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Abstract

Comparative genomics of closely related bacterial species with different pathogenesis and host preference can provide

a means of identifying the specifics of adaptive differences. Streptococcus dysgalactiae (SD) is comprised of two subspecies:
S. dysgalactiae subsp. equisimilis is both a human commensal organism and a human pathogen, and S. dysgalactiae subsp.

dysgalactiae is strictly an animal pathogen. Here, we present complete genome sequences for both taxa, with analyses

involving other species of Streptococcus but focusing on adaptation in the SD species group. We found little evidence for

enrichment in biochemical categories of genes carried by each SD strain, however, differences in the virulence gene

repertoire were apparent. Some of the differences could be ascribed to prophage and integrative conjugative elements. We

identified approximately 9% of the nonrecombinant core genome to be under positive selection, some of which involved

known virulence factors in other bacteria. Analyses of proteomes by pooling data across genes, by biochemical category,

clade, or branch, provided evidence for increased rates of evolution in several gene categories, as well as external branches
of the tree. Promoters were primarily evolving under purifying selection but with certain categories of genes evolving faster.

Many of these fast-evolving categories were the same as those associated with rapid evolution in proteins. Overall, these

results suggest that adaptation to changing environments and new hosts in the SD species group has involved the acquisition

of key virulence genes along with selection of orthologous protein-coding loci and operon promoters.

Key words: Streptococcus dysgalactiae subsp. equisimilis, S. dysgalactiae subsp. dysgalactiae, gene content, molecular
adaptation, promoter evolution.

Introduction

Streptococcus dysgalactiae (SD) is one of several Lancefield

group C, G, and L streptococci falling within the pyogenic

group of Streptococcus. In 1996, Vandamme et al., based

on observed differences in physiological and biochemical

properties, proposed dividing the species into two subspe-

cies: 1) S. dysgalactiae subsp. equisimilis (SDE), including hu-

man strains belonging to lancefield groups C and G and 2)

S. dysgalactiae subsp. dysgalactiae (SDD) for strains of

animal origin belonging to groups C and L. Other studies,

including pulse field gel electrophoresis, DNA–DNA reasso-

ciation experiments, multilocus enzyme electrophoresis,

phenotypic studies, and phylogenetic analysis of various

gene sequences, have since confirmed the necessity to di-

vide SD into two subspecies which are correlated with

source host (Bert et al. 1997; Vieira et al. 1998; Glazunova

et al. 2010). SDE was primarily regarded as a human com-

mensal organism (Rolston 1986) but is now recognized as
an increasingly important human pathogen, which can

cause a spectrum of human diseases, including cellulitis,

peritonitis, septic arthritis, pneumonia, endocarditis, acute
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pharyngitis, bacteremia, and toxic shock syndrome (Brandt
and Spellerberg 2009). Many of these infections are similar

to those caused by the important human pathogen Strep-
tococcus pyogenes, and the two organisms have been

shown to share many of the same virulence genes (Davies

et al. 2007). SDD on the other hand is strictly an animal

pathogen and a major cause of bovine mastitis. At present,

there are no published accounts of genome sequence data

for either of these subspecies, although GenBank (Benson
et al. 2009) contains a genome sequence for a strain of SDE

isolated from a patient with streptococcal toxic shock syn-

drome (STSS), which has been briefly mentioned in the lit-

erature (Sunaoshi et al. 2009; Takahashi et al. 2010).

Genomic comparisons of SDD and SDE are likely to pro-

vide useful information regarding host adaptation and

pathogenesis, given the relatively strict host demarcation

between the two subspecies and their distinct disease phe-
notypes.

Arguably, the three most significant molecular character-

istics responsible for biological differences between line-

ages of bacteria are: 1) presence and absence of

particular loci, 2) differences in orthologous proteins driven

by selection, and 3) differential gene regulation. Analysis of

genomic gene content differences may provide some in-

sight into the adaptive differences between these two sub-
species, however, it is also important to understand the role

of natural selection in explaining any observed sequence

differences at shared protein-coding loci, as well as the po-

tential role of noncoding functional elements. This latter

aspect is a particularly underexplored area of bacterial com-

parative genomics. Here, we provide an examination of the

evolution of promoter regions in the different lineages per-

taining to the two subspecies SD, as well as S. pyogenes,
and assess whether different rates of evolution are associ-

ated with different metabolic functions or biochemical cat-

egories of loci. Although we regard this as an initial,

preliminary step toward understanding adaptive evolution

of noncoding DNA in streptococci, it is nonetheless our

hope that this three-faceted approach to studying molec-

ular adaptation will ultimately lead to identifying the rela-

tive importance of each of these adaptive mechanisms in
bacteria of different taxonomic groups and environmental

situations.

The principal aims of this paper then are to describe ge-

nome sequences for SDD and SDE and to present compar-

ative evolutionary analyses leading to hypotheses regarding

genes and putative noncoding regions that could be linked

to the specific features of host adaptation and pathogen-

esis of these two subspecies. In addition, we chose as our
SDE isolate a strain of putative commensal origin, isolated

from a skin infection, in order to provide a comparison to

the STSS-linked strain of SDE, for which there is currently

a genome sequence on National Center for Biotechnology

Information (NCBI).

Materials and Methods

Genome Sequencing

SDD strain NADC Z-8 is a Lancefield group C streptococci

isolated from a bovine udder infection in the early 1970s

(McDonald TJ and McDonald JS 1976). Strain D166B is a Lan-

cefield group G Streptococcus dysgalactiae subsp. equisimi-
lis (SDE1), collected in 1939 from a blister of a child with
epidermolysis bullosa, an inherited skin disorder that causes

blistering in response to minor injury. The strains can be

found at the American Type Culture Collection under acces-

sion numbers ATCC 27957 and ATCC 12394, respectively.

Both these strains were sequenced as part of this work. We

also included in our analysis a genome sequence for SDE

GGS_124 (stG480.0), which was isolated from patients with

STSS (GenBank accession number AP010935). We refer to
this sequence as SDE2.

Roche/454 pyrosequencing was used to determine the

sequence of both genomes. A total of 1015102 and

1028577 single-end reads and 656086 and 635598

paired-end reads resulted from the FLX sequencer, for

SDD and SDE1, respectively. De novo assembly with Newbler

yielded 354 contigs arranged in 14 scaffolds for SDD (NADC

Z-8) and 9 scaffolds comprising 195 contigs for SDE1
(D166B) for an average coverage of 56.1 and 56.5, respec-

tively. Physical maps of both genomes were determined by

OpGen Technologies, Inc. using restriction enzyme BgIII and

the optical mapping technique. The order and orientation of

the scaffolds was determined by aligning the scaffold on the

optical map using Opgen Mapviewer. Small inter and intra-

scaffold gaps were closed by polymerase chain reaction

(PCR) and sequenced using the Sanger approach, while
17 large gaps were amplified with long range PCR and se-

quenced on the Illumina GA2 sequencer. The Illumina reads

were assembled with Velvet (Zerbino and Birney 2008) using

a large range of parameters, and the best assembly was se-

lected using the N50 statistic.

Genome Characterization and Gene Content

Genome annotation for SDD and SDE1 was done by NCBI

Prokaryotic Genomes Automatic Annotation. Basic ge-

nome features were determined using the G-language

Genome Analysis Environment version 1.8.11 (Arakawa

et al. 2003; Arakawa and Tomita 2006). Statistical tests
and graphics were implemented using R, version 2.11.1

(R_Development_Core_Team 2010). Circular genome

maps were generated using the Circular Genome Viewer

(Stothard and Wishart 2005; Grant and Stothard 2008).

Pairwise comparisons of nucleotide sequences were per-

formed using bl2seq (BlastN; E value cutoff of 1 � 10�2)

(Altschul et al. 1997) and displayed using GenomeMatcher

(Ohtsubo et al. 2008). Transcription units (TUs) were
predicted using PathoLogic (Karp et al. 2009), based

on features, such as intergenic distances, direction of
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transcription, known functional relationships between
genes, and comembership in pathways or protein com-

plexes (Karp et al. 2009). Genome sequences for SDD

and SDE1 have been deposited in GenBank under accession

numbers AEGO00000000 and CP002215, respectively.

The complete listings of the chromosomes of Streptococ-
cus used in this study (a total of 45, including SDD, SDE1,

and SDE2) are shown in supplementary table S1 (Supple-

mentary Material online). To characterize the gene content
of SDD and SDE1 and compare it with that of other Strep-
tococcus taxa, orthologous genes were identified using Or-

thoMCL (Li et al. 2003). OrthoMCL clusters proteins based

on sequence similarity, using an all-against-all Blast compar-

ison of proteomes, followed by normalization of interpro-

teomic differences, and Markov graph clustering (MCL) to

define ortholog groups using amino acid sequences from

all 45 strains. OrthoMCL was implemented using a BlastP
E value cutoff of 1 � 10�5 and the default MCL inflation

parameter of 1.5 (for a complete listing of the predicted or-

thologous groups, see supplementary table S2, Supplemen-

tary Material online). The dissimilarity in gene content

patterns (binary data for the presence or absence of each

protein) between two genomes was measured by the Jac-

card distance (one minus the Jaccard coefficient), and the

distance matrix was subject to hierarchical cluster analysis
(unweighted pair group method with arithmetic mean [UP-

GMA]). To identify variations in virulence gene sets among

the 45 Streptococcus strains, we used the Virulence Factors

Database (VFDB) (Chen et al. 2005), which contains 2,294

proteins, experimentally verified as virulence loci, from var-

ious pathogenic bacteria, including 88 proteins from Strep-
tococcus. Using TBlastN, we searched for high-similarity

matches between each of the 88 proteins and each of
the 45 Streptococcus proteomes. We also used OrthoMCL

to determine Streptococcus virulence gene orthologs in the

complete VFDB, and finally, we performed similar searches

against a previously assembled list of 211 putative Strepto-
coccus virulence loci (Davies et al. 2007).

Prophage regions in SD chromosomes were predicted us-

ing Prophinder (Lima-Mendez et al. 2008). This tool per-

forms BlastP to detect homologs of phage proteins stored
in the ACLAME database (Leplae et al. 2010), and then re-

gions with a high density of phage-like proteins are identi-

fied as putative prophages. To detect integrative conjugative

elements (ICEs) and related elements, we used TBlastN to

find matches between an ICE from SDE NS3396 (ICE-

Sde3396; GenBank accession, EU142041) (Davies et al.

2009) and each of the 45 Streptococcus genomes.

Both to support our own analyses and to facilitate use of
our data by the broader community, we created a publicly

available Streptococcus Genome Browser based on the

UCSC Genome Browser platform (Kent et al. 2002; Rhead

et al. 2010). Our comparative analyses using this browser

were performed with SDE1 as a reference genome. Pro-

tein-coding annotations were augmented with predictions
of RNA genes based on the Rfam database and INFERNAL

software (Gardner et al. 2009) and predictions of transcrip-

tion factor binding sites based on motifs from RegTransBase

(Kazakov et al. 2007). Pairwise alignments between SDE1

and each of four other genomes—SDE2, SDD, S. pyogenes
strain MGAS315 (SPY1), S. pyogenes strain MGAS10750

(SPY2), and S. equi subsp. equi strain 4047 (SEE)—were pro-

duced using lastz (http://www.bx.psu.edu/miller_lab). These
alignments were then processed using the UCSC alignment

‘‘chains and nets’’ pipeline (Kent et al. 2002) to eliminate

paralogous alignments and identify regions of conserved

synteny. A genome-wide multiple alignment was then ob-

tained using multiz (Blanchette et al. 2004).

Molecular Adaptation of Protein-Coding Loci

Genome-wide positive selection (PS) was assessed using our

previously developed pipeline, described in detail elsewhere

(Lefébure and Stanhope 2007, 2009). The sequences con-

sidered included SDE1, SDE2, SDD, SPY1, SPY2, and SEE.

Preliminary phylogenetic analysis involving the single-copy

orthologous genes from the genomes of the Streptococcus
taxa included in this study, confirmed the monophyly of this

group, and suggested SD as the sister group to S. pyogenes
(supplementary fig. S1, Supplementary Material online). Or-

thologous gene content information, determined using Or-

thoMCL, was used to delimit the core genome of this set of

taxa. The sequences were first aligned at the amino acid

level using Probalign (v1.1) (Roshan and Livesay 2006), then

backtranslated to DNA, and alignment columns with a pos-

terior probability ,0.6 were removed. Alignments with

.50% of the sites removed, based on this 0.6 posterior
probability cutoff, were discarded from further analysis.

To minimize the influence of recombination in the PS scan,

the alignments were tested for intragenic recombination us-

ing GARD (Kosakovsky Pond et al. 2006). When a recombi-

nation breakpoint was found to be significant, the

alignment was broken into two or more gene fragments.

For each of the resulting alignments, a gene tree was recon-

structed using PhyML (Guindon and Gascuel 2003; Guindon
et al. 2010) employing a general time revisable þ gamma

model of evolution, the maximum likelihood criteria, and

the subtree pruning-regrafting branch-swapping method.

There was a clear consensus of the gene trees toward a sin-

gle species tree topology. This species tree topology (SDE1/

SDE2 joined by SDD, followed by the two S. pyogenes
strains and finally S. equi subsp. equi) was used to detect

putative lateral gene transfers (LGTs) based on phylogenetic
signal. Each gene tree search was bootstrapped (500 pseu-

doreplicates) with PhyML using the nearest-neighbor inter-

change branch-swapping method, and genes supporting

strongly conflicting bipartitions were considered LGTs and

removed from the analysis. Using each of these non-LGT
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alignments and the species tree topology, PS was assessed on
each of the SDE1, SDE2, SDE, SDD, and SD lineages using

the branch-site test implemented in CodeML program of

PAML version 4b (Yang 2007). The likelihoods of model

‘‘A’’ and model ‘‘1a’’ were compared, and P values were cal-

culated under the assumption that the likelihood ratio has

a chi-square distribution with one degree of freedom (Zhang

et al. 2005). Multiple testing adjustments were performed

by using a false discovery rate (FDR) approach at a 5% sig-
nificance level (Benjamini and Yekutieli 2001).

