Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis

Para, A., Li, Y., Marshall-Colon, A., Varala, K., Francoeur, N. J., Moran, T. M., Edwards, M. B., Hackley, C., Bargmann, B. O., Birnbaum, K. D., McCombie, W. R., Krouk, G., Coruzzi, G. M. (June 2014) Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 111 (28). pp. 10371-10378. ISSN 0027-8424

[thumbnail of Paper]
Preview
PDF (Paper)
McCombie PNAS 2014.pdf - Published Version

Download (1MB) | Preview
URL: http://www.ncbi.nlm.nih.gov/pubmed/24958886
DOI: 10.1073/pnas.1404657111

Abstract

The dynamic nature of gene regulatory networks allows cells to rapidly respond to environmental change. However, the underlying temporal connections are missed, even in kinetic studies, as transcription factor (TF) binding within at least one time point is required to identify primary targets. The TF-regulated but unbound genes are dismissed as secondary targets. Instead, we report that these genes comprise transient TF-target interactions most relevant to rapid signal transduction. We temporally perturbed a master TF (Basic Leucine Zipper 1, bZIP1) and the nitrogen (N) signal it transduces and integrated TF regulation and binding data from the same cell samples. Our enabling approach could identify primary TF targets based solely on gene regulation, in the absence of TF binding. We uncovered three classes of primary TF targets: (i) poised (TF-bound but not TF-regulated), (ii) stable (TF-bound and TF-regulated), and (iii) transient (TF-regulated but not TF-bound), the largest class. Unexpectedly, the transient bZIP1 targets are uniquely relevant to rapid N signaling in planta, enriched in dynamic N-responsive genes, and regulated by TF and N signal interactions. These transient targets include early N responders nitrate transporter 2.1 and NIN-like protein 3, bound by bZIP1 at 1-5 min, but not at later time points following TF perturbation. Moreover, promoters of these transient targets are uniquely enriched with cis-regulatory motifs coinherited with bZIP1 binding sites, suggesting a recruitment role for bZIP1. This transient mode of TF action supports a classic, but forgotten, "hit-and-run" transcription model, which enables a "catalyst TF" to activate a large set of targets within minutes of signal perturbation.

Item Type: Paper
Subjects: organism description > plant > Arabidopsis
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > transcription
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > gene regulation
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > gene regulation
CSHL Authors:
Communities: CSHL labs > McCombie lab
Depositing User: Matt Covey
Date: 23 June 2014
Date Deposited: 11 Jul 2014 19:23
Last Modified: 20 Dec 2017 21:21
PMCID: PMC4104873
Related URLs:
URI: https://repository.cshl.edu/id/eprint/30484

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving