfortunately, traditional methods of computing p({zi}��) re-
quire a quantitative model of the experimental noise (or ‘‘error
model’’), something that is not usually available; moreover, using
the wrong error model will generally lead to incorrect inferences.
To deal with this problem, we take the further Bayesian step of
averaging p({zi}��) over the space of all possible error models to
obtain an ‘‘error-model-averaged’’ (EMA) likelihood that can be
explicitly evaluated and used in Eq. 1. Our major result is that
this relaxed version of likelihood still allows real data to con-
strain energy models: in effect the data are used to determine
both the energy model and the error model.

To make predictions by using p(��{zi}) we use a Markov chain
Monte Carlo (MCMC) algorithm to generate a large ensemble
of models � � {�1, �2, . . . ,�T}, sampled according to this
distribution. � is then used to give concrete probabilistic answers
to questions about TF binding behavior conditioned on the
experimental data. We demonstrate this approach on ChIP–chip
(3) and PBM (4) studies of the yeast TF Abf1p and find that the
data determine the parameters of simple binding models with
remarkably low statistical uncertainty. This finding contrasts
with the commonly held view that high-throughput experiments
can give only rough characterizations of TF specificity. Although
the microarray data are noisy, the sheer number of regions
probed, along with the large amount of DNA sequence in each
region, allows for a precise characterization of SDBE. We have
found the same to be true for some other broad-acting yeast TFs
(data not shown).

Results
We first present the results of a likelihood analysis of the PBM
data of Mukherjee et al. (4) for the yeast TF Abf1p. In this assay,
epitope-tagged TFs were bound directly to dsDNA spotted on a
glass microarray and then visualized with fluorescent antibodies.
The fluorescent intensity observed for each of the �6,000
microarray spots (representing virtually all of the intergenic
regions of Saccharomyces cerevisiae) was then normalized by the
amount of DNA in each spot. After averaging the data over
replicates and further processing, Mukherjee et al. reported
log intensity ratios (LIRs) for N � 5,812 of these intergenic
sequences.

Our goal was to find models of Abf1p–DNA binding that were
likely to have produced these LIRs. In Methods, we derive an
expression (Eq. 3) for the EMA likelihood of different energy
models for a given set of binding assay data. Because this
equation applies to discretized data, we began our analysis by

binning the N intergenic sequences {si}i�1
N according to their

LIRs into ‘‘z-bins.’’ We chose 20 sequences per bin, for a total
of m � 292 bins. The bin size is, of course, arbitrary, but the
results of our analysis were found to depend only weakly on this
choice (see SI Text and SI Fig. 6). Each sequence si was thus
assigned an integer zi identifying the bin into which it was placed.
This set of intergenic sequences {si} and their corresponding bin
numbers {zi} constituted the sole input to the rest of our analysis.

The parametrized energy model we chose for Abf1p was a 4 	
20 ‘‘energy matrix’’ where each base in a site of length 20
contributes additively to the overall binding energy. We use this
energy matrix to classify sites as ‘‘bound’’ (having a substantial
TF occupancy in the experiment) if their energies lie below some
threshold �; otherwise they are classified as ‘‘unbound.’’ The
energy baseline was fixed by setting the lowest element in each
column to zero, and the overall scale was fixed by setting � � 1.
The elements of this matrix are the model parameters �. See SI
Text for more details.

A specific energy matrix classifies each region as bound if it
contains at least one bound site, and otherwise classifies it as
unbound. The numbers of bound and unbound regions in each
z-bin suffice to calculate the posterior probability of the matrix
p(��{zi}) using Eq. 3 of Methods. We performed multiple MCMC
runs on the Abf1p data of Mukherjee et al. (4) to obtain an
ensemble of 4 	 104 matrices (which we denote by �PBM)
sampled according to this distribution. Appropriate tests were
used to verify MCMC convergence (see SI Text and Fig. 7).

Fig. 1. PBM data determines Abf1p energy model parameters with surpris-
ing precision. (a and b) Mean and rmsd of energy matrix elements over the
�PBM ensemble of Abf1p models. All-blue columns contribute little to TF
binding specificity. Overall, these matrices match the known Abf1p motif
RTCRYNNNNNACG well. (c) Scatter plot of matrix element means versus rmsds:
all rmsds are small compared with the binding cutoff of 1. (Insets) Marginal
distributions of two representative matrix elements, circled in corresponding
color in a and b.
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Our results are generally in line with the qualitative motif
RTCRYNNNNNACG known for Abf1p (12). However, inspection
of �PBM shows that the parameters of the Abf1p energy matrix are
determined with remarkable precision. The mean and rmsd of each
matrix element across all models in �PBM are shown in Fig. 1 a and
b. A scatter plot of the same data is given in Fig. 1c along with the
marginal �PBM distribution for two representative matrix elements.
Matrix elements that differ significantly from zero generally have
uncertainties much smaller than their means, and their distributions
have a roughly Gaussian shape (Fig. 1c Upper Inset). Other elements
are consistently assigned the lowest energy in their respective
columns and are thus set by our normalization to be precisely zero
in much of the ensemble (e.g. Fig. 1c Lower Inset). The matrix
elements are determined with a degree of precision that makes it
possible to see meaningful structure even in the center of the
binding site, in positions that contribute little to overall TF speci-
ficity. That this precision is not an artifact of overfitting was verified
by showing that parameter distributions derived from disjoint
halves of the data provide consistent predictions for the energy
matrix. We also verified that different choices for the matrix width

led to consistent parameter distributions (see SI Text and SI Figs.
8 and 9).

The model ensemble �PBM provides a direct way of predicting
putative binding sites. For any 20-bp sequence of DNA, we can
determine the fraction of models � in �PBM that ‘‘hit’’ that site
(i.e., assign it an energy 
 1). Fig. 2a histograms this ‘‘hit
fraction’’ (HF) for every possible 20-bp site in the intergenic
DNA of S. cerevisiae [as defined in Kellis et al. (12)]. The plot
shows that the distribution of HFs is strongly bimodal (1,469 sites
have HF � 50%, whereas 1,182 of these also have HF � 90%).
We adopt HF � 50% as a plausible criterion for predicting a site
to be bound.

Fig. 2b plots the mean fraction of sequences in each z-bin
declared to be bound by models in �PBM against the mean LIR
of those sequences. Error bars show the variation in these
predictions across different models in �PBM. A histogram of the
actual measured LIRs is shown in the background. The most
striking feature of this plot is the sigmoidal relationship between
model predictions and measured LIRs, showing a rapid transi-
tion from mostly not bound to mostly bound sequences at the
beginning of the heavy tail of the LIR distribution. Whereas its
general shape is exactly as expected, this outcome is in no way
predetermined: Eq. 3 places no a priori weight on models that
make similar predictions for sequences in neighboring z-bins or
that declare sequences with large LIR to be bound. The con-
sistency between the shape of this scatter plot and our physical
expectation is an independent confirmation of the validity of
EMA likelihood.

The Abf1p models in �PBM appear to account for the data to
within Mukherjee et al.’s (4) estimate of the experimental error.
The green line in Fig. 2b indicates the LIR cut used by Mukherjee
et al. to define bound regions. Of the 186 regions passing this cut,
the experimenters estimated that 7–9% were false positives. We
find that 167 (89.8%) of these regions have HF � 90%, 18 (9.7%)
have HF 
 10%, and only 1 region has an intermediate HF. So,
although energy matrix models are simplistic, they appear to
account for this Abf1p PBM data about as well as one could hope
for any model, regardless of sophistication.

Mukherjee et al. (4) were obliged to adopt a stringent thresh-
old to minimize false positives, in the process rejecting an
unknown number of bound sequences. Our model-based ap-
proach, by contrast, can tease out regions that are likely to be
bound, regardless of where they lie in the raw data distribution.
In this case, we find 840 regions with HF � 50% (and therefore
bound by our criterion) and with LIR below the cut chosen by
Mukherjee et al. (4). In short, we find many more bound regions
lying below the experimenters’ threshold than lying above it.