Evolutionary Rates

Protein-Coding Sequences. We also examined the evo-

lutionary rates of protein-coding sequences in a category-
specific manner. For this analysis, we made use of the ratio

of nonsynonymous to synonymous substitution rates, x 5

dN/dS. First, we considered overall differences in evolution-

ary rate between categories, ignoring differences among

branches of the phylogeny. Each category C partitioned

the genes and corresponding alignments into two sets:

those assigned to C and those not assigned to C. We con-

catenated all the alignments assigned to C into one align-
ment, denoted XC, and all the remaining alignments into

another, denoted XC, and performed a likelihood ratio test

(LRT) of the null hypothesis that the values ofx for XC and XC

are equal (xC 5 xC) against the alternative hypothesis that

they are unequal (xC 6¼ xC). Under both the null and alter-

native hypotheses, the transition–transversion rate ratio (j),

the equilibrium codon frequencies (under the F3 � 4 param-

eterization), and the branch lengths of the tree were shared
for XC and XC and were estimated by maximum likelihood.

This led to a comparison of nested models differing by one

parameter, and P values were computed by assuming twice

that the difference in log likelihoods obeyed the asymptotic

chi-squared distribution with one degree of freedom under

the null hypothesis. These tests were performed using cus-

tom software developed by one of the authors (M.J.H.),

which supports LRTs like those implemented in the PAML
package (Yang 2007), but with a somewhat more flexible

parameterization (Kosiol et al. 2008). In practice, these tests

were almost always highly significant because even small

differences in x were supported by large amounts of data.

Therefore, we have focused our interpretation on the x es-

timates themselves rather than on the likelihood ratios or P
values, which tend to reflect the sizes of the gene sets more

than the magnitude of the effect.
In addition, we performed a series of clade-specific LRTs,

in which the null model has a single x parameter, but the

alternative model has two such parameters: xf, which ap-

plies to a designated set of ‘‘foreground’’ branches (say,

those in the SDE/SDD clade; supplementary fig. S2, Supple-

mentary Material online), and xb, which applies to the re-

maining ‘‘background’’ branches. These are therefore

tests of the null hypothesis that xf 5 xb against the alter-
native hypothesis that xf 6¼ xb for each foreground set of

interest. We applied these LRTs to all category-specific align-

ments, XC, for foreground sets corresponding to each clade

of interest (supplementary fig. S2, Supplementary Material

online). Notice that these tests contrast sets of branches

rather than sets of sites and therefore do not depend on

the complementary alignments, XC. These LRTs are instances

of the ‘‘branch test’’ implemented in PAML (the null model is
known as M0 and the alternative model as ‘‘Model B’’) and

were performed using the CodeML program. P values were

computed by assuming an asymptotic chi-square distribu-

tion with one degree of freedom, as above. These tests, like

the category tests, were usually significant, so we have fo-

cused on the x estimates (specifically, on the ratio xf / xb) in

interpreting them.

Gene Ontology categories (Ashburner et al. 2000) were
assigned to clusters of orthologous genes by homology. The

Streptococcus genes were compared with all bacterial pro-

teins from the Uniref90 database using BlastP, and the GO

categories of matches with E values , 10�5 were obtained

using the uniProt GOA database. Each gene was also explic-

itly mapped to all parents of its assigned categories in the

GO hierarchy. For the category-by-category analyses, only

the 127 GO categories containing ten genes or more were
considered.

Promoter Sequences. We identified sequences upstream

of predicted protein encoding transcriptional units (ending

at the next unit) as putative promoters and assigned each

such promoter sequence to the union of GO categories

of its constituent genes. We then tested for significant dif-

ferences in evolutionary rates between promoters of differ-

ent categories, using methods similar to those above. In this

case, we made use of a neutral phylogenetic model esti-
mated from 4-fold degenerate (4D) sites in our protein-

coding gene set and estimated global scale factors for

the phylogeny rather than the x parameter. As above, each

category C induced two alignments, a concatenated align-

ment of the promoter sequences in the category, XC, and

a concatenated alignment of all other promoter sequences,

XC. Once again, we considered both tests of all branches of

the phylogeny and tests of particular foreground branches
of interest. In the all-branch test, the null hypothesis was

that the average evolutionary rate for XC, denoted rC,

and the average rate for XC, denoted rC, were equal

(rC 5 rC), where r acts as a global scaling constant for

the branches of the phylogeny. The alternative hypothesis

is that these two rates are unequal (rC 6¼ rC). Parameter es-

timation and likelihood computation was performed using

the phyloFit program (Siepel and Haussler 2004), holding
fixed all other parameters of the neutral model (the

branch-length proportions, equilibrium frequencies, and

substitution rate matrix). The clade-specific test is analogous
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to the one for protein-coding sequences, with one r param-
eters for the null model and two for the alternative model

(one for the foreground and one for the background

branches). It is equivalent to the ‘‘subtree test’’ implemented

in the phyloP program (Pollard et al. 2010), and this program

was used for parameter estimation and P value computa-

tion. In this case, we focus on the values of the r parameters

for interpretation.

Results

Genome Characterization and Gene Content

The single circular chromosome of SDD strain ATCC_27957

contains 2141837 bp and 2,107 protein-coding sequences

(CDS) with a G þ C content of 39.3% and that of SDE1

strain ATCC_12394 contains 2159491 bp and 2,070 CDS

with a G þ C content of 39.5% (supplementary fig. S3, Sup-
plementary Material online). All three genomes have a clear

shift in GC skew, likely correlated with the origin of replica-

tion (Lobry 1996; Touchon and Rocha 2008). The number of

predicted operons for each of SDD, SDE1, and SDE2 were

457, 456, and 442, respectively. The number of tRNAs was

57 and the number of rRNA operons was 5, for all three ge-

nome sequences.

Homology comparisons of the three SD (inclusive of the
two subspecies SDE, SDD) genomes against one another in-

dicated that the chromosomes were highly syntenous along

almost their entire lengths (supplementary fig. S4, Supple-

mentary Material online). The all-against-all BlastP compar-

ison followed by OrthoMCL yielded 9,053 protein families

containing individual proteins from the 45 strains (see sup-

plementary table S2, Supplementary Material online). Of the

9,053 protein families, 7,442 were absent in the three SD
strains. An analysis of gene content for the three SD ge-

nomes reveals that a set of 1,471 proteins were common

to SDD and SDE, 305 proteins were unique to SDD, 194 pro-

teins were unique to SDE, and 254 and 241 genes were

unique to each of the two SDE strains (supplementary

fig. S5, Supplementary Material online). Differences in gene

content (binary data for presence or absence of different

protein families) among these 45 Streptococcus genomes,
represented by a UPGMA dendrogram (fig. 1) indicates

the overall gene content of SD is most similar to S. pyogenes,
and the two strains of SDE, although showing more varia-

tion in gene content than is typical of different strains of S.
pyogenes, are nonetheless more similar to one another than

to anything else (fig. 1). Enrichment tests across functional

categories, based on pairwise comparisons of these strains

and S. pyogenes, identified only a few significantly under-
represented or overrepresented (depending on the pairwise

comparison) JCVI mainrole categories (Davidsen et al. 2010)

and, in particular, included ‘‘mobile and extrachromosomal

element functions’’ and ‘‘cellular processes’’ (supplementary

fig. S6, Supplementary Material online). The JCVI mainrole

category mobile and extrachromosomal element functions

and subrole categories ‘‘prophage functions’’ and ‘‘patho-

genesis’’ were underrepresented in SDE1 relative to SDE2

and SDD, consistent with the presence of prophages in

these latter two strains.

To identify core virulence genes and variations in gene
sets among the 45 Streptococcus strains, we examined pres-

ence and absence, as well as divergence, of 88 Streptococ-
cus virulence genes retrieved from the VFDB (fig. 2 and

supplementary fig. S7-A, Supplementary Material online).

Streptococcus pyogenes, S. equi, and SD clustered together

based on VFDB gene content as did SDE1 and SDE2. A num-

ber of virulence loci were unique to the S. pyogenes, S. equi,
and SD group and a number were uniquely absent. Several
VFDB loci were present in SDE and S. pyogenes but absent

from SDD. These included streptolysin O (slo) and strepto-

kinase A (ska). Similarly, there were a few VFDB loci common

to SDE2 and many of the S. pyogenes isolates, but absent

from SDE1, suggesting that they might be relevant to the

FIG. 1.—A dendrogram constructed by hierarchical clustering

(UPGMA) based on dissimilarities in gene content (binary data for

presence or absence of protein families) among the 45 Streptococcus

strains. The dissimilarities were measured using Jaccard distance (one

minus the Jaccard coefficient), ranging from 0 to 1, represented by the

horizontal bar at the base of the figure. Species that comprise the

primary focus of this paper appear in color. Species abbreviations are as

follows: Ssan, Streptococcus sanguinis; Sgor, Streptococcus gordonii;

Smut, Streptococcus mutans; Sthe, Streptococcus thermophilus; Spne,

Streptococcus pneumoniae; Ssui, Streptococcus suis; Saga, Streptococ-

cus agalactiae; Sube, Streptococcus uberis; Spyo, Streptococcus

pyogenes; Sequ_MGCS10565, Streptococcus equi subsp. zooepidemi-

cus; Sequ_H70, Streptococcus equi subsp. zooepidemicus; Sequ_4047,

Streptococcus equi subsp. equi.
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disease phenotype of SDE2. These included hyaluronidase

(hylP1, hylP2, and hylP3) and exotoxin G (speG). A broader

comparison that includes not only the Streptococcus VFDB
genes but instead all the loci from this database indicates

that the three strains carry between 84 and 92 VFDB orthol-

ogous genes. Comparative analysis of the set of putative

Streptococcus virulence genes from Davies et al. (2007)

(211 orthologous genes) resulted in a similar clustering to

that based on the VFDB (supplementary fig. S7-B, Supple-

mentary Material online). A complete list of virulence loci

from each of VFDB and the Davies et al. set of 211, for this
set of 45 Streptococcus species, appears in supplementary

table S2 (Supplementary Material online) (column VFDB and

Davies, respectively).

A well-known virulence factor in S. pyogenes is the M

protein. Recently, it has been suggested that the M protein

is part of a 47-kb pathogenicity island, of assumed ancient

origin, due to its presence in all currently genome sequenced

strains of S. pyogenes (Panchaud et al. 2009). We used
TBlastN to look for the presence of this pathogenicity island

in each of SDE1, SDE2, and SDD. Although the majority of

the genes are present in all three of these strains (fig. 3), they

are not present as a contiguous island, as is the case in all

available genome sequences of S. pyogenes strains. Subsets

of this island, comprising several contiguous genes, are pres-

ent and this is more the case in SDE than in SDD. Further-

more, the level of similarity of the individual loci to
a reference S. pyogenes strain (SF370) tends to be significantly

less for SDD than for SDE. An inhibitor of complement-medi-

ated lysis (Spy_2016) was present in SDE2 but absent in SDE1.

All three strains possessed the M protein but again it was more

similar between SDE and S. pyogenes than between SDD and

FIG. 2.—Heatmap showing % identity of Blast best hit of the 45 Streptococcus proteomes, against the 88 Streptococcus virulence genes from

VFDB.
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S. pyogenes. The VFDB has three genes encoding M

protein, emm1, emm3, and emm18, which are found in S.
pyogenes serotype M1 (SF370), M3 (MGAS315), and M18
(MGAS8232), respectively. Based on OrthoMCL, emm1 and

emm18 are regarded as orthologs and present in SDE;

emm3 is regarded as a distinct ortholog and present in

SDD (supplementary table S2, Supplementary Material on-

line). The M protein of SDD has low % identity to all three

M proteins (fig. 2; emm3, 31.53; emm18, 39.25; emm1,

34.82), as reported previously (Brandt and Spellerberg 2009).

Prophinder (Lima-Mendez et al. 2008) detected two pu-
tative prophage regions in the chromosomes of SDD and

SDE2. Prophage regions were not identified in the genome

sequence for SDE1. These SDD/SDE2 prophages showed

varying degrees of sequence similarity and were homolo-

gous to prophage from S. pyogenes. The two prophages in

SDE2 were similar to the M3 GAS phages 315.3 and 315.5,

with mean percent nucleotide sequence identity of

90.55% and 92.95%, respectively for the regions homol-

ogous to the S. pyogenes versions of these elements
(fig. 4); six putative virulence genes (based on the

Davies et al. compilation and the VFDB) were associated

with these elements. Our sequence for SDD contains

two putative prophages, both of which have homology

to the M3 GAS phage 315.3 (fig. 4). The SDD prophages

had 90.17% and 90.59% sequence identity for the regions

homologous to 315.3; eight putative virulence genes

(Davies et al.) were associated with these elements. The
315.3-like prophages in SDD and SDE2 are integrated in

different regions (supplementary fig. S3, Supplementary

Material online).