This is a strong statement and one for which one would like
independent confirmation. The best evidence would come from the
direct in vitro measurement of large numbers of putative site
binding energies. Energy measurements for Abf1p have been
carried out for a small number of sites (13), but the results agree
neither with our predictions nor with the analysis of Mukherjee et
al. (4) or Lee et al. (3). It is possible that these measurements are
in error, and we believe further in vitro studies are necessary to
resolve this issue. Recently developed high-throughput techniques
for direct measurement of binding affinities give promise of pro-
viding data of the quality and scope needed to test these models in
quantitative detail (S. Quake, personal communication).

Although direct energy data are lacking, phylogenetic analysis
provides alternative evidence in support of our binding energy
predictions. Using the intergenic alignments of Kellis et al. (12),
we identified all pairs of ungapped orthologous intergenic 20-bp
sequences in S. cerevisiae and Saccharomyces bayanus. We then
computed the mean predicted binding energy (using �PBM) of
each site in S. cerevisiae, as well as that of its ortholog. A scatter
plot of the resulting energies (Fig. 2c) reveals a large and well
separated population of sites whose putative energies lie below

Fig. 2. Predictions derived from the ensemble of Abf1p energy models. (a)
Histogram showing the �PBM HF of all 20-bp sites in the intergenic DNA of S.
cerevisiae. The distribution is strongly bimodal, efficiently separating bound
sites (HF near 1) from unbound sites (HF near 0). The left-most bin contains the
vast majority of sites and has been truncated for readability. (b) Mean fraction
of regions in each z-bin declared bound by models in �PBM, plotted against the
mean LIR of those regions. Error bars show the rmsd variation in this fraction
from model to model. The distribution of experimentally determined LIRs is
shown in the background for reference. The green line is the threshold used
by Mukherjee et al. (4) to identify bound regions. (c) 2D histogram of mean
energies assigned by �PBM to ungapped orthologous intergenic site pairs in S.
cerevisiae and S. bayanus. Sites lying below the E � 1 binding cutoff (dashed
lines) in one species are highly likely to fall below this cutoff in the other
species.
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1 (i.e., are predicted to be bound) in both genomes: of the 676
S. cerevisiae sites with energy 
 1, a total of 501 (74%) have an
S. bayanus ortholog whose energy also lies 
 1. By contrast, sites
with energy � 1 in either genome tend to have orthologs with
highly randomized energy. In short, the large majority of align-
able sites predicted to be bound by our models have strongly
conserved putative energies. The fact that our models are found
directly from in vitro binding data provides a compelling case that
they also describe the free energy of Abf1p–DNA binding in vivo,
and that this binding energy plays a major role in determining
which sites have biological function.

Next, we performed a similar analysis of Lee et al.’s ChIP–chip
data (3) to determine whether it gives a description of Abf1p
consistent with that obtained from the PBM data. In these
ChIP–chip experiments, TFs were cross-linked in vivo to their
binding sites, after which TF-bound fragments of DNA were
isolated, amplified, labeled, and hybridized in competition with
reference DNA to a ssDNA microarray of yeast intergenic
regions. The enrichment observed in each microarray spot was
characterized by an ‘‘X-statistic’’ based on the single array error
model of Hughes et al. (14). Assuming a Gaussian distribution
for these X-statistics in the absence of TF binding, Lee et al.
reported an enrichment P value for each region.

We assigned these probed sequences to z-bins according to
their P values (equivalently, according to their X-statistics).
MCMC analysis then gave an ensemble �ChIP of 4 	 104 matrix

models. Results of a single-ensemble analysis of �ChIP were
similar to those of �PBM (see SI Text and SI Figs. 10–14). Note
that, by integrating over all possible error models, we avoided
having to model the noise contributions from each individual
step in the ChIP–chip protocol. We also avoided having to
estimate in vivo contributions to the experimental noise, such as
the fraction of valid binding sites likely to be obscured by
chromatin.