An abundance of duplicated regions were apparent from

homology comparisons of the SDD and SDE genomes

against themselves. These duplications primarily reflect

FIG. 3.—Heatmap showing % identity of Blast best hit of the 45 Streptococcus proteomes, against the 47 kb pathogenicity island in

Streptococcus pyogenes SF370; arrows refer to gene orientation.
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a proliferation of transposons, particularly in comparison to

the genomes of S. pyogenes. The number of orthologous

genes annotated as transposase in each of SDD, SDE1,

and SDE2 are 45, 27, and 69 (93, 60, and 105 copies),

whereas the numbers present in genomes of S. pyogenes
range from 9–31 (11–47 copies) (supplementary table S1,
Supplementary Material online). This ranks SDE and SDD

among the top of Streptococcus genomes in terms of trans-

posase abundance, along with strains of S. pneumoniae. Re-

cent work has identified a type of conjugative transposon,

referred to as ICE, as moderately abundant in S. agalactiae
genomes (Brochet et al. 2008), with a variant (ICESde3396)

present within the genome of SDE (strain NS3396; Davies

et al. 2009). Comparisons of the present strains of SDE
and SDD reveal the presence of an ICE in SDE1 that is similar

to ICESde3396 (fig. 5; 53 hits ranging from 29% to 100%

identity). Differences in gene content between the ICE from

SDE1 and ICESde3396 are primarily associated with an inter-

nal region encompassing 13 loci unique to ICESde3396 in-

cluding an arsenic resistance operon, permease,

recombinase, lysin, cell wall hydrolase, and holin. Blast

searches of Streptococcus genomes, with ICE identified from
other species, indicate partial ICEs are widely distributed

throughout the genus, however, more complete elements

are relatively uncommon (supplementary fig. S8, Supplemen-

tary Material online). We find no evidence for ICESde3396 in

SDE2, whereas SDD does possess truncated versions (fig. 5).

At least one gene of ICESde3396 (ICESde3396_52) can en-

code a putative virulence factor: a surface associated agglu-

tinin receptor described in other streptococci (Brady et al.
1992). This gene was detected in SDE1 (fig. 5).

The current version of our Streptococcus Genome

Browser (fig. 6) is publicly available at: http://strep-genome.

bscb.cornell.edu/cgi-bin/hgGateway. It makes use of

the SDE1 genome as reference and shows the SDE2 and

SDD genomes in alignment with it. Alignments with three

outgroup species are also shown: S. pyogenes strains
MGAS315 (SPY1) and MGAS10750 (SPY2) and S. equi
subsp. equi strain 4047 (SEE). At present, this browser

has several mapping and sequencing tracks (G þ C content,

GC, and ATskew), gene-related tracks (predicted genes and

transcriptional units), and comparative genomic tracks (pair-

wise and multiple alignments, conservation scores). A track

showing the genes predicted to be under PS, as described

below, is also available. In addition to standard browsing ca-
pabilities (zooming and scrolling, selecting tracks of interest,

searching by gene name), the browser supports a flexible

query and download interface (the Table Browser), rapid se-

quence searches via BLAT (a description of the differences

between Blast and BLAT can be found at: http://genome

.ucsc.edu/FAQ/FAQblat.html), and other standard UCSC

Genome Browser features.

Evolution of Protein Sequences

Molecular Selection of Protein-Coding Loci. A total

of 1,066 single-copy core orthologous loci were identified

by OrthoMCL from the genomes of SDE1, SDE2, SDD,

two strains of S. pyogenes, and S. equi subsp. equi. The
number of genes retained after Probalign was 1,042, which

in turn resulted in 1,253 GARD fragments. Of these frag-

ments, 464 were judged to be recombinant, leaving 789

nonrecombinant fragments (including 673 genes) for PS

analysis. The total number of recombinant CDS (those with

at least one recombinant fragment) was 367, representing

34% of the core genome. From the set of 789 nonrecom-

binant fragments, a total of 68 genes or gene fragments
were judged to be under PS (P-value , 0.05); five genes

were under selection on more than one lineage (cvpA,

colicin V production protein; purD, phosphoribosylamine-

glycine ligase; purN, phosphoribosylglycinamide

formyltransferase; recX, recombination regulator; citG,

triphosphoribosyl-dephospho-CoA synthase; supplemen-

tary table S3, Supplementary Material online). Selection

was most evident on the branch leading to the SD ancestor
with 40 significant cases (P-value , 0.05; supplementary ta-

ble S3, Supplementary Material online). There were 10 and

11 instances of PS on the branches leading to SDD and SDE,

respectively, with 8 on SDE1 and 4 on SDE2 (supplementary

table S3, Supplementary Material online). The genes under

PS were distributed among the broad COG categories as

follows: 19 cases involving information storage and process-

ing; 8 involving cellular processes, 23 involving metabolism,
and the remainder poorly characterized. However, after

a strict correction for multiple comparisons, only 6, 3,

and 1 genes were judged to be significant (FDR adjusted

P-value, 0.05) in the SD, SDE1, and SDE2 branches, respec-

tively. The genes on the SD branch that passed the statistical

correction included citrate lyase ligase, enolase, translation

elongation factor G (EF-G), ribosomal protein L16/L10E,

FIG. 4—Pairwise comparisons of prophages from SDD (uSdd_1

and uSdd_2) and SDE2 (uSde2_1 and uSde2_2) and Streptococcus

pyogenes MGAS315 (u315.3 and u315.5). The colored bars separating

sequences (red and green) represent similarity matches identified by

Blast analysis. Red lines link matches in the same orientation; green lines

link matches in the reverse orientation.
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metal-dependent hydrolase, and a predicted esterase. The

genes on the SDE1 branch, included triphosphoribosyl-

dephospho-CoA synthetase and ribosomal proteins L10

and L21. The single gene on the SDE2 branch was an

arginine–ornithine antiporter.

Evolutionary Rates of Protein-Coding Sequences.
We examined average rates of protein-coding evolution in

these genomes, using x 5 dN/dS, the ratio of nonsynony-

mous to synonymous substitution rates, as a general-purpose

indicator for the long-term impact of natural selection on

protein-coding sequences. The average x for all genes

and all branches of this six species phylogeny is strikingly

low (x 5 0.064), implying that strong purifying selection
has dominated during their evolution. However, there are

statistically significant differences between gene categories

in these average rates, with category-specific estimates of x
ranging from about x5 0.02 to x5 0.12 (fig. 7). Several of

the categories that exhibit increased rates of evolution are

associated with metabolism and biosynthesis. Other fast-

evolving categories relate to antibiotic responses or the ex-

tracellular region. Nevertheless, purifying selection appears

to dominate, with x , 0.12 for all categories.

We also estimated a separate value of x for each branch
of the phylogeny, (supplementary fig. S2-A, Supplementary

Material online). Not surprisingly, the long internal branches

of the tree (on which most substitutions have occurred) have

x estimates similar to the genome-wide average. However,

the external branches of the phylogeny—leading to the

three SD taxa, SDD, SDE1, and SDE2, and to the two S. pyo-
genes strains SPY1 and SPY2—have x estimates 2–4 times

as large as the average. Among the external branches, the
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FIG. 5.—Heatmap showing % identity of Blast best hit of the 45 Streptococcus proteomes, against the ICEs from SDE NS3396 (ICESde3396);

arrows refer to gene orientation.
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short branches leading to the two equisimilis subspecies,

SDE1 and SDE2, show particularly elevated rates of amino
acid evolution, with x estimates near 0.2.