Although the ChIP–chip and PBM results are quite similar,
the energy matrix elements derived from �ChIP are systematically
larger than those of �PBM. Our procedure, though, produces
energy matrices artificially scaled so that the energy cutoff is
equal to 1. Thus, when comparing ensembles, we are free to
rescale the matrices in one ensemble so as to bring them into
accord with those of the other. The resulting difference between
the rescaled cutoffs has a natural interpretation: binding site
occupancy, which we approximate by a step function at the
energy cutoff, should vary with TF concentration and may well
differ between experiments; the energy matrix itself, on the other
hand, reflects an intrinsic property of the TF molecule that
should, in principle, not vary between experiments (if other
factors, such as ion concentration and pH, are kept at similar
levels). In the case at hand, we found that rescaling the �ChIP
energy cutoff to 0.75, while keeping the �PBM cutoff at 1, brought
the �ChIP energy matrix elements into close agreement with
those of �PBM. Fig. 3 a and b illustrates this close agreement
between the mean matrix elements in the two ensembles. Fig. 3d
provides a direct comparison of the �ChIP and �PBM distributions
for each matrix element. In most cases, values that could
plausibly have been drawn from either the �ChIP or �PBM
distribution can be identified (illustrated in Fig. 3d Upper Inset,
which shows the raw �ChIP and �PBM histograms for the orange-
circled matrix element in Fig. 3 a and b). Although the two
histograms are not identical, they overlap enough that a matrix
element value consistent with both distributions can be found.

In SI Text we argue that a simple �2 test provides a valid way
of quantifying such consistency. The resulting �2 P values for
each matrix element are shown in Fig. 3c, with lower P values
corresponding to poorer consistency between ensemble distri-
butions. There are a few matrix elements for which �ChIP and
�PBM give inconsistent distributions by this test (the red and

Fig. 3. Comparison of �PBM and �ChIP parameter distributions. (a) Mean
values of rescaled matrix elements in �ChIP. (b) Mean matrix elements in �PBM

(same as Fig. 1a). (c) �2 P values quantifying the element-by-element consis-
tency of the �ChIP and �PBM distributions. (d) Mean and rmsd uncertainty of
each matrix element according to the �PBM (blue) and rescaled �ChIP (red)
distributions. Elements are arranged from left to right in order of increasing
mean. (Insets) Raw MCMC histograms show the values obtained for the matrix
elements circled in a–c and highlighted below each Inset in d. The �ChIP matrix
element distribution (Lower Inset) has most of its weight at precisely 0; the
corresponding histogram has been truncated at this bin.

Fig. 4. EMA likelihood analysis leads to compatible binding site predictions
from different experimental data sets, whereas the more standard method of
thresholding the experimental signal leads to substantial disagreement. (a)
The 20-bp intergenic sites in S. cerevisiae having �ChIP HF � 50% (red) are a
nearly perfect subset of those with �PBM HF � 50% (blue). (b) In contrast, the
intergenic regions selected by Mukherjee et al.’s (4) LIR threshold on PBM data
(blue) overlap poorly with those selected by Lee et al.’s (3) (P value threshold
on ChIP–chip data (red). (c and d) The thresholds chosen by the experimenters
are indicated by the green lines on the experimental LIR histogram of PBM
data in c and on the X-statistic histogram of ChIP–chip data in d.
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yellow squares in Fig. 3c). The raw histograms for the most
inconsistent matrix element (the red square in Fig. 3c), plotted
in Fig. 3d Lower Inset, display the poor overlap between the two
distributions. Although the inconsistency is significant (even
accounting for multiple hypotheses), it occurs outside of the
binding site proper and may not have much practical impact. One
way to assess the impact of such discrepancies is to compare the
binding site predictions of �ChIP and �PBM. If the matrices in
both ensembles were identical, the sites selected by the smaller
(ChIP–chip) cutoff would be a subset of the sites selected by the
larger (PBM) cutoff. Fig. 4a shows that this is in fact nearly the
case: of the 823 �ChIP-predicted sites, all but 7 are predicted by
�PBM. We stress that these two sets of predictions were made by
using data from different experimental platforms and perform-
ing separate analyses involving no free parameters.

Our consistency analysis contrasts with that of Mukherjee et
al. (4), who compared their putatively bound regions (identified
by a stringent LIR threshold; see Fig. 4c) with those of Lee et al.
(3) (identified by a stringent P value threshold; see Fig. 4d) and
obtained the Venn diagram reproduced in Fig. 4b. Although the
overlap between the two sets of regions is certainly significant,
neither is even approximately a subset of the other. This problem
cannot be avoided by choosing lower thresholds, as that would
result in more false-positive predictions. Even though both data
sets are of high quality, this discrepancy is an inevitable result of
experimental noise, in vivo effects on binding, etc. However, by
‘‘bottlenecking’’ PBM and ChIP–chip data through a simple
parametric model, one obtains almost entirely consistent pic-
tures of Abf1p specificity.