Next, we looked at differences among GO categories in

clade-specific evolutionary rates, by contrasting x estimates

for particular clades of the phylogeny with background esti-

mates for the remainder of the tree (see Materials and Meth-

ods; supplementary fig. S2-B, Supplementary Material

online). Categories of genes showing the most rapid evolu-

tion in SDD/SDE included ‘‘transcriptional regulator activity,’’
‘‘two-component response regulator activity,’’ ‘‘phosphoryla-

tion,’’ ‘‘biosynthetic process’’ (fig. 8). Similar categories were

enriched with respect to the SDD and SDE lineages, ‘‘cell wall’’

appeared among the fast-evolving categories for the SDD lin-

eage, possibly because the cell wall is often a trigger for im-

mune responses to bacterial pathogens. By contrast, many of

the categories showing the least rapid evolution in the dys-
galactiae lineages reflected housekeeping activities expected

to be conserved, such as ‘‘structural constituent of ribosome,’’

‘‘translation,’’ and ‘‘protein transport.’’

Evolution of Promoter Sequences

To examine rates of evolution in promoter regions in our ge-

nomes, we grouped predicted genes into TUs and then iden-

tified upstream regions between TUs as putative promoter
sequences. We associated each promoter with the union of

GO categories of its component genes and then performed

a series of category-specific tests of evolutionary rates in

promoter regions. These tests were similar to our tests of

coding regions, but instead of contrasting nonsynonymous

FIG. 6.—(A) Streptococcus Genome Browser (http://strep-genome.bscb.cornell.edu/cgi-bin/hgGateway). The reference genome for the browser is SDE

ATCC 12394 (denoted SDE1 in this article). The two other dysgalactiae strains, SDE GGS 124 (SDE2) and SDD are shown via alignments with SDE1, as are two

Streptococcus pyogenes strains (MGAS315 and MGAS10750) and an S. equi equi strain (4047). Selected tracks from the browser are shown, including

a measure of G þ C skew in 100-bp windows [computed as (C � G)/(C þ G)], the gene annotations for SDE1, predicted operons from PathoLogic, genes

predicted to be under PS using PAML, conservation scores produced by the phyloP (Pollard et al. 2010) and phastCons (Siepel et al. 2005) programs, predicted

conserved elements from phastCons, and genome-wide multiple alignments produced with the multiz program (Blanchette et al. 2004). Notice the

pronounced correlation between the direction of replication and both the G þ C skew and the direction in which genes are transcribed (the origin of

replication is at position 0; genes in red are transcribed on the positive strand and genes in blue on the negative strand), as has been observed with other

Streptococcus genomes (Ferretti et al. 2001). Other tracks not shown here include predicted transcription factor binding sites and RNA genes, and alignment

chains and nets revealing regions of conserved synteny (Kent et al. 2003). (B) Illustration of lineage-specific evolutionary patterns evident from aligned SD

genomes. Shown is a browser display of a cluster of CRISPR-DR22 noncoding RNAs, which were annotated using the Rfam database and INFERNAL software

(Gardner et al. 2009). Notice the relatively high levels of conservation inside the CRISPR elements (green peaks in phastCons track), contrasting with high levels

of divergence in the spacer regions between them (red downward spikes in phyloP track), which is typical for CRISPR elements (Marraffini and Sontheimer

2010). This array of noncoding RNAs appears to be present in both sequenced SDE genomes but does not align with the other genomes because of extensive

rearrangements or gains and losses of elements or because high levels of sequence divergence prohibit an alignment from being obtained.
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and synonymous substitution rates, they contrasted the

overall rate of evolution in each promoter region with

a ‘‘neutral rate’’ estimated from 4-fold degenerate (4D) sites

in coding regions (see Materials and Methods). As with the

coding regions, we considered both the overall rate of evo-

lution, across all branches of the phylogeny, and the rates in

particular clades relative to the remainder of the tree.

We found that, on average, promoter sequences have ex-
perienced fairly strong purifying selection, with evolutionary

rates only 37% as high as those in 4D sites. However, there is

substantial variation among functional categories in the

evolutionary rates of promoter sequences (fig. 9). Many

of the categories showing increased rates of promoter evo-

lution are similar to those associated with rapid evolution in

protein-coding regions, such as cell wall, ‘‘extracellular re-

gion,’’ pathogenesis, and ‘‘DNA metabolic process.’’ Tran-
scription factors are heavily represented among the genes

whose promoters have significantly reduced rates of evolu-

tion (as indicated by categories such as ‘‘transcription factor

activity,’’ ‘‘regulation of transcription,’’ and ‘‘binding’’).

The clade-specific tests indicated that, as with protein-

coding sequences, promoter sequences have, on average,

evolved somewhat faster in the dysgalactiae species than

in the remainder of the phylogeny. Promoter sequences
have evolved at roughly 1.3 times background rate in the

SDD/SDE clade and at 1.5 times the background rate on

the SDD lineage (fig. 10), suggesting some mixture of in-

creased PS and relaxation of constraint. By contrast, pro-

moters have evolved at slightly reduced rates in the SDE

lineages. Many of the categories of promoters that are

evolving most rapidly in the dysgalactiae lineages relative

to the background rate are similar to the fast-evolving cat-

egories overall, in both protein-coding and promoter se-

quences. These include several categories related to

metabolism, biosynthesis, and pathogenesis. Two new cat-

egories that emerge are ‘‘barrier septum formation’’ and

‘‘cell cycle,’’ suggesting adaptation in the fundamental pro-

cesses of cell division and cytokinesis, perhaps relating to
changes in growth rate. These signals appear to come pri-

marily from the SDD lineage because they are not evident in

the SDE tests.

Discussion

This study provided an evolutionary genomic assessment of

the roles of gene content, molecular adaptation of protein-
coding loci, and the evolution of control region sequences in

the diversification and adaptation of the SD species group.

In several instances, this also led to the identification of

genes or classes of genes that could be linked to the differ-

ent pathogenic properties of the two strains of SDE and the

taxon SDD.

The gene content of these closely related strains was very

similar, with 12–16% of their genomes unique, and no ob-
vious biochemical functional category differentially associ-

ated with these unique portions. Arguably, the most

significant gene content difference between all three of

these strains lies in the assortment of virulence loci that each

carries, and this appears to be at least partially linked to the

presence of mobile elements. The prophages of SDD and

FIG. 7.—Rates of protein evolution. Estimates of x (dN/dS) across all branches of the six-species phylogeny for all 673 genes (highlighted in purple)

and for genes assigned to each of several Gene Ontology categories. Shown are the estimates for all genes (middle), the ten fastest-evolving categories

(top), and the ten slowest-evolving categories (bottom). The numbers at right indicate ratios with respect to the estimate for all genes. For all categories

shown, the differences from the average are highly statistically significant (p0), according to a LRT (see Materials and Methods).
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SDE2 carry a number of prophage proteins that are consid-

ered putative virulence genes in S. pyogenes, including

hyaluronidase (in the case of SDD and SDE2) and streptodor-
nase type D (in the case of SDD), both of which are docu-

mented as Streptococcus virulence genes (Davies et al.

2007). If one broadens the consideration of virulence loci

to include genes identified as having virulence phenotypes

in other genera of bacteria (based on VFDB), there are

a number of further putative virulence loci associated with

the prophage in both SDE2 and SDD, including, for example,

an amidase protein in SDD involved in peptidoglycan biosyn-

thesis (N-acetylmuramoyl-L-alanine amidase). These SD

phage elements display considerable similarity with M3

GAS phages 315.3 and 315.5, suggesting a history of phage
LGT involving these taxa. An earlier report by Davies et al.