Discussion
A quantitative understanding of biological systems will require
the ability to deduce quantitative models from data in a trans-
parent and principled way. Not only must optimal model pa-
rameters be found, but the confidence one has in the values of
these parameters must be characterized and parameters deter-
mined from different data sets must be compared for consis-
tency. For these and other reasons, we believe likelihood infer-
ence using MCMC, an approach that has had enormous success
in physics, should become an important tool in 21st-century
biology.

Modern biology, however, faces challenges very different from
those of physics. Although physicists often take great care to
understand and minimize experimental noise, high-throughput
assays have sources of noise that may vary from system to system
or even from laboratory to laboratory and may be impractical to
characterize quantitatively. The central point of this article is
that, given enough data, one can precisely characterize interest-
ing biological phenomena without having to model uninteresting
effects, such as the experimental errors. We believe this is of
particular importance for the study of TFs, although it may find
application in other areas of quantitative biology as well.

Furthermore, the high-throughput platforms currently avail-
able for probing TF binding appear, at least for broad-acting TFs,
to provide sufficient data for such analyses. In our study of
Mukherjee et al.’s (4) PBM data for Abf1p, we were essentially
able to infer the values of 352 independent parameters describing
both the TF and the experimental error model (although the
error model parameters were integrated out analytically). None-
theless, most of the 80 energy matrix elements describing the TF
were determined to a precision of �5% of the functional range.
This precision is not caused by overfitting; it simply reflects the
large amount of information contained in the data.

Our analysis is meant only as a proof-of-principle demonstra-
tion and could be extended in many ways. Perhaps our most
unrealistic assumption is that TF binding sites are either bound
or not bound. This was done primarily to keep the analysis simple
and speed up the MCMC algorithm, but a more physically

realistic computation of region occupancy, such as that used by
the program GOMER (15), could be used instead. The assump-
tion that each nucleotide contributes independently to the TF’s
SDBE (see ref. 16 for a critique) could also be relaxed by
allowing couplings between positions. Indeed, a great advantage
of likelihood inference is the way it accommodates such refine-
ments without changing the conceptual basis of the analysis. The
only obstacle one faces when implementing such changes is the
need for computational power.

Another important aspect of likelihood inference is the pos-
sibility of refining quantitative models by using data from
multiple experiments. For example, if two data sets {zi} and {z�j}
are available for some TF, one can perform a likelihood analysis
by using the product of each data set’s likelihood as the
combined likelihood of both data sets, i.e., p({zi},{z�j}��) �
p({zi}��)p({z�j}��). Extending this to more than two data sets is
straightforward, and data from different experimental platforms
may be combined in this way. For example, ChIP–chip data
might be combined with low-throughput EMSA measurements
and high-throughput in vitro data by using synthetic DNA probes
(17–19). Also, any knowledge one has about the experimental
errors in any of these experiments may be used, either by
assuming an explicit error model or biasing the error model prior
(see SI Text). The combination of data from different experi-
ments is a powerful analysis technique, and our method should
help facilitate its application to high-throughput biological data.

Methods
Software and Results. The �PBM and �ChIP matrix ensembles are
available on request. The software used in this analysis, including
our MCMC algorithm, was written in Matlab and C and is
available on request.

Likelihood With Unknown Error Models. Suppose an experiment
assigns a value zi to each DNA region si (i � 1, . . . , N) and let
xi � �(si) be the corresponding prediction made by the TF
binding model for a particular choice of parameters �. The zi and
xi can be quite different quantities: a model might predict
whether or not a TF is likely to be bound to a particular DNA
sequence in thermal equilibrium, while an experiment might
observe the fluorescence intensity of the corresponding spot on
a microarray. Because of experimental noise, the two quantities
are related by an error model E(z�x), giving the probability of
observing z when the state predicted by the model is really x. We
make the simplifying assumption that the error model is the same
for all regions probed in any given experiment, although differ-
ent experiments may be subject to different error models.