(2007) had proposed LGT involving M3 GAS phage 315.1

and SDE. Our genome sequence data indicates that this his-

tory has also included SDD and involved elements other than

315.1. SDD and SDE2 share 315.3 homologous elements,

but they are integrated in different regions suggesting their

LGT independence. SDE and S. pyogenes share the same

host and thus their participation in interspecies LGT

FIG. 8.—Rates of clade-specific protein evolution. Estimates of x (dN/dS) for three clades of interest (foreground; see supplementary fig. S2-B,

Supplementary Material online) versus estimates for the remaining branches of the tree (background). Shown are estimates for all genes and for the ten

GO categories showing the greatest increase in x per clade. The categories are ranked by the ratio of foreground:background x estimates (see labels at

right). All these differences are highly statistically significant (p0) by a LRT (see Materials and Methods).
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involving mobile elements is perhaps not unexpected; how-

ever, SDD is not associated with the human host. It is tempt-

ing to assume that this was an ancient event, prior to the

divergence of the two subspecies, however, the different

genomic positions of the elements in the two taxa, com-

bined with their otherwise high level of genomic synteny,

argues against a LGT event in the SD ancestor. Although
SDE is primarily thought of as an agent of human infection,

there are also reports that link it to animal disease (Laus et al.

2007). It seems likely that on occasion SDE and SDD have

shared the same environment providing the opportunity

of exchange of mobile elements. Whatever the actual sce-

nario that facilitated the genetic exchange, the presence of

these GAS-like phages in both SDE and SDD highlights the

important role these elements can play in interspecies dis-
ease transmission.

Superantigen and streptolysin S genes are regarded as

the most important virulence factors contributing to invasive

streptococcal infection (Abdelsalam et al. 2010); the 12

superantigens (smeZ, speA, speB, speC, speG, speH, speI,
speJ, speK, speL, speM, and ssa) are available in VFDB

and were therefore included in our comparative analysis.

Based on OrthoMCL analysis, the superantigen speG
was found in SDE2 but not identified in SDD and SDE1.

speG has been detected previously in SDE (Tanaka et al.

2008) and in some SDD isolates taken from moribund fish

(Abdelsalam et al. 2010). In S. pyogenes, many strepto-

coccal superantigen genes (e.g., speA, speC, speH, speI,
speK, speL, speM, and ssa) are located on prophages,

whereas smeZ, speG, and speJ are located on chromosomes

(Proft et al. 2003). It has been suggested that the superan-

tigen speA is key to STSS in S. pyogenes (Talkington et al.

1993), whereas other studies have implicated speC (Holm

et al. 1992; Demers et al. 1993) and still others have sug-

gested a lack of association between STSS and speA or speC
(Hsueh et al. 1998). In SDD/SDE, speG has been identified as
the important superantigen locus (Hashikawa et al. 2004;

Zhao et al. 2007; Brandt and Spellerberg 2009; Abdelsalam

et al. 2010). The presence of speG in SDE2 and its absence in

SDE1 is correlated with the presence and absence, respec-

tively, of STSS in these strains. Although speG is chromo-

somal, in the SDD fish isolates, it has been linked to two

FIG. 9.—Rates of promoter evolution. Estimated rates of evolution for promoter sequences as a fraction of the neutral rate (r). The neutral rate is

estimated from 4-fold degenerate (4D) sites in coding regions, and the parameter r is estimated as a scaling factor by maximum likelihood (see Materials

and Methods). Estimates are shown for all genes (middle), the ten fastest-evolving GO categories (top), and the ten slowest-evolving GO categories

(bottom). Promoters were defined as upstream sequences of predicted transcriptional units and were assigned the GO categories of all constituent

genes. The numbers at right indicate ratios with respect to the rate for all genes. Notice that, on average, promoter regions evolve at about 37% the

rate of 4D sites, suggesting that they have generally experienced fairly strong purifying selection. However, there is considerable variation across GO

categories, with category-specific rates ranging from r5 0.23 (0.63 times the average) to r5 0.57 (1.53 times the average). The rates for the ten fastest

and ten slowest categories are all significantly different from the rates at other promoters by a likelihood ratio test (P , 10�11).
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IS elements (IS981SC and IS1161) (Abdelsalam et al. 2010)

which are prevalent throughout Streptococcus (Bourgoin

et al. 1999; Lowe et al. 2007; McShan et al. 2008); however,
we find no evidence that speG in SDE2 is associated with an

IS element.

Another mobile element found in the genome of SDD,

and in this case SDE1, is known as the ICE, recently reported

to be abundant in S. agalactiae (Brochet et al. 2008). ICE and

related elements (cis-mobilizable element; CIME) have been

found in various Streptococcus species, including ICESt1,

ICESt3, CIME302, DeltaCIME308, and CIME19258 from

S. thermophilus (Pavlovic et al. 2004), ICESE2 from S. equi
subsp. equi strain 4047 (Heather et al. 2008), and ICE-
Sa2603 from S. agalactiae 2603V/R, which is closely related

to ICESde3396 from SDE NS3396 (Davies et al. 2009). Strain

SDE1 possesses an ICE related to ICESde3396, differing pri-

marily in the absence of an internal region including about

13 loci. SDD carried multiple, but smaller, ICEs. We find ev-

idence for only remnant ICEs in S. pyogenes genomes but

did detect somewhat more complete elements in S.

FIG. 10.—Rates of clade-specific promoter evolution. Estimated rates of promoter evolution for three clades of interest (foreground; see

supplementary fig. S2-B, Supplementary Material online) versus estimates for the remaining branches of the tree (background). All estimates are

obtained by maximum likelihood and are relative to a neutral rate estimated from 4D sites. The categories are ranked by the ratio of

foreground:background rates (see labels at right). The ten categories with the highest ratios for each clade are shown. Notice that rates are somewhat

elevated in SDD/SDE and SDD across all genes, but they are much more elevated for certain categories than for others. The foreground rate is

significantly different from the background rate in all cases by a LRT, except for ‘‘FMN binding’’ in the SDE clade (P = 0.06).
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pneumoniae and Streptococcus suis. ICEs have been re-
ported previously in human strains of S. suis and noted

to carry antibiotic resistance loci (Holden et al. 2009). ICEs

are common in S. agalactiae, and S. pyogenes can readily

accommodate prophage. SDE and SDD appear to harbor

both types of mobile elements, suggesting that they can

act as donor/recipient of DNA via both elements and in-

volving both species. Haenni et al. (2010) have shown that

a high proportion of bovine strains of S. agalactiae have
functional ICEs (Haenni et al. 2010). Streptococcus aga-
lactiae and SDD are both agents of bovine mastitis, and

thus, it is likely they often coexist in the same environ-

ment, providing a means for genetic exchange. Recent re-

ports have linked SDD to cases of STSS-like syndrome in

bovine (Chenier et al. 2008). Because SDD can accommo-

date both prophage and ICEs, combined with a frequently

sympatric distribution with S. agalactiae, we suggest this
taxon might be expected to develop a variety of virulence

attributes.

The branch-site test indicated a total of 73 genes were

under PS (P value , 0.05), however, after a correction for

multiple comparisons, only ten of these were significant

(FDR adjusted P value , 0.05). A number of the genes from

this latter set are reported to be linked to virulence in other

bacteria. For example, enolase is an important virulence
component in a number of Gram-positive bacterial patho-

gens, including S. pyogenes, S. pneumoniae, S. suis, and

Staphylococcus aureus. In both S. pneumoniae and S. pyo-
genes, enolase binds plasminogen (blood clot–dissolving

protein) and enhances the formation of proteolytic plasmin

activity, an important feature of pathogenesis in these or-

ganisms (Bergmann et al. 2003; Sun et al. 2004). PS on

the SD enolase may reflect conformation changes in plas-
minogen between S. pyogenes and SD or possibly an alter-

native function for SD enolase. Esterases are widespread in

bacterial pathogens but their roles in virulence and patho-

genesis have been somewhat unclear. Recently, however,

a CovRS-regulated secreted esterase (Sse) has been shown

to have a role in the virulence of GAS in subcutaneous in-

fection, severe soft tissue infections and in systemic dissem-

ination of GAS from the skin (Zhu et al. 2009). PS of an
esterase along the SD lineage indicates the development

of a specific functional significance to this locus since sep-

aration of SD from the putative SD/S. pyogenes ancestor.

The SD esterase under selection is not an orthologue to

Sse, and PS, although suggestive of functional significance,

is not necessarily linked to virulence. Nonetheless, the path-

ogenicity of GAS Sse together with the PS results suggest

this SD esterase should be given some consideration as a pu-
tative virulence factor in SD.

Several of the genes under PS are involved in the process

of translation, including three different ribosomal proteins

and translation EF-G. Translation proteins are known to

be expressed constitutively at very high levels and exhibit

a strong codon bias toward a subset of synonymous codons
(so-called translationally optimal codons), which are those

most efficiently and accurately recognized by the most

abundant tRNA species in the cell (Karlin and Mrazek

2000; Henry and Sharp 2007). The efficiency and accuracy

of translation is especially important for cells’ rapid growth.

Species exposed to selection for rapid growth have more

rRNA operons, more tRNA genes, and a greater propensity

for translationally selected codon usage bias (Sharp et al.
2005). Such translational selection was previously detected

in S. agalactiae 2603V/R, S. pyogenesM1 GAS SF370, and S.
pneumoniae R6 (Sharp et al. 2005). We performed a within-

group correspondence analysis (Suzuki et al. 2008) and de-

tected translational selection in all the 45 Streptococcus
strains including the three SD strains (data not shown). It

is possible, therefore, that the PS we detect for these par-

ticular proteins may be linked to this translational codon us-
age bias and increased growth efficiency. Coincident with

this hypothesis regarding growth, our results regarding pro-

moter evolution, suggest that the gene categories barrier

septum formation and cell cycle are evolving rapidly in

the SD lineage, suggesting adaptation in the processes of

cell division and cytokinesis, perhaps relating to changes

in growth rate.

Because our power to detect PS in individual genes was
limited, we attempted to gain further insight into the evo-

lution of the SDD/SDE proteomes by pooling data across

genes, either by GO category or by branch or clade in

the phylogeny. These analyses indicated that purifying selec-

tion has dominated in the evolution of the proteome of

these species, but we did observe somewhat elevated rates

of evolution in several gene categories that could indicate

adaptation to changing environments, such as metabolism,
antibiotic response, biosynthesis, and extracellular region.

We also observed a fairly pronounced increase in the rate

of protein evolution on external branches of the tree, par-

ticularly the branches leading to the two SDE subspecies.

These elevated average rates may reflect recent PS as these

species have adapted to their different niches, although they

could also be influenced by differences in effective popula-

tion sizes or weakly deleterious mutations not yet eliminated
from populations. One interesting finding that emerged

from our clade-specific analysis of protein-coding rates

was that several GO categories associated with two-

component signal transduction systems (TCSs)—such as

two-component response regulator activity, ‘‘phyosphor-

ylation,’’ and ‘‘signal transducer activity’’—were among

those showing the most rapid evolution in SDD and SDE rel-

ative to other portions of the phylogeny (fig. 8). TCSs are
known to play an important role in adaptive gene regulation

in group A streptococci (Kreikemeyer et al. 2003). The

CovRS TCS is particularly important as a global regulator crit-

ical in the transition to invasive infection (Churchward

2007). Therefore, these elevated rates of protein evolution
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in TCS-related genes could reflect infection-related adaptive
changes in SD lineages.

Although most studies of adaptive evolution have fo-

cused on protein-coding sequences, there is growing inter-

est in rapid evolution of noncoding regions as well,

particularly in cis-regulatory regions near core promoters

(Andolfatto 2005; Haygood et al. 2007; Torgerson et al.

2009). Using simple methods, we examined evolutionary

rates in the core promoters of six Streptococcus genomes
(including SDD, SDE1, and SDE2), taking advantage of

the fact that these species are sufficiently closely related that

their genomes can easily be aligned in noncoding as well as

in coding regions. We found clear evidence of purifying se-

lection in these promoter regions but also found that certain

categories of genes have significantly faster-evolving pro-

moters than others. Furthermore, many of the fast-evolving

categories are similar to those associated with rapid evolu-
tion in protein-coding regions (e.g., cell wall, extracellular

region, pathogenesis, and DNA metabolic process), suggest-

ing that many of the same types of genes are evolving adap-

tively for both protein function and gene expression.

Interestingly, transcription factors were prominent among

genes having reduced rates of promoter evolution, possibly

because their pronounced influence on the expression pat-

terns of multiple downstream genes decreases their flexibil-
ity for regulatory adaptation (Duret and Mouchiroud 2000;

Wray et al. 2003).

This work has provided a view of bacterial pathogen evo-

lution, involving the diversification of closely related subspe-

cies, that suggests adaptation to changing environments

and new hosts involves changes in gene content, as well

as selection of orthologous protein-coding loci and operon

promoters. Differences in gene content can have major in-
fluences on virulence attributes and rapidly alter the charac-

teristics of recipient isolates through the process of LGT,

particularly facilitated through mobile elements. Adaptive

evolution of protein-coding genes, although undoubtedly

a much slower process, is nonetheless a component of

the overall differentiation of even such closely related spe-

cies and may at least partly proceed through the coordi-

nated evolution of biochemical categories of genes.
Although we regard this as a very preliminary step toward

an understanding of the evolution of noncoding functional

elements in bacteria, it is clear that promoters in the SD spe-

cies group are evolving differently in different lineages and

different categories of genes and may in some instances be

evolving in concert with protein-coding genes of the same

biochemical category.

Supplementary Material

Supplementary figure S1–S8 and tables S1–S3 are available

at Genome Biology and Evolution online (http://www

.gbe.oxfordjournals.org/).
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