We want to find specific parameters � such that the N model
predictions {xi}i�1

N account well for the measurements {zi}, i.e.,
give a large value to the likelihood p({zi}��). Our analysis relies
on three further assumptions: (i) There is a ‘‘correct’’ set of
parameters � that accurately describes the TF’s behavior in the
experiment. (ii) The likelihood of the data {zi} depends on the
model parameters � only through the model predictions {xi}.
Thus, p({zi}��) � p({zi}�{xi}). (iii) The experimental results for
each sequence are independent, so that p({zi}�{xi}) � �i p(zi�xi).

Our method is most simply implemented if both the obser-
vations and the predictions are discrete. Accordingly, we group
the N � 6,000 DNA sequences in a binding assay into �100–300
equipopulated z-bins on the basis of observed fluorescences; at
the same time the model predictions assign each sequence to an
x-bin (bound or not bound). If we know the error model, we can
then write an explicit expression for the likelihood:

p��zi���� � �
i�1

N

E�zi� xi� � �
z,x

E�z� x�czx, [2]
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where czx is the number of regions assigned simultaneously to bin
z and bin x. This expression depends on the parameters � only
through the way regions are assigned to x-bins. Because error
models applicable to high-throughput biological experiments are
usually unknown, in practice we cannot evaluate Eq. 2. We
propose to deal with this problem by averaging over the space of
all error models with some reasonable prior p(E). The explicit
expression we obtain for the EMA likelihood under a uniform
prior on the error models is (see SI Text for more details):

p��zi���� � � dE p�E� �
z,x

E�z�x�czx

�
�m � 1�!n �z,x czx!

� x �m � 1 � �z czx�!
, [3]

where m and n, respectively, denote the number of possible values
that z and x can take on. We stress that this equation for EMA
likelihood is completely general and may be applied to any situation
in which both the data and the model predictions are quantized.
Note that the specific numerical values of the experimental data and
model predictions serve only to cluster sequences together and are
otherwise unused in this analysis. Thus, monotonic reparametriza-
tions of these values do not affect our results.

It is interesting to note that Eq. 3 may be rewritten (see SI
Text) as:

ln p��zi� ��� � N�I�z ; x� � H�z� � �� , [4]

where I(z; x) is the empirical mutual information (20) between {zi}
and {xi} (and thus depends on �), H(z) is the empirical entropy of
{zi} (and does not depend on �), and � is a nonnegative correction,
accounting for finite data and the choice of error model prior p(E).
For a large class of error model priors, including the uniform prior
used to compute Eq. 3, � vanishes as N becomes large. In this limit,
the per-datum log likelihood becomes, up to an additive constant,
the mutual information between model predictions and data. The
emergence of mutual information helps explain how one can

meaningfully evaluate likelihood without prior knowledge of which
model predictions should correspond to which data: the best model
will make predictions that provide the most information about the
experimental results, regardless of how this correspondence is
realized.

Sampling Model Space. The primary goal of our analysis is to
characterize the distribution of model parameters � specified by
the data {zi} by using the posterior distribution in Eq. 1 with
likelihood specified by Eq. 3. To do this we used MCMC, a
powerful computational method for sampling from such distri-
butions (21). An essential feature of MCMC is that it does not
require that one know how to normalize the distribution being
sampled, which frees us from having to estimate the propor-
tionality constant in Eq. 1.

MCMC starts from a seed model �0 and stochastically wanders
from model to model in such a way that the ensemble � � {�1,
�2, . . . , �T} of models visited is eventually distributed according
to a desired distribution (in our case Eq. 1). The expected value
of any �-dependent quantity q(�), given the observations {zi}, is
then estimated by the ensemble average:

�q� � � d� q���p����zi�� 	
1
T �

t�1

T

q��t�, [5]

where q(�) might be the value of a particular matrix element, the
square deviation of that element from its mean, or a binary
variable describing whether or not a particular site is bound. See
SI Text for a detailed discussion of the particular MCMC
algorithm used in this analysis.
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